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ABSTRACT

Although deep learning has achieved appealing results on several machine learning
tasks, most of the models are deterministic at inference, limiting their applica-
tion to single-modal settings. We propose a novel general-purpose framework for
conditional generation in multimodal spaces, that uses latent variables to model gen-
eralizable learning patterns while minimizing a family of regression cost functions.
At inference, the latent variables are optimized to find solutions corresponding to
multiple output modes. Compared to existing generative solutions, our approach
demonstrates faster and more stable convergence, and can learn better represen-
tations for downstream tasks. Importantly, it provides a simple generic model
that can perform better than highly engineered pipelines tailored using domain
expertise on a variety of tasks, while generating diverse outputs. Code available at
https://github.com/samgregoost/cGML.

1 INTRODUCTION

Conditional generative models provide a natural mechanism to jointly learn a data distribution
and optimize predictions. In contrast, discriminative models improve predictions by modeling the
label distribution. Learning to model the data distribution allows generating novel samples and is
considered a preferred way to understand the real world. Existing conditional generative models have
generally been explored in single-modal settings, where a one-to-one mapping between input and
output domains exists (Nalisnick et al., 2019; Fetaya et al., 2020). Here, we investigate continuous
multimodal (CMM) spaces for generative modeling, where one-to-many mappings exist between
input and output domains. This is critical since many real world situations are inherently multi-
modal, e.g., humans can imagine several completions for a given occluded image. In a discrete
setting, this problem becomes relatively easy to tackle using techniques such as maximum-likelihood-
estimation, since the output can be predicted as a vector (Zhang et al., 2016), which is not possible
in continuous domains. One way to model CMM spaces is by using variational inference, e.g.,
variational autoencoders (VAE) (Kingma & Welling, 2013). However, the approximated posterior
distribution of VAEs are often restricted to the Gaussian family, which hinders its ability to model
more complex distributions. As a solution, Maaløe et al. (2016) suggested using auxiliary variables
to improve the variational distribution. To this end, the latent variables are hierarchically correlated
through injected auxiliary variables, which can produce non-Gaussian distributions. A slightly similar
work by Rezende & Mohamed (2015) proposed Normalizing Flows, that can hierarchically generate
more complex probability distributions by applying a series of bijective mappings to an original
simpler distribution. Recently, Chang et al. (2019) proposed a model, where a separate variable can
be used to vary the impact of different loss components at inference, which allows diverse outputs.
For a more detailed discussion on these methods see App. 1.

In addition to the aforesaid methods, in order to model CMM spaces, a prominent approach in
the literature is to use a combination of reconstruction and adversarial losses (Isola et al., 2017;
Zhang et al., 2016; Pathak et al., 2016). However, this entails key shortcomings. 1) The goals
of adversarial and reconstruction losses are contradictory (Sec. 4), hence model engineering and
numerous regularizers are required to support convergence (Lee et al., 2019; Mao et al., 2019),
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thereby resulting in less-generic models tailored for specific applications (Zeng et al., 2019; Vitoria
et al., 2020). 2) The adversarial loss based models are notorious for difficult convergence due
to the challenge of finding Nash equilibrium of a non-convex min-max game in high-dimensions
(Barnett, 2018; Chu et al., 2020; Kodali et al., 2017). 3) The convergence is heavily dependent on
the architecture, hence such models show lack of scalability (Thanh-Tung et al., 2019; Arora &
Zhang, 2017). 4) The promise of assisting downstream tasks remains challenging, with a large gap
in performance between the generative modelling approaches and their discriminative counterparts
(Grathwohl et al., 2020; Jing & Tian, 2020).

In this work, we propose a general-purpose framework—Conditional Generation by Modeling
the Latent Space (cGML)—for modeling CMM spaces using a set of domain-agnostic regression
cost functions instead of the adversarial loss. This improves both the stability and eliminates the
incompatibility between the adversarial and reconstruction losses, allowing more precise outputs
while maintaining diversity. The underlying notion is to learn the ‘behaviour of the latent variables’
in minimizing these cost functions while converging to an optimum mode during the training phase,
and mimicking the same at inference. Despite being a novel direction, the proposed framework
showcases promising attributes by: (a) achieving state-of-the-art results on a diverse set of tasks
using a generic model, implying generalizability, (b) rapid convergence to optimal modes despite
architectural changes, (c) learning useful features for downstream tasks, and (d) producing diverse
outputs via traversal through multiple output modes at inference.

2 PROPOSED METHODOLOGY

We define a family of cost functions {Ei,j = d(ygi,j ,G(xj , w))}, where xj ∼ χ is the input, ygi,j ∼ Υ

is the ith ground-truth mode for xj , G is a generator function with weights w, and d(·, ·) is a
distance function. Note that the number of cost functions E(·,j) for a given xj can vary over χ.
Our aim here is to come up with a generator function G(xj , w), that can minimize each Ei,j ,∀i
as G(xj , w) → ygi,j . However, since G is a deterministic function (x and w are both fixed at
inference), it can only produce a single output. Therefore, we introduce a latent vector z to the
generator function, that can be used to converge ȳi,j = G(xj , w, zi,j) towards a ground truth yg(i,j) at
inference, and possibly, to multiple solutions. Formally, the family of cost functions now becomes:
{Êi,j = d(ygi,j ,G(xj , w, zi,j))},∀zi,j ∼ ζ. Then, our training objective can be defined as finding
a set of optimal z∗i ∈ ζ and w∗ ∈ ω by minimizing Ei∼I [Êi,j ], where I is the number of possible
solutions for xj . Note that w∗ is fixed for all i and a different z∗i exists for each i. Considering all the
training samples xj ∼ χ, our training objective becomes,

{{z∗i,j}, w∗} = arg min
zi,j∈ζ,w∈ω

Ei∈I,j∈J [Êi,j ]. (1)

Eq. 1 can be optimized via Algorithm 1 (proof in App. 2.2). Intuitively, the goal of Eq. 1 is to obtain
a family of optimal latent codes {z∗i,j}, each causing a global minima in the corresponding Êi,j as
ygi,j = G(xj , w, z

∗
i,j). Consequently, at inference, we can optimize ȳi,j to converge to an optimal

mode in the output space by varying z. Therefore, we predict an estimated z̄i,j at inference,

z̄i,j ≈ min
z
Êi,j , (2)

for each ygi,j , which in turn can be used to obtain the prediction G(xj , w, z̄i,j) ≈ ygi,j . In other words,
for a selected xj , let ȳti,j be the initial estimate for ȳi,j . At inference, z can traverse gradually towards
an optimum point ygi,j in the space, forcing ȳt+ni,j → ygi,j , in finite steps (n).

However, still a critical problem exists: Eq. 2 depends on ygi,j , which is not available at inference. As
a remedy, we enforce Lipschitz constraints on G over (xj , zi,j), which bounds the gradient norm as,

‖G(xj,w∗,z∗i,j)−G(xj,w∗,z0)‖
‖z∗i,j−z0‖

≤
∫ ∥∥∇zG(xj , w

∗, γ(t))
∥∥ dt ≤ C, (3)

where z0 ∼ ζ is an arbitrary random initialization, C is a constant, and γ(·) is a straight path from
z0 to z∗i,j (proof in App. 2.1) . Intuitively, Eq. 3 implies that the gradients ∇zG(xj , w

∗, z0) along
the path γ(·) do not tend to vanish or explode, hence, finding the path to optimal z∗i,j in the space ζ
becomes a fairly straight forward regression problem. Moreover, enforcing the Lipschitz constraint
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(a) Training (b) Inference
Figure 1: Training and inference process. Refer to Algorithm 1 for the training process. At inference, z is
iteratively updated using the predictions of Z and fed to G to obtain increasingly fine-tuned outputs (see Sec. 3).

encourages meaningful structuring of the latent space: suppose z∗1,j and z∗2,j are two optimal codes
corresponding to two ground truth modes for a particular input. Since ‖z∗2,j − z∗1,j‖ is lower bounded

by ‖G(xj ,w
∗,z∗2,j)−G(xj ,w

∗,z∗1,j)‖
L , where L is the Lipschitz constant, the minimum distance between

the two latent codes is proportional to the difference between the corresponding ground truth modes.
In practice, we observed that this encourages the optimum latent codes to be placed sparsely (visual
illustration in App. 2), which helps a network to learn distinctive paths towards different modes.

2.1 CONVERGENCE AT INFERENCE

We formulate finding the convergence path of z at inference as a regression problem, i.e., zt+1 =
r(zt, xj). We implement r(·) as a recurrent neural network (RNN). The series of predicted values
{z(t+k) : k = 1, 2, .., N} can be modeled as a first-order Markov chain requiring no memory for the
RNN. We observe that enforcing Lipschitz continuity on G over z leads to smooth trajectories even
in high dimensional settings, hence, memorizing more than one step into the history is redundant.
However, zt+1 is not a state variable, i.e., the existence of multiple modes for output prediction ȳ
leads to multiple possible solutions for zt+1. On the contrary, E[zt+1] is a state variable w.r.t. the
state (zt, x), which can be used as an approximation to reach the optimal z∗ at inference. Therefore,
instead of directly learning r(·), we learn a simplified version r′(zt, x) = E[zt+1]. Intuitively, the
whole process can be understood as observing the behavior of z on a smooth surface at the training
stage, and predicting the movement at inference. A key aspect of r′(zt, x) is that the model is capable
of converging to multiple possible optimum modes at inference based on the initial position of z.

2.2 MOMENTUM AS A SUPPLEMENTARY AID

Based on Sec. 2.1, z can now traverse to an optimal position z∗ during inference. However, there
can exist rare symmetrical positions in the ζ where E[zt+1]− zt ≈ 0, although far away from {z∗},
forcing zt+1 ≈ zt. Simply, the above phenomenon can occur if some zt+1 has traveled in many non-
orthogonal directions, so the vector addition of zt+1 ≈ 0. This can fool the system to falsely identify
convergence points, forming phantom optimum point distributions amongst the true distribution (see
Fig. 3). To avoid such behavior, we learn the expected momentum E[ρ(zt, xj)] = αE[|zt+1 − zt|xj ]
at each (zt, xj) during the training phase, where α is an empirically chosen scalar. In practice,
E[ρ(zt, xj)]→ 0 as zt+1, zt → {z∗}. Thus, to avoid phantom distributions, we improve the z update
as,

zt+1 = zt + E[ρ(zt, xj)]

[
r′(zt, xj)− zt∥∥r′(zt, xj)− zt∥∥

]
. (4)

Since both E[ρ(zt, xj)] and r′(zt, xj) are functions on (zt, xj), we jointly learn these two functions
using a single network Z(zt, xj). Note that coefficient E[ρ(zt, xj)] serves two practical purposes: 1)
slows down the movement of z near true distributions, 2) pushes z out of the phantom distributions.

3 OVERALL DESIGN

The proposed model consists of three major blocks as shown in Fig. 1: an encoderH, a generator G,
and Z . The detailed architecture diagram for 128× 128 is shown in Fig. 2. Note that for derivations
in Sec. 2, we used x instead of h = H(x), as h is a high-level representation of x. The training
process is illustrated in Algorithm 1. At each optimization zt+1 = zt − β∇zt [Êi,j ], Z is trained
separately to approximate (zt+1, ρ). At inference, x is fed toH, and then Z optimizes the output ȳ by
updating z for a pre-defined number of iterations of Eq. 4. For Ê(·, ·), we use L1 loss. Furthermore,
it is important to limit the search space for zt+1, to improve the performance of Z . To this end, we

3



Published as a conference paper at ICLR 2021

Figure 2: Overall architecture for 128× 128 inputs.

Algorithm 1: Training algorithm

sample inputs {x1, x2, ..., xJ} ∈ χ; sample outputs {y1, y2, ..., yJ} ∈ Υ ;
for k epochs do

for x in χ do
for l steps do

update z = {z1, z2, ..., zJ}: ∇zÊ B FreezeH,G,Z and update z
update Z: ∇wL1[(zt+1, ρ),Z(zt,H(x))] B FreezeH,G, z and update Z

update G,H: ∇wÊ B Freeze Z, z and updateH,G

sample z from the surface of the n-dimensional sphere (Sn). Moreover, to ensure faster convergence
of the model, we force Lipschitz continuity on both Z and the G (App. 2.4). For hyper-parameters
and training details, see App. 3.1.

4 MOTIVATION

Here, we explain the drawbacks of conditional GAN methods and illustrate our idea via a toy example.

Incompatibility of adversarial and reconstruction losses: cGANs use a combination of adversarial
and reconstruction losses. We note that this combination is suboptimal to model CMM spaces.
Remark: Consider a generator G(x, z) and a discriminator D(x, z), where x and z are the input
and the noise vector, respectively. Then, consider an arbitrary input xj and the corresponding set of
ground-truths {ygi,j}, i = 1, 2, ..N . Further, let us define the optimal generator G∗(xj , z) = ŷ, ŷ ∈
{ygi,j}, LGAN = Ei[logD(ygi,j)]+Ez[log(1−D(G(xj , z))] and L` = Ei,z[|ygi,j−G(xj , z)|]. Then,
G∗ 6= Ĝ∗ where Ĝ∗ = arg

G
min

D
maxLGAN + λL`, ∀λ 6= 0. (Proof in App. 2.3).

Generalizability: The incompatibility of above mentioned loss functions demands domain specific
design choices from models that target high realism in CMM settings. This hinders the generalizability
across different tasks (Vitoria et al., 2020; Zeng et al., 2019). We further argue that due to this
discrepancy, cGANs learn sub-optimal features which are less useful for downstream tasks (Sec. 5.3).

Convergence and the sensitivity to the architecture: The difficulty of converging GANs to the
Nash equilibrium of a non-convex min-max game in high-dimensional spaces is well explored
(Barnett, 2018; Chu et al., 2020; Kodali et al., 2017). Goodfellow et al. (2014b) underlines if the
discriminator has enough capacity, and is optimal at every step of the GAN algorithm, then the
generated distribution converges to the real distribution; that cannot be guaranteed in a practical
scenario. In fact, Arora et al. (2018) confirmed that the adversarial objective can easily approach to
an equilibrium even if the generated distribution has very low support, and further, the number of
training samples required to avoid mode collapse can be in order of exp(d) (d is the data dimension).
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Figure 3: Toy Example: Plots
generated for each dimension of
the CMM space Υ. (a) Ground-
truth distributions. (b) Model
outputs for L1 loss. (c) Output
when trained with the proposed
objective (without ρ correction).
Note the phantom distribution
identified by the model. (d) E[ρ]
as a heatmap on (x, y). E[ρ] is
lower near the true distribution
and higher otherwise. (e) Model
outputs after ρ correction.

Multimodality: The ability to generate diverse outputs, i.e., convergence to multiple modes in the
output space, is an important requirement. Despite the typical noise input, cGANs generally lack
the ability to generate diverse outputs (Lee et al., 2019). Pathak et al. (2016) and Iizuka et al. (2016)
even state that better results are obtained when the noise is completely removed. Further, variants of
cGAN that target diversity often face a trafe-off between the realism and diversity (He et al., 2018),
as they have to compromise between the reconstruction and adversarial losses.

A toy example: Here, we experiment with the formulations in Sec. 2. Consider a 3D CMM space
y = ±4(x, x2, x3). Then, we construct multi-layer perceptrons (MLP) with three layers to represent
each of the functions,H, G, and Z , and compare the proposed method against the L1 loss. Figure 3
illustrates the results. As expected, L1 loss generates the line y = 0, and is inadequate to model the
multimodal space. As explained in Sec. 2.2, without momentum correction, the network is fooled
by a phantom distribution where E[zt+1] ≈ 0 at training time. However, the push of momentum
removes the phantom distribution and refines the output to closely resemble the input distribution. As
implied in Sec. 2.2, the momentum is maximized near the true distribution and minimized otherwise.

5 EXPERIMENTS AND DISCUSSIONS

The distribution of natural images lies on a high dimensional manifold, making the task of modelling
it extremely challenging. Moreover, conditional image generation poses an additional challenge with
their constrained multimodal output space (a single input may correspond to multiple outputs while
not all of them are available for training). In this section, we experiment on several such tasks. For a
fair comparison with a similar capacity GAN, we use the encoder and decoder architectures used in
Pathak et al. (2016) forH and G respectively. We make two minor modifications: the channel-wise
fully connected (FC) layers are removed and U-Net style skip connections are added (see App. 3.1).
We train the existing models for a maximum of 200 epochs where pretrained weights are not provided,
and demonstrate the generalizability of our theoretical framework in diverse practical settings by
using a generic network for all the experiments. Models used for comparisons are denoted as follows:
PN (Zeng et al., 2019), CA (Yu et al., 2018b), DSGAN (Yang et al., 2019), CIC (Zhang et al., 2016),
RFR (Li et al., 2020), Chroma (Vitoria et al., 2020), P2P (Isola et al., 2017), Iizuka (Iizuka et al.,
2016), CE (Pathak et al., 2016), CRN (Chen & Koltun, 2017a), and B-GAN (Zhu et al., 2017b).

5.1 CORRUPTED IMAGE RECOVERY

We design this task as image completion, i.e., given a masked image as input, our goal is to recover the
masked area. Interestingly, we observed that the MNIST dataset, in its original form, does not have
a multimodal behaviour, i.e., a fraction of the input image only maps to a single output. Therefore,
we modify the training data as follows: first, we overlap the top half of an input image with the top
half of another randomly sampled image. We carry out this corruption for 20% of the training data.
Corrupted samples are not fixed across epochs. Then, we apply a random sized mask to the top half,
and ask the network to predict the missing pixels. We choose two competitive baselines here: our
network with the L1 loss and CE. Fig. 4 illustrates the predictions. As shown, our model converges to
the most probable non-corrupted mode without any ambiguity, while other baselines give sub-optimal
results. In the next experiment, we add a small white box to the top part of the ground-truth images at
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Method User study Turing test
STL ImageNet ImageNet

Iizuka et al. 21.89 32.28 -
Chroma 32.40 31.67 -
Ours 45.71 36.05 31.66

Table 1: Colorization: Psychophysi-
cal study and Turing test results. All
performances are in %.

Method STL ImageNet
LPIP ↓ PieAPP ↓ SSIM ↑ PSNR ↑ LPIP ↓ PieAPP ↓ SSIM ↑ PSNR ↑

Iizuka et al. 0.18 2.37 0.81 24.30 0.17 2.47 0.87 18.43
P2P 1.21 2.69 0.73 17.80 2.01 2.80 0.87 18.43
CIC 0.18 2.81 0.71 22.04 0.19 2.56 0.71 19.11
Chroma 0.16 2.06 0.91 25.57 0.16 2.13 0.90 23.33
Ours 0.12 1.47 0.95 27.03 0.16 2.04 0.92 24.51
Ours (w/o ρ) 0.16 1.90 0.89 25.02 0.20 2.11 0.88 23.21

Table 2: Colorization: Quantitative analysis of our method against the
state-of-the-art. Ours perform better on a variety of metrics.

Method 10% corruption 15% corruption 25% corruption
LPIP ↓ PieAPP ↓ PSNR ↑ SSIM ↑ LPIP ↓ PieAPP ↓ PSNR ↑ SSIM ↑ LPIP ↓ PieAPP ↓ PSNR ↑ SSIM ↑

DSGAN 0.101 1.577 20.13 0.67 0.189 2.970 18.45 0.55 0.213 3.54 16.44 0.49
PN 0.045 0.639 27.11 0.88 0.084 0.680 20.50 0.71 0.147 0.764 19.41 0.63
CE 0.092 1.134 22.34 0.71 0.134 2.134 19.11 0.63 0.189 2.717 17.44 0.51
P2P 0.074 0.942 22.33 0.79 0.101 1.971 19.34 0.70 0.185 2.378 17.81 0.57
CA 0.048 0.731 26.45 0.83 0.091 0.933 20.12 0.72 0.166 0.822 21.43 0.72

RFR 0.051 0.743 29.31 0.85 0.097 1.033 19.22 0.70 0.171 1.127 18.42 0.61
Ours (w/o ρ) 0.053 0.799 27.77 0.83 0.085 0.844 23.22 0.76 0.141 0.812 22.31 0.74

Ours 0.051 0.727 27.83 0.89 0.080 0.740 26.43 0.80 0.129 0.760 24.16 0.77

Table 3: Image completion: Quantitative analysis of our method against state-of-the-art on a variety of metrics.

different rates. At inference, our model was able to converge to both the modes (Fig. 5), depending
on the initial position of z, as the probability of the alternate mode reaches 0.3.

5.2 AUTOMATIC IMAGE COLORIZATION

Deep models have tackled this problem using semantic priors (Iizuka et al., 2016; Vitoria et al., 2020),
adversarial and L1 losses (Isola et al., 2017; Zhu et al., 2017a; Lee et al., 2019), or by conversion to a
discrete form through binning of color values (Zhang et al., 2016). Although these methods provide
compelling results, several inherent limitations exist: (a) use of semantic priors results in complex
models, (b) adversarial loss suffers from drawbacks (see Sec. 4), and (c) discretization reduces the
precision. In contrast, we achieve better results using a simpler model.

The input and the output of the network are l and (a, b) planes respectively (LAB color space).
However, since the color distributions of a and b spaces are highly imbalanced over a natural dataset
(Zhang et al., 2016), we add another constraint to the cost function E to push the predicted a and b
colors towards a uniform distribution: E = ‖agt − a‖+ ‖bgt − b‖+ λ(losskl,a + losskl,b), where
losskl,· = KL(·||u(0, 1)). Here, KL(·||·) is the KL divergence and u(0, 1) is a uniform distribution
(see App. 3.3). Fig. 7 and Table 2 depict our qualitative and quantitative results, respectively. We
demonstrate the superior performance of our method against four metrics: LPIP, PieAPP, SSIM and
PSNR (App. 3.2). Fig. 10 depicts examples of multimodality captured by our model (more examples
in App. 3.4). Fig. 6 shows colorization behaviour as the z converges during inference.

User study: We also conduct two user studies to further validate the quality of generated samples
(Table 1). a) In the PSYCHOPHYSICAL STUDY, we present volunteers with batches of 3 images, each
generated with a different method. A batch is displayed for 5 secs and the user has to pick the most
realistic image. After 5 secs, the next image batch is displayed. b) We conduct a TURING TEST to
validate our output quality against the ground-truth, following the setting proposed by Zhang et al.
(2016). The volunteers are presented with a series of paired images (ground-truth and our output).
The images are visible for 1 sec, and then the user has an unlimited time to pick the realistic image.
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Figure 4: Performance with 20% corrupted data. Our model
demonstrates better convergence compared to L1 loss and a
similar capacity GAN (Pathak et al., 2016).

GT 1
(70%)

GT 2
(30%)

Input Output
1

Output
2

Figure 5: With >30%
alternate mode data,
our model can con-
verge to both the input
modes (cols 4-5).

itr 0 itr 5 itr 10 itr 15 itr 20

Figure 6: The prediction
quality increases as the z tra-
verses to an optimum posi-
tion at the inference.
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Figure 7: Qualitative comparison against the state-of-the-art on ImageNet (left 5 columns) and STL (right 5
columns) datasets. Our model generally produces more vibrant and balanced color distributions.
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Figure 8: Image completion on Celeb-HQ (left)
and Facade (right) datasets. We used fixed cen-
ter masks and random irregular masks (Liu et al.,
2018) for Celeb-HQ and Facades datasets, respec-
tively.

GT Input P2P CA PN RFR Ours

Figure 9: Qualitative comparison for image completion
with 25% missing data (models trained with random sized
square masks).

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

Figure 10: Multiple colorization modes predicted by our
model for a single input. (Best viewed in color).

Figure 11: Multi-modality of our predictions on
Celeb-HQ dataset. (Best viewed with zoom)
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Figure 12: Translation from hand-bag
sketches to images.

Figure 13: Translation from shoe sketches
to images.

Figure 14: Map to
aerial image transla-
tion. From left: GT,
Input and Output.
Also see App. 5.2.

Figure 15: Diversity: Quantitative comparisons.
Figure 16: Translation from
facial landmarks to faces.

Figure 17: Translation from
surface-normals to pet faces.

5.3 IMAGE COMPLETION

In this case, we show that our generic model outperforms a similar capacity GAN (CE) as well
as task-specific GANs. In contrast to task-specific models, we do not use any domain-specific
modifications to make our outputs perceptually pleasing. We observe that with random irregular
and fixed-sized masks, all the models perform well, and we were not able to visually observe a
considerable difference (Fig. 8, see App. 3.11 for more results). Therefore, we presented models with
a more challenging task: train with random sized square-shaped masks and evaluate the performance
against masks of varying sizes. Fig. 9 illustrates qualitative results of the models with 25% masked
data. As evident, our model recovers details more accurately compared to the state-of-the-art. Notably,
all models produce comparable results when trained with a fixed sized center mask, but find this
setting more challenging. Table 3 includes a quantitative comparison. Observe that in the case of
smaller sized masks, PN performs slightly better than ours, but worse otherwise. We also evaluate the
learned features of the models against a downstream classification task (Table 5). First, we train all
the models on Facades (Tyleček & Šára, 2013) against random masks, and then apply the trained
models on CIFAR10 (Krizhevsky et al., 2009) to extract bottleneck features, and finally pass them
through a FC layer for classification (App. 3.7). We compare PN and ours against an oracle (AlexNet
features pre-trained on ImageNet) and show our model performs closer to the oracle.

Figure 18: Convergence on im-
age completion (Paris view).
Our model exhibits rapid and
stable convergence compared to
state-of-the-art (PN, CE, P2P,
CA).

Method M10 M40
Sharma et al. (2016) 80.5% 75.5%
Han et al. (2019) 92.2% 90.2%
Achlioptas et al. (2017) 95.3% 85.7%
Yang et al. (2018) 94.4% 88.4%
Sauder & Sievers (2019) 94.5% 90.6%
Ramasinghe et al. (2019c) 93.1% -
Khan et al. (2019) 92.2% -
Ours 92.4% 90.9%

Table 4: Downstream 3D object classifi-
cation results on ModelNet10 and Model-
Net40 using features learned in an unsuper-
vised manner. All results in % accuracy.

Method Pretext Acc. (%)
ResNet∗ ImageNet Cls. 74.2
PN Im. Completion 40.3
Ours Im. Completion 62.5

Table 5: Comparison on down-
stream task (CIFAR10 cls). (∗)
denotes the oracle case.

Method M10 M40
CE 10.3 4.6
cVAE 8.7 4.2
Ours 84.2 79.4

Table 6: Reconstruction mAP
of 3d spectral denoising.
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Model CE PN Chroma CIC P2P Iizuka et al. RFR Ours
FLOPS (1× 109) 0.634 0.946 1.275 52.839 0.732 14.082 25.64 0.638

Table 7: Model complexity comparison.

5.3.1 DIVERSITY AND OTHER COMPELLING ATTRIBUTES

We also experiment on a diverse set of image translation tasks to demonstrate our generalizability.
Fig. 12, 13, 14, 16 and 17 illustrate the qualitative results of sketch-to-handbag, sketch-to-shoes,
map-to-arial, lanmarks-to-faces and surface-normals-to-pets tasks. Fig. 10, 11, 12, 13, 16 and 17
show the ability of our model to converge to multiple modes, depending on the z initialization. Fig. 15
demonstrates the quantitative comparison against other models. See App. 3.4 for further details on
experiments. Another appealing feature of our model is its strong convergence properties irrespective
of the architecture, hence, scalability to different input sizes. Fig. 19 shows examples from image
completion and colorization for varying input sizes. We add layers to the architecture to be trained
on increasingly high-resolution inputs, where our model was able to converge to optimal modes at
each scale (App. 3.8). Fig. 18 demonstrates our faster and stable convergence. Table 7 compares the
number of FLOPS required by the models for a batch size of 10.

5.4 DENOISING OF 3D OBJECTS IN SPECTRAL SPACE

Spectral moments of 3D objects provide a compact representation, and help building light-weight
networks (Ramasinghe et al., 2020; 2019b; Cohen et al., 2018; Esteves et al., 2018). However,
spectral information of 3D objects has not been used before for self-supervised learning, a key reason
being the difficulty of learning representations in the spectral domain due to the complex structure
and unbounded spectral coefficients. Here, we present an efficient pretext task that is conducted in
the spectral domain: denoising 3D spectral maps. We use two types of spectral spaces: spherical
harmonics and Zernike polynomials (App. 4). We first convert the 3D point clouds to spherical
harmonic coefficients, arrange the values as a 2D map, and mask or add noise to a map portion
(App. 3.12). The goal is to recover the original spectral map. Fig. 20 and Table 6 depicts our
qualitative and quantitative results. We perform favorably well against other methods. To evaluate the
learned features, we use Zernike polynomials, as they are more discriminative compared to spherical
harmonics (Ramasinghe et al., 2019a). We first train the network on the 55k ShapeNet objects by
denoising spectral maps, and then apply the trained network on the ModelNet10 & 40. The features
are then extracted from the bottleneck (similar to Sec. 5.3), and fed to a FC classifier (Table 4). We
achieve state-of-the-art results in ModelNet40 with a simple pretext task.

Input 32 × 32 64 × 64 128 × 128 256 × 256

Figure 19: Scalability: we subsequently add layers to the archi-
tecture to be trained on increasingly high-resolution inputs

GT Input CE cVAE Ours

Figure 20: Qualitative comparison of 3D
spectral denoising. The results are converted
to the spatial domain for a clear visualization.

6 CONCLUSION

Conditional generation in multimodal domains is a challenging task due to its ill-posed nature. In this
paper, we propose a novel generative framework that minimizes a family of cost functions during
training. Further, it observes the convergence patterns of latent variables and applies this knowledge
during inference to traverse to multiple output modes during inference. Despite using a simple and
generic architecture, we show impressive results on a diverse set of tasks. The proposed approach
demonstrates faster convergence, scalability, generalizability, diversity and superior representation
learning capability for downstream tasks.
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