Under review as a conference paper at ICLR 2026

XDEX: LEARNING CROSS-EMBODIMENT
DEXTEROUS GRASPING WITH 1000 HANDS

Anonymous authors
Paper under double-blind review

[ ‘

K R N I 3 s B w % i fn gw a fa do
TR R RN,
KALFFFT LT & R o0
N } RS @ D t 3 R - r W “3\\‘ =5
74 & i [ 4 - 4 o o’ /| = s = | d
N W A I _ 4 - N 4 % N \ -
o (\ﬁ i ; 3 ] [ w v, ) T
LI ¢ ¢ & @& y & @ @ ® ® d
o

) > > > /(
* % % N
- e \ ) 3
&n AVTEE T\ b \u N N\
Figure 1: XDex learns to synthesize consistent and diverse grasps across embodiments. Each row

shows the same grasping pose for the same object across different robot hands. Each column corre-
sponds to a single robot hand (color-coded) grasping different objects.
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ABSTRACT

Synthesizing dexterous grasps across various hands remains a fundamental chal-
lenge in robotic manipulation due to morphology gaps in geometry, topology, and
kinematics. We hypothesize that scaling the diversity and number of hand embod-
iments improves generalization to unseen hands. To this end, we introduce XDex,
a framework trained on the largest cross embodiment grasping dataset, which we
built using 1,000 diverse hands. XDex features an embodiment transformer that
jointly encodes hand geometry and topology to learn from this large scale dataset.
Additionally, we enforce grasp consistency across embodiments by training on a
paired grasping dataset and introducing a retargeting loss. The paired data are
generated by first synthesizing grasps for a source hand and then translating them
to diverse target hands. XDex significantly outperforms prior methods in grasp
quality, consistency, and diversity, and demonstrates strong generalization to un-
seen hands in real world settings. We show more qualitative results anonymously
athttps://Xdex-ICLR.github.io

1 INTRODUCTION

Dexterous grasping is a fundamental yet challenging task in robotics, made even more complex
when generalizing across embodiments. A grasp pose that works for one hand (e.g., a 27-DOF
human hand) may fail when retargeted to another (e.g., a 6-DOF Ability Hand) due to morphology
gaps in terms of geometry, topology, and kinematics. Traditional learning-based grasp synthesis
methods often target a specific hand, limiting their generalization to new hands.

Researchers have explored generalization across embodiments for years, with existing approaches

falling into two main categories. One line of work [Shao et al| (2020); [Attarian et al.| (2023);
et al.|(2023)); Xu et al.| (2024b); Morrison et al.| (2018); |Varley et al.| (2015) utilizes object-centric
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representations, such as contact points or contact maps, followed by inverse kinematics to infer joint
values. While these methods enable generalization, they often suffer from limited performance due
to a lack of understanding of robot hand morphology. Another line of work Wang et al. (2018);
Attarian et al.[(2023)); Sferrazza et al.|(2024); Patel & Song|(2024); Wei et al.|(2025) conditions the
model on robot hand descriptions, but still struggles to achieve strong performance on unseen hands,
since they are trained with only a limited number of hands and cannot fully capture the diversity of
hand morphology.

Inspired by scaling laws in computer vision [Kirillov et al.| (2023));|Oquab et al.| (2023); |Caron et al.
(2021) and natural language processing Kaplan et al.|(2020); Chowdhery et al.[(2023)); Achiam et al.
(2023), we hypothesize that scaling the diversity and number of hand embodiments leads to better
grasping performance on unseen hands. We then construct the largest cross-embodiment grasp-
ing dataset with 1,000 hands covering diverse geometries and topologies and introduce XDex, a
novel framework for cross-embodiment dexterous grasp synthesis. Specifically, the dataset contains
procedurally generated robotic hands with varied link shapes and articulation structures, as well as
human hands of different shapes, together providing broad diversity in geometry and topology. To
enable learning from large-scale embodiments, we introduce an embodiment transformer encoder
that jointly encodes hand geometry and topology. The geometry is captured with per-link point en-
coders, while the topology is represented through an attention mask that encodes joint connectivity.

Beyond embodiment scaling, we also enforce consistency in the grasping poses across different
hands. This not only enables new grasp-to-grasp translation applications (for example, object-
conditioned human-to-robot neural retargeting) but also improves policy learning. The model is
conditioned on the object’s local geometry features and the hand, and it must produce consistent
grasping poses under identical conditions. In this way, the model transfers a grasp to a novel hand
with minimal adjustment. To achieve this, we construct a paired grasping dataset to teach the model
consistency across hands. Specifically, we first synthesize high-quality grasps for a source human
hand using force-closure optimization, and then translate these poses to diverse target hands through
multiple objectives. The model is trained on this paired dataset to implicitly learn consistency. In
addition, we introduce a retargeting loss that explicitly enforces consistency in the predictions.

We evaluate XDex on a large-scale benchmark covering both seen and unseen hands, and report
results across grasp quality, consistency, and diversity. Our method significantly outperforms prior
approaches and demonstrates strong generalization to unseen hands on a real-world robotic platform.

In summary, our contributions are three-fold:

* We propose XDex, a framework that learns cross-embodiment grasping by encoding hand geom-
etry and topology and enforcing grasp consistency across hands.

* We build the largest cross-embodiment grasping dataset with 1,000 diverse hands and paired
grasps for learning grasp transfer.

* We conduct extensive experiments, including real-world deployment, to validate the effectiveness
and scalability of our approach.

2 RELATED WORK

Dexterous Grasping. Dexterous grasping has been extensively studied in the robotics commu-
nity for decades. Classical methods [Miller & Allen| (2004); [Ciocarlie et al.[ (2007); |[Ferrari et al.
(1992)); Bai & Liu| (2014) typically involve maximizing analytic grasp metrics through optimiza-
tion or sampling. However, these methods often perform poorly on high-DoF hands and require
ground-truth object models. In recent years, learning-based approaches—both reinforcement learn-
ing (RL) and imitation learning (IL)—have shown promising results. On the IL side, a number of
works Jiang et al.|(2021)); [Lundell et al.| (2021); |[Shao et al.|(2020); [Li et al.| (2023)); [Ye et al.| (2023));
Lu et al.| (2024); Weng et al.[| (2024); [Liu et al.| (2024)); Xu et al.| (2024a); |[Lum et al.| (2024a); |Ye
et al.| (2025)) leverage large-scale grasp datasets to train grasp synthesis models. Datasets are col-
lected using different approaches: human demonstrations in ContactDB [Brahmbhatt et al.| (2019)
and DexYCB |Chao et al.| (2021), force-closure optimization in DexGraspNet Wang et al.| (2023);
Zhang et al.| (2024b), and differentiable simulation in Grasp’D [Turpin et al.| (2022} 2023)). On the
RL side, UniDexGrasp [Xu et al.| (2023); |Wan et al.| (2023 and DexPoint (Qin et al.| (2023a) learn
dexterous grasping policies from point clouds. GraspXL Zhang et al.[(2024a) trains an RL policy
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Method Grasp _ Croiss Coqsistent Inference Retaljgeti_ng Full-hand
Representation Embodiment Grasping Poses Speed  Application Contact
UniDexGrasp++|Wan et al.|(2023)  Joint Values X X v X v
UniGrasp|Shao et al.| (2020) Contact Point v X X X X
GeoMatch |Attarian et al.|(2023) Contact Point v X X X v
GenDexGrasp|Li et al.| (2023) Contact Map v X X X v
ManiFM [Xu et al.[(2024b) Contact Map v X X X X
DRO-Grasp |Wei et al.| (2025) Distance Matrix v X v X v
XDex (Ours) Joint Poses v v N4 v v

Table 1: Dexterous Grasping Method Comparison.
that supports multi-objective grasping and generalizes to a large set of objects. DextrAH-G |Lum
et al.[(2024b) and DextrAH-RGB [Singh et al.|(2024)) incorporate geometric fabric into RL training,
with the latter achieving successful sim-to-real transfer with RGB input. Our work aligns with the
IL paradigm: we first generate a cross-embodiment grasp dataset via force-closure optimization and
retargeting, and then train a unified grasping model on this dataset. We provide a detailed grasping
method comparison in Tab.

Cross-embodiment Manipulation. Cross-embodiment learning aims to train a unified policy that
generalizes across different robot embodiments without retraining. One line of work adopts in-
termediate object-centric representations, such as contact points [Shao et al.| (2020); Attarian et al.
(2023) and contact maps |Li1 et al| (2023)); Xu et al.| (2024b); [Morrison et al.| (2018)); |Varley et al.
(2015)), followed by solving inverse kinematics to infer joint angles. While object-centric represen-
tations naturally support cross-embodiment generalization, they often suffer from limited accuracy
due to the lack of robot hand understanding and are inefficient for joint value optimization. An-
other line of work incorporates robot hand representations into the model. NerveNet |Wang et al.
(2018) represents the robot structure as a graph to train a RL policy. UniGrasp [Shao et al.| (2020)
learns a shared hand embedding space from point clouds using an autoencoder. ManiFM Xu et al.
(2024b) and GeoMatch |Attarian et al.[(2023) directly input the hand’s point cloud into the model.
Body Transformer |Sferrazza et al.| (2024) and GET-Zero |Patel & Song|(2024) modify transformer
attention masks based on joint graphs to encode hand morphology. The recent work D(R,0) Wei
et al.[(2025) encodes the interaction between hand and object using a dense point-to-point distance
matrix, which is effective but computationally inefficient for learning and inference. In contrast,
our method employs a lightweight joint-based representation and leverages a transformer model to
handle heterogeneous joint structures.

Hand Retargeting. Hand retargeting is primarily used for teleoperation, where human hand poses
are transformed into the joint positions of target robotic hands. Popular approaches include direct
joint mapping |[Liu et al.|(2017), supervised learning |Li et al.| (2019); |Sivakumar et al.| (2022), and
energy-based optimization [Handa et al.| (2020); |Qin et al.| (2023bj; 2022)). CrossDex [Yuan et al.
(2025) utilizes a retargeting network for cross-embodiment RL policy training. Our method employs
optimization-based retargeting to generate a paired dataset, and the trained model naturally supports
environment-aware neural retargeting.

3 METHOD

3.1 OVERVIEW

The goal of cross-embodiment dexterous grasping is to generate physically plausible and diverse
grasping poses that generalize across various objects and robotic hands. We leverage hand retarget-
ing and grasp optimization techniques to construct a large-scale paired grasping dataset, in which
each object is associated with multiple sets of grasping poses that are consistent across different
hands. We then train a transformer-based generative grasping model and ensure consistency. The
resulting model serves as a unified solution for both grasp synthesis and retargeting, capable of
generating consistent, high-quality, and diverse grasps across different objects and hands. We fur-
ther utilize this model to synthesize additional grasps, thereby expanding the dataset and further
improving model performance. An overview of our proposed method is illustrated in Fig.

3.2 PAIRED DATA GENERATION

To construct a paired grasping pose dataset across 1,000 hands, we need to address two challenges:
(1) paired grasping pose generation; and (2) embodiment generation.
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Figure 2: Overview of XDex. Left: We procedurally generate 1,000 diverse hand embodiments by
varying topology and geometry, including the number of joints, link sizes, and shapes. Right: Given
object and hand point clouds, XDex encodes hand geometry and topology together with object
features. A transformer-based conditional variational autoencoder (CVAE) generates joint poses
conditioned on a shared grasp feature and the input geometries, enabling consistent and diverse
cross-embodiment grasp synthesis.

SpConv

Paired Grasping Pose Generation. We first synthesize grasps for a single source hand, and then
retarget the synthesized poses to a set of zarget hands. For each hand h € H, we denote a dexterous
pose by g" = (T", R", 6"), where T" € R? is the global translation, R" € SO(3) the global
rotation, and 6" € R the joint angles of hand % (e.g., daviey = 6, danegro = 16). The object
geometry is represented by its mesh O, while the hand geometry is approximated using a set of
manually defined spheres (about 10 per link).

Let hg be the source hand. Following Wang et al. (2023); [Liu et al.| (2021), we obtain ghs by
minimizing the energy:

Eqrasp (ghs) = Ftc +WaisBais + Wsas Esar + ijj + wsEsa (1)

where E¢. enforces force closure, Ey; s reduces contact distance, Esq¢ penalizes penetration, E'
keeps joints within limits, and E avoids self-collision; {w, } are scalar weights.

The penetration loss E 4 is based on the sphere approximation. Each sphere is parameterized by
(¢,r), where ¢ € R? is the center and r € R is the radius. The center c is transformed via forward
kinematics. The SDF loss is defined as: F.qc = Y, r; — SDF(¢;, O), where SDF(c;, O) denotes
the signed distance from the sphere center ¢; to the object mesh O. To prevent collisions with
the environment (e.g., the table), we take the maximum SDF across all scene meshes. The formal
definitions of other terms follow prior works [Wang et al.| (2023)); [Liu et al.[(2021). The optimized
poses are passed into SAPIEN/ManiSkill simulators |Xiang et al.| (2020); [Tao et al.| (2024)) to filter
out physically implausible poses.

After optimizing the grasping pose for a source hand hg, we retarget it to a target hand hy # hs
by solving an optimization problem that minimizes the distances between corresponding keypoints
(e.g., fingertips and wrist) (Qin et al.| (2023b)); Handa et al.[|(2020) and at the same time ensure the
feasibility of the poses by minimize Es4r and Fy; ¢ terms between the robot and the object:

min » _[[FKe(g") — FEA9™) || + wear Bl + wasa B, @)
gnt I

where FK,(-) denotes the forward kinematics function that computes the world-frame position of
the (-th keypoint. The terms FK¢(g":) and FK,(g"*) represent the corresponding keypoint positions
of the source and target hands, respectively. All retargeted grasp poses are subsequently validated in
simulation.

Embodiment Generation. To generate diverse robot hand embodiments, we consider two cate-
gories: human-like MANO hands Romero et al.| (2017) and existing robot hands. We treat these
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as source hands and employ a procedural pipeline to introduce both geometry and topology varia-
tions within each category. Geometry Variations. For MANO hands, we sample different shape
parameters to generate diverse geometries. For robot hands, we either randomly scale the entire
hand or randomly select a subset of links and independently scale them to introduce local varia-
tions. Topology Variations. For both MANO and robot hands, we apply the same set of operations:
randomly duplicating or removing links, removing an entire finger, or merging two connected links
into a single link. In total, we generate about 1,000 hands, including 200 MANO and 800 robot
hands (see left side of Fig.[2). By procedurally generating both geometric and topological variations
of MANO hands alongside robot hands, we unified human and robot embodiments into a common
space, which expands the downstream applications, such as neural retargeting from human to robot
and enables the capability of leveraging large-scale human data.

Accelerated Paired Data Generation. Since generating paired data solely through retargeting is
computationally expensive, we randomly select only six hands per object for retargeting to initially
train a reasonably performing model. This model is then used to generate paired data for more
hands and objects, with the generated poses filtered by physics-based simulation to ensure physical
plausibility. The new data are subsequently used to train a stronger model, which in turn produces
more paired data, forming an iterative self-improving pipeline.

3.3 CROSS-EMBODIMENT GRASPING MODEL

We employ a transformer Vaswani et al.[(2017)-based generative model for cross-embodiment grasp-
ing. The object geometry is represented by point cloud Po € RVo*3, The robot hand geometry is
represented by a set of link point clouds { P}, where each P, € RV¢*3 is in the wrist coordinate.
The grasp pose is represented by the set of 6D Joint transformations {( Ry, T;)}, where Ry, € SO(3)
and T, € R3 denote the rotation and translation of the parent joint of the /-th link, respectively. The
model is trained using a conditional variational autoencoder (CVAE) Sohn et al.| (2015)), where the
hand feature and object geometry serve as conditions. The architecture is detailed in the right side
of Fig.

Geome%‘y Feature Extraction. We extract geometry features from both the robot hand and the
object point clouds. For each robot link point cloud Py, we apply PointNet |Q1 et al.| (2017) to
obtain a per-link feature vector f}"* € R f}i"™ = pointNet (/). For the object, we use
SPConv |Contributors| (2022) to extract per-point features f;bj € R9 for each point p € Pp:
{fy b3} ep, = SPConv(Pp). These features serve as conditions for the CVAE-based transformer

model: the link features f7*"* and object features f;’bj capture the local geometry of each hand link
and the object surface, respectively. Each grasping pose is associated with a single object point p
by projecting its heading direction onto the object surface, following DexGraspNet2.0 Zhang et al.
(2024b). Hence, the local point features from SPConv are only used to condition a subset of local
grasping poses (instead of all possible poses for the object), which helps the model learn better grasp

consistency across different hands.

Embodiment Encoder. The geometric feature of each link is processed by a Transformer encoder.
Meanwhile, the encoder learned attention bias in the self-attention mechanism to explicitly encode
the topology information.Patel & Song| (2025). Based on the URDF structure, we compute the
shortest path distance (SPD) ¢spp (2, j) between every pair of links. An embedding table s, indexed
by this SPD value as s4,, (s 5), provides a learned scalar that is added to the attention score.

Transformer-based CVAE. We employ a transformer-based CVAE [Sohn et al.| (2015) to model
the distribution of grasping poses. The encoder takes as input the grasp pose g" of a given robot
hand & and the local object geometry feature fzfbj at the corresponding point p, and encodes them

into a latent distribution. The grasp pose g" is first converted into a set of link pose vectors {7y =
(Re, Ty) € Rg}[ﬂ Each link pose vector 7, is concatenated with the corresponding object feature
[Pl e R? to form a link token.

These link tokens are processed by a transformer encoder Enc to produce per-token embeddings
{e¢}, which are then aggregated via max pooling to obtain a global latent feature. A multi-layer
perceptron (MLP) is used to map this feature to the mean p and standard deviation o of the latent

"We adopt the 6D rotation representation Zhou et al[(2019), so each link pose is represented as a 9D vector.
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distribution. A latent variable z is then sampled using the reparameterization trick:

{ee} = Enc({[me || £;°°1}),  p,0 =MLP(MaxPool({ec})),
z=pu+o0e e~N(0,I). 3)

The sampled latent variable z is concatenated with the object feature f;bj to form a single source
token for the transformer decoder. The decoder takes this token along with the link geometry features
{f}*"*} as query tokens to predict the joint poses:

{#e} = Dec({f"™} 211 £0), )
where each 7, € R? represents a 6D rotation and a 3D translation for link /.
The model is trained using a combination of reconstruction loss and KL divergence:

L= e = mell* + AeeDker, (N (2, 0%) [|N(0, 1)) 5)
4

where 7y is the predicted pose for link ¢, and 7y is the ground truth.

Finally, we solve an inverse kinematics (IK) problem to recover the hand pose §” that matches the
predicted joint poses:

~h . h R 2
g :argmanHFKg(g ) —71'@‘ , (6)
gh P
where FK;(g") computes the pose of link ¢ from the hand pose ¢".
Encouraging Consistency. While the Hand 1 Geom Feature
paired dataset (see Sec. [3.2) implicitly en-
courages consistent grasping poses across ﬁ\‘
different hands given the same object fea- %
ture f;bj and latent variable z, we further Latent Space ._. Decoder Retaracti
introduce a retargeting loss to enforce con- € 7_:,9; i
sistency.
i ; =
We assign the same sampled latent vari- Hand 2 Geom Feature

able z and object feature f5°7 to two dif-

ferent hands, h; and ho, with correspond- Figure 3: Consistency Loss Terms. Shared latent
ing link geometry features {f;***(hy)} grasp feature is decoded into poses for different hands,
and { felink(hz)}_ The transformer de- With a retargeting loss to enforce consistency.

coder predicts joint poses {frg“} and

{fr??} for the two hands. The retargeting loss penalizes the difference between the corresponding

~hy ~ho 2

keypoint positions: Lyetarger = », ||7," — 7}

The final loss is a combination of loss terms described above. The proposed consistency loss term
is illustrated in Fig.

Neural Retargeting. Our grasp synthesis model naturally supports object-conditioned neural retar-

geting. Given a set of joint poses {wé“} from a source hand h; and the shared object feature f;jbj,
we first encode the input using the transformer encoder to obtain the latent mean p (without sam-
pling). We then decode this latent mean using the link geometry features { f7***(h2)} of a target

hand hs to predict the corresponding joint poses:

{#}2} = Dec({f/ ™ (ha)}, nll £;°), (7)

where 1 = MLP (MaxPool(Enc({[m," || f*I]}))).

4 EXPERIMENTS

We evaluate the quality, consistency, and diversity of the grasp synthesis results in Sec.[#.2] We then
study the effect of scaling the amount of embodiments in Sec. {.3] Real-world deployment results
are reported in Sec.
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Quality Consistency Diversity
Method SRt Pen | Pos Diff | VecDiff | Hmeant  Hstd |
Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen
Retargeting (wo filter) 035 046 0.17 0.18 042 049 020 0.21 391 3.64 0.02 0.02
D(R,0)*|Wei et al.| (2025) 054 - 021 - 042 - 015 - 3.68 - 003 -
Ours 0.77 0.72 0.15 0.19 042 052 0.18 0.22 3.89 3.67 0.11 0.07
Ours w/o paired data 0.50 0.23 0.20 0.17 046 058 0.18 0.22 3.72 3.84 0.03 0.05

Ours w/o embodiment encoder 0.72 0.68 0.17 0.20 044 0.50 0.22 0.23 3.61 3.67 0.03 0.07
Ours with consistency loss 0.77 0.64 0.18 0.17 042 0.50 0.18 0.21 3.55 3.63 0.04 0.07

Table 2: Grasping synthesis results. We report grasp quality, consistency, and diversity metrics on
both seen and unseen robot hands. Our method outperforms baselines and ablated variants across
most metrics, especially on unseen hands.

4.1 EXPERIMENTAL SETTINGS

Data. We collect object assets from multiple sources: DexGraspNet Wang et al.{(2023), EGAD|Mor-
rison et al.[(2020), RoboCasa|Nasiriany et al.|(2024)), KIT Kasper et al.|(2012)), ContactDB [Brahmb-
hatt et al.[(2019), and YCB |Calli et al.|(2015)). The test split includes all objects from KIT, YCB, and
ContactDB, as well as the test sets from EGAD and DexGraspNet. All other objects are included in
the training split. All objects are convex decomposed and normalized. Since we focus on a tabletop
grasping setting, objects must be stably placed on the table plane during simulation. We randomly
sample the translation, orientation, and scale of each object and run simulations to determine stable
poses. In total, we generate 70K scenes for training and 500 scenes for testing.

For hand assets, we generate a total of 1,000 hand embodiments. Specifically, we create 200 vari-
ations of the human-like MANO hand by sampling diverse shape parameters. The remaining 800
variations are procedurally generated based on five robot hands: Allegro, Inspire, Ability, Schunk,
and Shadow. To evaluate generalization, we keep the original Inspire, Ability, Schunk, and Shadow
hands as unseen hands for testing. For seen hands, we randomly select 20 variations for evaluation.

Metrics. We categorize our evaluation metrics into three groups: Quality (Success Rate, Penetra-
tion), Consistency (Position difference, Vector difference), and Diversity (H mean, H std). A grasp
is considered successful if the hand starts from a pre-grasp pose (no contact with the object), lifts
the object above a 0.2 m threshold, and maintains contact with the object using at least two finger-
tips. While the quality and diversity metrics are commonly used in prior works |Wang et al.| (2023);
Lu et al.|(2024)), we introduce consistency metrics to evaluate grasp pose similarity across different
hands. These two metrics are adapted from energy functions used in previous retargeting works|Qin
et al.[(2023b): position difference is the average L2 distance between the fingertips and wrist in the
world coordinate, while vector difference is the average L2 distance between the fingertips in the
wrist coordinate. The former emphasizes global differences, whereas the latter focuses more on the
grasping pose. For multi-hand evaluations, the reported value is the average difference across all
possible grasp pairs between two different hands.

Baselines. We mainly compare our method against two baselines: (1) Retargeting, where a grasping
policy is trained on a single hand and retargeted to other hands during evaluation; and (2) D(R,0),
a state-of-the-art method that conditions on the robot hand point cloud and predicts the distance
between the hand and the object for cross-embodiment grasping. Since D(R,0) is designed for
grasping floating objects, we re-train their model on our tabletop grasping dataset and denote this
adapted version as D(R,0)*. We fix their pre-trained robot encoder during training, as it is crucial
to final performance Wei et al.[(2025). We also observe that the batch size of D(R,0)* is limited to
4 due to the large memory requirement of the dense distance matrix.

4.2 GRASPING SYNTHESIS RESULTS

We evaluate grasp synthesis performance across three axes: Quality, Consistency, and Diversity.
Table 2] reports detailed metrics on both seen and unseen hands. Our method outperforms both prior
baselines and ablated variants across most metrics.

Quality. Our method outperforms both the retargeting baseline and D(R,0)* in terms of success
rate and penetration. On unseen hands, we achieve a success rate of 0.77, compared to 0.57 for
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Figure 5: Distribution and scaling of hand embodiments used in XDex. (a)-(c): Our 1,000 generated
robot hands cover a wide range of sizes, link counts, and joint counts, capturing diverse morpholo-
gies

retargeting. The performance of D(R,0)* is worse than the retargeting baseline, and we even fail to
generalize D(R,0)* to unseen hands. We conjecture that this is because our dataset contains much
higher embodiment and grasping diversity than the original setting used to pre-train D(R,0). As we
fix the pre-trained hand encoder during re-training, it may not generalize well to our dataset.

Diversity. Our method achieves comparable diversity compared to baselines, with an entropy mean
of 3.67 and entropy std of 0.07 on unseen hands. This suggests that our model not only produces
consistent grasps but also maintains sufficient diversity.

Disentanglement Visualization. To better un- . \
derstand the behavior of our model, we visual- \ . \z‘é %y )
ize the disentangled grasping poses for a sin- b, >

gle object in Fig.[6] Each row shows grasping N .
poses generated from the same object point p U J f: B/ % r »
and the same grasp feature z, but for different - =y X \)’/“
hand embodiments. Our method produces con- . ‘ \
sistent and physically plausible grasps across M K:P @ M|
hands, demonstrating successful disentangle- )
ment of object, hand, and grasp representations.

Moreover, different rows show various grasping :‘J ( % i@ g
poses for the same object, indicating the pose - = - -
diversity of our method.

Figure 4: Disentangled grasping poses for one ob-
ject across multiple object points and hand em-
bodiments. Each row shows consistent grasps
across different hands for the same object point
and grasp feature, while different rows illustrate

diverse grasping strategies for different object
points.

Ablation Study. We evaluate the effectiveness
of using paired data and embodiment encoder
and report the results in Tab. 2] Instead of
pairing grasping poses across hands, we inde-
pendently optimize for each hand and train the
model with this mixed data. This leads to a
significant drop in performance, especially on
unseen hands (e.g., the success rate drops from
0.72 to 0.23). This result highlights the importance of cross-embodiment grasping pose pairing, as it
enables the model to better focus on subtle morphological differences for the same object point and
grasp features. Using the embodiment encoder improves the success rate by 5% on seen hands and
4% on unseen hands compared to not using it, demonstrating that encoding topological information
helps the model better understand the embodiment structure and thus enhances its performance.

Inference Efficiency. We evaluate the inference speed of our method compared to baselines.
XDex requires approximately 55 ms per grasp prediction, including both the network forward pass
and post-processing. In contrast, DR-O retargeting methods typically take around 500 ms per grasp,
demonstrating that our method is better suited for real-time applications.

4.3 EMBODIMENT SCALING LAWS
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Figure 7: Zero-shot deployment of our method on an xArm with an Ability Hand. Our model
directly transfers to the real world from simulation, successfully executing open-loop grasps across
a variety of everyday objects using point cloud input.

We generate 1,000 diverse robot hand embodiments covering 1999

different sizes, numbers of links, and numbers of joints, and 80 4
report the statistics in Fig.[5] Leveraging these embodiments,
We investigate the scaling law in two settings: (i) increasing
the number of embodiments while keeping the total data size

60

Success Rate

fixed—so that the data per embodiment decreases as the num- 7 o
ber of embodiments grows, and (ii) jointly scaling both the 2041 e
data size and the number of embodiments. Data Size

0% T T
Scaling Embodiment with Fixed Data Size. While keeping 0 500 1000

the number of object assets and grasping poses fixed, increas- Number of Seen Robots

ing the number of seen embodiments improves the model’s
success rate on unseen hands, but the performance eventually
saturates at around 50%.

Figure 6: Scaling law analysis
shows that increasing the number
of seen embodiments and the data
Joint Scaling of Data Size and Embodiment. We further in- size during training improves suc-
vestigate the scaling law by jointly scaling both the data size cess rate, indicating the impor-
and the number of embodiments. We observe a much steeper tance of embodiment diversity and
improvement in grasping success rate as more embodiments data size during cross-embodiment
and more data are incorporated during training, with perfor- grasping learning

mance on unseen hands eventually reaching 77%, highlighting

the importance of embodiment diversity and data diversity for cross-embodiment generalization.

4.4 REAL-WORLD DEMONSTRATION

We demonstrate the effectiveness of the proposed method in the real world through direct sim-to-real
deployment. We use an xArm with an Ability Hand platform and mount a camera in a third-person
view. The camera pose is calibrated using standard hand-eye calibration. The partial point cloud
observation from the camera is taken as input to the model.

To execute a grasp, we sample 128 candidate grasp poses and solve inverse kinematics (IK) to select
a feasible one. The final grasp pose is executed in an open-loop manner. Both the reaching and
lifting motions are achieved via motion planning based on the selected pose. Grasping poses are
visualized in Fig.[7]

5 CONCLUSION

We present XDex, a cross-embodiment grasp synthesis framework that disentangles object geome-
try, hand embodiment, and grasping pose to achieve generalizable and co nsistent dexterous grasp-
ing across 1,000 robot hands. By constructing a large-scale paired grasping dataset and leverag-
ing a transformer-based conditional variational autoencoder, XDex is able to generate high-quality,
consistent, and diverse grasps for both seen and unseen embodiments. We introduced explicit re-
targeting and embedding losses to further enforce grasping consistency across embodiments, and
demonstrated that our approach significantly outperforms strong baselines across multiple metrics.
Our experimental results confirm the importance of embodiment diversity and disentangled rep-
resentation in enabling cross-embodiment generalization. Furthermore, XDex supports real-world
sim-to-real deployment. We believe XDex provides a promising step towards foundation models
for dexterous manipulation that generalize across robotic hands. We are committed to releasing the
code upon acceptance.
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A APPENDIX

Use of Large Language Model. We use LLM to aid or polish writing.
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