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Abstract

Ensemble learning is a popular technique to improve the accuracy of machine
learning models. It traditionally hinges on the rationale that aggregating multiple
weak models can lead to better models with lower variance and hence higher
stability, especially for discontinuous base learners. In this paper, we provide
a new perspective on ensembling. By selecting the most frequently generated
model from the base learner when repeatedly applied to subsamples, we can attain
exponentially decaying tails for the excess risk, even if the base learner suffers from
slow (i.e., polynomial) decay rates. This tail enhancement power of ensembling
applies to base learners that have reasonable predictive power to begin with and is
stronger than variance reduction in the sense of exhibiting rate improvement. We
demonstrate how our ensemble methods can substantially improve out-of-sample
performances in a range of numerical examples involving heavy-tailed data or
intrinsically slow rates.

1 Introduction

Ensemble learning [[17, 165] is a class of methods designed to improve the accuracy of machine
learning models by combining multiple models, known as “base learners”, through aggregation
techniques such as averaging or majority voting. In the existing literature, ensemble methods—most
notably bagging [8] and boosting [24]—are primarily justified based on their ability to reduce bias
and variance or improve model stability. This justification has been shown to be particularly relevant
for certain U-statistics [[L3] and models with hard-thresholding rules, such as decision trees [9}19].

In contrast to this traditional understanding, we present a novel perspective on ensemble learning,
demonstrating its capability to achieve a significantly stronger effect than variance reduction: By
suitably selecting the best base learners trained on random subsamples, ensembling leads to ex-
ponentially decaying excess risk tails. Specifically, for general stochastic optimization problems
that suffer from a slow (polynomial) decay in excess risk tails, ensembling can reduce these tails
to an exponential decay rate, a substantial improvement beyond the constant-factor gains typically
exhibited by variance reduction.
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To detail our contribution, we consider the generic stochastic optimization problem

2%%1 L(6) :=E[l(b,2)], (1

where 6 € O is the decision variable, z € Z is a random variable governed by some probability
distribution, and [(-, ) is the cost function. A dataset of n i.i.d. samples {z1,...,2,} is drawn
from the underlying distribution of z. In the context of machine learning, 6 corresponds to the
model parameters, {z1, . .., z, } represents the training data, [ denotes the loss function, and L is the
population-level expected loss. More generally, (I)) also encompasses data-driven decision-making
problems, i.e., the integration of data on z into a downstream optimization task with overall cost
function [ and prescriptive decision 6. These problems are increasingly prevalent in various industrial
applications [42] 16| [30]]. For example, in supply chain network design, # may represent the decision
to open processing facilities, z the uncertain supply and demand, and [ the total cost of processing
and transportation.

Given the data, a learning algorithm can be used to map the data to an element in ©, yielding a
trained model or decision. This encompasses a variety of methods, including machine learning
training algorithms and data-driven approaches such as sample average approximation (SAA) [61]]
and distributionally robust optimization (DRO) [55] in stochastic optimization. The theoretical
framework and methodology proposed in this paper work for all learning algorithms that meet the
formal performance criterion in our theorems.

Main Results at a High Level. Let 6 be the output of a learning algorithm. We characterize its

generalization performance through the tail probability bound on the excess risk L(6) — mingeco L(6),

i.e., P(L(#) > mingeg L(#) + 0) for some fixed § > 0, where the probability is over both the data
and training randomness. A polynomially decaying generalization tail refers to:

P(L(0) > min L(6) +8) > Cin~, @)
(2O

for some o > 0 and C; that depends on J. Such bounds are common under heavy-tailed data

distributions [43} 140, 41]] due to slow concentration, which frequently arises in machine learning

applications such as large language models [39} 163/ [16]], finance [50}[31]], and physics [22}53]]. This

can be illustrated with a simple linear program (LP):

Example 1.1 (LP with a polynomial tail). Consider the stochastic LP ming¢o 1) E[20), i.e., 1(0, z) =
z0 and © = [0,1] in , and its SAA solution 0 € argminge o 1) > 2i/n - 0. Assume z has a non-
zero density everywhere and is symmetric with respect to its mean E [z] = 1 (hence L(0) = 0). Then
we have P(§ = 1) > P>, zi/n < 0) > P(E?:_ll zi<n—1landz, <1—n)= ]P’(Z?:_ll 2z <
n — 1)P(z, < 1 —n), where the last equality uses the independence of z;’s. By the symmetry of z,
we have ]P’(Z?;ll zi <n—1)=1/2, thus for § € (0,1) the tail

A N 1

IP’(L(@) > min L(0) + 5) >P(=1)> Pz <1-n). 3)
6€[0,1] 2

If z has a polynomial tail, e.g., P(z < 1 —n) = Q(n=%) for some o > 0 where Q(-) contains

some multiplicative constant, the generalization tail bound (2)) applies. Appendix[E|provides another

example from linear regression.

As the key contribution of our work, we propose ensemble methods that significantly improve these
bounds, achieving an exponentially decaying generalization tail:

P(L(6) > min L(6) +8) < Coy"/%, @)
where k is the subsample size and v < 1 depends on k, § with v — 0 as k — oo. By appropriately
choosing k at a slower rate in n, the decay becomes exponential. This exponential acceleration
is fundamentally different from the well-known variance reduction benefit of ensembling in two
perspectives. First, variance reduction refers to the smaller variability in predictions from models
trained on independent data sets, thus has a more direct impact on the expected regret than the tail
decay rate. Second, variance reduction typically yields a constant-factor improvement (e.g., [12]
report a reduction factor of 3), whereas we obtain an order-of-magnitude improvement.



Main Intuition.  Consider first the discrete space ©. Our ensemble method employs a majority-vote
mechanism at the model level: The learning algorithm is repeatedly run on subsamples to generate
multiple models, and the model appearing most frequently is selected as the output. This resembles
the majority vote in ensemble methods for classification but the voting is on models instead of
classes. This process effectively estimates the mode of the sampling distribution of the learned model
by subsampling, and thus is less susceptible to extreme data and training randomness that incurs
the slow tail decay in (2). This mode estimation can be formalized via a surrogate optimization
problem over the same decision space © as (IJ) that maximizes the probability of being output by the
learning algorithm. The probability objective, as the expected value of a random indicator function,
is uniformly bounded even if the original objective is heavy-tailed and hence admits exponential
decay in the tail. Consequently, base learners with high-quality mode models receive an exponential

enhancement in their tail behavior. To illustrate the main idea using Example although P(é =1)
can be substantial in a heavy-tailed setting, it holds that P(§ = 0) > IP(¢ = 1), and thus the mode of
0, i.e., 0, recovers the optimal solution.

For general problems with possibly continuous decision spaces, we replace the majority vote with a
voting mechanism based on the likelihood of being e-optimal among all models when evaluated on
random subsamples. This avoids the degeneracy of using a majority vote for continuous problems
while retaining similar (in fact, even stronger) theoretical guarantees. For both discrete and continuous
problems, our method fundamentally improves the tail behavior from (Z)) to ().

Organization.  The rest of the paper is organized as follows. Section [2] presents our methods
and their finite-sample bounds. Section [3]presents experimental results, Section 4] discusses related
work, and Section E]concludes the paper. A review of additional related work, technical proofs, and
additional experiments can be found in the appendix.

2 Methodology and Theoretical Guarantees

We consider the generic learning algorithm in the form of
Azl zpw) 1 2P x Q= O

that takes in the training data (z1, . .., z,) € Z™ and outputs a model possibly under some algorithmic
randomness w € €2 that is independent of the data. Examples of w include gradient sampling in
stochastic algorithms and feature/data subsampling in random forests. For convenience, we omit w to
write A(z1, . .., z,) when no confusion arises.

2.1 A Basic Procedure

We first introduce a procedure called MoVE that applies to discrete solution or model space ©. MoVE,
which is formally described in Algorithm [T} repeatedly draws a total of B subsamples from the data
without replacement, learns a model via .4 on each subsample, and finally conducts a majority vote
to output the most frequently subsampled model. Tie-breaking can be done arbitrarily.

Algorithm 1 Majority Vote Ensembling (MoVE)

1: Input: A base learning algorithm A, n i.i.d. observations z1.,, = (21, ..., z,), subsample size
k < n, and ensemble size B.
2: forb=1to B do

3:  Randomly sample zz = (2b,... ,z,l;) uniformly from z;.,, without replacement, and obtain
0b = A(zh, ..., 20).
4: end for

5: Output: 6,, € argmaxycg >, 1(0 = 02).

To understand MoVE from the lens of mode estimation, we consider an optimization associated with
the base learner A:
max pr(0) =P (0 = Az1,...,21)), Q)

which maximizes the probability of a model being output by the base learner on £ i.i.d. observations.
Here the probability P is with respect to both the training data and the algorithmic randomness. If



B = 00, MoVE essentially maximizes an empirical approximation of (3), i.e.

P, (0= Ty 21)) 6
max P, (0= A1, -, %)) (©)
where (z27,...,z;) is a uniform random subsample from (z1, ..., 2, ), and P, denotes the proba-
bility with respect to the algorithmic randomness and the subsampling randomness conditioned on
(21, .., 2n). With a finite B < 00, extra Monte Carlo noises are introduced, leading to the following
maximization problem
B
1 b b
max Ebz_:lﬂ(a:,zt(zl,...,zk)), )

which gives exactly the output of MoVE. In other words, MoVE is a bootstrap approximation to
the solution of (). The following result materializes the intuition explained in Section [T] on the
conversion of the original potentially heavy-tailed problem () into a probability maximization
that possesses exponential bounds.

Theorem 2.1 (Informal bound for Algorithm . Consider discrete decision space ©. Let ©° :=
{0 € ©: L(0) < mingco L(0") + §} be the set of 6-optimal models and

= maxpr(0) — max pg(6),
s = maxpy(6) 66@/@51%()

where py(0) is defined in (5) and maxgyce\es pr(0) evaluates to 0 if ©\O° is empty. Then, for every
k <nandd > 0 such that 0, s > O, the solution output by MoVE satisfies that

B(L(8.) > min L(8) + ) < 6] |4exp(~2n/k)) + exp(~B))) ®)

where |O| denotes the cardinality of ©, and Q(-) contains multiplicative coefficients that depend on
maxgeco pr(0) and ng. 5. If s > 4/5, is further bounded by

ToF s
(S]] <3min{e2/5,C’1max{1—1§1aécpk(9), max pk(ﬁ)}} +e_03>, )
€

0c0/0°
where C1,Cs, C3 > 0 are universal constants.

The formal statement is deferred to Theorem [C.7]in Appendix[C.2} Theorem [2.1]states that the excess
risk tail of MoVE decays exponentially in the ratio n/k and ensemble size B. The bound (8)) consists
of two terms: The term exp(—(n/k)) arises from the bootstrap approximation of (5) with (6},
whereas the term exp(—(B)) quantifies the Monte Carlo error in approximating (6) with a finite B.
The multiplier |0 in the bound is avoidable, e.g., via a space reduction as in our next algorithm.

The quantity 7, s plays two roles. First, it quantifies how suboptimality in the surrogate problem (5)
propagates to the original problem (1)) in that every n;, s-optimal solution for (5) is 6-optimal for (IJ.
Second, 7,5 > 0 simply means that the mode solution is d-optimal and hence 7, 5 directly quantifies
the concentration of the base learner on near-optimal solutions. Therefore, a large 7y, 5 signals the
situation where the base learner already generalizes well. In this case, (8) reduces to (9). (9) suggests
that our approach does not hurt the performance of an already high-performing base learner as its
generalization power is inherited through the max {1 — maxgce pr (), maxgce /o5 pr(f)} term in
the bound. See Appendix [B]for a more detailed discussion.

Theoremalso hints at the choice of hyperparameters k and B. As long as 71 s > 0, our bound
decays exponentially fast, and in this regime the bound (8)) suggests that a smaller & (consequently a
larger ratio n/k) leads to thinner tails. However, like other subsampling-based ensemble methods
(e.g., subagging [[12])), reducing the subsample size k also enlarges the model bias. In experiments,
we set k = max (10, n/200) for a balance between tail and bias performance. Regarding the choice
of B, we observe from (8) that using a B = O(n/k) is sufficient to control the Monte Carlo error to
a similar magnitude as the statistical error.

Applying Theorem [2.1]to Example [I.T| gives an exponential tail as opposed to the slow decay in (3).

Corollary 2.2 (Enhanced tail for Example[l.1). Consider the stochastic LP in Example[I.1|and denote
qr == ]P’(Zf:l z; > 0). We have qi, > 1/2 by the symmetry of z. If MoVE is applied to Example
with A being the SAA, we have maxgce pi.(0) = qr, MaxXgco 00 Pr(0) = 1 — qx whenever 6 <1,



and |©| = 2. Consequently, ng.s = 2q;, — 1 > 0 for every k > 0 and 6 < 1, ensuring the tail upper
bound (8) holds. If q;, > 0.9, we also have the tail upper bound 6 min {6*2/57 Ci(1 - qk)}m +
B

2e % from (|9).

The proof of Corollary [2.2]can be found in Appendix [C.3]

2.2 A More General Procedure

We next present a more general procedure called ROVE that applies to continuous space where the
simple majority vote in MoVE can lead to degeneracy, i.e., all learned models appear exactly once in
the pool. Moreover, this general procedure relaxes the dependence on |©] in the bound .

Algorithm 2 Retrieval and e-Optimality Vote Ensembling (ROVE / ROVEs)

Input: A base learning algorithm A, n i.i.d. observations z1.,, = (21, ..., 2,), subsample size
k1, ko < n (if no split) or n/2 (if split), ensemble sizes B; and Bs.

Phase I: Model Candidate Retrieval

forb=1to B; do

Randomly sample zzl = (zi’, ey zZl) uniformly from z;.,, (if no split) or Z1:| 2| (if split)
without replacement, and obtain ébl = A2, ..., z]l;l ).
end for

Let S := {ézl :b=1,..., By} be the set of all retrieved models.

Phase II: e-Optimality Vote

Choose € > 0 using the data z;.,, (if no split) or z;. EY (if split).

for b =1to By do
Randomly sample zz2 = (24 ..., z,lég) uniformly from zy.,, (if no split) or z| 2 |1 ;.,, (if split)
without replacement, and calculate

kz k?
Ae,b 1 b . 1 /b
P=des: — N 10,20) <min — S (0, 2! .
Oy, { €S k2i§:1(,zz)fgr,1€1gk > 10,2 +e

2

end for 5 R
Output: 0, € argmaxycs Y2 1(0 € OF)).

ROVE, displayed in Algorithm 2] proceeds initially the same as MoVE in repeatedly subsampling
data and training the model using .A. However, in the aggregation step, instead of using a simple
majority vote, ROVE outputs, among all the trained models, the one that has the highest likelihood
of being e-optimal. This e-optimality avoids the degeneracy of the majority vote. Moreover, since
we have restricted our output to the collection of retrieved models, the corresponding likelihood
maximization is readily doable by direct enumeration. In addition, it helps reduce competition for
votes among best models, as each subsample can now vote for multiple candidates, ensuring a high
vote count for each of the top models even when there are many of them. This makes ROVE more
effective than MoVE in the case of multiple (near) optima as our experiments will show. We have the
following theoretical guarantees for Algorithm 2]

Theorem 2.3 (Informal bound for Algorithm[2). Lez & 5 := P(L(A(z1, ..., 2)) > mingeo L(0) +
0) be the excess risk tail of A. Consider Algorithm with data splitting, i.e., ROVEs. Let Ty (-) :=
P(supyeol(1/k) Zle 1(0,z;) — L(8)| > ) be the tail function of the maximum deviation of the
empirical objective estimate. Then, for every § > 0, under mild conditions on € and Ty, (-), it holds
that

P(L(én) > min L(0) + 25) <B [3 exp(—Q(n/ky)) + exp(—Q(By))

e
+exp(=Q(n/k1)) + exp(=Q(B1)),
where Q)(-) contains multiplicative coefficients depending on Ty, (+), €, 6 and &, s.

(10)

Consider Algorithm [2| without data splitting, i.e., ROVE, and discrete space ©. Assume
limg 00 T (8) = O for all 6 > 0. Then, for every fixed 6 > 0, under mild conditions, it holds

that lim,,_, o P(L(6,) > mingco L(6) + 20) — 0.



The formal statement can be found in Appendix [C.4] Theorem[2.3]provides an exponential excess risk
tail, regardless of discrete or continuous space. The terms in the square bracket of (I0) are inherited
from the bound (9) for MoVE with the majority vote replaced by e-optimality vote. In particular, the
multiplier |O| in is now replaced by By, the number of retrieved models from Phase I. The last
two terms in (I0) bound the performance sacrifice due to the restriction to the retrieved models.

ROVE may be carried out with the data split between the two phases, where it is referred to as ROVEs.
Data splitting makes the procedure theoretically more tractable by avoiding inter-dependency between
the phases but sacrifices some statistical power by halving the data size. Empirically we find it more
effective not to split data.

The optimality threshold e is allowed to be chosen in a data-driven way and the main goal guiding
this choice is to distinguish models of different qualities. In other words, € should be chosen to create
enough variability in the likelihood of being e-optimal across models. In our experiments, we find it
a good strategy to choose an ¢ that leads to a maximum likelihood around 1/2.

Technical Novelty. Our main theoretical results, Theorems [2.T)and [2.3] are derived using several
novel techniques. First, we develop a sharper concentration result for U-statistics with binary kernels,
improving upon standard Bernstein-type inequalities (e.g., [3, [57]). This refinement ensures the
correct order of the bound, particularly (9), which captures the convergence of both the bootstrap
approximation and the base learner, offering insights into the robustness of our methods for fast-
converging base learners. Second, we perform a sensitivity analysis on the regret for the original
problem () relative to the surrogate optimization (3)), translating the superior generalization in the
surrogate problem into accelerated convergence for the original. Finally, to establish asymptotic
consistency for Algorithm[2]without data splitting, we develop a uniform law of large numbers (LLN)
for the class of events of being e-optimal, using direct analysis of the second moment of the maximum
deviation. Uniform LLNs are particularly challenging here because, unlike fixed function classes in
standard settings, this function class dynamically changes with the subsample size ks as n — oco.

3 Numerical Experiments

In this section, we numerically test Algorithm (MoVE), Algorithmwith (ROVEs) and without
(ROVE) data splitting in training machine learning models and solving stochastic programs. Due
to space constraints, additional experimental results are provided in Appendix |F In particular, a
comprehensive hyperparameter profiling of our algorithms is performed in Appendix [F:3]to find
empirically well-performing configurations for general use. Unless specified otherwise, all our exper-
iments use the recommended configuration summarized at the end of Appendix [F.3] All experiments
are conducted on a personal computer, and Gurobi Optimizer is required for certain experiments on
stochastic programs. The code is available at: https://github.com/mickeyhqgian/VoteEnsemble.

3.1 Neural Networks and Trees for Regression

Setup. We consider regression problems with multilayer perceptrons (MLPs) and decision trees.
Note that classification models are prevalently trained using the cross-entropy loss that is inherently
less prone to heavy-tailed noises thanks to the presence of the logarithm. For neural networks, the
base learner splits the data into training (70%) and validation (30%), and uses Adam to minimize
the mean squared error (MSE), with early stopping triggered when the validation improvement falls
below 3% between epochs. The architecture of the MLPs is provided in Appendix [FI] For trees,
the base learner is a single regression decision tree with the MSE as the splitting criterion. Besides
the base learner, we also compare with three popular tree ensembles, Random Forests (RF) [9} 28],
Gradient Boosted Decision Trees (GBDT) [26, 27]], and XGBoost (XGB) [[15]. RF are constructed
with the same number of trees as our methods for a fair comparison, whereas GBDT and XGB are run
with early stopping to avoid overfitting. MoVE is not included in this comparison as it’s applicable to
discrete problems only.

Synthetic Data.  Input-output pairs (X,Y") are generated as Y = (1/50) - Z?il log(X; +1)+
¢, where each X is drawn independently from Unif(0, 2 + 198(j — 1)/49), and the noise ¢ is
independent of X with zero mean. We consider both standard Gaussian noise and Pareto noise
€ = €1 — &9, where each ¢; ~ Pareto(2.1). The out-of-sample performance is estimated on a


https://github.com/mickeyhqian/VoteEnsemble

common test set of one million samples. Each algorithm is repeatedly applied to 200 independently
generated datasets to assess the average and tail performance.

Real Data. We use three datasets from the UCI Machine Learning Repository [7]]: Bike Sharing
[211, Superconductivity [33l], and Gas Turbine Emission [1]]. The data is standardized (zero mean,
unit variance). To evaluate the tail probabilities of out-of-sample costs, we permute each dataset 100
times, and each time use the first half for training and the second for testing. Results for three other
datasets can be found in Figure[I3]in Appendix [F
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Figure 1: Results of neural networks. (a)(b)(d)(e): Expected out-of-sample costs (MSE) with 95%
confidence intervals under different noise distributions and varying numbers of hidden layers (H). (c)
and (f): Tail probabilities of out-of-sample costs.
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Figure 2: Comparison with bagging in terms of expected out-of-sample costs (MSE) with 95%
confidence intervals (a-c) or tail probabilities (d-f) under varying degrees of tail heaviness. Hyperpa-
rameters: k; = max(30,n/2), ke = max(30,n/1000), By = 50, By = 1000.



—— base «+++++ ROVES - = GBDT
—-= ROVE - RF XGB

L e — 1000 =<

tail prob.
=
5]
L

tail prob
=
S
-

tail prob.

H
5

L
.
N

107! 10° 10t 107! 10° 10* 10? 10° 10* 10°
cost cost cost

(a) Pareto shape = 2.5, n = 2t (b) Pareto shape =2.0,n = 2t (c) Pareto shape =1.5,n = ot
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Figure 4: Results of neural networks with 4 hidden layers on three real datasets, in terms of tail
probabilities of out-of-sample costs (MSE).

Results.  As shown in Figure[I] in heavy-tailed noise settings (Figures la-1c), both ROVE and
ROVEs significantly outperform the base algorithm in terms of both expected out-of-sample MSE
and tail performance under all sample sizes n. Notably, the performance improvement becomes more
pronounced with deeper networks (H = 8), indicating that the benefits of ROVE and ROVEs are
more apparent in models with higher expressiveness and lower bias.

In light-tailed settings (Figures 1d-1f), ROVE and ROVEs show comparable expected out-of-sample
performance to the base when H = 4, but outperform the base as H increases. Additionally, ROVE
and ROVEs outperform the base in tail probabilities even when H = 4. This indicates that ROVE and
ROVEs provide better generalization as the model complexity grows even for light-tailed problems.
Similar results for MLPs with 2 and 6 hidden layers can be found in Appendix [F4} where results on
least squares regression and Ridge regression are also provided.

Figure 2] shows a comparison with bagging that resembles our method most closely among existing
ensemble methods as both involve repeated training on randomly drawn subsamples. We implement
bagging, or subagging [12]] to be precise, on the MLP with H = 4 hidden layers by averaging the
predictions of the repeatedly trained MLPs. The same subsample size and ensemble size are used for
our methods and bagging to ensure a fair comparison. Whether bagging or our method wins depends
on the tail heaviness: ROVE and ROVEs exhibit relatively inferior test performance when the noise
has a shape of 2.1, but outperform bagging as the tail of the noise gets heavier towards a shape of 1.1.

Figure [3| demonstrates a similar pattern for tree base learners: ROVE and ROVEs outperform the
base learner in all cases, and also outperform RF, GBDT, and XGB especially in high-end tails when
the noise gets heavy-tailed with a Pareto shape of 1.5. For not so heavy-tailed cases, RF, GBDT, and
XGB may perform better.

On real datasets (Figure d), ROVE exhibits much lighter tails compared to the base on three datasets,
and similar tail behavior on the other three. ROVEs, however, underperforms the base in these
real-world scenarios, potentially due to the data split that compromises its statistical power.

3.2 Stochastic Programs

Setup. We consider four discrete stochastic programs: resource allocation, supply chain network
design, maximum weight matching, and stochastic linear programming, and continuous mean-



variance portfolio optimization. All problems are designed to possess heavy-tailed uncertainties. The
base learner for all the problems is the SAA. Details of the problems are deferred to Appendix [F.2]
and results with DRO being the base learner are provided in Appendix [F.4]Figure [T9]

Results.  Figure 5] shows that our ensemble methods significantly outperform the base algorithm in
all cases except for the linear program case (Figure[5d). Notably, in the linear program case, ROVE
and ROVEs still outperform the base, demonstrating their robustness, while MoVE performs slightly
worse than the base under small sample sizes. Comparing ROVE and ROVEs, ROVE consistently
exhibits superior performance than ROVEs in all cases.

When there is a unique optimal solution, MoVE and ROVE perform similarly, both generally better
than ROVEs, as seen in Figures However, in cases with multiple optima (Figure [5d), the
performance of MoVE deteriorates while ROVE and ROVEs stay strong. This is in accordance with
our discussion on the advantage of e-optimality vote in Section[2.2] Additional results in Appendix
shall further explain that optima multiplicity weakens the base learner for MoVE in the sense of
decreasing the 7 s and hence inflating the tail bound in Theorem@

The running time comparison in Figure [5f| shows that, despite requiring multiple runs on subsamples,
our methods do not necessarily incur a higher computation cost compared to running base learner on
the full sample, and can even be advantageous under large sample sizes. This is because, in problems
like DRO [3,155]] and two-stage stochastic program, sample-based optimization often has a problem
size that grows at least linearly with the sample size and induces a superlinearly growing computation
cost. Subsampled optimizations, as our approach, are smaller and more manageable. In general, the
computation efficiency of our method is ensured by the fact that no more than O(n/k) subsamples
are needed as suggested by the theory and that training on subsamples can be easily parallelized.

Recommended Method. Among the three proposed ensemble methods, ROVE is the preferred
choice over MoVE and ROVEs for general use as it’s applicable to both discrete and continuous
problems and consistently delivers superior performance across all scenarios.
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Figure 5: Results for stochastic programs. (a)-(e): Expected out-of-sample costs with 95% confidence
intervals. (f): Running time comparison in the network design problem.

4 Related Work

This work is closely connected to various topics in optimization and machine learning, and we only
review the most relevant ones. See Appendix [A]for additional reviews.

Ensemble Learning. Ensemble learning [17} 165} 60] improves model performance by combining
multiple weak learners into strong ones. Popular ensemble methods include bagging [8]], boosting [24]]



and stacking [62] 20]]. Bagging enhances stability by training models on different bootstrap samples
and combining their predictions through majority voting or averaging, effectively reducing variance,
especially for unstable learners like decision trees that underpin random forests [9]. Subagging
[12] is a variant of bagging that constructs the ensemble from subsamples in place of bootstrap
samples. Boosting is a sequential process where each subsequent model corrects its predecessors’
errors, reducing both bias and variance [37) [29]]. Prominent boosting methods include AdaBoost
[23]], Stochastic Gradient Boosting (SGB) [26} 27], and Extreme Gradient Boosting (XGB) [25]]
which differ in their approaches to weighting training data and hypotheses. Instead of using simple
aggregation like weighted averaging or majority voting, stacking trains a model to combine base
predictions to further improve performance. A key procedural difference of our approach from these
methods is that we perform majority voting at the model rather than prediction level to select a
single best model from the ensemble. That is, our approach outputs models in the same space as the
base learner, whereas existing ensemble methods yield aggregated models outside the base space.
This also means a constant inference cost for our output model with respect to the ensemble size,
as opposed to linearly growing costs seen in existing ensemble methods. Methodologically, our
approach operates by accelerating excess risk tail convergence in lieu of bias/variance reduction, and
hence is particularly effective in settings with heavy-tailed noise.

Optimization and Learning with Heavy Tails. Optimization with heavy-tailed noises has garnered
significant attention due to its relevance in traditional fields such as portfolio management [50]] and
scheduling [38]], as well as emerging domains like large language models [[10} [2]. Tail bounds of
most existing algorithms are guaranteed to decay exponentially under sub-Gaussian or uniformly
bounded costs but deteriorate to a slow polynomial decay under heavy-tailedness [43} 40l 41, 56].
For SAA or ERM, faster rates are possible under the small-ball [52, 51} 159] or Bernstein’s condition
[L8] on the function class, while our approach is free from such conditions. Considerable effort has
been made to mitigate the adverse effects of heavy-tailedness with robust procedures among which
the geometric median [54]], or more generally, median-of-means (MOM) [47,49] approach is most
similar to ours. The basic idea there is to estimate a true mean by dividing the data into disjoint
subsamples, computing an estimate on each, and then taking the median. [45] 48| 46, 44] use MOM
in estimating the expected cost and establish exponential tail bounds for the mean squared loss and
convex function classes. [36,135] apply MOM directly on the solution level for continuous problems
and require strong convexity from the cost to establish generalization bounds. Besides MOM, another
approach estimates the expected cost via truncation [[14] and allows heavy tails for linear regression
[4}164] or problems with uniformly bounded function classes [[11]], but is computationally intractable
due to the truncation and thus more of theoretical interest. In contrast, our ensemble approach is
a meta algorithm that provides exponential tails as long as the base learning algorithm possesses
reasonble predictive performance as characterized in our Theorem [2.1] Relatedly, various techniques
such as gradient clipping [[16, 32]] and MOM [58]] have been adopted in stochastic gradient descent
(SGD) algorithms to handle heavy-tailed noises, but their focus is the faster convergence of SGD
rather than generalization.

5 Conclusion and Limitations

This paper introduces a novel ensemble technique that significantly improves generalization by
estimating the mode of the sampling distribution of the base learner via subsampling. In particular, our
approach converts polynomially decaying generalization tails into exponential decay, thus providing
order-of-magnitude improvements as opposed to constant factor improvements exhibited by variance
reduction. Extensive numerical experiments in both machine learning and stochastic programming
validate its effectiveness, especially for scenarios with heavy-tailed data and slow convergence rates.
This work underscores the powerful potential of our new ensemble approach across a broad range of
machine learning applications.

Regarding limitation, our method may increase model bias like other subsampling-based techniques
such as subagging [[12], making it best suited for applications with relatively low bias, e.g., when the
base learner is sufficiently expressive. Moreover, the tail guarantee of our method requires the mode
of the sampling distribution of the base learner to be a reasonably good model.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The major claim made in our paper is that we proposed a new ensemble
learning method that attains an exponentially decaying tail for excess risk. This claim
is theoretically proved in Section[2] Moreover, we have conducted extensive numerical
experiments in Section [3]to support our theoretical results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our work in Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We clearly stated the assumptions/conditions required for each theoretical
results. Proofs of the results are documented in Appendix [C]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All our figures are reproducible, and the codes for the experiments are dis-
closed.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided the codes for reproducing our experiments. No data is needed for
our paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The problem instances used in the experiments can be found in our disclosed
code. The experiment methodologies are clearly stated in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeated each our experiments for more than 50 times, reporting both the
average performance and the standard deviation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As stated at the beginning of Section [3] our experiments are performed
on a personal computer, and Gurobi Optimizer is required for reproducing some of our
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our paper is a theoretical work studying ensemble learning and stochastic
optimization, and it does not have any ethical issue.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper is a theoretical work studying ensemble learning and stochastic
optimization, and it does not have societal impact concerns.

18


https://neurips.cc/public/EthicsGuidelines

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper is a theoretical work studying ensemble learning and stochastic
optimization, and it does not pose such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The Gurobi academic license is used for our numerical experiments.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper is a theoretical work studying ensemble learning and stochastic
optimization, and we do not release new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper is a theoretical work studying ensemble learning and stochastic
optimization, and it does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper is a theoretical work studying ensemble learning and stochastic
optimization, and it does not incur such risks.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are only used to polish the writings of some sentences in our paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21


https://neurips.cc/Conferences/2025/LLM

Supplemental Materials

The appendices are organized as follows. In Appendix we review additional related work.
Appendix [B] presents additional technical discussion for Theorem [2.1] Next, in Appendix [C} we
document the proofs of the main theoretical results in our paper. Specifically, we introduce some
preliminary definitions and lemmas in Appendix [C.I] Then, the formal statement and the proof
of Theorem [2.1] can be found in Appendix The proof of Corollary [2.2]is in Appendix
The formal statement and the proof of Theorem [2.3] can be found in Appendix [C.4] To improve
clarity, we defer the proofs for all technical lemmas to Appendix [D] In Appendix [E] we provide
another motivating example that supplements Example[I.T] Finally, we provide additional numerical
experiments in Appendix [F

A Additional Related Work

Bagging for Stochastic Optimization. Bagging has been adopted in stochastic optimization for
various purposes. The most relevant line of works [[70, 90, 95, [71]] study mixed integer reformu-
lations for stochastic optimization with bagging approximated objectives such as random forests
and ensembles of neural networks with the ReLU activation. These works focus on computational
tractability instead of generalization performance. [66] empirically evaluates several statistical
techniques including bagging against the plain SAA and finds bagging advantageous for portfolio
optimization problems. [72]] investigates a batch mean approach for continuous optimization that
creates subsamples by dividing the data set into non-overlapping batches instead of resampling and
aggregates SAA solutions on the subsamples via averaging, which is empirically demonstrated to
reduce solution errors for constrained and high-dimensional problems. Another related batch of works
(87,188, [78.[77] 181]] concern the use of bagging for constructing confidence bounds for generalization
errors of data-driven solutions, but they do not attempt to improve generalization. Related to bagging,
bootstrap has been utilized to quantify algorithmic uncertainties for randomized algorithms such as
randomized least-squares algorithms [89]], randomized Newton methods [[74], and stochastic gradient
descent [82,197]], which is orthogonal to our focus on generalization performance.

Machine Learning for Optimization. Learning to optimize (L20) studies the use of machine
learning in accelerating existing or discovering novel optimization algorithms. Much effort has been
in training models via supervised or reinforcement learning to make critical algorithmic decisions
such as cut selection (e.g., [80,94]]), search strategies (e.g., [85, 184} [91]]), scaling [69], and primal
heuristics [93] in mixed-integer optimization, or even directly generate high-quality solutions (e.g.,
neural combinatorial optimization pioneered by [[67]]). See [[75} 76,168 |96] for comprehensive surveys
on L20. This line of research is orthogonal to our goal, and L20 techniques can work as part of or
directly serve as the base learning algorithm within our framework.

B Implications of Theorem 2.1 for Strong Base Learners

We provide a brief discussion of Theorem [2.1] applied to fast convergent base learners. Based
on Theorem the way maxgpee pr(0) and maxyce,gs pr(f) enter into reflects how the
generalization performance of the base learning algorithm is inherited by our framework. To
explain, large maxpce pr(f) and small maxyce /gs pr(f) correspond to better generalization
of the base learning algorithm. This can be exploited by the bound (9) with the presence of
max {1 — maxgee pr(0), maxgece s pr(f)}, which is captured with our sharper concentration of
U-statistics with binary kernels. In particular, for base learning algorithms with fast generalization
convergence, say 1 — maxgee pr(f) = O(e™*) and maxyce /05 pr(f) = O(e™*) for simplicity,
we have Cy max {1 — maxgee pr(0), maxgee o5 Pr(f)} = O(e™*) and hence the first term in
becomes O(e~") which matches the error of the base learning algorithm applied directly to the full
data set.
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C Proofs for Main Theoretical Results

C.1 Preliminaries

An important tool in the development of our theories is the U-statistic that naturally arises in subsam-
pling without replacement. We first present the definition of U-statistic below and its concentration
properties in Lemma|C.2] The proof of Lemma[C.2]can be found in Appendix [D.T]

Definition C.1. Given the i.i.d. data set {21, ..., 2,} C Z and a (not necessarily symmetric) kernel
of order k < n is a function x : Z¥ — Rsuch that E [|#(z1, ..., 2x)|] < oo, the U-statistic associated
with the kernel & is

1
U(z1y..y2n) = Z K(Ziys ooy Zip )

n(n—1)---(n-k+1) 1<t oy yin<n s.t. isis V1<s<t<k

Lemma C.2 (MGF dominance of U-statistics from [34]). For any integer 0 < k < n and any kernel
K(z1,...,2k), let U(z1,. .., 2z,) be the corresponding U-statistic defined in Deﬁnition and

Ln/k]
_ 1
K(Zl,...,zn) = Ln/kj Zz:; m(zk(i,1)+1,...,zki) (11)

be the average of the kernel across the first |n/k|k data. Then, for every t € R, it holds that
E [exp(tU)] < E [exp(t7)].

Next, we present our sharper concentration bound for U-statistics with binary kernels. The proof of
Lemma[C.3|can be found in Appendix

Lemma C.3 (Concentration bound for U-statistics with binary kernels). Let k(z1, ..., zk;w) be
a {0, 1}-valued kernel of order k < n that possibly depends on additional randomness w that
is independent of the data {z1,...,zn}, K*(z1,...,2k) = El&(z1,...,25;w)|21,...,2k], and
U(z1,...,2n) be the U-statistic associated with k*. Then, it holds that
n

P(U—E[x]>e) < exp (—% - Dy, (E[] + ¢||E [n])) ,

P(U-E[x] < —€) < exp (—%  Dct, (B[] = [ E[]))
where Dk (pllq) == pIn2 + (1 —p)In % is the KL-divergence between two Bernoulli random

variables with parameters p and q, respectively.

Below, Lemma|C.4| gives lower bounds for KL divergences which help analyze the bounds in Lemma
[C3] The proof of Lemma|C.4]is deferred to Appendix [D.3]

Lemma C4. Let Dky,(pllq) :=pln % +(1-p)ln };_1;’ be the KL-divergence between two Bernoulli

random variables with parameters p and q, respectively. Then, it holds that
D(plla) > pln '+~ p. (12)
Ifp € [v,1 — 7] for some v € (0, 1], it also holds that
Dxw(pllg) > —1In(2(¢(1 —q))7). (13)

To incorporate all the proposed algorithms in a unified theoretical framework, we consider a set-valued
mapping

Alzi, ..., z;w) s Z2F x Q@ — 29, (14)
where w € € denotes algorithmic randomness that is independent of the data {21, ..., 2} € Z*.
Each of our proposed algorithms attempts to solve the probability-maximization problem
max pPi(0) ;=P (0 € A(z],...,25;w)), (15)
EE)
for a certain choice of A, where {z{,...,2}} is subsampled from the i.i.d. data {z1,...,2,}

uniformly without replacement, and P, denotes the probability with respect to the algorithmic
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randomness w and the subsampling randomness conditioned on the data. Note that this problem is an
empirical approximation of the problem

max pe(0) =P (0 € Azy,...,215w)). (16)

The problem actually solved with a finite number of subsamples is

A2, ., 2 ) 1
gleagpk Z: (CAS S ZpsWh)) (17)

Specifically, Algorithm[Tjuses
Azl zpsw) = {AG - 2 w) (18)

where A denotes the base learning algorithm, and Algorithm 2] uses

A(zf,...,zZQ;w):{QES Zl <r§161r§—221 ,25) }, (19)

conditioned on the solution set S retrieved in Phase I. Note that no algorithmic randomness is involved
in (19) once the set S is given. Now, we introduce the following definitions.

Definition C.5. For any § € [0, 1], let
Pi = {0 € ©: px(0) > maxpi(6') - 0} (20)

be the set of d-optimal solutions of problem (I6). Let

031 € argmax pi(0)
0co

be a solution with maximum probability that is chosen in a unique manner if there are multiple such
solutions. Let -

Pp = {0 € ©: pi(0) > pr(05™) — 8} @21)
be the set of d-optimal solutions relative to 67" for problem (T5).
Definition C.6. Let

0'co

@5:{0€®:L()<mmL( ’)+5} (22)

be the set of d-optimal solutions of problem . In particular, ©° represents the set of optimal

solutions. Let i
1
6 _ < —
(C) {9 €0O: z g 10, z;) Ipelg ’ E: ' 2 +5} (23)

i=1
be the set of -optimal solutions of the SAA with i.i.d. data (21 2k)-

C.2 Proof of Theorem 2.1]
Theorem C.7 (Formal finite-sample bound for Algorithm[I). Consider discrete decision space ©.
Let pi*™* := maxgee pi(0), where pi,(0) is defined in , and

= pinex 0 24
Mhk,s °= Pk eené%spk() (24)

where maxgce\es Pk (0) evaluates to 0 if ©\O° is empty. Then, for every k < n and § > 0 such that
Mk,s > 0, the solution output by MoVE satisfies that

P (L(én) > min L(0) + 5)

n X 3 1) X max 3 1] X

<|©] | exp <_ﬁ'DKL (pg‘a - n:’6 pr —77k,5>> + 2exp (_714 Dk ( o — % P ))
+ex B s
Pl 7% min {ppax,1 — ppax} 4 3np,5/4
2
max Nk,s n max Nk,s max B M5

11( —<1). <f—~D ( —‘ )77_—)

+ + 1 exp % KL + 24 1T pr 1o, 5/4
(25)

24



In particular, if n, s > 4/5, is further bounded by

Tk
O] <3 min {6_2/57 Cy max {1 — P, max pk(H)}} + e_B/C3> ) (26)

00 /09

where Cy,Ca, C3 > 0 are universal constants, |0 | denotes the cardinality of ©, and Dx1,(p||q) :=
pln g +(1-=p)ln }_T’; is the Kullback—Leibler divergence between two Bernoulli distributions with
means p and q.

We consider Algorithm 3] a generalization of Algorithm|[T]applied to the set-valued learning algorithm
A in (T4). This framework recovers Algorithm|I]as a special case under condition (I8). Again, we
omit the algorithmic randomness w in A for convenience. For Algorithm [3] we derive the following
finite-sample guarantee.

Algorithm 3 Majority Vote Ensembling for Set-Valued Learning Algorithms

1: Input: A set-valued learning algorithm A, n i.i.d. observations z;.,, = (21,..., 25,), positive
integers k < n, and ensemble size B.
2: forb=1to B do

3:  Randomly sample z = (2%, ..., 2%) uniformly from z;.,, without replacement, and obtain
0F = A(2h,...,2h)
4: end for

5: Output §,, € argmaxycg Zle 1(0 € ©Y).

max

Theorem C.8 (Finite-sample bound for Algorithr@. Consider discrete decision space ©. Let

P> := maxgeeo pi(0), where py(0) is defined in (16). For any 6 > 0, denote
Mh.s = DR — og&ésm(@), 27)

where maxgcg\os i (0) evaluates to 0 if ©\O° is empty. Then, for every k < n and § > 0 such that
Mk, > 0, the solution output by Algorithm@satisﬁes that

P <L(én) > min L(0) + 5)

<16

n max 377 max n max n max
R N ) FE S e )

2
Ui
+exp| —57
P < 24 min {pr**, 1 — prax} 4 377/4)

2k 24 1—pmex /4
(28)

n B 2
e 0)-on (oo (- ) - B )|

for every n € (0,7 5). In particular, if Ty, 5 > 4/5, is further bounded by

TR
|O] <3min {6_2/5,01 max {1 — P, eerréa\%épkw)}} + exp (—é)) . (29

where C1,C,C3 > 0 are universal constants, and Dk, (p|lq) = pln% +(1—-p)ln % is the

Kullback—Leibler divergence between two Bernoulli distributions with means p and q.

Proof of Theorem|[C.8] We first prove excess risk tail bounds for the problem (I6), split into two
lemmas, Lemmas and [C.10]below. The proofs for these two lemmas can be found in Appendix
[D4]and Appendix respectively.

Lemma C.9. Consider discrete decision space ©. Recall from Definition that PR = pg(O702)
holds for 03*%. For every 0 < ¢ < 0 < p*®, it holds that
0+e€
max _ 6
o -o))

Ae n max

P (Pk 7 P;j) <o [exp (_2k - Dxy, (pk .
n d—¢

+ exp <_2k - Dk, (pkmax 3 Hp?m‘))] :
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Lemma C.10. Consider discrete decision space ©. For every e € [0, 1] it holds for the solution
output by Algorithm 3] that

J B €2
P, (6, ¢ P<) <
(0 ? Pk) 6] - exp ( 6 min {Pe(02%),1 — pr(022)} + e)

where |-| denotes the cardinality of a set and P, denotes the probability with respect to both the
resampling randomness conditioned on the observations and the algorithmic randomness.

We are now ready for the proof of Theorem @ We first note that, if 75 s > 0, it follows from
Definition[C3] that

Pl C ©? for any 1 € (0, M,5)-

Therefore, for any € (0, 7,5), we can write that

(ige) <e(iuem) < (e A7) o (R o))

N R R (30)
< P(hgP)+P (P2 P)).
We first evaluate the second probability on the right-hand side of (30). Lemma[C.9] gives that
e (P2 71) < ol e (D (s - %)
(31)

o (5o (- )|

Next, by applying Lemma with € = 7)/2, we can bound the first probability on the right-hand
side of (30) as

2
(9 ¢ P/ ) <|e|-E {exp< Qi min {py (072%%), 177—pk(9max)} +77/2)} o

Conditioned on the value of p(0;***), we can further upper-bound the right-hand side of as
follows

( B U )}
exp | —— —— -
P79 Tin {Pr(0722), 1 — pr(032*) } +1n/2

. . ) n B n?
gmax < max __ 7) ex ( ) +
k( k ) pk 4 P 24 pmax +77/4

IN
=

2

) 7 B U
gmaxy _ pmax| - 7)
[ (OF™) = pp™] < ) -ex p( 24 min {pP*, 1 — pex) + 377/4) i

|
(
(
P (o) = g+ 1) o (57 1_pkmn+17/4>
(
(

772

IN
~

- x
RO, )= By 4 P\724 min {pjpax 1 — pprax} + 3n/4

A n B n?
BT ) pyey (R S —
R(OR) 2 P+ eXp( 24 1—pgm+n/4>

n max max
2 e (-3 D o - L)) +

exXp | ——=— 772 +
24 min {ppax,1 — pa<} + 3n/4
U n B U
(o T <) exp (— 2 D (o D)) e (2 Y
Py +4 > exp o KL | Pk p exp 24 1— prex 1 /4
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where inequality () results from applying Lemma [C.3] with fj (012*), the U-statistic estimate for
pi 2%, Together, the above equations imply that

i (én ¢ @5)
)

n 3
< [O]|exp (— - Dk, (p?a" - ﬁ‘
n
+2exp (—* - Dk, (p‘;?a" - Z"P?a){))

2k 4
2k

2
n
+exp | —57 - —
P ( 24 min {pr®*,1 — prax} 4+ 377/4)

n n n B n?
l(maX+,<1>. ——.D (maXJr,H maX>f7.— .
APk 4= eXp( o KL Pk 4 |IPk 24 1 —pPax 4 /4

Since the above probability bound is left-continuous in 7 and 7 can be arbitrarily chosen from
(0, 7k,5) the validity of the case 1) = 7 5 follows from pushing 7 to the limit 7, 5. This gives (28).

To simplify the bound in the case 7, s > 4/5. Consider the bound with n = 7;,5. Since
P> > i, 5 by the definition of 7y, s, it must hold that pi*®* 47, 5/4 > 4/541/5 = 1, therefore the
last term in the finite-sample bound (28) vanishes. To simplify the first two terms in the finite-sample
bound, we note that

3N 4 2
R R i A
pox = d 5y - 5 L,
pkmax—ﬁljl’gzﬁm—ﬁzazg

and that pi®* — 7, s < 1 — 7,5 < 1/5, therefore by the bound from Lemma|C.4] we can bound

the first two terms as
n 3k, s _
e —__—_—.D max __ > H max __
Xp < o KL (pk 4 Di 7]k,6>)

n max = max —
< exp (50 In (2(0F™ = o)1= PP +7s)) ) )
n/(2k)
= (20 = ) (= P+ ,0)) )

n/(2k)
< (20E= - o))

_ (25(pglax o ﬁkﬁ))n/(l%) ,

and similarly

n max k6 || max n max max
oo s o=~ B2i) = o (gm0 -691%)
-\ n/(2k)
_ (2(pg1ax(1 _ pglax))l/a)
n/(2k)
S (2(1 o pg}ax)l/S)
maxy\ 72/ (10k
= (2P pp)"
On the other hand, by Lemma both Dy, (pi™ — 3,5 /4|lpp** — r,5) and

max max

Dxr, (pi™ — 7k,5/4||pj**) are bounded below by 7);; 5/8, therefore
_ =2
n 3Nk.s _ n Mgs n
. D max _ ) H max _ < - . 2 < (77) s
exp < 2% KL (pk 4 P 77k,6>) > exp ( 2k 8 ) = exp 25k
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and the same holds for exp (—n/(2k) - D1, (p®* — fk,5/4||p®*)). For the third term in the bound
(28) we have
Mo - (4/5)° _ 16
min {pP* 1 — pMax} 4+ 37, 5/4 ~ min{1,1/5} +3/4 ~ 25’

and hence

exp | — B 77]%’6 <exp| — B
P\ 724 min (g™ 1 — ppy 1 3ik0/4 | =P\ 75/2)
The first desired bound then follows by setting C, Cs, C5 to be the appropriate constants. This
completes the proof of Theorem [C.8] O

Proof of Theorem[C.7} Algorithm [T]is a special case of Algorithm [3] with the learning algorithm (T8)
that outputs a singleton, therefore the results of Theorem [C.8| automatically apply. In particular,
Mk,s = 7k,s in the context of Theorem@ and (@) follows from setting 7 to be 7y, 5 in @) O

C.3 Proof of Corollary[2.2]

Proof of Corollary[2.2] By the continuity and symmetry of z we have g, = P(Zle zi > k) +
]P’(Zf:l zi € (0,k)) =1/2+ ]P’(Zf:l z; € (0,k)). Since z has a non-zero density everywhere,
]P’(Zf:l zi € (0,k)) > 0, thus ¢ > 1/2 for every k > 0. We note that the SAA of the linear

program outputs either 0 or 1, therefore the space [0, 1] can be effectively viewed as the binary set
{0,1} and Theoremis applicable with |©| = 2. To apply Theorem it can be easily seen that
maxgee pr(0) = P() = 0) = g, and that maxyc /05 pr(0) = P(0 = 1) = 1 — g, for § < 1. This
gives 1, s = 2q; — 1 > 0. Therefore the bound (8) holds for every £ > 0 and 6 < 1. If g, > 0.9,
we have n;, s > 4/5, and hence the bound holds. The particular form of the bound is then
obtained by plugging in the values for maxgee pi.(0), maxyce /o5 px () and [O). O

C.4 Proof of Theorem 2.3

Theorem C.11 (Formal finite-sample bound for Algorithm[2). Ler &5 := P(L(A(z1, ..., 2)) >
mingeg L(0) + &) be the excess risk tail of A. Consider Algorithm 2| with data splitting, i.e.,
ROVEs. Let Tj(-) := P(supgeel(1/k) Zle 1(0,2) — L(O)| > -) be the tail function of the
maximum deviation of the empirical objective estimate. For every § > 0, if € is chosen such that
P (e € [e,€]) =1 for some 0 < ¢ <€ < d and Ty, ((6 —€)/2) + Ty, (¢/2) < 1/5, then

3 min {6_2/5701Tk2 (min {géé —6})}202k2 N 6_32/03]

]P’(L(én) > min L(6) + 25) <B

+ min {6_(1—5“,5)/04’ 055k1,5} et + e Bi(1-Er.0)/Cr

(33)
where Cy, Cy, C; are the same as those in Theorem|[C.7} and Cy, Cs, Cg, C7 are universal constants.

Consider Algorithm [2| without data splitting, i.e., ROVE, and discrete space ©. Assume
limg 00 Tk (0) = 0 for all § > 0. Then, for every fixed 6 > 0, we have lim,,_, ., P(L(6,) >
mingee L(0) + 20) — 0, if limsup,_ oo Eks < 1, P(e>0/2) — 0, kyandky — oo,
n/ky and n/ky — 0o, and By, By — 00 as n — 0.

We first present two lemmas to be used in the main proof. The following Lemma [C.12] characterizes
the exponentially improving quality of the solution set retrieved in Phase I, where its proof can be
found in Appendix [D.6]

Lemma C.12 (Quality of retrieved solutions in Algorithm . For every k and 6 > 0, the set of
retrieved solutions S from Phase I of Algorithm[2|with k1 = k and without data splitting satisfies that

B
C (1- 5k,5)> o (34

P (S ne’ = (7]) < min {67(175’“'6)/6‘4, C55k75}m + exp (1
7

where Cy, Cs, Cg, C7 > 0 are universal constants. The same bound with n replaced by n/2 holds
true for Algorithm 2| with data splitting.
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Then, Lemma gives bounds for the excess risk sensitivity 7 s in the case of the set-valued
learning algorithm (I9). The proof of Lemma[C.13|can be found in Appendix [D.7}

Lemma C.13 (Bounds of 7, s for the set-valued learning algorithm ). Consider discrete decision
space ©. If the set-valued learning algorithm

k
1 1 ,
Az, ..., 25 w) == {9 €0: Z E 10, z) < min - g 1o ,zi)Jre}

is used with € > 0, it holds that

€
max __ >1_ -
P = maxpi(0) > 1 - Ty (5) (35)
max pg(0) < T ¢ (36)
ee@\eépk =k 2 ’
and hence 5
€ — €
(e
s 2 1-Te () Tk< . ) (37)

where Ty, is the tail probability defined in Theorem[2.3]

To prove Theorem [C.11] we also introduce some notations. For every non-empty subset WW C ©, we
use the following counterpart of Definition[C.6] Let

S . . : /
We = {GEW.L(H) <0r;é11r/1vL(9)+6} (38)

be the set of §-optimal solutions in the restricted decision space W, and

k k
—~ 1 1
S . . ) — in — /.
Wy = {6‘ eEW: z ;:1 10, z) nin - ;:1 1, z)+ 6} (39)

be the set of J-optimal solutions of the SAA with an i.i.d. data set of size k.

Proof of Theorem for ROVEs. Given the retrieved solution set S and the chosen e, the rest of
Phase I of Algorithm[2|exactly performs Algorithm [3on the restricted problem minge s E [1(6), 2)]

to obtain én with the data 2|, /2) 1.5, the set-valued learning algorithm |b the chosen € value and
k=ko, B= B,.

To show the upper bound for the unconditional convergence probability P (én ¢ @25), note that

{(Sne’£pln {L(@n) < min L(0) +5} C {én e @25},

0e

and hence by union bound we can write
j 25 5 _ 5 .
]P’(&ngé@ )gP(Sm@ _®)+P(L(9n)>gg§L(9)+5). (40)

P (S ne’ = Q]) has a bound from Lemma We focus on the second probability.

For a fixed retrieved subset S C ©, define the tail of the maximum deviation on S

>.>.

It is straightforward that T (-) < T} (-) where T}, is the tail of the maximum deviation over the whole
space O. Since IP (¢ € [¢, €]) = 1, we have

- (5) -8 () 2 - () - ()

29

TS() =P (sup

0eS

1 k
%Zl(&zi) — L(#)




If Ty, ((6 —€)/2) 4+ Tk, (¢/2) < 1/5, we have T ((6 —€)/2)+ T} (¢/2) < 1/5 and subsequently
1-TF ((6 —€)/2) =T (¢/2) > 4/5, and hence 7, , > 1—T3 ((6 — €)/2) =T (e/2) > 4/5 by
Lemma [C.13] for Phase II of ROVEs conditioned on S and e, therefore the bound from Theorem
applies. Using the inequalities and to upper bound the min {1 — p}Pax, pmax _ p, 51
term in (29) gives

P (L(én) > min 1,(0) + 5|8, 6)
€
. - € §—€ 2C;k2 B
< |S] <3mln{e 2/5,01maX{T’f2 (2)’TI§2( 2 >}} —|—exp( Ci))
; — el ) F
|S| 3 min 8_2/5, ClTkS w + exp BZ
2 2 Cg
. _ = 2C§k2
|8| Smln 6_2/5701Tk2 w +exp B2 .
2 e

Further relaxing |S| to B; and taking full expectation on both sides give

~ 1 — € Tok
P <L(9n) > min L(Q) + 6) < B (3 min {6*2/57 ClTk2 (M) } 2C3ky + exp (_BQ>> ‘
0es 2 Cs

This leads to the desired bound (33) after the above bound is plugged into (0] and the bound @
from Lemma[C.12]is applied with k = k;.

A

IN

Proof of Theorem |for ROVE. For every non-empty subset W C O and ky, we consider the
indicator

k2
1
0, W€ —
L (21, 28,) 1= 1 <k‘2 ;l(@,zi ) < r’rg/lv:Zl )+ e) for €e W, e €[0,6/2],
which indicates whether a solution § € W is e-optimal for the SAA formed by {z1,. .., 2, }. Here

we add € and W to the superscript to emphasize its dependence on them. The counterparts of the
solution probabilities pg, Py, i for ]IZ’ZW’E are

pe(6) = E [ ‘)Wﬁ(zl,...,%)] :

INANA O W, e/ _x *

pY(0) = E, [ch (25, ,zkz)} ,
1

_W,e L 0, W,e

Dy 0) := B, g 1, (zb,..., ZZQ).

We need to show the uniform convergence of these probabilities for € € [0, d/2]. To do so, we define

a slighted modified version of ]IZ;W‘
1 & 1 &
O, W, e—
1)V (o, 2ny) =1 (b;z(a z) < min -~ ;l(@’,zi) + e> for € W, e € 0,6/2],

which indicates a strict e-optimal solution, and let pk T, f)};v T pkw "“” be the corresponding coun-

terparts of solution probabilities. For any integer m > 1 we construct brackets of size at most 1/m to
cover the family of indicator functions {]li’zw’e ce€[0,6/2]},ie., letm’ = Lpzv 6/2(9)mj and

€ =0,
€ = inf {6 €10,0/2] :p)k/}:’é(@) > z/m} forl <i<m/,
5
Em/+1 ‘= 57
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where we assume that ¢;,7 = 0, ..., m/+1 are strictly increasing without loss of generality (otherwise
we can delete duplicated values). Then for any € € [e;, €;11), we have that

Py (0) =i, (0) < B (0) = pky 7 (0)
< om0 =TT O ) - p e 0)
< PLTO -0+
and that
P (0) =P (0) = 5" (0) by (O)
> Py 0) = ok (8) + by (8) — o, T (6)
> PO -0 -
Therefore

€ €5 1
e (0) =l O
4D
To show that the random variable in () converges to 0 in probability, we note that the U-statistic
has the minimum variance among all unbiased estimators, in particular the following simple sample
average estimators based on the first |n/ks] - ko data

—W,e W, e W, e W,e
sup |p..(0) —p.> 9‘§ max max{‘p W) —p,. (O
o [PRO —pl o) < max 0) - p )],

[n/k2]
1
~We L O, W, e
ka (0) = I_n/]fQJ ; ]]'kz (ZkQ(i—1)+17"'7zk2i)7
1 [n/k2]
~W,e— L O W, e—
P (0) = o7kl ; LY (kg (1= 1)1 - - 2hai)-

Therefore we can write

E

W€ W,€;
m m ‘o ‘o
(0<i<%§+1 ax{‘p (0) =P, (0

2
P (6) — P @\}) ]

< Y (z|@ro-mne)] s | @ o-eo)])
eiSin
< X > (e|@eo-see) || (mre o - neo)]) +
= > (B|@Eo-o)] e (o - o))
s;c:pk “(0) and 52"~ (6) are conditionally unbiased for p). " (#) and py" "'~ (6)
5 Gl o] e
> (efe @@ - o) ] ce | o - e)))

0<i<m’+1

< (m+2)( Ln/QkQJ)S(mH)(? +n/4k2>

By Minkowski inequality, the supremum satisfies

up ]zszzf(o)pz‘(e)\] < wmm (3 + 77 ) =

€€[0,6/2]

E
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Choosing m such that m — oo, m/By; — 0 and mky/n — 0 leads to the convergence
SUP.c0,6/2] ’pg’f(e) - pg’e(G)‘ — 0 in probability. Since © has finite cardinality and has a fi-
nite number of subsets, it also holds that

sup ‘ﬁg’e(f)) - pg’é(ﬂ)’ — 0 in probability. (42)
WCO,0eW,e€[0,6/2]

Recall the bound (54) from the proof of Lemma[C.13]in Appendix [D.7] Here we have the similar
bound maxgcyy\ s pg’é(ﬁ) <P ()7\/\,22 Z W‘s), and hence

W,e TAjE s JA0/2 s
sup max p 0) < sup ]P’(W‘ZW):]P’O/V W)
€€[0,6/2] 0EW\W? (6) €€[0,6/2] k2 k2 ¢

We bound the probability P (W,‘Z 2 z W5> more carefully. We let

A, :=min{L(0") — L(#) : 60,0 € ©,L(¢") > L(H)} > 0,

ka
. 1
Lk2(9) = k‘ig ;l(eazz)a
and have
Wi 2w
R R B
c U {@<iuo+ 3}
6,0’€W s.t. L(6")—L(8)>6
c U {o@ - 20+ 20 - 10) < Luo) - 1) + 5}
0,0/€Os.t. L(0')—L(0)>6
C U {ﬁkz (0") — L(#") + max {A,8} < Ly, (8) — L(0) + g}
0,0’cOs.t. L(0")—L(0)>5
by the definition of A,
. 55 .
< U {Lkz(e') —L(0) + maX{AO ~ 5 2} < Ly, (0) — L(G)}
0,0'cO
. 50 . )
C ! < — =2 __- = — > —2 _ - =
< U {Lk2(9) L(9) < max{ 5 4,4} or Ly, (0) L(a)_max{ 4,4}}
0,0’c®
C U { Ly, () — L(6) >max{o—6 6}}
= 2 = 2 44
6cO
. A,
- U { L, () — L(9)| = 4}
0cO
. A,
c &wme—uwz},
9co 4

where the last line holds because max {A,/2 — §/4,5/4} > A, /4. This gives

A
W,e o
su max (0) < T, — | — 0 as kg — 0.
ee[o}s)/z]96W\W§pk2 0) < T, < 4 ) ’

W,0

We also have the trivial bound inf (g s/2) maxgey p;:g’é(e) = maxgew py,’ (¢) > 1/ |W|, where

the inequality comes from the fact that ), _,,, pg’o(H) > 1. Now choose a k£ < oo such that

Ao

1
Te, | — ) < === forall ks > k
o () = gy >
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and we have for all k3 > k and all non-empty YW C O that

i (maxpli*f(f))— max pZZ’6<9>>> inf - maxp)(0) — sup max pi(0)

€€[0,6/2] \ oW 0eW\W? €€[0,6/2] 0€W €€[0,5/2] 0eW\W?
1 1 1
2T T 5al 2 aa
Wl 21e] ~ 2[6|
(43)
Due to the uniform convergence #2), we have
. . —W,e _ ~W,e : . W, e _ W, e
it (BP0 e 20)) ot (ol @) o020)
in probability, and hence
P( min inf (maxp)(f) — max p(0) ) <0) —0. (44)
WCO ec[0,5/2] \OeW ™ 2 gew\ws = 2 o

Finally, we combine all the pieces to get

(207}
c {sne’=0}u{d. ¢S’}

c {Sne’=0}u {?eaé(pi ) — Gg‘lsa\)ésﬁ‘:;w) < 0}

c {sne’=0}u {e > g} U {Ee{ig}gﬂ] (rgleaécpfge(e) - eé{lgzig&pf;(é’)) < O}

c {sne’=0}u {e > g} U {Jvnér(l_) ee[iol,lgm] (raré%(p,g’e(ﬁ) — eenvba\o;vép,g’e(ﬁo < 0} :

By Lemma we have P (SN ©° =) — 0 under the conditions that lim sup;,_,, &x,s < 1
and k1,n/ky, By — oo. Together with the condition P (¢ > §/2) — 0 and (44), we conclude

P (én ¢ 92 ) 5 0 by the union bound. O

D Proofs for Technical Lemmas

D.1 Proof of Lemmal[C.2]

By symmetry, we have that
1 _
U(Zl,...,Zn) = E Z m(zﬂ(l),...,zﬂ(n)),
" bijection m:[n]—[n]

where we denote [n] := {1,...,n}. Then, by the convexity of the exponential function and Jensen’s
inequality, we have that

1 _
Elexp(tU)] = E |exp|t- o Z R(Zr(1)s -+ s Zr(n))
L " bijection 7:[n]—[n]
1 _
< E ot Z exp (t “R(Zx(1)s - zﬂ(n)))

L " bijection 7:[n]—[n]
= Elexp(t-&(z1,.-.,2n))].

This completes the proof. O
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D.2 Proof of Lemmal[C.3

We first consider the direction U — E [k] > e. Let

1 n
~% *
K= Y E K (Zk(¢71)+1,~--,2ki),
i=1

and X
1 n
K= % Z; '%(Zk(ifl)+la ey Rkis wi)a
1=
where we use the shorthand notation 7 := | 7 |, and w;’s are mutually independent and also indepen-

dent from {z1, ..., 2z, }. Then, since E [k] = E [¢*], for all ¢ > 0 it holds that
P(U—E[s] > ¢) = P(exp (t) > exp (t (B[] + )
< exp(—t (B[] + ) - E fexp (D)
" (45)
< exp (—t(E[x] +¢€)) - Efexp (t57)]
" exp (—t @[]+ €)) - Efexp (t7)]

where we apply the Markov inequality in (i), step (¢¢) is due to Lemma |[C.2| and step (iii)
uses Jensen’s inequality and the convexity of the exponential function. Due to independence,
kK can be viewed as the sample average of n i.i.d. Bernoulli random variables, i.e., K ~

LS~  Bernoulli (E [x]). Hence, we have that

E [exp (t7)] = E [exp (:L 3" Bernoulli (B [@))]

_ (IEJ {exp (2 Bernoulli (E [/{])) ] > " (46)

_ {(1 —E[r]) + E[x] - exp <rtz)]n

where we use the moment-generating function of Bernoulli random variables in the last line. Substi-
tuting (@6) into @3), we have that

PWU-El 2 Soxp(~t (Bl +9) (A= Bl +EN e (£)] = @

Now, we consider minimizing f(¢) for t > 0. Let g(t) = log f(¢), then it holds that

E [«] - exp (%)
(1 —E[s]) +E[x] -exp (§)
By setting ¢'(¢) = 0, it is easy to verify that the minimum point of f(¢), denoted by t*, satisfies that

Bl oxp (£) - (1-El -0 = (- El) - (Bl + o

g(t)=—(E[x]+ e+

(43)

C[A=E[&) (El5] +6)]"
< e"p(“‘[mn]-u—mm—e)} |
Substituting (48) into gives
1-E[x] \" [E[x]-(1—E[x] —e)]"F*
FU-El 29 < <1—Ew—e) '[(1—1@[4)(1&[%1“)}
| —E[4] I—E[n]—e. E [+] E[x]+€]"
() ()
= exp(—n- Dkr (E[k] + €¢||Ex])). (49)
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Since n/k < 2, the first bound immediately follows from (49).

Since Dx1,(p|lq) = Dkr(1 — p||1 — ¢), the bound for the reverse side U — E [r] < —e then follows
by applying the first bound to the flipped binary kernel 1 —  and 1 — U. This completes the proof of
Lemma[C3l O

D.3 Proof of Lemmal[C4

To show , some basic calculus shows that for any fixed ¢, the function g(p) := (1 — p) In i—q is
convex in p, and we have that

9(q) =0,9'(q) = 1.
Therefore g(p) > g(q) + ¢'(¢)(p — ¢) = g — p, which implies immediately.
The lower bound (T3) follows from

Dxi(pllg) > —plng—(1—p )1n(1—Q)+p€gnlnﬂy{plnp+(1— p)In(1—p)}

—vIng—~In(l —¢) —In2 = —In(2(¢(1 — ))7).

This completes the proof of Lemma[C.4] O

v

D.4 Proof of Lemmal[C.9]
By Definition[C.3] we observe the following equivalence
{Prerpi}= U {oePi}= U 40 zn 60—
0€O\P;) €O\ P;

Hence, by the union bound, it holds that

P(PLZPL)< D P@il6) = hr(67™) o).

6cO\Py
We further bound the probability P ({px () > pr (672*) — €}) as follows
P (pr(0) = pr (65™) —€)
N max d+e o max max d—€
P 426(0) 2 pe(06™) — —— ¢ N4 2 (05 < pe(0) — — (50)

IN

IN

On one hand, the first probability in (50) is solely determined by and i 1ncreasmg in pg(0) = E [px(0 )]
On the other hand, we have pk(H) < pr (03%) — § for every § € ©\P) by the definition of P}.
Therefore we can slightly abuse the notation to write

d+e¢

P (pr(0) > pr (0*) —¢) < P <ﬁk(9) > pr(03) — ‘pk = pr(05™) — 5)

~ max max d—e
+2 (5 07 < putop) - 5

< 2 (30 - n0) = T3 ) = ™) o)

+P (k (O7) — pr(Op™) < —° - 6) .
(2

Note that, with k(z1, ...,z w) :=1(0 € A(z1,..., 255w )), the probability py (6) can be viewed as
a U-statistic with the kernel £*(z1, ..., 2x) :=E [m(zl, ey Zk;w)|21, - -+, 2k)- A similar representa-



tion holds for py, (6;***) as well. Therefore, we can apply Lemma to conclude that

P(PLZPI)< D P@l0) = he(67™) )
0cO\Py

< [O\PY] [P (11(6) - pu(0) =

[\
i)
e
—

>
~—
|
s}
o
—~
>
=3
o
"
~—
|
(=%
N———

~ max 5_
ip <pk (02) — By, (9) < — )}
57
<16 [oxp (- g7+ Daw (09 = 5+ 25 o 0 -5 )

n d—e€
+e (~g0 D (o) - 25 fm o) ).

which completes the proof of Lemma|C.9] O

D.5 Proof of Lemma [C.10)

We observe that p(6) is an conditionally unbiased estimator for py(6), i.e., E. [pr(0)] = pr(6). We
can express the difference between py (0) and p(677**) as the sample average

1

B
Pr(0) = pr(07™) = = > [1(0 € A2, 2) — LOP™ € AG:Y, .-, 20))]
b=1

o]

whose expectation is equal to py(0) — pr (67°*). We denote by

1p :=1(0 € A(z7,...,2;)) for0 € ©

for convenience, where (27, ..., z;) represents a random subsample. Then by Bernstein’s inequality,
we have every ¢ > 0 that
~ t2
P (5(8) = B(B™) = (Pk(0) — PR(07)) = t) <exp | ~B- .
Pr(6) = Pr(6™) = (Bu(8) = pu(6™)) 2 ) sexp 2Var, (1; — Ljper) + 4/3 ¢
| (5D
Since

Var, (1 = Lpe) < Ee [(1) = Lgp)?] < 50(6) + Br(67™) < 264(65™),
and

Var, (1 — Ljmax)

IN

Var, (1 — 15 — 1+ Ljmax)

IN

E. [(1- 15— 1+ 1pme)?

< 1=pe(0) + 1 = pe(07) < 2(1 — pr(9)),
we have Var, (13 — 1jna) < 2min {p(6;*™),1 — px(6)}. Substituting this bound to and
taking t = Py, (07"**) — pr(0) lead to

P. (ph(0) — pr(02™) 2 0)

oxo [ —B - (Pr(05) — pr(9))?
= p< b 4min{m<efax>,1—m<e>}+4/3-<ﬁk<9?ax>—ﬁk<e>>)
. (e (07) — pr(6))?
= p( b 4min{pk<9;:m>,1—m(azwﬂhw/&@k(@zm)—mw»)
B
< -

exp (_ ' (B (0™) — pr(0))? )
6 min {pr(00*), 1 — pr(07)} + P (072%) — pr(0) )
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Therefore, we have that

0cO\Ps
B (Pr(0p>) — pr(0))? )
< E exp (— - — - - = - .
6 gmax) 1 _ gmax gmax) _ 0
oconp: min {p (07%), 1 — pr(00*)} + Pr(00) — pr(0)

Note that the function z2/(min {p (6°*), 1 — pr(6**)} + x) in z € [0,1] is monotonically
increasing and that py, (6;"**) — p(0) > € for all § € ©\P5. Therefore, we can further bound the
probability as

€2

71—;621“}%)'

P (00 ¢ 7)< [0V e (]63 nin (5P

Noting that ‘@\73,2

< |©| completes the proof of Lemma|C.10 O

D.6 Proof of Lemma|C.12

Let (27, ..., z}) be arandom subsample and P, be the probability with respect to the subsampling
randomness conditioned on the data and the algorithmic randomness. Consider the two probabilities

P (A(z1,...,21) € ©°), P, (A(],...,2}) € ©°).

We have 1 — &5 =P (A(z1,...,2,) € ©%), and the conditional probability

P(Sm@5=(2)

P (A(s1, o 2) € 00)) = (1P (AG, ., 20) € 09) 7
Therefore we can write
P(SNO*=0) = E[(1-P.(AG,....2) € 69))”]

B,
P<P* (AGh. . 1) € 69) < 1—5“) + (1_ 1—65k6> ,(52)

€

IN

where e is the base of the natural logarithm. Applying Lemma with k(z1,..., 2k w) =
1(A(z1,...,2p;w) € ©°) gives

1-¢& 1-&
P(P* (A(zf,,z;) S @6) < ek76> Sexp (—272 'DKL ( k76H1—5k75>>.

e

Further applying the bound (12) from Lemma [C.4]to the KL divergence on the right-hand side leads
to

1-¢€ 1-¢& 1 1-¢& 2
DKL( ’“’5“1—5k,5) > s g - 0 = (1—) (1= Eko),
e € € € €
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and

Dk, (1 _6£k’5 Hl - 5k,5>

1-¢
= Dk (1 I ko H&,a)

> (1—15k’6)1n1(lgk’6>/6—(1—8k5)+15k’6 by bound (12)
e Eks ’ e
> (1—1_&“"5)111(1—1_5’“’5) (1—)ln5k5—1+1
e e
(D) (1 D
e e

1 e—1
— (1-2)mE=
( e) nezgk,é

Combining the two bounds for the KL divergence we have

IP(]P’* (A(25,...,21) €0°) < 1—5;“;)

e

2 (1-1/e)35
< min{exp( 27; (1—3) (1—&,5)) ,<eeg_kf> }

Note that the second term on the right-hand side of satisfies that (1 — (1 — &x5)/ )P <
exp (—B1(1 — &,5)/€). Thus, we derive that

P(SNO° =)

2 (1-1/e) 33 _
mindexp (=2 (1-2) (1 gy, ((E52 exp (B ko)
2k e ’ e—1 e

. 1-— 2/6 625k75 (1-1/e)3k Bl(1 - gk,é)
min {exp (—1 e (1= Sk,g)) o1 + exp )

The conclusion then follows by setting Cy, C5, Cg, C7 to be the appropriate constants. O

IN

IN

D.7 Proof of Lemma|C.13
Let L (0) := 5 El 1 1(0, z;). Let 6* be an optimal solution of ' We have
maxpi(0) = pe(67) = P (0 €8;) =P (6°cby).

To bound the probability on the right hand side, we write

{eogé;} c {k ) > Li(6 )+e}

96@0 0'co

_ U { o ﬁk(af)—L(ef)+L(9/)—L(9)+e}
[USSEN

c U { () = L(8) > Lu(0') — L(#') + €}
0€00.,0'co

c {k gorLk(G) L(9’)<—§}
0€00.0'cO

< U {0 L<e>\>§}
[2SC]

_ {gleag)( L6 —L(H)‘ > ;}




therefore

~ € €
maxp (6) > P (%?é |Lk(0) - L(0)| < 2) >1-1(5). (53)

This proves . To bound the other term maxycg\es pi(¢), for any 0 € ©\0? it holds that
() =P (0€8;) <P (820", (54)

and hence maxgcg\os pr(f) <P (@2 g @5). To bound the latter, we have
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This immediately gives (36). is obvious given (35) and (36). O

E Improving Tail Decay in Linear Regression

In this section, we present another example demonstrating that our algorithm is capable of turning a
polynomial-tailed base learner into exponential. We consider the linear regression problem

in E[(z6 — y)?
,lnin (@0 —y)?], (56)

where the data {(z;,y;)}?_, are i.i.d. samples such that x; € {—1,1}, and y; = x;0* + ¢;.

Assumption E.1. The unknown true coefficient of problem (56) is 6* = 0. The random variables
{e;}_, are i.i.d. distributed with zero mean and symmetric with respect to 0. The second and forth

moments of ¢; are finite, denoted as 02 = E [¢?] and yus = E [€}]. Moreover, there exist constants
C > 0and o > O such that P(e; > t) > C(t + 1)~ forall t > 0, i.e., ¢; has a polynomial tail.

Under the setting described by (56) and Assumption the least-squares estimator of 6 is given by
n n n
i=1 LilYi =1 Li€ * i=1 Li€i
0r =Py (Z m > = Pl11) <Z w0 > = Pl-11] (Z . > :
21 T 21T n
where P[_; 17(-) denotes the projection operator onto the interval [—1, 1]. Since the true coefficient

0* = 0, for any estimator 6 that takes values between [—1, 1], its excess risk is equal to (#)2. For
instance, the excess risk of 0{;5 can be expressed as

(65)? = min { (Z% xiei)z , 1} .

Theorem E.2. Under Assumption the followings hold true.

39



s The excess risk of the least-squares estimator 0% exhibits a polynomial tail in n. Specifically,
foreveryd € (0,1) and n > 1, it holds that

P ((05%)% > §) > C(nV5 + 1), (57)

* Under our ensemble method, the excess risk of the output estimator 6,, has an exponentially
decreasing tail.

E.1 Proof of Theorem [E.2]

We first show the polynomial tail of excess risk for the least-squares estimator #~%. For k < n,
let & = 1/k - Zle €; be the sample average of the first £ noise terms. Then, it holds that
€otr1 = (ke + €exq1) /(K +1).

For every § € (0,1) and n > 1, we have that

P ((05%)% > §) :P((Z%}Lm)z >5> :P((Z%leif >5> =2P(&, > V4), (58)

where we used the symmetry of ¢; and that z; € {—1, 1}. Then, using the recursive relation between
€, and €,,_1, we can further show that

P(gn>\/3)>19><(1)6”1>0andn>f>

( 7116" ! O>~IP(€;;>\/5) (59)
(Ea1 > 0)-C(nVE +1)79,

where the second line is due to the independence between €, and €, in the second line, and the
last line uses Assumption[E.1} Since each ¢, is symmetric, we have P (€,—; > 0) = 1/2. Hence, the

proof of is completed by combining (58) and (59).

Now, we proceed to show the exponential tail of excess risk for our ensemble method (Algorithm
[2), where the proof is based on Theorem [C.11] i.e., the formal version of Theorem [2.3] To apply the
bound (33) from Theorem [C.11] we need to derive upper bounds for the following two quantities:
the empirical process tail Tj(-), and the excess risk tail of the base learner, i.e., the least-squares
estimator 9,%5 with &k samples.

For any ¢ > 0, we can show that the empirical process tail satisfies that

)
)

(i — y:)* — E[(26 — y)?]

el e
-

s
I
—

T.(t)=P ( sup

0c[—1,1]

=P| sup
0c[—1,1]
1 F
6?—02_20-szi6i >t>

k k
<]P)< Z €T;€; >t>+P<’—0’ +%Z€?+%Z$ZEZ
- (60)

i=1 i=1
where the last inequality uses the union bound and the observation that the maximum of the absolute
value term is achieved either at § = 1 or # = —1. Using the symmetry of ¢; and the fact that
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z; € {—1,1}, we further derive from that

k k
1 9 5 2
Tk(t)<2P<k;ela fE;ei >t>
1< t 2 & t (61)
<= -0 > |+2P[ |5 &> =
Sus 3202
Sk hE

where we apply the union bound again in the second line and use the Markov’s inequality in the last
line.

Now, we assess the excess risk tail of the least-squares estimator 9}55 . For § < 1, similar as li we
can apply the Markov’s inequality to show that

Sk e ’ o?
Ero =P ((0F%)? >06) =P <? ) >0 < s (62)

By instantiating in Theorem with the tail bounds on T} (¢) and & s given by and (62),
we can finally obtain the following tail bound on the excess risk of our estimator 6,,:

. 32 4 2 QCZkQ
P ((9n)2 > (5) < B; | 3minle %5 ¢y (pa + 407) 5 + e B2/Cs
ko min {e, § — €}

(63)

—i—min{e_(l k15>/c4 ,C5— o’ }2051@1_’_ _Bl( )/C7
k16

for every k1,k2 < mand ¢ € (0,1) such that § > &, 3216(“(‘?:72) + 32(’2“;;10 ) <1 ,and 25 < 1.

Note that these conditions guarantee that the upper bound in is meaningful and that Tkz ((6 —
€)/2) + Tk, (€/2) < 1/5, as required by Theorem 2.3 Therefore, we conclude that the excess risk

for the output solution 6,, of our ensemble method has an exponential tail, which completes the proof
of Theorem O

F Additional Numerical Experiments

This section supplements Section We first provide details for the architecture of the neural
networks in Section [FI] and the considered stochastic programs in Section[F.2] Section[F.3|presents
a comprehensive profiling of hyperparameters of our methods, and Section|[F.4] provides additional
experimental results that evaluate our algorithms from various perspectives.

F.1 MLP Architecture

The input layer of our MLPs has the same number of neurons as the input dimension, and the output
layer is a single neuron that gives the final prediction. All activations are ReLU. The architecture of
hidden layers is as follows under different numbers of hidden layers H:

e H = 2: Each hidden layer has 50 neurons.
* H = 4: There are 50, 300, 300, 50 neurons from the first to the fourth hidden layer.
* H = 6: There are 50, 300, 500, 500 300, 50 neurons from the first to the sixth hidden layer.

e H = 8: There are 50, 300, 500, 800, 800 500 300, 50 neurons from the first to the eighth
hidden layer.
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F.2 Stochastic Programming Problems

Resource Allocation [86]. The decision maker wants to choose a subset of m projects. A quantity
q of low-cost resource is available to be allocated, and any additional resource can be obtained at an
incremental unit cost c. Each project ¢ has an expected reward r;. The amount of resource required
by each project ¢ is a random variable, denoted by W;. We can formulate the problem as

m m +
0, — cE | S w0, — . 64
5 e S “

=1 i=1

In the experiment, we consider the three-product scenario, i.e., m = 3, and assume that the random
variable W; follows the Pareto distribution.

Supply Chain Network Design [61, Chapter 1.5]. Consider a network of suppliers, processing
facilities, and customers, where the goal is to optimize the overall supply chain efficiency. The supply
chain design problem can be formulated as a two-stage stochastic optimization problem

ee{mmlgu,li;cp% +E[Q(0, 2)), (65)

where P is the set of processing facilities, ¢, is the cost of opening facility p, and z is the vector of
(random) parameters, i.e., (h, ¢, d, s, R, M) in . Function (6, z) represents the total processing
and transportation cost, and it is equal to the optimal objective value of the following second-stage
problem:
ming>o.>0 ¢ y+h'z
s.t. Ny =0,
Cy+z2>d, (66)
Sy < s,
Ry < M0,

where N, C, S are appropriate matrices that describe the network flow constraints. More details about
this example can be found in [61, Chapter 1.5]. In our experiment, we consider the scenario of 3
suppliers, 2 facilities, 3 consumers, and 5 products. We choose supply s and demand d as random
variables that follow the Pareto distribution.

Maximum Weight Matching and Stochastic Linear Program. We explore both the maximum
weight matching problem and the linear program that arises from it. Let G = (V, E') be a general
graph, where each edge e € F is associated with a (possibly) random weight w.. For each node
v € V, denote E(v) as the set of edges incident to v. Based on this setup, we consider the following
linear program

maxgeo,1)iel B [ZEEE weQE]

67
subject to Yecpw) tele <1, Vv EV, ©7

where a. is some positive coefficient. When a, = 1 for all e € E and 6 is restricted to the discrete
set {0, 1}!Z1, (67) is equivalent to the maximum weight matching problem. For the maximum weight
matching, we consider a complete bipartite graph with 5 nodes on each side (the dimension is 25).
The weights of nine edges are Pareto distributed and the remaining are prespecified constants. For
the linear programming problem, we consider a 28-dimensional instance (the underlying graph is an
8-node complete graph), where all w, follows the Pareto distribution.

Mean-Variance Portfolio Optimization. Consider constructing a portfolio based on m assets.
Each asset ¢ has a rate of return r; that is random with mean p;. The goal is to minimize the variance
of the portfolio while ensuring that the expected rate of return surpasses a target level b. The problem
can be formulated as

ming E (0 (ri — pi)05)?]
subject t ™o > b,
jectto iy ids 2 )
Zi:l 0; =1,

91'20, Vi=1,...,m,
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where 6 is the decision variable and each p; is assumed known. In the experiment, we consider a
scenario with 10 assets, i.e., m = 10, where each rate of return r; is a linear combination of the rates
of return of 100 underlying assets in the form r; = 719(;—1)4+1/2 + 2;101 7;/200. Each of these
underlying assets has a Pareto rate of return 7;, j = 1,...,100.

F.3 Hyperparameter Profiling

We test the effect of different hyperparameters in our ensemble methods, including subsample sizes
k, k1, ko, ensemble sizes B, By, Bs, and threshold e. Throughout this profiling stage, we use the
sample average approximation (SAA) as the base algorithm. To profile the effect of subsample sizes
and ensemble sizes, we consider the resource allocation problem.

Subsample Size. We explored scenarios where k (equivalently k1 and k5) is both dependent on and
independent of the total sample size n (see Figures|[6a [7al and[7b). The results suggest that a constant
k generally suffices, although the optimal k varies by problem instance. For example, Figures[7a]and
show that k = 2 yields the best performance; increasing & degrades results. Conversely, in Figure
[6al & = 2 proves inadequate, with larger k delivering good results. The underlying reason is that
the effective performance of MoVE requires 0" € arg maxgcg pr(6). In the former, this is achieved
with only two samples, enabling MoVE to identify 8* with a subsample size of 2. For the latter, a
higher number of samples is required to meet this condition, explaining the suboptimal performance
atk =2.In Figure we simulate py (@) for the two cases, which further explains the influence of
the subsample size.

Ensemble Size. In Figure[0] we illustrate the performance of MoVE and ROVE under different
B, By, By, where we set k = k1 = ko = 10 and € = 0.005. From the figure, we find that the
performance of our ensemble methods is improving in the ensemble sizes.

Threshold e. The optimal choice of ¢ in ROVE and ROVEs is problem-dependent and related
to the number of (near) optimal solutions. This dependence is illustrated by the performance of
ROVE shown in Flgures.and Hence, we propose an adaptive strategy defined as follows: Let

g(e) :=1/Bsy - 2521 1(0,(¢) € O b) where we use 0, (¢) to emphasize the dependency of f,, on
e. Then, we select €* := min {e : g( )>1 / 2}. By definition, g(€) is the proportion of times that
én(e) is included in the “near optlmum set” @E ® The choice of €* makes it more likely for the true
optimal solution to be included in the “near optlmum set”, instead of being ruled out by suboptimal
solutions. Practically, €* can be efficiently determined using a binary search as an intermediate step
between Phases I and II. To prevent data leakage, we compute €* using z;.| »| (Phase I data) for

ROVEs. From Figure[6] we observe that this adaptive strategy exhibits decent performance for all
scenarios. Similar behaviors can also be observed for ROVEs in Figure [I0}

Recommended Configurations. Based on the profiling results, we summarize the recommended
configurations used in all other experiments presented in the paper (unless specified otherwise):

* For discrete space O, use k¥ = max(10,7/200), B = 200 for MoVE, and k; = ky =
max(10,7,/200), B; = 20, B = 200 for ROVE and ROVEs.

» For continuous space ©, use k; = max(30,n/2), ke = max(30,n/200), By = 50, By =
200 for ROVE and ROVEs.

* The ¢ in ROVE and ROVEs is selected such that maxgpes(1/B2) 25221 1(0 € @Z’:) ~1/2.
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Figure 6: Profiling for subsample size k& and threshold €. (a): Resource allocation problem, where
B = 200; (b) and (c): Linear program, where k1 = ko = max(10,0.005n), B; = 20, and By = 200.
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Figure 7: Profiling results for subsample size k and threshold €. (a) and (b): Resource allocation
problem using MoVE, where B = 200; (c): Linear program with multiple near optima using ROVE,
where k; = ko = max(10,0.005n), B; = 20, and By = 200.

F.4 Additional Experimental Results

Here, we present additional figures that supplement the experiments and discussions in Section 3]
Recall that MoVE refers to Algorithm [I} ROVE refers to Algorithm [2] without data splitting, and
ROVEs refers to Algorithm 2] with data splitting. We briefly introduce each figure below and refer
the reader to the figure caption for detailed discussions. Figures[ITT9]all follow the recommended
configuration listed in Section 3]

Figure [IT] supplements the results in Figure [T with MLPs with H = 2,4 hidden layers.
Figure[I2] supplements the results in Figure 3| with a different synthetic example than in Section [3.1]

Figure [I3] supplements the results in Figure [ with three other real datasets: Wine Quality [[79]
Online News [83l], Appliances Energy [[13]. ROVE and the base algorithm perform comparably on
these three datasets, potentially because they are lighter tailed than those in Figure 4]

Figure[T4]shows results for MLP regression on a slightly different example than in Section[3.1]

Figures[[5]and [T6]show results for regression with least squares regression and Ridge regression as
the base learning algorithms respectively.

Figure [I7] shows results on the stochastic linear program example with light-tailed uncertainties.

Figure [T8] contains additional results on the supply chain network design example for different
choices of hyperparameters and a different problem instance with strong correlation between
solutions.

In Figure[T9] we apply our ensemble methods to resource allocation and maximum weight matching
using DRO with Wasserstein metric as the base algorithm. This result, together with Figure[5| where
the base algorithm is SAA, demonstrates that the benefit of our ensemble methods is agnostic to
the underlying base algorithm.

In Figure[20] we simulate the generalization sensitivity 7y 5, defined in (27), which explains the
superior performance of ROVE and ROVEs in the presence of multiple optimal solutions.
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Figure 8: Performance of MoVE (B = 200) in resource allocation, corresponding to the two instances
in Figures[6aland[7a} Subfigures (b) and (d) explain the behaviors of MoVE with different subsample
sizes k: In (b), we find that py(6*) — maxge+ pr(8) < 0 for k& < 4, which results in the poor

performance of MoVE with & = 2 in Figure

In (d), we have ps(6*) — maxge+ p2(60) ~ 0.165,

thereby enabling MoVE to distinguish the optimal solution only using subsamples of size two, which
results in the good performance of MoVE with k£ = 2 in Figure
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Figure 10: Performance of ROVEs in three instances of linear programs under different thresholds
e. The setting is identical to that of Figures [6b} [6c| and [7c| for ROVE. Hyperparameters: k; =
ko = max(10,0.005n), By = 20, and By = 200. Compared with profiling results for ROVE, we
observe that the value of € has similar impacts on the performance of ROVEs. Moreover, the proposed
adaptive strategy also behaves well for ROVEs.

* In Figure 21| we demonstrate how the tail heaviness of the problem affects the algorithm perfor-
mance. The figure shows that the performance gap between ROVE, ROVEs, and the base algorithm
becomes increasingly significant as the tail of the uncertainty becomes heavier. This supports the
effectiveness of ROVE and ROVEs in handling heavy-tailed uncertainty, where the base algorithm’s

performance suffers. Note that here MoVE behaves similarly as the base learner due to optima
multiplicity.
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Figure 11: Results of neural networks with the same setup described in Section (a)(b)(d)(e):
Expected out-of-sample costs (MSE) with 95% confidence intervals under different noise distributions
and varying numbers of hidden layers (H). (c) and (f): Tail probabilities of out-of-sample costs. In

(a), ROVEs slightly underperforms the base learner probably due to the weak expressiveness and
hence high bias of the MLP with 2 hidden layers.
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Figure 16: Linear regression with Ridge regression as the base learning algorithm. The same data

generation as in Figure (a) and (c): Expected out-of-sample error with 95% confidence interval.
(b) and (d): Tail probabilities of out-of-sample errors.
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Figure 17: Results for linear programs with light-tailed objectives. The base algorithm is SAA.
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