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Abstract
We study regret minimization in online episodic
linear Markov Decision Processes, and propose
a policy optimization algorithm that is computa-
tionally efficient, and obtains rate optimal𝑂 (

√
𝐾)

regret where 𝐾 denotes the number of episodes.
Our work is the first to establish the optimal rate
(in terms of 𝐾) of convergence in the stochastic
setting with bandit feedback using a policy opti-
mization based approach, and the first to estab-
lish the optimal rate in the adversarial setup with
full information feedback, for which no algorithm
with an optimal rate guarantee was previously
known.

1. Introduction
Policy Optimization (PO) algorithms are a class of meth-
ods in Reinforcement Learning (RL; Sutton & Barto, 2018;
Mannor et al., 2022) where the agent’s policy is iteratively
updated according to the (possibly preconditioned) gradient
of the value function w.r.t. policy parameters. From a theo-
retical perspective, framing the optimization process as one
that follows Mirror Descent (Nemirovskij & Yudin, 1983;
Beck & Teboulle, 2003) updates leads to strong online guar-
antees that go beyond stationary or stochastic rewards, and
apply more generally for any (possibly adversarial) reward
sequence (Shani et al., 2020; Luo et al., 2021). Furthermore,
PO methods are easy to implement in practice and (per-
haps, one could say, somewhat in line with theory) exhibit
favorable robustness properties when applied to real world
problems ranging from robotics (Levine & Koltun, 2013;
Schulman et al., 2015; Haarnoja et al., 2018), computer
games (Schulman et al., 2017), and more recently training
of large language models (Ouyang et al., 2022).

Notwithstanding their popularity and theoretical appeal, cur-
rent results (Agarwal et al., 2020; Zanette et al., 2021; Liu
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et al., 2023b; Zhong & Zhang, 2023) in the function ap-
proximation setting with linear MDP (Jin et al., 2020) as-
sumptions fall short of establishing the optimal dependence
on the number of episodes 𝐾; arguably, the most important
problem parameter.

In this work, we establish that an optimistic variant of the
classic natural policy gradient 1 (NPG; Kakade, 2001) ob-
tains the optimal (up to logarithmic factors) 𝑂 (

√
𝐾) regret

when combined with a short reward free warmup period
and a suitable bonus update schedule. Our results hold for
adversarial losses when the learner is given full information
feedback, and for stochastic losses when given bandit feed-
back. Thus our algorithm is also the first (and currently, the
only) method to obtain rate optimal regret (be it by PO or
any other approach) for adversarial losses with full feedback
in the linear MDP setup.

1.1. Summary of contributions

We consider online learning in a finite horizon episodic lin-
ear MDP, where an agent interacts with the environment over
the course of 𝐾 episodes. In each episode 𝑘 ∈ [𝐾], the agent
interacts with the MDPM𝑘 = (S,A, 𝐻, {ℙℎ} ,

{
ℓ𝑘
ℎ

}
, 𝑠1),

that shares all elements with MDPs of other episodes except
for the loss functions. Our central structural assumption
is that the dynamics and losses are linear; that there exist
feature embeddings 𝜙, 𝜓1, . . . , 𝜓𝐻 such that ℙℎ (𝑠′ |𝑠, 𝑎) =
𝜙(𝑠, 𝑎)⊤𝜓ℎ (𝑠′), and 𝔼[ℓ𝑘

ℎ
(𝑠, 𝑎) |𝑠, 𝑎] = 𝜙(𝑠, 𝑎)⊤𝑔ℎ,𝑘 , for

some 𝑔ℎ,𝑘 ∈ ℝ𝑑 . The objective of the agent is to minimize
her regret, defined by the sum of value functions (namely,
the expected cumulative loss) of the agent minus the sum of
values of the best policy in hindsight.

Our main contribution in this paper is a computationally
efficient policy optimization algorithm (see Algorithm 1),
that guarantees an 𝑂 (

√
𝐾) regret bound under either of the

following two conditions:

• For any (possibly adversarial) loss sequence
{
𝑔ℎ,𝑘

}
,

when given full feedback, meaning the agent observes
𝑔1,𝑘 , . . . , 𝑔𝐻,𝑘 after each episode 𝑘 .

1To be precise, our algorithm is the classic NPG with soft-
max parametrization equipped with an optimistic linear function
approximation routine for action-value estimates.
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• For stationary losses, namely 𝑔ℎ,𝑘 = 𝑔ℎ∀𝑘 , when given
noisy bandit feedback, meaning the agent observes only
𝑙𝑘
ℎ
B ℓ𝑘

ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
), and it holds that 𝑙𝑘

ℎ
∈ [−1, 1] and that

the expected value of 𝑙𝑘
ℎ

conditioned on past interactions
is 𝜙(𝑠𝑘

ℎ
, 𝑎𝑘
ℎ
)⊤𝑔ℎ.

1.2. Overview of techniques

The difficulty encountered in recent attempts (Liu et al.,
2023b; Zhong & Zhang, 2023, and to an extent also in
Sherman et al., 2023) towards establishing the rate optimal√
𝐾 stems from the need to control the capacity of the pol-

icy class explored by the optimization process. Since the
dynamics in linear MDPs cannot be estimated pointwise,
the estimation procedure of the action-value function in-
volves a linear regression sub-routine where the dependent
variable is given by the value function estimate from the
previous timestep, which depends on past rollouts in a way
that breaks the martingale structure. Thus, to establish con-
centration, an additional uniform convergence argument is
required in which the capacity of the policy class plays a
central role.

To illustrate, let us consider a simplified, non-optimistic
estimation routine with non-zero immediate losses only at
step 𝐻, and let

{
(𝑠𝑖
ℎ
, 𝑎𝑖
ℎ
, 𝑠𝑖
ℎ+1)

}𝑘−1
𝑖=1 denote a dataset of past

agent transitions, and 𝑉 𝑘
ℎ+1 the value function estimated in

step ℎ + 1. Then the estimation step on time ℎ is given by:

�̂�𝑘ℎ = arg min
𝑣∈ℝ𝑑

{
𝑘−1∑︁
𝑖=1

(
𝜙(𝑠𝑖ℎ, 𝑎

𝑖
ℎ)
⊤𝑣 −𝑉 𝑘ℎ+1 (𝑠

𝑖
ℎ+1)

)2
}
,

𝑄𝑘ℎ (𝑠, 𝑎) = truncate
[
ℙ̂𝑘ℎ𝑉

𝑘
ℎ+1 (𝑠, 𝑎) B 𝜙(𝑠, 𝑎)⊤�̂�𝑘ℎ

]
,

where truncate[·] denotes some form of clipping used to
keep the estimated action-values in reasonable range (e.g.,
[−𝐻, 𝐻]). Notably, 𝑉 𝑘

ℎ+1 was itself estimated using the
same procedure in the previous backward induction step,
combined with an expectation given by the agent’s policy:

𝑉 𝑘ℎ+1 (𝑠) =
〈
𝜋𝑘ℎ+1 (·|𝑠), 𝑄

𝑘
ℎ+1 (𝑠, ·)

〉
,

which means the estimated quantity is a random variable
that depends on all past trajectories through the agent’s
policy. Hence, to establish a least squares concentration
bound, the common technique (originally proposed in this
context in the work of Jin et al., 2020) dictates arguing
uniform convergence over the class of all possible value
functions 𝑉 𝑘

ℎ+1 explored by the learner. Further, the capacity
of the class of learner value functions is inevitably tied to
the capacity of the learner’s policies, and when employing
mirror descent updates, these are parameterized by the sum
of past action-value functions:

𝜋𝑘ℎ+1 (𝑎 |𝑠) ∝ exp

(
−𝜂

𝑘−1∑︁
𝑖=1

𝑄𝑖ℎ+1 (𝑠, 𝑎)
)
.

Now, the problem is that the truncation of the Q-functions
implies the above expression does not admit a low dimen-
sional (independent of 𝑘) representation, and thus leads to
the agent’s policy and value classes having prohibitively
large covering number.

The main component of our approach is to employ a re-
ward free warmup period, that eventually allows to forgo
the truncation of the action value function, thereby reducing
the policy class capacity. Indeed, if the action-value func-
tions were not truncated, the policy parameterization could
be made effectively independent (up to log factors) of 𝑘 ,
as the sum of Q-functions will “collapse” into a single 𝑑
dimensional parameter of larger norm:

𝜋𝑘ℎ+1 (𝑎 |𝑠) ∝ exp
(
𝜙(𝑠, 𝑎)⊤𝜃𝑘ℎ+1

)
,

where 𝜃𝑘
ℎ+1 = −𝜂∑𝑘−1

𝑖=1 �̂�
𝑖
ℎ+1. In order to remove the trunca-

tions, we observe they are actively involved only in those
regions of the state space that are poorly explored; indeed,
assume the least squares errors are boudned as:���ℙ̂𝑘ℎ𝑉 𝑘ℎ+1 (𝑠, 𝑎) − ℙℎ𝑉 𝑘ℎ+1 (𝑠, 𝑎)��� ≤ 𝛽 ∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
,

where Λ𝑘,ℎ B 𝐼 +∑
𝑖 𝜙(𝑠𝑖ℎ, 𝑎

𝑖
ℎ
)𝜙(𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
)⊤ for some 𝛽 that

depends (among other quantities) on max𝑠′ 𝑉 𝑘ℎ+1 (𝑠
′), and

assume we have already shown that 𝑉 𝑘
ℎ+1 (𝑠

′) ≲ 𝐻 for all
𝑠′. Then as long as 𝜙(𝑠, 𝑎) points in a well explored di-
rection in the state-action space — concretely one where
∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
≤ 1/(𝛽𝐻)— we will get that:

𝑄𝑘ℎ (𝑠, 𝑎) = ℙℎ𝑉
𝑘
ℎ+1 (𝑠, 𝑎) ±

1
𝐻

=⇒
���𝑄𝑘ℎ (𝑠, 𝑎)��� ≤ ���ℙℎ𝑉 𝑘ℎ+1 (𝑠, 𝑎)��� + 1

𝐻
≲ 𝐻 + 1

𝐻
.

Thus, forgoing truncations and if all directions were well
explored, we would get



𝑉 𝑘
ℎ




∞ ≤



𝑉 𝑘
ℎ+1




∞ +

1
𝐻

, and contin-
uing inductively we accumulate errors across the horizon in
an additive manner;



𝑉 𝑘
ℎ




∞ ≲ 𝐻 + (𝐻 − ℎ)/𝐻. Now, while

we cannot ensure sufficient exploration in all directions, we
can in fact ensure it in “most” directions (those which are
reachable w.p. ≳ 1/

√
𝐾) using a properly tuned reward free

warmup phase, which is based on the algorithm developed in
Wagenmaker et al. (2022b). The technical argument roughly
follows the above intuition, carefully controlling the least
squares errors through an inductive argument. This way,
we establish the estimated value functions remain in the
low capacity function class, for which we have a suitable
uniform concentration bound.

1.3. Additional related work

Linear MDPs with adversarial costs. Most relevant to
our paper is the recent work of Zhong & Zhang (2023), who
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consider the same adversarial setup as ours and establish
a 𝑂 (𝐾3/4) regret bound, using an optimistic policy opti-
mization framework similar to ours, but with an additional
batching mechanism. Several recent papers consider the
more general setting consisting of adversarial costs and
bandit-feedback. Neu & Olkhovskaya (2021) obtain a rate
optimal regret bound assuming known dynamics and a cer-
tain exploratory condition. In the general setting without
additional assumptions, Luo et al. (2021) was the first to
establish a sublinear regret bound. The followup works
of Dai et al. (2023); Sherman et al. (2023) obtain respec-
tively, 𝑂 (𝐾8/9), 𝑂 (𝐾6/7) regret, and Kong et al. (2023) ob-
tain 𝑂 (𝐾4/5 + 1/𝜆★min) (here, 𝜆★min denotes the minimum
eigenvalue of the best exploratory policy’s 2nd moment
matrix) albeit with a computationally inefficient algorithm.
Finally, a very recent preprint (Liu et al., 2023a) establishes
the current state-of-the-art results for this setting; 𝑂 (𝐾3/4)
with a computationally efficient algorithm, and𝑂 (

√
𝐾) with

a computationally inefficient one.

Policy optimization in tabular and linear MDPs. Most
of the currently published works that consider policy opti-
mization algorithms in the learning setup that necessitates
exploration were mentioned in the introduction. In par-
ticular, the work of Liu et al. (2023b) considers the same
stochastic setup as ours and obtains a 𝑂 (1/𝜖3) sample com-
plexity for a different variant of the optimistic NPG algo-
rithm. Many recent works (e.g., Bhandari & Russo, 2019;
Liu et al., 2019; Agarwal et al., 2021; Lan, 2022; Xiao,
2022; Yuan et al., 2022) study convergence properties of
policy optimization methods from a pure optimization per-
spective or subject to exploratory assumptions; in this setup,
exploration need not be handled algorithmically, and rates
much faster than 𝑂 (

√
𝐾) regret are achievable when access

to exact value function gradients is granted.

RL with function approximation The study of MDPs
with linear structure in the form we adopt here was initiated
with the works of Yang & Wang (2019; 2020); Jin et al.
(2020), and has lead to an abundance of papers consider-
ing algorithmic approaches to various problem setups (e.g.,
Zanette et al., 2020; Wei et al., 2021; Wagenmaker et al.,
2022b). The linear mixture MDP (Modi et al., 2020; Ayoub
et al., 2020; Zhou et al., 2021a;b) is a different model that
in general is incomparable with the linear MDP (Zhou et al.,
2021b). There is also a rich line of works studying statistical
properties of RL with more general function approximation
(e.g., Jiang et al., 2017; Jin et al., 2021; Du et al., 2021),
although these usually do not provide computationally effi-
cient algorithms.

2. Preliminaries
Episodic MDPs. A finite horizon episodic MDP is defined
by the tuple M = (S,A, 𝐻,ℙ, ℓ, 𝑠1), where S denotes
the state space, A the action set, 𝐻 ∈ ℤ+ the length of
the horizon, ℙ = {ℙℎ}ℎ∈[𝐻 ] the time dependent transition
function, ℓ = {ℓℎ}ℎ∈[𝐻 ] a sequence of loss functions, and
𝑠1 ∈ S the initial state that we assume to be fixed w.l.o.g.
The transition density given the agent is at state 𝑠 ∈ S at time
ℎ and takes action 𝑎 is given by ℙℎ (·|𝑠, 𝑎) ∈ Δ(S). After the
agent takes an action on the last time step 𝐻, she transitions
to a fixed terminal state 𝑠𝐻+1 ∈ S and the episode terminates
immediately. We assume the state space S is a (possibly
infinite) measurable space, and that the action setA is finite
with 𝐴 B |A|. A policy is defined by a mapping 𝜋 : S ×
[𝐻] → Δ(A), where Δ(A) denotes the probability simplex
over the action set A. We let 𝜋ℎ (·|𝑠) ∈ Δ(A) denote the
distribution over actions given by 𝜋 at 𝑠, ℎ. Finally, we use
the convention that for any function𝑉 : S → ℝ, we interpret
ℙℎ𝑉 : S × A → ℝ as the result of applying the conditional
expectation operator ℙℎ; ℙℎ𝑉 (𝑠, 𝑎) B 𝔼𝑠′∼ℙℎ ( · |𝑠,𝑎)𝑉 (𝑠′).

Episodic Linear MDPs. Our central structural assump-
tion is that the learner interacts with a linear MDP (Jin et al.,
2020), defined next.

Definition 1 (Linear MDP). An MDP M = (S,A, 𝐻,
ℙ, ℓ, 𝑠1) is a linear MDP if the following holds. There is
a feature mapping 𝜙 : S × A → ℝ𝑑 that is known to the
learner, and 𝐻 signed vector-valued measures 𝜓ℎ : S → ℝ𝑑

that are unknown, such that for all ℎ, 𝑠, 𝑎, 𝑠′ ∈ [𝐻 − 1] ×
S × A × S:

ℙℎ (𝑠′ |𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤𝜓ℎ (𝑠′). (1)

W.l.o.g., we assume ∥𝜙(𝑠, 𝑎)∥ ≤ 1 for all 𝑠, 𝑎, and that for
any measurable function 𝑓 : S → ℝ with ∥ 𝑓 ∥∞ ≤ 1, it
holds that



∫ 𝜓ℎ (𝑠′) 𝑓 (𝑠′)d𝑠′

 ≤ √𝑑 for all ℎ ∈ [𝐻]. In
addition, for all 𝑠, 𝑎, ℎ:

ℓℎ (𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤𝑔ℎ, (2)

where {𝑔ℎ} ⊂ ℝ𝑑 . W.l.o.g., we assume |𝜙(𝑠, 𝑎)⊤𝑔ℎ | ≤ 1
for all 𝑠, 𝑎, ℎ, and ∥𝑔ℎ∥ ≤

√
𝑑 for all ℎ.

Problem setup. We consider linear MDPs in two setups;
adversarial and stochastic. In the adversarial setup defined
formally next, we assume the agent interacts with a sequence
of 𝐾 ≥ 1 MDPs over the course of 𝐾 episodes that share all
elements other than the loss functions, which may change
adversarially.

Assumption 1 (Adversarial Linear MDP with full-feed-
back). The learner interacts with a sequence of MDPs{
M𝑘

}𝐾
𝑘=1, M𝑘 = (S,A, 𝐻,ℙ, ℓ𝑘 , 𝑠1) that share all ele-

ments other than the loss functions. Each MDP M𝑘 is
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a linear MDP as per Definition 1. The feedback provided to
the learner on episode 𝑘 time step ℎ is the low dimensional
cost vector 𝑔𝑘,ℎ ∈ ℝ𝑑 , where 𝑔𝑘 =

(
𝑔𝑘,1, . . . , 𝑔𝑘,𝐻

)
∈ ℝ𝑑𝐻

is the 𝑑 dimensional representation of ℓ𝑘 =
(
ℓ𝑘1 , . . . , ℓ

𝑘
𝐻

)
.

In the stochastic setup, we assume the agent interacts with a
single linear MDP over the course of 𝐾 ≥ 1 episodes, and
receives only noisy bandit-feedback.
Assumption 2 (Stochastic Linear MDP with bandit-feed-
back). In each episode, the learner interacts with the same
linear MDP M = (S,A, 𝐻,ℙ, ℓ, 𝑠1). The feedback pro-
vided to the learner on episode 𝑘 time step ℎ is the random
instantaneous loss 𝑙𝑘

ℎ
B ℓ𝑘

ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
), where 𝑠𝑘

ℎ
, 𝑎𝑘
ℎ

denote the
state and action visited by the agent on episode 𝑘 time step ℎ.
It holds that 𝔼

[
𝑙𝑘
ℎ
| 𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
,
(
𝑙𝑘
′

ℎ
, 𝑠𝑘

′

ℎ
, 𝑎𝑘

′

ℎ

)
𝑘′<𝑘

]
= ℓℎ (𝑠𝑘ℎ, 𝑎

𝑘
ℎ
),

and
��ℓ𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
)
�� ≤ 1 almost surely.

The pseudocode for learner environment interaction, encom-
passing both assumptions is provided below in Protocol 1.
We make the following final notes with regards to the model
we consider: (1) for any 𝑠, 𝑎 ∈ S × A, the agent may evalu-
ate 𝜙(𝑠, 𝑎) in 𝑂 (1) time; (2) In the adversarial setup, we as-
sume an oblivious and deterministic adversary. Specifically,
that the sequence of loss functions is chosen in advance,
before interaction begins.

Protocol 1 Learner-Environment Interaction
parameters: (S,A, 𝐻,ℙ, 𝜙, 𝑠1;𝐾)

Nature chooses

{
Adv.: {𝑔𝑘}𝐾𝑘=1 ∈ ℝ𝑑𝐻 ;
Stoch.: 𝑔 ∈ ℝ𝑑𝐻 , and sets 𝑔𝑘 ≡ 𝑔 ∀𝑘

for 𝑘 = 1, . . . , 𝐾 do
agent decides on a policy 𝜋𝑘

environment resets to 𝑠𝑘1 = 𝑠1
for ℎ = 1, . . . , 𝐻 do

agent observes 𝑠𝑘
ℎ
∈ S

agent chooses 𝑎𝑘
ℎ
∼ 𝜋𝑘

ℎ
(·|𝑠𝑘

ℎ
)

agent incurs loss 𝜙(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
)⊤𝑔𝑘,ℎ

agent observes

{
Full-feedback: 𝑔𝑘,ℎ

Bandit-feedback: ℓ𝑘
ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
)

environment transitions to 𝑠𝑘
ℎ+1 ∼ ℙℎ (·|𝑠, 𝑎)

end for
end for

Learning objective. The expected loss of a policy 𝜋 when
starting from state 𝑠 ∈ S at time step ℎ ∈ [𝐻] is given by
the value function;

𝑉 𝜋ℎ (𝑠; ℓ) B 𝔼

[
𝐻∑︁
𝑡=ℎ

ℓ𝑡 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠ℎ = 𝑠, 𝜋, ℓ
]
, (3)

where we use the extra (; ℓ) notation to emphasize the spe-
cific loss function considered. The expected loss condi-
tioned on the agent taking action 𝑎 ∈ A on time step ℎ at

𝑠 and then continuing with 𝜋 is given by the action-value
function;

𝑄 𝜋ℎ (𝑠, 𝑎; ℓ) B 𝔼

[
𝐻∑︁
𝑡=ℎ

ℓ𝑡 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎, 𝜋, ℓ
]
. (4)

The value and action-value functions of a policy 𝜋 in the
MDP

(
S,A, 𝐻,ℙ, ℓ𝑘 , 𝑠1

)
associated with episode 𝑘 ∈ [𝐾]

are denoted by, respectively;

𝑉
𝑘, 𝜋

ℎ
(𝑠) B 𝑉 𝜋ℎ (𝑠; ℓ

𝑘); 𝑄𝑘, 𝜋
ℎ
(𝑠, 𝑎) B 𝑄 𝜋ℎ (𝑠, 𝑎; ℓ𝑘), (5)

where 𝑉 𝜋
ℎ
(𝑠; ℓ𝑘) and 𝑄 𝜋

ℎ
(𝑠, 𝑎; ℓ𝑘) have been defined in

Equations (3) and (4). For the sake of conciseness, we
further define

𝑉 𝑘, 𝜋 B 𝑉
𝑘, 𝜋

1 (𝑠1)

We let 𝜋★ denote the best policy in hindsight;

𝜋★ B arg min
𝜋

{
𝐾∑︁
𝑘=1

𝑉
𝑘, 𝜋

1 (𝑠1)
}
,

and seek to minimize the pseudo regret of the agent policy
sequence 𝜋1, . . . , 𝜋𝐾 ;

Regret B
𝐾∑︁
𝑘=1

𝑉 𝑘, 𝜋
𝑘 −𝑉 𝑘, 𝜋★ . (6)

Occupancy measures. We denote the occupancy measure
of a policy 𝜋 by

𝜇𝜋ℎ (𝑠, 𝑎) B Pr (𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎 | 𝜋) , (7)

and additionally denote 𝜇𝑘
ℎ
B 𝜇𝜋

𝑘

ℎ
, and 𝜇★

ℎ
B 𝜇𝜋

★

ℎ
.

Additional notation. We let ∥·∥ = ∥·∥2 denote the stan-
dard Euclidean norm, and for a positive definite matrix
Λ ∈ ℝ𝑑×𝑑 , we let ∥𝑣∥Λ =

√
𝑣⊤Λ𝑣 denote the weighted

norm induced by Λ. Further, we let ∥Λ∥ = ∥Λ∥op =

max𝑣, ∥𝑣 ∥=1 𝑣
⊤Λ𝑣 denote the operator norm of Λ.

3. Algorithm and Main Result
In this section, we present Algorithm 1 and our main theo-
rem providing its regret guarantees. At a high level, Algo-
rithm 1 follows an optimistic policy optimization paradigm
similar to Shani et al. (2020) in the tabular case and more
recently Liu et al. (2023b); Zhong & Zhang (2023) in the lin-
ear MDP case. The important difference is the utilization of
a pure exploration warmup period provided by Algorithm 2
(which we describe in more detail in Section 3.1), and the
usage of restricted value functions. The restricted value
functions, in contrast to truncated ones, take zero value
outside the confidence state set.

4
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The core property required from the warmup period is that
the data it collects is sufficient to ensure a small error when
using it in the least squares regression step of Algorithm 1.
The degree to which the error should be small is determined
by the multiplicative factor in the confidence bound for a
single regression step (determined by the bonus parameter
𝛽 along with other problem parameters), and the number of
times we perform this step (𝐻; the length of the horizon).
The analysis leads to the following definition for the “known”
states set of step ℎ:

Zℎ B
{
𝑠 ∈ S | ∀𝑎, ∥𝜙(𝑠, 𝑎)∥Λ−1

0,ℎ
≤ 1/(2𝛽𝐻)

}
, (8)

where Λ0,ℎ denotes the warmup covariate matrix returned
by Algorithm 2 for step ℎ. The set Zℎ contains the states
for which we collected enough data, so that the least squares
regression error when estimating their value can be well
controlled without employing truncation.

On episode 𝑘 , the standard optimistic estimates value func-
tion estimates are denoted 𝑄𝑘

ℎ
, 𝑉 𝑘
ℎ

, while their restricted
counterparts are defined by:

𝑄
𝑘;◦
ℎ
(𝑠, 𝑎) = I {𝑠 ∈ Zℎ}𝑄𝑘ℎ (𝑠, 𝑎),

𝑉
𝑘;◦
ℎ
(𝑠) =

〈
𝑄
𝑘;◦
ℎ
(𝑠, ·), 𝜋𝑘ℎ (·|𝑠)

〉
.

During the backward dynamic programming step, the esti-
mate of the non-restricted action-value function 𝑄𝑘

ℎ−1 then
makes use of the least squares solution w.r.t. the restricted
𝑉
𝑘;◦
ℎ

, which has a well bounded ∥·∥∞. Further, the warmup
ensures the known state setZℎ is large enough so that we do
not lose much by this restriction; concretely, that no policy
has total occupancy larger than 𝑂 (𝜖cov) outside the known
states set.

The other important ingredient of Algorithm 1 is the epoch
schedule in the updates of bonus functions �̂�𝑘

ℎ
, determined

by the determinant of the covariate matrices Λ𝑘,ℎ. This
ensures we update the bonus functions at most 𝑂 (log𝐾)
times, which, when combined with the truncation-less least
squares routine, allows keeping the number of variables
in the policy parameterization 𝑂 (𝑑2 log𝐾). We conclude
this section with our main theorem, providing the regret
guarantees of Algorithm 1.
Theorem 1. Let 𝛿 > 0, assume 𝐾 ≥ 𝐻5𝑑4 log8 (𝑑𝐻𝐾/𝛿),
𝐻 ≥ 3, log 𝐴 ≤ 𝐾, and consider setting 𝛽 =

2𝑐𝛽𝑑3/2𝐻 log(𝑑𝐻𝐾/𝛿) where 𝑐𝛽 is specified by Lemma 3,
𝜖cov = 𝐻3/2𝑑2 log4 (𝑑𝐻𝐾/𝛿)/

√
𝐾 and 𝜂 =

√︁
log 𝐴/(𝐻

√
𝐾).

Suppose we run Algorithm 1 with these parameters for ei-
ther the adversarial case with full-feedback (Assumption 1),
or the stochastic case with bandit-feedback (Assumption 2).
Then we obtain the following bound w.p. 1 − 4𝛿:

𝐾∑︁
𝑘=1

𝑉 𝑘, 𝜋
𝑘 −𝑉 𝑘, 𝜋★ = 𝑂

(
𝑑2𝐻7/2 log4 𝑑𝐻𝐾

𝛿

√︁
𝐾 log 𝐴

)
,

where big-𝑂 hides only constant factors independent of
problem parameters.

Algorithm 1 Optimistic PO for Linear MDPs
input: (𝜂, 𝛿, 𝛽, 𝜖cov) .{(
D0
ℎ
,Λ0,ℎ

)}
ℎ∈[𝐻 ] ← Algorithm 2 (𝛿, 𝛽, 𝜖cov)

Let 𝐾0 − 1 be the number of rounds Algorithm 2 played
Init ∀𝑠 : 𝜋1

ℎ
(·|𝑠) = Unif (A), ∀ℎ ∈ [𝐻] : Λ̂𝐾0 ,ℎ = 0.

for 𝑘 = 𝐾0, . . . , 𝐾 do
Rollout 𝜋𝑘 to generate

{
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
, ℓ𝑘
ℎ
)
}𝐻
ℎ=1.

𝑉 𝑘
𝐻+1 (·) ≡ 0.

for ℎ = 𝐻, . . . , 1 do
D𝑘
ℎ
← D0

ℎ
∪

{
(𝑠𝑖
ℎ
, 𝑎𝑖
ℎ
, 𝑠𝑖
ℎ+1)

}𝑘−1
𝑖=𝐾0

Λ𝑘,ℎ ← 𝐼 +∑
𝑖∈D𝑘

ℎ
𝜙(𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
)𝜙(𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
)⊤

if detΛ𝑘,ℎ ≥ 2 det Λ̂𝑘,ℎ then
Λ̂𝑘,ℎ ← Λ𝑘,ℎ

�̂�𝑘
ℎ
(𝑠, 𝑎) = 𝛽

√︃
𝜙(𝑠, 𝑎)⊤Λ̂−1

𝑘,ℎ
𝜙(𝑠, 𝑎)

end if
�̂�𝑘
ℎ
← Λ−1

𝑘,ℎ

∑
𝑖∈D𝑘

ℎ
𝜙(𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
)𝑉 𝑘;◦
ℎ+1 (𝑠

𝑖
ℎ+1)

ℙ̂𝑘
ℎ
𝑉
𝑘;◦
ℎ+1 (𝑠, 𝑎) = 𝜙(𝑠, 𝑎)

⊤�̂�𝑘
ℎ

�̂�𝑘,ℎ ←
{

Adv.: 𝑔𝑘,ℎ

Stoch.: Λ−1
𝑘,ℎ

∑
𝑖∈D𝑘

ℎ
𝜙(𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
)ℓ𝑖
ℎ
(𝑠𝑖
ℎ
, 𝑎𝑖
ℎ
)

ℓ̂𝑘
ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤�̂�𝑘,ℎ

Set
𝑄𝑘
ℎ
(𝑠, 𝑎) = ℓ̂𝑘

ℎ
(𝑠, 𝑎) + ℙ̂𝑘

ℎ
𝑉
𝑘;◦
ℎ+1 (𝑠, 𝑎) − �̂�

𝑘
ℎ
(𝑠, 𝑎)

𝑄
𝑘;◦
ℎ
(𝑠, 𝑎) = I {𝑠 ∈ Zℎ}𝑄𝑘ℎ (𝑠, 𝑎)

𝑉 𝑘
ℎ
(𝑠) =

〈
𝑄𝑘
ℎ
(𝑠, ·), 𝜋𝑘

ℎ
(·|𝑠)

〉
𝑉
𝑘;◦
ℎ
(𝑠) =

〈
𝑄
𝑘;◦
ℎ
(𝑠, ·), 𝜋𝑘

ℎ
(·|𝑠)

〉
end for
# Policy improvement:

𝜋𝑘+1ℎ (𝑎 |𝑠) ∝ 𝜋
𝑘
ℎ (𝑎 |𝑠)𝑒

−𝜂𝑄𝑘
ℎ
(𝑠,𝑎)

end for

3.1. Reward-free warmup

In this section we present Algorithm 2, which we employ for
a pure exploration warmup period. The algorithm invokes
the CovTraj algorithm (Wagenmaker et al., 2022b) for each
step of the horizon, and thus follows the same high level
design of reward free exploration outlined in Algorithm 1
of Wagenmaker et al. (2022b).

The basic guarantee provided by the warmup period is given
by the next lemma.

Lemma 1. Assume we execute Algorithm 2 with the setting
of 𝛽 = 𝑂 (𝑑3/2𝐻) and 𝜖cov ≥ 1/𝐾. Then it will terminate

5
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after 𝑂
(
𝑑4𝐻5

𝜖cov
log7 𝑑𝐻𝐾

𝛿

)
episodes, and with probability ≥

1 − 𝛿, outputs Λ0,1, . . . ,Λ0,𝐻 such that:

∀ℎ,∀𝜋, Pr
𝑠ℎ∼𝜇𝜋ℎ

(𝑠ℎ ∉ Zℎ) ≤ 𝜖cov.

The proof of Lemma 1 is provided in Appendix B, and
mostly follows from the basic guarantees of the CovTraj al-
gorithm.

Algorithm 2 Reward Free Warmup
input: 𝛿, 𝛽, 𝜖cov
Set 𝑚 = ⌈log 1

𝜖cov
⌉

Set ∀𝑖 ∈ [𝑚], 𝛾𝑖 = 1/(2𝛽𝐻)
Z𝐻+1 B {𝑠𝐻+1}
for ℎ = 𝐻, . . . , 1 do{(
Xℎ,𝑖 , D̃ℎ,𝑖 , Λ̃ℎ,𝑖

)}𝑚
𝑖=1
← CovTraj(ℎ, 𝛿/𝐻, 𝑚, {𝛾𝑖})

D0
ℎ
← ⋃

𝑖 D̃ℎ,𝑖
Λ0,ℎ ← 𝐼 +∑

𝑡∈D0
ℎ
𝜙(𝑠𝑡

ℎ
, 𝑎𝑡
ℎ
)𝜙(𝑠𝑡

ℎ
, 𝑎𝑡
ℎ
)⊤

end for
return

{(
D0
ℎ
,Λ0,ℎ

)}
ℎ∈[𝐻 ]

4. Proof of Main Theorem
In this section, we outline the technical arguments leading
up to the proof of Theorem 1. At the core of most of the
analyses of linear MDP algorithms that involve a value esti-
mation step, is a uniform convergence argument that ensures
the regression errors concentrate uniformly over the class
of value functions explored by the algorithm. The need
for uniform convergence stems from the fact that we esti-
mate the value function using past rollouts and a previously
estimated value function, which in itself depends on past
rollouts through the current agent policy. The lemma below
is used to establish this part of the argument, and is stated in
a generic manner — this is essentially the same argument
used in Jin et al. (2020).

Lemma 2. LetV ⊆ S → ℝ be a class of functions where
∀ 𝑓 ∈ V, ∥ 𝑓 ∥∞ ≤ 𝐶, fix ℎ ∈ [𝐻], and consider a transitions
dataset Dℎ =

{
(𝑠𝑖
ℎ
, 𝑎𝑖
ℎ
, 𝑠𝑖
ℎ+1)

}
𝑖∈[𝑘 ] collected by agent roll-

outs in the environment. Let ℙ̂ℎ 𝑓 (𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤�̂� 𝑓ℎ be the
approximation of ℙℎ 𝑓 (𝑠, 𝑎) = 𝔼𝑠′∼ℙℎ ( · |𝑠,𝑎) 𝑓 (𝑠′) given by
the least squares estimate �̂� 𝑓

ℎ
= Λ−1

ℎ

∑𝑘
𝑖=1 𝜙(𝑠𝑖ℎ, 𝑎

𝑖
ℎ
) 𝑓 (𝑠𝑖

ℎ+1),
Λℎ B 𝐼 +∑𝑘

𝑖=1 𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ
)𝜙(𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
)⊤. Then, w.p. 1 − 𝛿 over

the generation of Dℎ, we have ∀𝑠, 𝑎 ∈ S × A,∀ 𝑓 ∈ V;��� (ℙℎ − ℙ̂ℎ) 𝑓 (𝑠, 𝑎)���
≤

(
4𝐶

√︂
2𝑑 log 𝑘 + log

N1/𝑘 (V)
𝛿

)
∥𝜙(𝑠, 𝑎)∥Λ−1

ℎ
,

where N𝜈 (V) denotes the ∥·∥∞ covering number ofV.

Compared to other works, our analysis differs most sig-
nificantly in how the above lemma is applied in order to
control the estimation errors of the algorithm; the important
parameter being the bound 𝐶 on the magnitude of the target
function. Usually, the regression step for 𝑉 𝑘

ℎ
uses a trun-

cated version of 𝑉 𝑘
ℎ+1 from the previous horizon step, which

simplifies the analysis and unfortunately leads to a too large
value function class. The core of our argument lies in the
next lemma; specifically, in the proof of Evbu.

Lemma 3 (The good event). There exists a universal con-
stant 𝑐𝛽 , such that for any 𝛿 > 0, executing Algorithm 1
with 𝛽 ≥ 𝑐𝛽𝑑3/2𝐻 log(𝑑𝐻𝐾/𝛿), we have that the following
hold w.p. > 1 − 4𝛿.

∀𝜋,∀ℎ:

Pr
𝑠ℎ∼𝜇𝜋ℎ

(𝑠ℎ ∉ Zℎ) ≤ 𝜖cov, (Erfw)

∀𝑘 ≥ 𝐾0, ℎ, 𝑠, 𝑎:���𝑄𝑘;◦
ℎ
(𝑠, 𝑎)

��� ≤ 2𝐻, (Eqbd)

| (ℙℎ − ℙ̂𝑘ℎ)𝑉
𝑘;◦
ℎ+1 (𝑠, 𝑎) | ≤

𝛽

2
∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
, (Evbu)

|ℓ̂𝑘ℎ (𝑠, 𝑎) − ℓ
𝑘
ℎ (𝑠, 𝑎) | ≤

𝛽

2
∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
, (Esle)

and ∀ℎ ∈ [𝐻]:

𝐾∑︁
𝑘=𝐾0

𝔼𝑠ℎ ,𝑎ℎ∼𝜇𝑘ℎ

[

𝜙(𝑠ℎ, 𝑎ℎ)

Λ−1
𝑘,ℎ

]
≤ 2

𝐾∑︁
𝑘=𝐾0



𝜙(𝑠𝑘ℎ, 𝑎𝑘ℎ)

Λ−1
𝑘,ℎ

+ 4 log
4𝐾𝐻
𝛿

. (Ebon)

The proof of Lemma 3 is provided fully in Appendix A.3;
below we provide an overview. The success of Erfw is given
by Lemma 1, while the proofs for Esle and Ebon follow from
standard arguments; we provide their proofs in Lemmas 6
and 8, respectively.

Proof sketch (Erfw ∪ Esle =⇒ Eqbd ∪ Evbu). Establishing
the bound in Evbu involves showing (i) Eqbd holds for 𝑄𝑘;◦

ℎ+1,
and (ii) that the policy 𝜋𝑘

ℎ+1 belongs to a “small” policy class.
Given (i) and (ii), it immediately follows that 𝑉 𝑘;◦

ℎ+1 belongs
to a small and bounded value function class, which leads to
Evbu through an application of Lemma 2.

We proceed by an inductive argument as follows. Let 𝑘, ℎ,
and assume we have already proved (i), (ii) and Evbu for
(𝑘 ′, ℎ′), 𝑘 ′ < 𝑘 and (𝑘, ℎ′), ℎ′ > ℎ. Our Q estimate on step
ℎ decomposes as:���𝑄𝑘;◦

ℎ
(𝑠, 𝑎)

��� = ���ℓ̂𝑘ℎ (𝑠, 𝑎) + ℙ̂𝑘ℎ𝑉 𝑘;◦
ℎ+1 (𝑠, 𝑎) − �̂�

𝑘
ℎ (𝑠, 𝑎)

��� .
6
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Now we may apply Esle for the loss term, and the induc-
tive hypothesis combined with Erfw for the regression term;
which gives us that it is close to the true and well bounded
value — this gives (i). For (ii), we employ the inductive
hypothesis for 𝑘 ′ < 𝑘 to show that the policy 𝜋𝑘

ℎ
has com-

pact parametric form. As mentioned above, (i) + (ii) now
lead to Evbu, which completes the inductive step and thus
the proof. □

Throughout the remainder of the analysis, we let Kℎ denote
the event that a random state 𝑠ℎ is “known”:

Kℎ B {𝑠ℎ ∈ Zℎ} . (9)

Lemma 4 (Regret decomposition). Upon execution of Al-
gorithm 1, conditioned on the good event Lemma 3, it holds
that:

𝐾∑︁
𝑘=𝐾0

𝑉 𝑘, 𝜋
𝑘 −𝑉 𝑘, 𝜋★ ≤ 4𝜖cov𝐻

2𝐾

+
𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=𝐾0

𝔼𝑠ℎ ,𝑎ℎ∼𝜇𝑘ℎ

[
−Δ𝑘ℎ (𝑠ℎ, 𝑎ℎ) + �̂�

𝑘
ℎ (𝑠ℎ, 𝑎ℎ) | Kℎ

]
︸                                                                ︷︷                                                                ︸

Bias

+
𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=𝐾0

𝔼𝑠ℎ∼𝜇★ℎ

[〈
𝑄𝑘ℎ (𝑠ℎ, ·), 𝜋

𝑘
ℎ (·|𝑠ℎ) − 𝜋

★
ℎ (·|𝑠ℎ)

〉
| Kℎ

]
︸                                                                     ︷︷                                                                     ︸

OMD

+
𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=𝐾0

𝔼𝑠ℎ ,𝑎ℎ∼𝜇★ℎ
[
Δ𝑘ℎ (𝑠ℎ, 𝑎ℎ) − �̂�

𝑘
ℎ (𝑠ℎ, 𝑎ℎ) | Kℎ

]
︸                                                              ︷︷                                                              ︸

Optimism

,

where

Δ𝑘ℎ (𝑠ℎ, 𝑎ℎ) B ℓ̂𝑘ℎ (𝑠ℎ, 𝑎ℎ) − ℓ
𝑘
ℎ (𝑠ℎ, 𝑎ℎ)

+
(
ℙ̂𝑘ℎ − ℙℎ

)
𝑉
𝑘;◦
ℎ+1 (𝑠ℎ, 𝑎ℎ).

Proof sketch. For any 𝑘 , we have by the extended value
difference lemma (Lemma 16);

𝑉
𝑘, 𝜋𝑘

1 −𝑉 𝑘, 𝜋
★

1

=

𝐻∑︁
ℎ=1

𝔼𝜇𝑘
ℎ

[
ℓ𝑘ℎ (𝑠ℎ, 𝑎ℎ) + ℙℎ𝑉

𝑘;◦
ℎ+1 (𝑠ℎ, 𝑎ℎ) −𝑄

𝑘;◦
ℎ
(𝑠ℎ, 𝑎ℎ)

]
+

𝐻∑︁
ℎ=1

𝔼𝜇★
ℎ

[〈
𝑄
𝑘;◦
ℎ
(𝑠ℎ, ·), 𝜋𝑘ℎ (·|𝑠ℎ) − 𝜋

★
ℎ (·|𝑠ℎ)

〉]
+

𝐻∑︁
ℎ=1

𝔼𝜇★
ℎ

[
𝑄
𝑘;◦
ℎ
(𝑠ℎ, 𝑎ℎ) − ℓ𝑘ℎ (𝑠ℎ, 𝑎ℎ) − ℙℎ𝑉

𝑘;◦
ℎ+1 (𝑠ℎ, 𝑎ℎ)

]
.

Now, note that for any 𝑠 ∈ Zℎ, 𝑎 ∈ A;

𝑄
𝑘;◦
ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤�̂�𝑘,ℎ + ℙ̂𝑘ℎ𝑉

𝑘;◦
ℎ
(𝑠, 𝑎) − �̂�𝑘ℎ (𝑠, 𝑎),

thus

ℓ𝑘ℎ (𝑠, 𝑎) + ℙℎ𝑉
𝑘;◦
ℎ+1 (𝑠, 𝑎) −𝑄

𝑘;◦
ℎ
(𝑠, 𝑎)

= −Δ𝑘ℎ (𝑠, 𝑎) + �̂�
𝑘
ℎ (𝑠, 𝑎).

In addition, by the good event, specifically Eqbd, and the
assumption that the instantaneous loss is ∈ [−1, 1], we have
for any 𝑠 ∉ Zℎ, 𝑎 ∈ A:���ℓ𝑘ℎ (𝑠, 𝑎) + ℙℎ𝑉 𝑘;◦

ℎ+1 (𝑠, 𝑎) −𝑄
𝑘;◦
ℎ
(𝑠, 𝑎)

��� ≤ 2𝐻.

Thus by the law of total expectation,

𝔼𝜇𝑘
ℎ

[
ℓ𝑘ℎ (𝑠ℎ, 𝑎ℎ) + ℙℎ𝑉

𝑘;◦
ℎ+1 (𝑠ℎ, 𝑎ℎ) −𝑄

𝑘;◦
ℎ
(𝑠ℎ, 𝑎ℎ)

]
≤ 𝔼𝜇𝑘

ℎ

[
−Δ𝑘ℎ (𝑠ℎ, 𝑎ℎ) + �̂�

𝑘
ℎ (𝑠, 𝑎) | Kℎ

]
+ 2𝜖cov𝐻,

where the inequality follows since the good event Equa-
tion (Erfw) implies 𝜇𝑘

ℎ
(S \ Zℎ) ≤ 𝜖cov. For similar reasons,

we also have,

𝔼𝜇★
ℎ

[
𝑄
𝑘;◦
ℎ
(𝑠ℎ, 𝑎ℎ) − ℓ𝑘ℎ (𝑠ℎ, 𝑎ℎ) − ℙℎ𝑉

𝑘;◦
ℎ+1 (𝑠ℎ, 𝑎ℎ)

]
≤ 𝔼𝜇★

ℎ

[
Δ𝑘ℎ (𝑠ℎ, 𝑎ℎ) − �̂�

𝑘
ℎ (𝑠, 𝑎) | Kℎ

]
+ 2𝜖cov𝐻.

Finally, again by the law of total expectation and definition
of the restricted Q-function;

𝔼𝑠ℎ∼𝜇★ℎ

[〈
𝑄
𝑘;◦
ℎ
(𝑠ℎ, ·), 𝜋𝑘ℎ (·|𝑠ℎ) − 𝜋

★
ℎ (·|𝑠ℎ)

〉]
≤ 𝔼𝑠ℎ∼𝜇★ℎ

[〈
𝑄𝑘ℎ (𝑠ℎ, ·), 𝜋

𝑘
ℎ (·|𝑠ℎ) − 𝜋

★
ℎ (·|𝑠ℎ)

〉
| Kℎ

]
.

Combining the last three displays with the first equation,
and summing over 𝑘 = 𝐾0, . . . , 𝐾, ℎ ∈ [𝐻], the proof is
complete. □

We are now ready for the proof of the main theorem.

Proof of Theorem 1. Given our choice of parameters, by
Lemma 1, we have that the number of warmup episodes
satisfies

𝐾0 = 𝑂

(
𝑑4𝐻5

𝜖cov
log7 𝑑𝐻𝐾

𝛿

)
. (10)

For the remainder of the proof, we assume the good event
defined in Lemma 3 holds, which indeed occurs w.p. 1 − 4𝛿
by that lemma. Proceeding, we will bound the regret for
the remaining rounds using the decomposition given by
Lemma 4.

7
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Bias term. By Equation (Evbu), we have for all 𝑠, 𝑎:(
ℙℎ − ℙ̂𝑘ℎ

)
𝑉
𝑘;◦
ℎ+1 (𝑠, 𝑎) +

1
2
�̂�𝑘ℎ (𝑠, 𝑎)

≤ 𝛽

2
∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
+ 1

2
�̂�𝑘ℎ (𝑠, 𝑎).

In addition, in the stochastic case, owed to Equation (Esle),
for all 𝑠, 𝑎:

ℓℎ (𝑠, 𝑎) − ℓ̂𝑘ℎ (𝑠, 𝑎) = 𝜙(𝑠ℎ, 𝑎ℎ)
⊤ (
𝑔𝑘,ℎ − �̂�𝑘,ℎ

)
+ 1

2
�̂�𝑘ℎ (𝑠, 𝑎)

≤ 𝛽

2
∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
+ 1

2
�̂�𝑘ℎ (𝑠, 𝑎).

In the adversarial case, the above bound holds trivially
since ℓℎ (𝑠, 𝑎) = ℓ̂𝑘

ℎ
(𝑠, 𝑎). By a simple algebraic argu-

ment given in Lemma 14, we additionally have �̂�𝑘
ℎ
(𝑠, 𝑎) =

𝛽 ∥𝜙(𝑠, 𝑎)∥
Λ̂−1
𝑘,ℎ

≤ 2𝛽 ∥𝜙(𝑠, 𝑎)∥Λ−1
𝑘,ℎ
, thus the sum of the last

two displays is bounded by 3𝛽 ∥𝜙(𝑠, 𝑎)∥Λ−1
𝑘,ℎ

, therefore

Bias ≤ 3𝛽
𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=𝐾0

𝔼𝜇𝑘
ℎ

[

𝜙(𝑠𝑘ℎ, 𝑎𝑘ℎ)

Λ−1
𝑘,ℎ

]
≤ 6𝛽

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=𝐾0



𝜙(𝑠𝑘ℎ, 𝑎𝑘ℎ)

Λ−1
𝑘,ℎ

+ 12𝛽𝐻 log
4𝐾𝐻
𝛿

,

where the second inequality follows from Equation (Ebon).
Further, by Lemma 20, for any ℎ ∈ [𝐻],

𝐾∑︁
𝑘=𝐾0



𝜙(𝑠𝑘ℎ, 𝑎𝑘ℎ)

Λ−1
𝑘,ℎ

≤

√√√
𝐾

𝐾∑︁
𝑘=𝐾0



𝜙(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
)


2
Λ−1
𝑘,ℎ

≤ 2
√︁
𝐾𝑑 log𝐾,

hence,

Bias ≤ 12𝛽𝐻
(√︁
𝐾𝑑 log𝐾 + log

4𝐾𝐻
𝛿

)
.

OMD Term. By Equation (Eqbd) we have that for all
𝑘 ≥ 𝐾0, ℎ, 𝑠 ∈ Zℎ, 𝑎 ∈ A;

��𝑄𝑘
ℎ
(𝑠, 𝑎)

�� = ��𝑄𝑘;◦
ℎ
(𝑠, 𝑎)

�� ≤ 2𝐻 .
Thus, applying the OMD regret bound Lemma 24 for any
𝑠 ∈ Zℎ, ℎ ∈ [𝐻] we have;

𝐾∑︁
𝑘=𝐾0

〈
𝑄𝑘ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉
≤ log 𝐴

𝜂
+ 𝜂

𝐾∑︁
𝑘=𝐾0

∑︁
𝑎∈A

𝜋𝑘ℎ (𝑎 |𝑠)𝑄
𝑘
ℎ (𝑠, 𝑎)

2

≤ log 𝐴
𝜂
+ 4𝜂𝐻2𝐾.

Therefore, we may bound the OMD term as follows:

𝐻∑︁
ℎ=1

𝐾∑︁
𝑘=𝐾0

𝔼𝑠ℎ∼𝜇★ℎ

[〈
𝑄𝑘ℎ (𝑠ℎ, ·), 𝜋

𝑘
ℎ (·|𝑠ℎ) − 𝜋

★
ℎ (·|𝑠ℎ)

〉
| Kℎ

]
=

𝐻∑︁
ℎ=1

𝔼𝑠ℎ∼𝜇★ℎ

[
𝐾∑︁
𝑘=𝐾0

〈
𝑄𝑘ℎ (𝑠ℎ, ·), 𝜋

𝑘
ℎ (·|𝑠ℎ) − 𝜋

★
ℎ (·|𝑠ℎ)

〉
| Kℎ

]
≤

𝐻∑︁
ℎ=1

𝔼𝑠ℎ∼𝜇★ℎ

[
log 𝐴
𝜂
+ 4𝜂𝐻2𝐾 | Kℎ

]
=
𝐻 log 𝐴
𝜂

+ 4𝜂𝐻3𝐾.

Optimism term. By Equation (Evbu), for 𝑠, 𝑎 ∈ Zℎ × A:(
ℙ̂𝑘ℎ − ℙℎ

)
𝑉
𝑘;◦
ℎ+1 (𝑠, 𝑎) −

1
2
�̂�𝑘ℎ (𝑠, 𝑎)

≤ 𝛽

2
∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
− 𝛽

2
∥𝜙(𝑠, 𝑎)∥

Λ̂−1
𝑘,ℎ

≤ 0,

since Λ̂−1
𝑘,ℎ
⪰ Λ−1

𝑘,ℎ
by construction. Similarly, owed to

Equation (Esle):

𝜙(𝑠, 𝑎)⊤
(
�̂�𝑘,ℎ − 𝑔𝑘,ℎ

)
− 1

2
�̂�𝑘ℎ (𝑠, 𝑎)

≤ 𝛽

2
∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
− 𝛽

2
∥𝜙(𝑠, 𝑎)∥

Λ̂−1
𝑘,ℎ

≤ 0.

Thus, we immediately obtain the optimism term is non
positive.

Concluding the proof. Combining the bound on the num-
ber of warmup episodes Equation (10), with Lemma 4 and
the bounds on all three terms, we have:

𝐾∑︁
𝑘=1

𝑉 𝜋
𝑘 −𝑉★ ≲ 𝑑4𝐻5

𝜖cov
log7 𝑑𝐻𝐾

𝛿
+ 𝜖cov𝐻

2𝐾 + 𝐻 log 𝐴
𝜂

+ 𝜂𝐻3𝐾 + 𝛽𝐻
(√︁
𝐾𝑑 log𝐾 + log

𝐾𝐻

𝛿

)
,

where ≲ hides only constant factors. Finally, setting
𝜖cov =

𝐻3/2𝑑2 log4 (𝑑𝐻𝐾/𝛿 )√
𝐾

, 𝛽 = 2𝑐𝛽𝑑3/2𝐻 log(𝑑𝐻𝐾/𝛿) and

𝜂 =

√
log 𝐴
𝐻
√
𝐾

, we obtain:

𝐾∑︁
𝑘=1

𝑉 𝜋
𝑘 −𝑉★ ≲ 𝑑2𝐻7/2 log4 𝑑𝐻𝐾

𝛿

√︁
𝐾 log 𝐴,

which completes the proof. □
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A. Deferred Proofs
In this section, we provide details of the analysis that weren’t fully included in the main text. The central component is the
proof of Lemma 3, which is given in Appendix A.3. In Appendix A.2 we define the value and policy classes which will be
shown in Appendix A.3 to contain (w.h.p.) the values and policies explored by the algorithm. Appendix A.4 includes the
technical details for the covering number bounds of the value classes defined in Appendix A.2.

Additional notation. We will make use of the following filtration;

F 𝑘ℎ B 𝜎

(
(𝑠1ℎ′ , 𝑎

1
ℎ′ , 𝑙

1
ℎ′ )

𝐻
ℎ′=1, . . . , (𝑠

𝑘−1
ℎ′ , 𝑎

𝑘−1
ℎ′ , 𝑙

𝑘−1
ℎ′ )

𝐻
ℎ′=1, (𝑠

𝑘
ℎ′ , 𝑎

𝑘
ℎ′ , 𝑙

𝑘
ℎ′ )

ℎ
ℎ′=1

)
, F 𝑘 B F 𝑘𝐻 , (11)

where (𝑠𝑖
ℎ
, 𝑎𝑖
ℎ
, 𝑙𝑖
ℎ
) are the (state, action, loss) random variables generated during policy rollouts. In addition, for any function

class 𝐸 ⊆ X → ℝ, where X is an arbitrary set, we let N𝜈 (𝐸) denote the ∥·∥∞ covering number of 𝐸 ; that is, the cardinality
of the smallest set 𝐸 ⊂ 𝐸 such that for all 𝑓 ∈ 𝐸 , there exists 𝑓 ∈ 𝐸 such that max𝑥∈X

�� 𝑓 (𝑥) − 𝑓 (𝑥)�� ≤ 𝜈.

A.1. Proof of Lemma 2

Proof of Lemma 2. Denote

𝑣ℎ B

∫
𝜓ℎ (𝑠′) 𝑓 (𝑠′)d𝑠′; �̂�ℎ B Λ−1

ℎ

𝑘∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ) 𝑓 (𝑠

𝑖
ℎ+1).

Then, we have

�̂�ℎ − 𝑣ℎ = Λ−1
ℎ

(
𝑘∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ) 𝑓 (𝑠

𝑖
ℎ+1) −

(
𝐼 +

𝑘∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)𝜙(𝑠

𝑖
ℎ, 𝑎

𝑖
ℎ)
⊤

)
𝑣ℎ

)
= Λ−1

ℎ

𝑘∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)

(
𝑓 (𝑠𝑖ℎ+1) − 𝜙(𝑠

𝑖
ℎ, 𝑎

𝑖
ℎ)
⊤𝑣ℎ

)
− Λ−1

ℎ 𝑣ℎ

= Λ−1
ℎ

𝑘∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)

(
𝑓 (𝑠𝑖ℎ+1) − 𝔼𝑠′

[
𝑓 (𝑠′) | 𝑠𝑖ℎ, 𝑎

𝑖
ℎ

] )
− Λ−1

ℎ 𝑣ℎ (12)

Now, note that 

Λ−1
ℎ 𝑣ℎ



2
Λℎ

= ∥𝑣ℎ∥2Λ−1
ℎ

≤ ∥𝑣ℎ∥2 ≤ 𝑑𝐶2.

In addition, for the first term in Equation (12), we consider the filtration defined in Equation (11), and note that 𝜙(𝑠𝑖
ℎ
, 𝑎𝑖
ℎ
)

is F 𝑖
ℎ

-measurable while 𝑠𝑖
ℎ+1 is F 𝑖

ℎ+1-measurable. Hence we may apply Lemma 23 to obtain that for any 𝜖, 𝑝 > 0, with
probability ≥ 1 − 𝑝 we have 




Λ−1

ℎ

𝑘∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)

(
𝑓 (𝑠𝑖ℎ+1) − 𝔼𝑠′

[
𝑓 (𝑠′) | 𝑠𝑖ℎ, 𝑎

𝑖
ℎ

] )




2

Λℎ

≤ 4𝐶2
(
𝑑

2
log (𝑘 + 1) + log

N𝜖 (V)
𝑝

)
+ 8𝑘2𝜖2

≤ 4𝐶2
(
𝑑 log (𝑘) + log

N1/𝑘 (V)
𝑝

)
+ 8 (setting 𝜖 = 1/𝑘)

Combining Equation (12) with the inequalities from the last two displays gives;

∥�̂�ℎ − 𝑣ℎ∥2Λℎ ≤ 16𝐶2
(
2𝑑 log (𝑘) + log

N1/𝑘 (V)
𝑝

)
=⇒ ∥�̂�ℎ − 𝑣ℎ∥Λℎ ≤ 4𝐶

√︄
2𝑑 log (𝑘) + log

N1/𝑘 (V)
𝑝

.

12
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Finally, ��� (ℙℎ − ℙℎ)𝑉 (𝑠, 𝑎)��� = ��𝜙(𝑠, 𝑎)⊤ (�̂�ℎ − 𝑣ℎ)�� ≤ ∥𝜙(𝑠, 𝑎)∥Λ−1
ℎ
∥�̂�ℎ − 𝑣ℎ∥Λℎ ,

which completes the proof after plugging in the bound from the previous display. □

A.2. Value and policy classes

Given an input parameter 𝛽 given to Algorithm 1, we consider the softmax policy class as defined below:

Y(𝐷𝑤 , 𝜆− , 𝜆+, 𝐽max) B
{
𝑦(·;𝑤,𝑊1:𝐽 ) | ∥𝑤∥ ≤ 𝐷𝑤 , 𝜆− 𝐼 ⪯ 𝑊 𝑗 ⪯ 𝜆+𝐼, 𝐽 ≤ 𝐽max

}
,

where 𝑦(𝑥;𝑤,𝑊1:𝐽 ) B 𝑥⊤𝑤 +
𝐽∑︁
𝑗=1
∥𝑥∥𝑊𝑗

;

Π B
{
𝜋(·|·; 𝑦) | 𝑦 ∈ Y(3𝑑𝐻𝐾2, 𝐾−2, 𝛽2𝐾2, 2𝑑 log𝐾)

}
,

where 𝜋(𝑎 |𝑠; 𝑦) B 𝑒𝑦 (𝜙 (𝑠,𝑎) )∑
𝑏 𝑒

𝑦 (𝜙 (𝑠,𝑏) ) . (13)

We further consider the following class of empirical restricted (Q-)functions:

𝑄◦ (𝑠, 𝑎;𝑤,𝑊,Z) B I {𝑠 ∈ Z}
(
𝜙(𝑠, 𝑎)⊤𝑤 −

√︁
𝜙(𝑠, 𝑎)⊤𝑊𝜙(𝑠, 𝑎)

)
,

Q̃◦ (Z, 𝐶) B
{
𝑄◦ (·, ·;𝑤,𝑊,Z) | ∥𝑤∥2 ≤ 2𝑑𝐻𝐾, ∥𝑊 ∥2 ≤ 𝛽2,




𝑄◦ (·, ·;𝑤,𝑊,Z)



∞
≤ 𝐶

}
, (14)

and their corresponding value functions:

𝑉 (𝑠; 𝜋ℎ, 𝑄◦) B
〈
𝜋ℎ (·|𝑠), 𝑄◦ (𝑠, ·)

〉
.

Now define the following empirical restricted value function class:

Ṽ◦ (Z, 𝐶) =
{
𝑉 (·; 𝜋ℎ, 𝑄◦) : S → ℝ | 𝑄◦ ∈ Q◦ (Z, 𝐶), 𝜋ℎ ∈ Π

}
. (15)

The following lemma (of which the proof is deferred to Appendix A.4) provides the bound on the covering number of the
function class defined in Equation (15) above.

Lemma 5. There exists a universal constant 𝑐N , such that for any 𝜈 > 0,Z ⊆ S,

logN𝜈 (Ṽ◦ (Z, 𝐶)) ≤ 𝑐N𝑑3 log (𝛽𝐶𝐾/𝜈) .

A.3. Proof of Lemma 3

In this section we provide the full technical details for the analysis of the good event Lemma 3. The core part of the argument
establishes the confidence bounds for the regression step in spite of the absence of the truncation. To begin, we first define
an additional success event; the concentration of least squares errors uniformly over the class of empirical value functions
(recall the function class Ṽ◦ is defined in Equation (15)).

∀𝑘 ≥ 𝐾0, ℎ;∀𝑉ℎ+1 ∈ Ṽ◦ (Zℎ+1, 2𝐻);∀𝑠, 𝑎 :
��� (ℙℎ − ℙ̂𝑘ℎ)𝑉ℎ+1 (𝑠, 𝑎)��� ≤ (𝛽/2) ∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
, (Euls)

The core argument pertaining to the regression errors proceeds as follows.

1. Lemma 1, establishes the success probability of Erfw. For the most part this follows from the guarantees of the CovTraj
algorithm developed in the prior work of Wagenmaker et al. (2022b).

2. Lemma 7 establishes the success probability of Euls; ensuring concentration of the regression errors w.r.t. the value
function classes Ṽ◦ (Zℎ+1, 2𝐻).

13
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3. Given that Erfw and Euls both hold, Lemma 11 provides, using a careful inductive argument, that the value functions
estimated in Algorithm 1 are contained in the function class Ṽ◦ (Zℎ+1, 2𝐻). Thus, Eqbd and Evbu hold.

Lemma 6 (success of Ebon). For any 𝛿 > 0, we have that with probability ≥ 1 − 𝛿, for all ℎ:

𝐾∑︁
𝑘=1

𝔼𝜇𝑘
ℎ

[

𝜙(𝑠ℎ, 𝑎ℎ)

Λ−1
𝑘,ℎ

]
≤ 2

𝐾∑︁
𝑘=1



𝜙(𝑠𝑘ℎ, 𝑎𝑘ℎ)

Λ−1
𝑘,ℎ

+ 4 log
4𝐾𝐻
𝛿

.

Proof. Denote 𝑋𝑘 =


𝜙(𝑠𝑘

ℎ
, 𝑎𝑘
ℎ
)



Λ−1
𝑘,ℎ

, and recall the definition of F 𝑘 in Equation (11). Then 𝑋𝑘 is F 𝑘 measurable, and

𝔼𝜇𝑘
ℎ

[

𝜙(𝑠ℎ, 𝑎ℎ)

Λ−1
𝑘,ℎ

]
= 𝔼

[
𝑋𝑘 | F 𝑘−1] .

In addition, by the definition of Λ𝑘,ℎ = 𝐼 + ∑
𝑖∈D𝑘

ℎ
𝜙(𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
)𝜙(𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
)⊤ in Algorithm 1, and by the assumption that

∥𝜙(𝑠, 𝑎)∥ ≤ 1 (Definition 1), we have that 0 ≤ 𝑋𝑘 ≤ 1. Thus by Lemma 19 and the union bound, we have that w.p. 1 − 𝛿,
for all ℎ ∈ [𝐻]:

𝐾∑︁
𝑘=1

𝔼
[
𝑋𝑘 | F 𝑘−1] ≤ 2

𝐾∑︁
𝑘=1

𝑋𝑘 + log
2𝐾𝐻
(𝛿/𝐾𝐻) ≤ 2

𝐾∑︁
𝑘=1



𝜙(𝑠𝑘ℎ, 𝑎𝑘ℎ)

Λ−1
𝑘,ℎ

+ 4 log
2𝐾𝐻
𝛿

,

which completes the proof. □

Lemma 7 (success of Euls). There exists a constant 𝑐𝛽 > 0, such that when running Algorithm 1 with 𝛽 ≥
2𝑐𝛽𝑑𝐻 log(𝑑𝐻𝐾/𝛿), we have that the event Euls holds with probability ≥ 1 − 𝛿.

Proof. Let ℎ, 𝑘 ∈ [𝐻] × {𝐾0, . . . , 𝐾}, and note that since we define the regression solution using

D𝑘
ℎ = D0

ℎ ∪
{
(𝑠𝑖ℎ, 𝑎

𝑖
ℎ, 𝑠

𝑖
ℎ+1)

}𝑘−1
𝑖=𝐾0

,

this dataset is independent of the known states setZℎ+1 which is defined using D0
ℎ+1. Indeed, this is because

{
D0
ℎ

}
ℎ∈[𝐻 ]

were generated by independent runs of CovTraj in Algorithm 2. Hence, the value class Ṽ◦ (Zℎ+1, 2𝐻) is independent of
D𝑘
ℎ

, and we may apply Lemma 2 to obtain that w.p. ≥ 1 − 𝛿′,

∀𝑉ℎ+1 ∈ Ṽ◦ (Zℎ+1, 2𝐻),∀𝑠 ∈ S, 𝑎 ∈ A :
��� (ℙℎ − ℙ̂𝑘ℎ)𝑉ℎ+1 (𝑠, 𝑎)��� ≤ 𝛽 ∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
,

where

𝛽 =
©­«8𝐻

√︄
2𝑑 log 𝑘 + log

N1/𝑘 (Ṽ◦ (Zℎ+1, 2𝐻))
𝛿′

ª®¬ .
By Lemma 5, we have

logN1/𝐾 (Ṽ◦ (Zℎ+1, 2𝐻)) ≤ 𝑐𝑑3 log (𝛽𝐻𝐾) ,

for some universal constant 𝑐, which implies that

𝛽 ≤ 𝑐′𝑑3/2𝐻 log(𝛽𝐻𝐾/𝛿′),

for a suitable constant 𝑐′ > 0. Setting 𝛿′ = 𝛿/𝐾𝐻, we now have by the union bound that,

∀𝑘, ℎ;∀𝑉ℎ+1 ∈ Ṽ◦ (Zℎ+1, 2𝐻);∀𝑠, 𝑎 :��� (ℙℎ − ℙ̂𝑘ℎ)𝑉ℎ+1 (𝑠, 𝑎)��� ≤ 2𝑐′𝑑3/2𝐻 log(𝛽𝐻𝐾/𝛿) ∥𝜙(𝑠, 𝑎)∥Λ−1
𝑘,ℎ
.

Finally, by Lemma 18, for a suitable 𝑐𝛽 > 0 we have

𝛽/2 ≥ 𝑐𝛽𝑑3/2𝐻 log(𝑑𝐻𝐾/𝛿) ≥ 2𝑐′𝑑3/2𝐻 log(𝛽𝐻𝐾/𝛿),

which completes the proof.

□
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Lemma 8 (success of Esle). Consider running Algorithm 1 in the stochastic case with bandit feedback, with 𝛽 ≥
2𝑐𝛽𝑑𝐻 log(𝑑𝐻𝐾/𝛿) as specified by Lemma 7. Then, we have that the event Esle holds w.p. 1 − 𝛿.
Proof. For a given 𝑘, ℎ, we have

∀𝑠, 𝑎 :
���ℓ̂𝑘ℎ (𝑠, 𝑎) − ℓ𝑘ℎ (𝑠, 𝑎)��� = ��𝜙(𝑠, 𝑎)⊤ (

�̂�𝑘,ℎ − 𝑔𝑘,ℎ
) �� ≤ ∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ



�̂�𝑘,ℎ − 𝑔𝑘,ℎ

Λ𝑘,ℎ . (16)

Following the same algebraic argument as that given in Lemma 2, we have

�̂�𝑘,ℎ − 𝑔𝑘,ℎ

Λ𝑘,ℎ =





Λ−1

𝑘,ℎ

𝑘−1∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)

(
ℓ𝑖ℎ (𝑠

𝑖
ℎ, 𝑎

𝑖
ℎ) − ℓℎ (𝑠

𝑖
ℎ, 𝑎

𝑖
ℎ)

)
− Λ−1

𝑘,ℎ𝑔𝑘,ℎ







Λ𝑘,ℎ

≤





𝑘−1∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)

(
ℓ𝑖ℎ (𝑠

𝑖
ℎ, 𝑎

𝑖
ℎ) − ℓℎ (𝑠

𝑖
ℎ, 𝑎

𝑖
ℎ)

)





Λ−1
𝑘,ℎ

+


𝑔𝑘,ℎ

Λ−1

𝑘,ℎ

.

By Lemma 22 (the application of which is legitimate due to Assumption 2) and the union bound, for any 𝛿 > 0 the first term
above is bounded by

√︁
4𝑑 log(𝐻𝐾/𝛿) for all 𝑘, ℎ, while the second term is bounded a.s. by

√
𝑑 owed to the assumption in

Definition 1 and that Λ−1
𝑘,ℎ
⪯ 𝐼. Concluding, we have w.p. ≥ 1 − 𝛿, for all 𝑘, ℎ:

�̂�𝑘,ℎ − 𝑔𝑘,ℎ

Λ𝑘,ℎ ≤ √︁

4𝑑 log(𝐻𝐾/𝛿) +
√
𝑑 ≤ 𝛽/2.

The proof is complete after plugging the above inequality into Equation (16). □

Lemma 9. Let Dℎ =
{
(𝑠𝑖
ℎ
, 𝑎𝑖
ℎ
)
}
𝑖∈[𝑘 ] , and Λℎ B 𝐼 +∑

𝑖∈Dℎ 𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ
)𝜙(𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
)⊤. Then,




Λ−1

ℎ

∑︁
𝑖∈Dℎ

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)







2

≤
√
𝑑𝑘.

Proof. Follows from the exact same argument as in Jin et al. (2020), Lemma B.2. □

Lemma 10. Let 𝐾0 ≤ 𝜏 < 𝐾, ℎ ∈ [𝐻], and assume 𝑉 𝑘;◦
ℎ+1 ∈ Ṽ

◦ (Zℎ, 2𝐻) for all 𝑘 ∈ {𝐾0, . . . , 𝜏 − 1}. Then 𝜋𝜏+1
ℎ
∈ Π,

where Π is defined in Equation (13), and 𝜋𝜏+1
ℎ

is a mirror descent step from 𝜋𝜏
ℎ

as defined in Algorithm 1.
Proof. By the definition of the OMD update step in Algorithm 1, we have for any 𝑎, 𝑠;

𝜋𝜏+1ℎ (𝑎 |𝑠) =
𝑒
−𝜂∑𝜏

𝑘=𝐾0
𝑄𝑘
ℎ
(𝑠,𝑎)∑

𝑎′ 𝑒
−𝜂∑𝜏

𝑘=𝐾0
𝑄𝑘
ℎ
(𝑠,𝑎′ )

.

In addition, by the definition of the estimated Q-functions 𝑄𝑘
ℎ

in Algorithm 1, we have;

−𝜂
𝜏∑︁

𝑘=𝐾0

𝑄𝑘ℎ (𝑠, 𝑎) = −𝜂
𝜏∑︁

𝑘=𝐾0

(
ℓ̂𝑘ℎ (𝑠, 𝑎) + ℙ̂

𝑘
ℎ𝑉

𝑘;◦
ℎ+1 (𝑠, 𝑎)

)
− �̂�𝑘ℎ (𝑠, 𝑎)

= −𝜂
𝜏∑︁

𝑘=𝐾0

𝜙(𝑠, 𝑎)⊤
(
�̂�𝑘,ℎ + �̂�𝑘ℎ

)
+ 𝜂

𝜏∑︁
𝑘=𝐾0

�̂�𝑘ℎ (𝑠, 𝑎)

= −𝜂
𝜏∑︁

𝑘=𝐾0

𝜙(𝑠, 𝑎)⊤
(
�̂�𝑘,ℎ + �̂�𝑘ℎ

)
+ 𝜂𝛽

𝜏∑︁
𝑘=𝐾0

∥𝜙(𝑠, 𝑎)∥
Λ̂−1
𝑘,ℎ

= 𝜙(𝑠, 𝑎)⊤
(
−𝜂

𝜏∑︁
𝑘=𝐾0

�̂�𝑘,ℎ + �̂�𝑘ℎ

)
+ 𝜂𝛽

𝐽∑︁
𝑗=1
(𝑘 𝑗+1 − 𝑘 𝑗 ) ∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘 𝑗 ,ℎ
,

where 𝑘 𝑗 are the episodes on which we update the bonus matrices Λ̂𝑘,ℎ in Algorithm 1. Now, since for all 𝐾0 ≤ 𝑘 ≤ 𝐾 we
have 

Λ𝑘,ℎ

 =







𝐼 + ∑︁
𝑖∈D𝑘

ℎ

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)𝜙(𝑠

𝑖
ℎ, 𝑎

𝑖
ℎ)
⊤







 ≤ ∥𝐼 ∥ + ∑︁
𝑖∈D𝑘

ℎ



𝜙(𝑠𝑖ℎ, 𝑎𝑖ℎ)𝜙(𝑠𝑖ℎ, 𝑎𝑖ℎ)⊤

 ≤ 1 + 𝐾,
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and 𝐼 ⪯ Λ𝑘,ℎ, it follows that

2𝐽 detΛ𝐾0 ,ℎ ≤ detΛ𝐾,ℎ ≤


Λ𝑘,ℎ

𝑑 ≤ (𝐾 + 1)𝑑 ,

and 1 ≤ detΛ𝐾0 ,ℎ. Thus it is implied that 𝐽 ≤ 𝑑 log(𝐾 + 1) ≤ 2𝑑 log𝐾. In addition, 𝜂𝛽(𝑘 𝑗+1 − 𝑘 𝑗 ) ∥𝜙(𝑠, 𝑎)∥Λ̂−1
𝑘 𝑗 ,ℎ

=

∥𝜙(𝑠, 𝑎)∥𝑊𝑗
when we define

𝑊 𝑗 = 𝜂
2𝛽2 (𝑘 𝑗+1 − 𝑘 𝑗 )2Λ−1

𝑘 𝑗 ,ℎ
, and thus

1
𝐾2 𝐼 ⪯ 𝑊 𝑗 ⪯ 𝛽2𝐾2Λ−1

𝑘 𝑗 ,ℎ
⪯ 𝛽2𝐾2𝐼 .

Furthermore, in the adversarial case


�̂�𝑘,ℎ

 = 

𝑔𝑘,ℎ

 ≤ √𝑑 by assumption (see Definition 1), and in the stochastic case,



�̂�𝑘,ℎ

 =






Λ−1

𝑘,ℎ

∑︁
𝑖∈D𝑘

ℎ

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)ℓ

𝑖
ℎ (𝑠

𝑖
ℎ, 𝑎

𝑖
ℎ)







 ≤ √𝑑𝐾,
where the inequality follows from Lemma 9 and our assumption that

��ℓ𝑘
ℎ
(𝑠𝑖
ℎ
, 𝑎𝑖
ℎ
)
�� ≤ 1. In addition, in both the stochastic and

adversarial cases, we have



�̂�𝑘ℎ

 =






Λ−1

𝑘,ℎ

∑︁
𝑖∈D𝑘

ℎ

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)𝑉

𝑘;◦
ℎ+1 (𝑠

𝑖
ℎ+1)







 ≤ 2𝐻
√
𝑑𝐾,

which follows again by Lemma 9, and our assumption that 𝑉 𝑘;◦
ℎ+1 ∈ Ṽ

◦ (Zℎ, 2𝐻) =⇒



𝑉 𝑘;◦
ℎ+1





∞
≤ 2𝐻 for all 𝑘 ≤ 𝜏. Thus,

�̂�𝑘,ℎ + �̂�𝑘ℎ

 ≤ 3𝐻

√
𝑑𝐾 for all 𝑘 ≤ 𝜏. Concluding, we have shown that

𝜋𝜏+1ℎ (𝑎 |𝑠) ∝ exp ©­«𝜙(𝑠, 𝑎)⊤𝑤𝜏ℎ +
𝐽∑︁
𝑗=1
∥𝜙(𝑠, 𝑎)∥𝑊𝑗

ª®¬ ,
where



𝑤𝜏
ℎ



 ≤ 3𝑑𝐻𝐾2 and 𝐾−2𝐼 ⪯ 𝑊 𝑗 ⪯ 𝛽2𝐾2𝐼, therefore 𝜋𝜏+1
ℎ
∈ Π, as required. □

Lemma 11 (success of Eqbd ∪ Evbu). Assume that the event Erfw ∪ Euls ∪ Esle holds. Then, we have that,

∀𝑘 ≥ 𝐾0, ℎ ∈ [𝐻] : 𝑄𝑘;◦
ℎ
∈ Q̃◦ (Zℎ, 𝐶ℎ), 𝑉 𝑘;◦

ℎ
∈ Ṽ◦ (Zℎ, 𝐶ℎ),

where 𝐶ℎ B (𝐻 − ℎ + 1) (1 + 2/𝐻). Furthermore, we have that the event Evbu holds, that is,

∀𝑘 ≥ 𝐾0, ℎ ∈ [𝐻];∀𝑠, 𝑎 :
���(ℙℎ − ℙ̂𝑘ℎ) 𝑉 𝑘;◦

ℎ+1 (𝑠, 𝑎)
��� ≤ (𝛽/2) ∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
. (17)

Proof. We begin first by establishing simple bounds on the instantaneous loss estimates. For any 𝑘 ≥ 𝐾0, we have in the
adversarial case ℓ̂𝑘

ℎ
(𝑠, 𝑎) = ℓ𝑘

ℎ
(𝑠, 𝑎) for all 𝑠, 𝑎, ℎ, 𝑘 , so

��ℓ̂𝑘
ℎ
(𝑠, 𝑎)

�� ≤ 1 by the assumption in Definition 1. In the stochastic
case on the other hand, for any 𝑠, 𝑎 ∈ Zℎ × A, owed to our assumption that Esle holds;���ℓ̂𝑘ℎ (𝑠, 𝑎)��� ≤ ��ℓ𝑘ℎ (𝑠, 𝑎)�� + ���ℓ̂𝑘ℎ (𝑠, 𝑎) − ℓ𝑘ℎ (𝑠, 𝑎)��� ≤ 1 + 𝛽 ∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
.

Furthermore, we have,

∀ℎ ∈ [𝐻], 𝑠, 𝑎 ∈ Zℎ × A : ∥𝜙(𝑠, 𝑎)∥Λ−1
𝑘,ℎ
≤ ∥𝜙(𝑠, 𝑎)∥

Λ̂−1
𝑘,ℎ

≤ ∥𝜙(𝑠, 𝑎)∥Λ−1
0,ℎ
≤ 1/(2𝛽𝐻), (18)

where the last inequality follows from the definition ofZℎ, thus we obtain 𝛽 ∥𝜙(𝑠, 𝑎)∥Λ−1
𝑘,ℎ
≤ 1/(2𝐻). To conclude, in both

the stochastic and adversarial cases we have:

∀𝑘 ≥ 𝐾0, ℎ ∈ [𝐻], 𝑠 ∈ Zℎ, 𝑎 ∈ A;
���ℓ̂𝑘ℎ (𝑠, 𝑎)��� ≤ 1 + 1/(2𝐻). (19)

The rest of the proof proceeds by an inductive argument as follows. Fix 𝐾0 ≤ 𝑘 ≤ 𝐾 , and assume we have already proved
the claim for all 𝑘 ′, ℎ ∈ {𝐾0, . . . , 𝑘 − 1} × [𝐻]. We will now establish the claim for episode 𝑘 by induction on ℎ = 𝐻, . . . , 1.
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Base case ℎ = 𝐻: Here, we have���𝑄𝑘𝐻 (𝑠, 𝑎)��� = ���ℓ̂𝑘𝐻 (𝑠, 𝑎) − �̂�𝑘ℎ (𝑠, 𝑎)��� ≤ 1 + 1/(2𝐻) + 𝛽 ∥𝜙(𝑠, 𝑎)∥
Λ̂−1
𝑘,ℎ

≤ 1 + 1/𝐻,

where the first inequality follows from Equation (19), and the last inequality from Equation (18). Thus, we obtain
𝑄
𝑘;◦
𝐻
∈ Q̃◦ (Z𝐻 , 1 + 1/𝐻) ⊂ Q̃◦ (Z𝐻 , 𝐶𝐻 ). Further, since 𝑉 𝑘

′;◦
𝐻+1 ≡ 0 for any 𝑘 ′ ∈ [𝐾], we may apply Lemma 10 which

ensures 𝜋𝑘
𝐻
∈ Π. Thus, it also follows that 𝑉 𝑘;◦

𝐻
(𝑠) ∈ 𝑉◦ (Z𝐻 , 𝐶𝐻 ).

Inductive step: Let ℎ < 𝐻 and assume 𝑉 𝑘;◦
ℎ+1 ∈ Ṽ

◦ (Zℎ+1, 𝐶ℎ+1). For 𝑠 ∈ Zℎ, 𝑎 ∈ A, we have;���𝑄𝑘;◦
ℎ
(𝑠, 𝑎)

��� = ���ℓ̂𝑘ℎ (𝑠, 𝑎) + ℙ̂𝑘ℎ𝑉 𝑘;◦
ℎ+1 (𝑠, 𝑎) − �̂�

𝑘
ℎ (𝑠, 𝑎)

���
=

���ℓ̂𝑘ℎ (𝑠, 𝑎) + ℙℎ𝑉 𝑘;◦
ℎ+1 (𝑠, 𝑎) + (ℙ̂

𝑘
ℎ − ℙℎ)𝑉

𝑘;◦
ℎ+1 (𝑠, 𝑎) − �̂�

𝑘
ℎ (𝑠, 𝑎)

���
≤ 1 + 1/𝐻 + 𝐶ℎ+1 + 𝛽 ∥𝜙(𝑠, 𝑎)∥Λ−1

𝑘,ℎ
+ 𝛽 ∥𝜙(𝑠, 𝑎)∥

Λ̂−1
𝑘,ℎ

,

where the last inequality follows from Equation (19), the inductive hypothesis, and by the assumption that Euls holds.
Applying Equation (18) again, this implies that the empirical Q is well bounded on the known states;���𝑄𝑘;◦

ℎ
(𝑠, 𝑎)

��� ≤ 1 + 1/𝐻 + 𝐶ℎ+1 + 1/𝐻 = 𝐶ℎ .

In addition, for any 𝑠, 𝑎 ∈ S × A;

𝑄𝑘ℎ (𝑠, 𝑎) = 𝜙(𝑠, 𝑎)
⊤�̂�𝑘,ℎ + ℙ̂𝑘ℎ𝑉

𝑘;◦
ℎ+1 (𝑠, 𝑎) − �̂�

𝑘
ℎ (𝑠, 𝑎) = 𝜙(𝑠, 𝑎)

⊤
(
�̂�𝑘,ℎ + �̂�𝑘ℎ

)
− 𝛽 ∥𝜙(𝑠, 𝑎)∥

Λ̂−1
𝑘,ℎ

,

Further, as argued in the proof of Lemma 10, by Lemma 9 and our assumption that



𝑉 𝑘;◦
ℎ+1





∞
≤ 2𝐻, we have that

�̂�𝑘ℎ

 ≤ 2𝐻

√
𝑑𝐾, and



�̂�𝑘,ℎ

 ≤ √𝑑𝐾.
In addition, 𝛽 ∥𝜙(𝑠, 𝑎)∥

Λ̂−1
𝑘,ℎ

= ∥𝜙(𝑠, 𝑎)∥𝑊 for

𝑊 = 𝛽2Λ̂−1
𝑘,ℎ, and thus ∥𝑊 ∥ = 𝛽2




Λ̂−1
𝑘,ℎ




 ≤ 𝛽2.

Therefore, we establish that 𝑄𝑘;◦
ℎ
∈ Q̃◦ (Zℎ, 𝐶ℎ). Now, by our (first) inductive assumption that 𝑉 𝑘

′;◦
ℎ+1 ∈ Ṽ

◦ (Zℎ+1, 𝐶ℎ+1)
for all 𝑘 ′ < 𝑘 , we may apply Lemma 10 to obtain that 𝜋𝑘

ℎ
∈ Π. This immediately implies that 𝑉 𝑘;◦

ℎ
∈ Ṽ(Zℎ, 𝐶ℎ), and

completes the inductive argument. Finally, combined with our assumption that Euls holds, this implies Evbu holds, which
completes the proof. □

We conclude this section with the proof of the good event Lemma 3, which now follows easily by combining the above
lemmas.

Proof of Lemma 3. By Lemmas 1, 6 and 7, and the union bound, we have that Erfw ∪ Euls ∪ Esle ∪ Ebon holds w.p.≥ 1 − 4𝛿.
By Lemma 11, this now implies that Eqbd ∪ Evbu holds as well, which completes the proof. □

A.4. Covering of empirical value functions

Lemma 12 (Policy class is Lipschitz). For any 𝜋ℎ, �̃�ℎ ∈ Π, 𝜋ℎ (·|·) = 𝜋(·|·; 𝑦ℎ), �̃�ℎ (·|·) = �̃�(·|·; �̃�ℎ), parameterized by
𝑦ℎ (·) = 𝑦ℎ (·;𝑤,𝑊1:𝐽 ), �̃�ℎ (·) = 𝑦ℎ (·; �̃�, �̃�1:𝐽 ) , we have for any 𝑠 ∈ S:

∥𝜋ℎ (·|𝑠) − �̃�ℎ (·|𝑠)∥1 ≤ 6𝐾

√√√
∥𝑤 − �̃�∥2 +

𝐽∑︁
𝑗=1



𝑊 𝑗 − �̃� 𝑗



2
.
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Proof. We have, for any 𝑥 ∈ ℝ𝑑 ,

∇𝑤𝑦(𝑥;𝑤,𝑊1:𝐽 ) = 𝑥

∇𝑊𝑗
𝑦(𝑥;𝑤,𝑊1:𝐽 ) = ∇𝑊𝑗

(√︁
𝑥⊤𝑊 𝑗𝑥

)
=

1
2
√︁
𝑥⊤𝑊 𝑗𝑥

𝑥𝑥⊤.

Thus, considering 𝑦(𝑥;𝑤,𝑊1:𝐽 ) ∈ Y implies 𝐾−2𝐼 ⪯ 𝑊 𝑗 ;

∇𝑊𝑗
𝑦(𝑥;𝑤,𝑊1:𝐽 )




𝐹
=

1
2
√︁
𝑥⊤𝑊 𝑗𝑥



𝑥𝑥⊤


𝐹
=

1
2
√︁
𝑥⊤𝑊 𝑗𝑥

∥𝑥∥2 ≤ 1
2
√︁
𝜆min (𝑊 𝑗 ) ∥𝑥∥

∥𝑥∥2 ≤ 𝐾 ∥𝑥∥ ,

which implies that when ∥𝑥∥ ≤ 1,

∥∇𝜃 𝑦(𝑥; 𝜃)∥ =

√√√
∥∇𝑤𝑦(𝑥; 𝜃)∥2 +

𝐽∑︁
𝑗=1



∇𝑊𝑗
𝑦(𝑥; 𝜃)



2
𝐹
≤

√√√
∥𝑥∥2 + 𝐾

𝐽∑︁
𝑗=1
∥𝑥∥2 ≤ 3 ∥𝑥∥ 𝐾 ≤ 3𝐾.

Hence, the parameterization 𝜃 ↦→ 𝑦(·; 𝜃) is (3𝐾)-Lipschitz, and the result follows from Lemma 13. □

The next lemma follows from similar arguments to those given in Wagenmaker & Jamieson (2022, Lemma A.12).

Lemma 13. Let 𝑓𝜃 : ℝ𝑑 → ℝ be any function parameterized by 𝜃 ∈ ℝ𝑝, and assume the mapping 𝜃 ↦→ 𝑓𝜃 (𝜙(𝑠, 𝑎)) ∈ ℝ
is 𝐿-Lipschitz for any 𝑠, 𝑎. Consider softmax policies 𝜋𝜃

ℎ
(·|·) = 𝜋ℎ (·|·; 𝑓𝜃 ), 𝜋𝜃ℎ (·|·) = 𝜋ℎ (·|·; 𝑓𝜃 ) : S → ΔA as defined in

Equation (13). Then, for any 𝜃, 𝜃 ∈ ℝ𝑝 , it holds that for any 𝑠 ∈ S:


𝜋𝜃ℎ (·|𝑠) − 𝜋𝜃ℎ (·|𝑠)


1
≤ 2𝐿



𝜃 − 𝜃

2.

Proof. Let 𝑣𝑠 (𝜃) B 𝑓𝜃 (𝜙(𝑠, ·)) ∈ ℝ𝐴, and let

J𝑣𝑠 (𝜃) B
©­­«
∇𝜃 𝑓𝜃 (𝜙(𝑠, 𝑎1))⊤

...

∇𝜃 𝑓𝜃 (𝜙(𝑠, 𝑎𝐴))⊤

ª®®¬ ∈ ℝ𝐴×𝑝

denote the Jacobian of 𝑣𝑠 at 𝜃 ∈ ℝ𝑝 . Then, we have by the chain rule:

∇𝜃𝜋𝜃ℎ (𝑎 |𝑠) = J𝑣𝑠 (𝜃)⊤∇𝑢 (𝜎(𝑢)𝑎) ,

where 𝑢 B 𝑣𝑠 (𝜃) and 𝜎(𝑢)𝑖 = 𝑒𝑢𝑖/(∑ 𝑗 𝑒
𝑢 𝑗 ) denotes the softmax function. Combining with the softmax gradient

∇𝑢 (𝜎(𝑢)𝑎) = 𝜎(𝑢)𝑎 (𝑒𝑎 − 𝜎(𝑢)), we get

∇𝜃𝜋𝜃ℎ (𝑎 |𝑠)

 = (𝜎(𝑢)𝑎) 

J𝑣𝑠 (𝜃)⊤ (𝑒𝑎 − 𝜎(𝑢))

 ≤ 2𝜎(𝑢)𝑎 max
𝑎
∥∇𝜃 𝑓𝜃 (𝜙(𝑠, 𝑎))∥ ≤ 2𝐿𝜋𝜃ℎ (𝑎 |𝑠),

where the last inequality uses our Lipschitz assumption and that 𝜎(𝑢)𝑎 = 𝜋𝜃
ℎ
(𝑎 |𝑠). Now, by the mean-value theorem, we get

that for some 𝜃′ ∈ [𝜃, 𝜃], ���𝜋𝜃ℎ (𝑎 |𝑠) − 𝜋𝜃ℎ (𝑎 |𝑠)��� = ���∇𝜋𝜃 ′ℎ (𝑎 |𝑠) (𝜃 − 𝜃) ��� ≤ 2𝐿𝜋𝜃
′

ℎ (𝑎 |𝑠)


𝜃 − 𝜃

2,

which implies 


𝜋𝜃ℎ (·|𝑠) − 𝜋𝜃ℎ (·|𝑠)


1
≤ 2𝐿



𝜃 − 𝜃

2,

and completes the proof. □

Proof of Lemma 5. Let 𝜋ℎ, 𝜋′ℎ ∈ Π be parameterized by 𝜋ℎ (·|·) = 𝜋(·|·; 𝑦ℎ), 𝜋′ℎ (·|·) = 𝜋(·|·; 𝑦
′
ℎ
), where 𝑦ℎ (·) = 𝑦(·;𝑤,𝑊1:𝐽 ),

𝑦′
ℎ
(·) = 𝑦(·;𝑤′,𝑊 ′1:𝐽 ), and consider 𝑞, 𝑞′ ∈ Q̃◦ (Z, 𝐶). For any 𝑠 ∈ Z, we have;���𝑉 (𝑠; 𝜋ℎ, 𝑞) −𝑉 (𝑠; 𝜋′ℎ, 𝑞′)��� ≤ ���𝑉 (𝑠; 𝜋ℎ, 𝑞) −𝑉 (𝑠; 𝜋ℎ, 𝑞′)��� + ���𝑉 (𝑠; 𝜋ℎ, 𝑞′) −𝑉 (𝑠; 𝜋′ℎ, 𝑞′)��� .

18
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For the first term,���𝑉 (𝑠; 𝜋ℎ, 𝑞) −𝑉 (𝑠; 𝜋ℎ, 𝑞′)��� ≤ max
𝑎

{��𝜙(𝑠, 𝑎)⊤ (𝑤 − 𝑤′)�� + √︁
|𝜙(𝑠, 𝑎)⊤ (𝑊 −𝑊 ′) 𝜙(𝑠, 𝑎) |

}
≤ ∥𝑤 − 𝑤′∥ +

√︃

𝑊 −𝑊 ′

. (20)

For the second term, ���𝑉 (𝑠; 𝜋ℎ, 𝑞′) −𝑉 (𝑠; 𝜋′ℎ, 𝑞′)��� = ��〈𝜋ℎ (·|𝑠) − 𝜋′ℎ (·|𝑠), 𝑞′ (𝑠, ·)〉��
≤ 𝐶 ∥𝜋ℎ (·|𝑠) − �̃�ℎ (·|𝑠)∥1

≤ 6𝐶𝐾

√√√
∥𝑤 − 𝑤′∥2 +

𝐽∑︁
𝑗=1




𝑊 𝑗 −𝑊 ′𝑗



2

≤ 6𝐶𝐾 ©­«∥𝑤 − 𝑤′∥ +
𝐽∑︁
𝑗=1




𝑊 𝑗 −𝑊 ′𝑗



ª®¬ ,

where the last inequality follows from Lemma 12. As per Equation (13), we have that 𝑤, 𝑤′ ∈ B𝑑 (3𝑑𝐻𝐾2), 𝐽 ≤ 2𝑑 log𝐾 ,
and 𝑊 𝑗 ,𝑊

′
𝑗
∈ B𝑑2 (

√
𝑑𝛽2𝐾2) for all 𝑗 ≤ 𝐽, where this last claim follows since the Frobenius norm of any matrix is

larger than its spectral norm by a factor of at most
√
𝑑. Thus, for simplicity, we consider covering the larger set given by

𝐸 B B 𝑝 (4𝑑𝐻𝛽2𝐾2) and 𝑝 = 4𝑑3 log𝐾 . By Lemma 17, given any 𝜈, we have a (𝜈1 = 𝜈/(12𝐶𝐾))-covering with cardinality
≤ (1 + (4𝑑𝐻𝛽2𝐾2) ∗ 12𝐶𝐾/𝜈) 𝑝 = (1 + 48𝑑𝐶𝐻𝛽2𝐾3/𝜈) 𝑝 .

Similarly, we 𝜈/4 construct a cover corresponding to each of the terms in Equation (20) with sets of cardinality (1 +
64𝛽2/𝜈2)𝑑2

and (1 + 16𝑑𝐻𝐾2/𝜈)𝑑 . This gives,

logN𝜈 (Ṽ◦ (Z, 𝐶)) ≤ 𝑝 log
(
1 + 48𝑑𝐶𝐻𝛽2𝐾3/𝜈

)
+ 2𝑑2 log (1 + 64𝛽/𝜈) + 𝑑 log(1 + 16𝑑𝐻𝐾2/𝜈)

≤ 𝑐N𝑑3 log (𝛽𝐶𝐾/𝜈) ,

for an appropriate constant 𝑐N , which completes the proof. □

A.5. Proof of Lemma 4

Proof of Lemma 4. For any 𝑘 , we have by Lemma 16;

𝑉
𝑘, 𝜋𝑘

1 −𝑉 𝑘, 𝜋
★

1 = 𝑉
𝑘, 𝜋𝑘

1 −𝑉 𝑘;◦
1 +𝑉 𝑘;◦

1 −𝑉 𝑘, 𝜋
★

1

=

𝐻∑︁
ℎ=1

𝔼𝜇𝑘
ℎ

[
ℓ𝑘ℎ (𝑠ℎ, 𝑎ℎ) + ℙℎ𝑉

𝑘;◦
ℎ+1 (𝑠ℎ, 𝑎ℎ) −𝑄

𝑘;◦
ℎ
(𝑠ℎ, 𝑎ℎ)

]
+

𝐻∑︁
ℎ=1

𝔼𝜇★
ℎ

[〈
𝑄
𝑘;◦
ℎ
(𝑠ℎ, ·), 𝜋𝑘ℎ (·|𝑠ℎ) − 𝜋

★
ℎ (·|𝑠ℎ)

〉]
+

𝐻∑︁
ℎ=1

𝔼𝜇★
ℎ

[
𝑄
𝑘;◦
ℎ
(𝑠ℎ, 𝑎ℎ) − ℓ𝑘ℎ (𝑠ℎ, 𝑎ℎ) − ℙℎ𝑉

𝑘;◦
ℎ+1 (𝑠ℎ, 𝑎ℎ)

]
.

Now, note that for any 𝑠 ∈ Zℎ, 𝑎 ∈ A;

𝑄
𝑘;◦
ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤�̂�𝑘,ℎ + ℙ̂𝑘ℎ𝑉

𝑘;◦
ℎ
(𝑠, 𝑎) − �̂�𝑘ℎ (𝑠, 𝑎),

thus

ℓ𝑘ℎ (𝑠, 𝑎) + ℙℎ𝑉
𝑘;◦
ℎ+1 (𝑠, 𝑎) −𝑄

𝑘;◦
ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤

(
𝑔𝑘,ℎ − �̂�𝑘,ℎ

)
+

(
ℙℎ − ℙ̂𝑘ℎ

)
𝑉
𝑘;◦
ℎ+1 (𝑠, 𝑎) + �̂�

𝑘
ℎ (𝑠, 𝑎).
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In addition, by the good event, specifically Eqbd, and the assumption that the instantaneous loss is ∈ [−1, 1], we have for
any 𝑠 ∉ Zℎ, 𝑎 ∈ A:���ℓ𝑘ℎ (𝑠, 𝑎) + ℙℎ𝑉 𝑘;◦

ℎ+1 (𝑠, 𝑎) −𝑄
𝑘;◦
ℎ
(𝑠, 𝑎)

��� = ���ℓ𝑘ℎ (𝑠, 𝑎) + ℙℎ𝑉 𝑘;◦
ℎ+1 (𝑠, 𝑎)

��� ≤ 1 + 𝐻 + 2 ≤ 2𝐻.

Thus by the law of total expectation,

𝔼𝜇𝑘
ℎ

[
ℓ𝑘ℎ (𝑠ℎ, 𝑎ℎ) + ℙℎ𝑉

𝑘;◦
ℎ+1 (𝑠ℎ, 𝑎ℎ) −𝑄

𝑘;◦
ℎ
(𝑠ℎ, 𝑎ℎ)

]
≤ 𝔼𝜇𝑘

ℎ

[
ℓ𝑘ℎ (𝑠ℎ, 𝑎ℎ) − ℓ̂

𝑘
ℎ (𝑠ℎ, 𝑎ℎ) +

(
ℙℎ − ℙ̂𝑘ℎ

)
𝑉
𝑘;◦
ℎ+1 (𝑠ℎ, 𝑎ℎ) + �̂�

𝑘
ℎ (𝑠, 𝑎) | 𝑠ℎ ∈ Zℎ

]
+ 2𝜖cov𝐻,

where the inequality follows since the good event Erfw implies 𝜇𝑘
ℎ
(S \ Zℎ) ≤ 𝜖cov, and for similar reasons;

𝔼𝜇★
ℎ

[
𝑄
𝑘;◦
ℎ
(𝑠ℎ, 𝑎ℎ) − ℓ𝑘ℎ (𝑠ℎ, 𝑎ℎ) − ℙℎ𝑉

𝑘;◦
ℎ+1 (𝑠ℎ, 𝑎ℎ)

]
≤ 𝔼𝜇★

ℎ

[
ℓ̂𝑘ℎ (𝑠ℎ, 𝑎ℎ) − ℓ

𝑘
ℎ (𝑠ℎ, 𝑎ℎ) +

(
ℙ̂𝑘ℎ − ℙℎ

)
𝑉
𝑘;◦
ℎ+1 (𝑠ℎ, 𝑎ℎ) − �̂�

𝑘
ℎ (𝑠, 𝑎) | 𝑠ℎ ∈ Zℎ

]
+ 2𝜖cov𝐻.

Finally, again by the law of total expectation and definition of the restricted Q-function;

𝔼𝑠ℎ∼𝜇★ℎ

[〈
𝑄
𝑘;◦
ℎ
(𝑠ℎ, ·), 𝜋𝑘ℎ (·|𝑠ℎ) − 𝜋

★
ℎ (·|𝑠ℎ)

〉]
≤ 𝔼𝑠ℎ∼𝜇★ℎ

[〈
𝑄𝑘ℎ (𝑠ℎ, ·), 𝜋

𝑘
ℎ (·|𝑠ℎ) − 𝜋

★
ℎ (·|𝑠ℎ)

〉
| 𝑠ℎ ∈ Zℎ

]
.

Combining the last three displays with the first equation and summing over 𝑘 = 𝐾0, . . . , 𝐾 and ℎ ∈ [𝐻] completes the
proof. □

Lemma 14. Upon execution of Algorithm 1, for all 𝑘, ℎ it holds that

∀𝑢 ∈ ℝ𝑑; ∥𝑢∥Λ−1
𝑘,ℎ
≤ ∥𝑢∥

Λ̂−1
𝑘,ℎ

≤
√

2 ∥𝑢∥Λ−1
𝑘,ℎ
.

Proof. By definition, we have at all times Λ̂𝑘,ℎ ⪯ Λ𝑘,ℎ and detΛ𝑘,ℎ ≤ 2 det Λ̂𝑘,ℎ. Therefore, Λ−1
𝑘,ℎ
⪯ Λ̂−1

𝑘,ℎ
and

det Λ̂−1
𝑘,ℎ

detΛ−1
𝑘,ℎ

≤ 2.

Now, by Lemma 21, we have

Λ−1
𝑘,ℎ ⪯ Λ̂−1

𝑘,ℎ ⪯ 2Λ−1
𝑘,ℎ,

which completes the proof. □

B. Proof of Lemma 1
In this section, we provide the technical details of the reward free algorithm guarantees. As mentioned, the algorithm is
based on the work of Wagenmaker et al. (2022b) — the basic guarantee we build upon is formally stated below and follows
immediately from Theorem 2 and Corollary 2 in their work. The bound on the number of episodes 𝑇 follows from plugging
the guarantees of FORCE (Wagenmaker et al., 2022a, Algorithm 1) into the precise setting of 𝐾𝑖 given in the beginning of
Appendix B of (Wagenmaker et al., 2022b).

Theorem 2 (Wagenmaker et al., 2022b). The COVERTRAJ algorithm (Wagenmaker et al., 2022b, Algorithm 4) when
instantiated with FORCE (Wagenmaker et al., 2022a, Algorithm 1) enjoys the following guarantee. Given a sequence of
tolerance parameters 𝛾1, . . . , 𝛾𝑚 > 0 and ℎ ∈ [𝐻], the algorithm interacts with the environment for 𝑇 steps, where

𝑇 ≤ 𝐶
𝑚∑︁
𝑖=1

2𝑖 max

{
𝑑

𝛾2
𝑖

log
2𝑖

𝛾2
𝑖

, 𝑑4𝐻3𝑚3 log7/2 1
𝛿

}
, 𝐶 > 0 a constant,

and outputs
{(
Xℎ,𝑖 , D̃ℎ,𝑖 , Λ̃ℎ,𝑖

)}𝑚
𝑖=1 such that

Ï𝑚+1
𝑖=1 Xℎ,𝑖 = 𝐵𝑑0 (1) partitions the euclidean unit ball, Λ̃ℎ,𝑖 = 𝐼 +∑

𝜏∈D̃ℎ,𝑖 𝜙(𝑠
𝜏
ℎ
, 𝑎𝜏
ℎ
)𝜙(𝑠𝜏

ℎ
, 𝑎𝜏
ℎ
)⊤, and with probability 1 − 𝛿, it holds that:

∀𝑖 ∈ [𝑚], 𝜙⊤Λ̃−1
ℎ,𝑖𝜙 ≤ 𝛾

2
𝑖 , ∀𝜙 ∈ Xℎ,𝑖;

and ∀𝑖 ∈ [𝑚 + 1], sup
𝜋

{∫
S×A

I
{
𝜙(𝑠, 𝑎) ∈ Xℎ,𝑖

}
𝜇𝜋ℎ (𝑠, 𝑎)

}
≤ 2−𝑖+1.
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Lemma 15. Assume ℎ ∈ [𝐻], 𝜖 , 𝛿 > 0, 𝛾𝑚 ≥ · · · ≥ 𝛾1 > 0, and let
{
Λℎ,𝑖

}
𝑖∈[𝑚] be the covariate matrices returned from

CovTraj(ℎ, 𝛿, 𝑚 = log(1/𝜖), {𝛾𝑖}). Then under the assumption that the event from Theorem 2 holds, we have for any policy
𝜋 and 𝑖 ∈ [𝑚]:

Pr
𝑠ℎ∼𝜇𝜋ℎ

(
∃𝑎 s.t. ∥𝜙(𝑠ℎ, 𝑎)∥Λ−1

ℎ,𝑖
> 𝛾𝑚

)
≤ 𝜖 .

Proof. By Theorem 2, we have that the total probability density induced by any policy 𝜋 ∈ [𝐻] × S → Δ(A) on the last
partition set Xℎ,𝑚+1 is at most 2−𝑚 = 𝜖 . In addition, since on each of the remaining partition sets

{
Xℎ,𝑖

}
𝑖∈[𝑚] we have the

guarantee that 𝜙 ∈ Xℎ,𝑖 =⇒ ∥𝜙∥Λ−1
ℎ,𝑖
≤ 𝛾𝑖 ≤ 𝛾𝑚, it follows that,

∀𝜋; Pr
𝑠ℎ ,𝑎ℎ∼𝜇𝜋ℎ

(
∥𝜙(𝑠ℎ, 𝑎ℎ)∥Λ−1

ℎ,𝑖
> 𝛾𝑚

)
= Pr
𝑠ℎ ,𝑎ℎ∼𝜇𝜋ℎ

(
𝜙(𝑠ℎ, 𝑎ℎ) ∈ Xℎ,𝑚+1

)
≤ 𝜖 . (2)

Assume by contradiction that 𝜋 is a policy for which the statement of the theorem does not hold. Then

Pr
𝑠ℎ∼𝜇𝜋ℎ

(
∃𝑎, ∥𝜙(𝑠ℎ, 𝑎)∥Λ−1

ℎ,𝑖
> 𝛾𝑚

)
> 𝜖.

But, if this happens, we can consider a transformed policy �̃�; that rolls into timestep ℎ with 𝜋, then takes (with prob-
ability 1) the action 𝑎 that maximizes ∥𝜙(𝑠ℎ, 𝑎)∥Λ−1

ℎ,𝑖
. Formally, �̃�ℎ′ = 𝜋ℎ′ for all ℎ′ ≠ ℎ, and �̃�ℎ (𝑎 |𝑠) = I

{
𝑎 ∈

arg max𝑎′ ∥𝜙(𝑠, 𝑎′)∥Λ−1
ℎ,𝑖

}
. This implies,

Pr
𝑠ℎ ,𝑎ℎ∼𝜇 �̃�ℎ

(
∥𝜙(𝑠ℎ, 𝑎ℎ)∥Λ−1

ℎ
> 𝛾𝑚

)
> 𝜖,

thus reaching a contradiction which completes the proof. □

Proof of Lemma 1. For the episode count, in order to apply Theorem 2, first note that given 𝛽 =

𝑂 (𝑑3/2𝐻 log(𝑑𝐻𝐾/𝛿)), 𝜖cov ≥ 1/𝐾 , we have:

∀𝑖 :
𝑑

𝛾2
𝑖

log
2𝑖

𝛾2
𝑖

= 𝑂 (𝑑𝛽2𝐻2 log(2𝑖𝛽𝐻)) = 𝑂 (𝑑𝛽2𝐻2 log2 (𝛽𝐻𝐾)) = 𝑂 (𝑑4𝐻4 log4 (𝑑𝐻𝐾/𝛿)).

In addition,

𝑑4𝐻3𝑚3 log7/2 1
𝛿
= 𝑂

(
𝑑4𝐻3 log3 𝐾 log7/2 1

𝛿

)
= 𝑂

(
𝑑4𝐻3 log7 𝐾

𝛿

)
Hence, we have that for every ℎ, with 𝑇ℎ denoting the number of episodes run by CovTraj, by Theorem 2;

𝑇ℎ = 𝑂

(
𝑑4𝐻4 log7 (𝑑𝐻𝐾/𝛿)

𝑚∑︁
𝑖=1

2𝑖
)
= 𝑂

(
2𝑚+1𝑑4𝐻4 log7 (𝑑𝐻𝐾/𝛿)

)
= 𝑂

(
𝑑4𝐻4

𝜖cov
log7 (𝑑𝐻𝐾/𝛿)

)
.

Given that Algorithm 2 executes CovTraj 𝐻 times, the claim follows. For the claim on the un-reachability of S \ Zℎ, fix
ℎ ∈ [𝐻], and observe that by Lemma 15, w.p. 1 − 𝛿/𝐻, for any 𝜋;

Pr
𝑠ℎ∼𝜇𝜋ℎ

(𝑠ℎ ∉ Zℎ) = Pr
𝑠ℎ∼𝜇𝜋ℎ

(
∃𝑎 s.t. ∥𝜙(𝑠ℎ, 𝑎)∥Λ−1

0,ℎ
> 𝛾𝑚

)
≤ 𝜖cov,

where in the inequality we use that Λ̃ℎ,𝑖 ⪯ Λ0,ℎ. The proof is complete by a union bound over ℎ. □

C. Auxiliary Lemmas
Lemma 16 (Extended value difference; Shani et al., 2020, Lemma 1; Cai et al., 2020). Let 𝑀 = (𝐻,S,A,ℙ, ℓ) be any
MDP and 𝜋, 𝜋′ ∈ S → ΔA be any two policies. Then, for any sequence of functions 𝑄 𝜋

ℎ
: S ×A → ℝ, 𝑉 𝜋

ℎ
: S → ℝ, where
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𝑉 𝜋
ℎ
(𝑠) B

〈
𝜋(·|𝑠), 𝑄ℎ (𝑠, ·)

〉
, ℎ = 1, . . . , 𝐻, we have

𝑉 𝜋1 −𝑉
𝜋′

1 =

𝐻∑︁
ℎ=1

𝔼𝑠ℎ ,𝑎ℎ∼𝑑𝜋
′
ℎ

[〈
𝑄 𝜋ℎ (𝑠ℎ, ·), 𝜋ℎ (·|𝑠ℎ) − 𝜋

′
ℎ (·|𝑠ℎ)

〉]
+

𝐻∑︁
ℎ=1

𝔼𝑠ℎ ,𝑎ℎ∼𝑑𝜋
′
ℎ

[
𝑄 𝜋ℎ (𝑠ℎ, 𝑎ℎ) − ℓℎ (𝑠ℎ, 𝑎ℎ) − ℙ𝑉

𝜋
ℎ+1 (𝑠ℎ, 𝑎ℎ)

]
.

Lemma 17 (Covering number of Euclidean Ball). For any 𝜖 > 0, the 𝜖-covering of the Euclidean ball in ℝ𝑑 with radius
𝑅 > 0 is upper bounded by (1 + 2𝑅/𝜖)𝑑 .

Lemma 18. Let 𝑅, 𝑧 ≥ 1, and 𝑥 ≥ 2𝑧 log(𝑅𝑧). Then 𝑧 log(𝑅𝑥) ≤ 𝑥.

Proof. If 𝑥 = 2𝑧 log(𝑅𝑧);

𝑧 log(𝑅𝑥) = 𝑧 log 𝑅 + 𝑧 log(2𝑧 log(𝑅𝑧))
= 𝑧 log 𝑅 + 𝑧 log(2𝑧) + 𝑧 log log(𝑅𝑧)
≤ 𝑧 log 𝑅 + 𝑧 log 𝑧 + 𝑧 log(𝑅𝑧)
= 2𝑧 log 𝑅 + 2𝑧 log 𝑧
= 𝑥.

For larger values, the result follows by noting 𝑥 − 𝑧
√︁

log(𝑅𝑥) is monotonically increasing in 𝑥 for all 𝑥 ≥ 𝑧. □

Lemma 19 (Lemma D.4 in Rosenberg et al., 2020). Let (F𝑘)∞𝑘=1 be a filtration, and let (𝑋𝑘)∞𝑘=1 be a sequence of random
variables that are F𝑘-measurable, and supported on [0, 𝐵]. Then with probability ≥ 1 − 𝛿, we have that for any 𝐾 ≥ 1;

𝐾∑︁
𝑘=1

𝔼 [𝑋𝑘 | F𝑘−1] ≤ 2
𝐾∑︁
𝑘=1

𝑋𝑘 + 4𝐵 log
2𝐾
𝛿
.

Lemma 20 (Elliptical potential lemma, Lattimore & Szepesvári, 2020, Lemma 19.4). Let (𝜙𝑖)𝐾𝑘=1 ⊂ ℝ𝑑 with ∥𝜙𝑘 ∥ ≤ 1,
and set Λ𝑘 B 𝜆𝐼 +∑𝑘−1

𝑖=1 𝜙𝑖𝜙
⊤
𝑖

where 𝜆 ≥ 1. Then,

𝐾∑︁
𝑘=1
∥𝜙𝑖 ∥2Λ−1

𝑘

≤ 2𝑑 log
(
1 + 𝐾

𝑑𝜆

)
Proof. Note that 𝜆 ≥ 1 implies ∥𝜙𝑖 ∥2Λ−1

𝑘

≤ 𝜆max (Λ−1
𝑘
) ∥𝜙𝑖 ∥2 ≤ 𝜆−1 ≤ 1. Thus

𝐾∑︁
𝑘=1
∥𝜙𝑖 ∥2Λ−1

𝑘

=

𝐾∑︁
𝑘=1

min
{
1, ∥𝜙𝑖 ∥2Λ−1

𝑘

}
.

The rest of the proof is identical to Lattimore & Szepesvári (2020), with 𝐿 = 1 and 𝑉0 = 𝜆𝐼. □

Lemma 21 (Cohen et al., 2019, Lemma 27). For any two matrices 𝐴, 𝐵 ∈ ℝ𝑑×𝑑 which satisfy 0 ⪯ 𝐴 ⪯ 𝐵, we have
𝐵 ⪯ det 𝐵

det 𝐴𝐴.

The following lemma is a direct consequence of the concentration of Self-Normalized Processes due to Abbasi-Yadkori et al.
(2011).

Lemma 22. Let 𝑘 ∈ ℕ and let ℓ : ℝ𝑑 → ℝ denote a linear function ℓ(𝜙) = 𝜙⊤𝑔★, 𝑔★ ∈ ℝ𝑑 . Assume {F𝑖}𝑘𝑖=1 is a filtration,
and that 𝜙𝑖 ∈ F𝑖−1 is an ℝ𝑑 valued stochastic process with ∥𝜙𝑖 ∥ ≤ 1. Further, assume ℓ𝑖 = ℓ(𝜙𝑖) + 𝜉𝑖 where 𝜉𝑖 is a random
variable such that 𝔼[𝜉𝑖 | F𝑖−1] = 0, and

��ℓ𝑖 �� ≤ 𝐷 almost surely. Then for any 𝛿 > 0, w.p. 1 − 𝛿, we have




 𝑘∑︁
𝜏=1

𝜙𝜏

(
ℓ𝜏 − ℓ(𝜙𝜏)

)




2

Λ−1
𝑘

≤ 2𝐷2𝑑 log
(
𝑘 + 𝜆
𝜆

)
,

where Λ𝑘 = 𝜆𝐼 +
∑𝑘
𝑖=1 𝜙𝑖𝜙

⊤
𝑖
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The next lemma establishes the uniform concentration of least squares solutions over a class of functions, and follows from
a standard covering argument combined with the concentration of Self-Normalized Processes (Abbasi-Yadkori et al., 2011).

Lemma 23 (OLS uniform concentration; Jin et al., 2020, Lemma D.4). Let {F𝜏}∞𝜏=1 be a filtration. Let {𝑥𝜏} be a stochastic
process on state space S that is F𝜏-measurable, and {𝜙𝜏} be an ℝ𝑑-valued stochastic process that is F𝜏−1-measurable and
satisfies ∥𝜙𝜏 ∥ ≤ 1. Further, let Λ𝑛 = 𝜆𝐼 +

∑𝑛
𝜏=1 𝜙𝜏𝜙

⊤
𝜏 . Then for any 𝛿 > 0, with probability at least 1 − 𝛿, for all 𝑛 ≥ 1 and

any 𝑉 ∈ V so that ∥𝑉 ∥∞ ≤ 𝐷, we have;




 𝑛∑︁
𝜏=1

𝜙𝜏

(
𝑉 (𝑥𝜏) − 𝔼 [𝑉 (𝑥𝜏) |F𝜏−1]

)




2

Λ−1
𝑛

≤ 4𝐷2
(
𝑑

2
log

(
𝑛 + 𝜆
𝜆

)
+ log

N𝜖 (V)
𝛿

)
+ 8𝑛2𝜖2

𝜆
,

where N𝜖 (V) is the ∥·∥∞ 𝜖-covering number ofV.

The next lemma is standard, for proof see e.g., Hazan et al. (2016); Lattimore & Szepesvári (2020).

Lemma 24 (Entropy regularized OMD). Let 𝑦1, . . . , 𝑦𝑇 ∈ ℝ𝐴 be any sequence of vectors, and 𝜂 > 0 such that
𝜂𝑦𝑡 (𝑎) ≥ −1 for all 𝑡 ∈ [𝑇], 𝑎 ∈ [𝐴]. Then if {𝑥𝑡 } ⊂ Δ𝐴 is given by 𝑥1 (𝑎) = 1/𝑛∀𝑎, and for 𝑡 ≥ 1:

𝑥𝑡+1 (𝑎) =
𝑥𝑡 (𝑎)𝑒−𝜂𝑦𝑡 (𝑎)∑

𝑎′∈[𝐴] 𝑥𝑡 (𝑎′)𝑒−𝜂𝑦𝑡 (𝑎
′ ) ,

then,

max
𝑥∈Δ𝐴

{
𝑇∑︁
𝑡=1
⟨𝑦𝑡 , 𝑥𝑡 − 𝑥⟩

}
≤ log 𝐴

𝜂
+ 𝜂

𝐾∑︁
𝑘=1

𝐴∑︁
𝑎=1

𝑥𝑡 (𝑎)𝑦𝑡 (𝑎)2.
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