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Abstract
Cell instance segmentation is critical to analyz-
ing biomedical images, yet accurately distinguish-
ing tightly touching cells remains a persistent
challenge. Existing instance segmentation frame-
works, including detection-based, contour-based,
and distance mapping-based approaches, have
made significant progress, but balancing model
performance with computational efficiency re-
mains an open problem. In this paper, we pro-
pose a novel cell instance segmentation method
inspired by the four-color theorem. By concep-
tualizing cells as countries and tissues as oceans,
we introduce a four-color encoding scheme that
ensures adjacent instances receive distinct labels.
This reformulation transforms instance segmen-
tation into a constrained semantic segmentation
problem with only four predicted classes, sub-
stantially simplifying the instance differentiation
process. To solve the training instability caused by
the non-uniqueness of four-color encoding, we de-
sign an asymptotic training strategy and encoding
transformation method. Extensive experiments on
various modes demonstrate our approach achieves
state-of-the-art performance. The code is avail-
able at https://github.com/zhangye-zoe/FCIS.

1. Introduction
Cell-level analysis tasks hold broad application prospects in
the biomedical field. Accurate cell segmentation (Petukhov
et al., 2022; Zhang et al., 2025a; Chen et al., 2024) not
only provides a necessary foundation for downstream tasks
such as cell counting (Falk et al., 2019), cell classification
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Figure 1. Existing cell instance segmentation frameworks. (a) rep-
resents the detection-based method, which cannot tackle elongated
cells. (b) represents the contour prediction methods influenced by
threshold value choice. (c) represents the distance mapping meth-
ods, which contains multiple tasks and relies on a post-processing
process. The Red “×” indicates the segmentation mistakes.

(Cords et al., 2023; Zhang et al., 2025b), and cell track-
ing (Merryweather et al., 2021), but also underpins critical
applications in clinical diagnostics, such as immune mi-
croenvironment analysis (Barkley et al., 2022; Kao et al.,
2022) and biomarker discovery (Mann et al., 2021).

At present, cell instance segmentation models can be cate-
gorized into three primary approaches: (a) detection-based
methods (Jiang et al., 2023), which rely on object detection
frameworks (Ren et al., 2016) to localize and delineate in-
dividual cells; (b) contour prediction methods (Chen et al.,
2016), which explicitly predict cell boundaries to achieve
instance differentiation; and (c) distance mapping methods
(Graham et al., 2019; He et al., 2021), which encode spatial
relationships or distance information to separate adjacent
cells. Despite their demonstrated success in cell instance
segmentation tasks, existing methods face critical limita-
tions due to the inherent diversity of cell morphologies and
image characteristics across different scenarios, which im-
pose stringent demands on model generalization.

For different segmentation methods, their problems include
the following aspects, as shown in Figure 1. First, detection-
based methods often struggle with complex cases such as
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Figure 2. Our proposed cell encoding method is based on the four-
color theorem. In the method, each cell is viewed as a “country,”
and the encoding ensures that adjacent cells have different colors.

elongated fibroblasts or overlapping cells, leading to fre-
quently missed detections. Second, contour prediction meth-
ods attempt to achieve instance separation by introducing
an additional contour category. However, their performance
heavily depends on the contour threshold setting. Lastly,
distance mapping methods rely on highly intricate network
architectures and sophisticated post-processing workflows,
which significantly increase computational overhead and
model complexity. Therefore, it is imperative to develop
an innovative approach that can address the shortcomings
of current methods by enhancing robustness, reducing
computational complexity, and improving generalization
across diverse biomedical image modes.

The four-color theorem (Fritsch et al., 1998) offers a novel
perspective on cell instance segmentation. As shown map
in Figure 2, the theorem states that only four colors are suf-
ficient to ensure that adjacent regions are assigned distinct
colors (Gonthier et al., 2008). By drawing an analogy to
cell images, we conceptualize each cell instance as a “coun-
try,” while the background corresponds to the “ocean.” This
enables the development of a four-color encoding scheme
that assigns unique encodings to adjacent cells. Under this
framework, the instance segmentation task is reformulated
as a four-class semantic segmentation problem, simplify-
ing instance differentiation. However, the inherent non-
uniqueness of four-color encodings and the class imbalance
introduced by the encoding strategy pose significant chal-
lenges for model training. Directly using these encodings
as supervision can lead to training instability and hinder
optimization. Therefore, a well-designed training strategy
is essential to address the training problem effectively.

To address the above challenges, we propose an asymptotic
training architecture. Different from traditional semantic
segmentation methods (Wang et al., 2018; Zhou et al., 2022),
which adopt simultaneous multi-class, multi-channel out-
put strategies, our method adopts a step-by-step approach:
first distinguish foreground and background and then make
category prediction within the foreground region. Our ap-
proach prioritizes high-level spatial information over fine-
grained semantic details by imposing orthogonal constraints
on adjacent cells, effectively solving the class imbalance
problem. To mitigate the training instability caused by the
non-uniqueness of the encoding, we introduce an encoding
transformation method that maps the output to a minimum

color representation, ensuring consistency by removing am-
biguity in encoding variations. In addition, we provide a
theoretical analysis to prove the reasonability of the designs.

In summary, the contributions of this paper are five folds:

• We propose an innovative cell segmentation method
based on the four-color theorem, which transforms in-
stance segmentation into a semantic segmentation task,
eliminating complex instance differentiation designs.

• We design an asymptotic training strategy incorporat-
ing a foreground prediction transformation module,
greatly enhancing training stability and robustness.

• We systematically summarize the characteristics of cell
distributions in medical images, demonstrating that cell
coloring is inherently simpler than map coloring.

• We provide a rigorous theoretical analysis to justify the
rationale and feasibility of the proposed model design.

• We validate the effectiveness of our method on three
distinct types of medical image datasets. The results
show that our method successfully balances perfor-
mance and model complexity.

2. Complexity Analysis of Model Training
The advancement of deep learning revolutionizes automated
cell segmentation, significantly reducing the time and effort
required for manual annotation (Stringer et al., 2021; Pa-
chitariu & Stringer, 2022; Zhang et al., 2025c). Although
existing approaches show impressive performance, they are
difficult to fit in various segmentation scenes and face chal-
lenges regarding training complexity and post-processing
requirements. To facilitate a comprehensive comparison of
existing methods, we summarize the computational com-
plexity of the above three types of models. At the same
time, the Supplementary Material provides more extensive
research of related works.

Detection-Based Methods

The overlapping boundaries of cells remain a critical chal-
lenge in cell segmentation. Detection-based methods ad-
dress this issue through a two-stage strategy: first, a detec-
tion network (Ren et al., 2016; Redmon & Farhadi, 2017)
localizes cell positions; then, segmentation predictions are
generated based on the detection results. Representative
methods include IRNet (Zhou et al., 2020), and DoNet
(Jiang et al., 2023). To enhance localization accuracy, these
methods commonly incorporate non-maximum suppression
(NMS) to merge highly overlapping detection boxes, thereby
reducing over-prediction. However, this strategy can result
in missed detections, particularly for small or irregularly
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shaped cells. Additionally, detection-based approaches of-
ten exhibit high computational complexity due to the intri-
cate detection and segmentation network designs. As shown
in Table 1, these methods typically have higher parameter
complexity and computational overhead regarding FLOPs.

Contour Prediction Methods

Contour prediction-based methods achieve instance differ-
entiation by introducing contour semantic categories into
the model’s predictions. However, due to the few pixels in
the contour, the segmentation for contours is often inferior
to that for the background and foreground. To address this
issue, two solutions are proposed. The first solution, rep-
resented by UNet (Ronneberger et al., 2015; Zhou et al.,
2018), increases the loss weight of boundary to guide the
model to focus more on contour. With relatively simple
structural designs, these methods typically have lower pa-
rameter counts and computational complexity, as shown in
Table 1. However, their performance remains suboptimal,
constrained by the limited effectiveness of the loss weight-
ing strategy. The second solution, represented by Micro-Net
(Raza et al., 2019), enhances contextual perception by in-
troducing complex network structures (Zhou et al., 2019),
such as multi-scale feature fusion (Srivastava et al., 2021)
and attention mechanisms (Prangemeier et al., 2020; Hörst
et al., 2024). While this approach significantly improves
performance compared to the former, including complex
modules substantially increases model complexity, resulting
in longer training times and higher computational costs.

Distance Mapping Methods

Distance-based cell segmentation methods, such as StarDist
(Schmidt et al., 2018), CellViT (Hörst et al., 2024), and
RepSNet (Xiong et al., 2025), utilize distance maps to en-
hance instance differentiation, especially in cases involving
irregular cell shapes or densely packed regions. While these
methods have shown significant success, they typically rely
on multiple decoding branches that require post-processing
(Graham et al., 2019; Chen et al., 2023; Meng et al., 2024) to
merge the results into accurate instance segmentations. This
multi-branch design increases model complexity, as the net-
work must simultaneously handle various tasks, including
distance map prediction and semantic category classifica-
tion. As shown in Table 1, distance-based methods generally
exhibit higher parameter complexity and computational cost
than detection-based and contour prediction methods, limit-
ing their efficiency for large-scale applications.

The four-color-theorem introduces a novel cell instance seg-
mentation paradigm that eliminates the dedicated instance
differentiation modules. This method significantly reduces
training complexity by reformulating the instance segmenta-
tion task as a semantic segmentation problem. Furthermore,
experimental results in Table 1 demonstrate that this ap-

Methods # Paras #FLOPs Publication

Detection based methods
Mask-RCNN (He et al., 2017) 44.66 M 411.61 G ICCV
DoNet (Jiang et al., 2023) 67.71 221.64 G CVPR

Contour prediction methods
UNet (Ronneberger et al., 2015) 32.14 M 64.27 G MICCAI
DCAN (Chen et al., 2016) 41.16 M 77.82 G CVPR
CNN3 (Kumar et al., 2017) 65.46 M 1.06 G TMI
UNet++ (Zhou et al., 2018) 9.28 M 35.61 G MICCAI
FullNet (Qu et al., 2019) 112.60 M 116.92 G MICCAI
Micro-Net (Raza et al., 2019) 89.64 M 72.96 G MIA
NucleiSegNet (Lal et al., 2021) 12.40 M 18.19 G CBM
TSFD-Net (Ilyas et al., 2022) 21.96 M 12.10 G NN
GeNSeg-Net (Xu et al., 2024) 87.11 M 86.84 G MM

Distance mapping methods
StarDist (Schmidt et al., 2018) 21.43 M 92.40 G MICCAI
HoverNet(Graham et al., 2019) 49.70 M 192.70 G MIA
CDNet (He et al., 2021) 70.55 M 44.87 G ICCV
SONNET (Doan et al., 2022) 63.87 M 166.75 G JBHI
TransUNet (He et al., 2023) 112.21 M 37.67 G MICCAI
CPP-Net (Chen et al., 2023) 80.75 M 163.10 G TIP
SMILE (Pan et al., 2023) 53.85 M 68.58 G MIA
NuSEA (Meng et al., 2024) 55.26 M 74.20 G JBHI
CellViT (Hörst et al., 2024) 96.81 M 124.25 G MIA
RepSNet (Xiong et al., 2025) 28.20 M 137.11 G IJCV

Our four-color theorem based method
FCIS (Ours) 39.75 M 58.03 G -

Table 1. The computational complexity and number of parameters
comparisons. All the methods are reported for 256× 256 inputs.

proach achieves substantial advantages in both parameter
efficiency and computational cost compared to detection-
based and distance-based segmentation methods.

3. Cell Encoding by Four Color Theorem
3.1. Greedy Algorithm for Encoding

The four-color theorem illustrates the minimum color num-
ber required to label adjacent regions without overlap, pro-
viding a novel approach to the cell instance segmentation
problem. Unlike traditional instance segmentation work-
flows, this method transforms the instance segmentation task
into a multi-class semantic segmentation problem. Based
on this theory, we designed a greedy algorithm to gener-
ate four-class encoded representations for the foreground
regions. The encoding process is illustrated in Algorithm 1.

We first preprocess the input image and its corresponding
labels (X,Y ) to construct a cell graph G = (V,E), where
the node set V = {vi | i = 1, · · · , N} represents the cells
in the image, and the edge set E = {ei,j} represents the
adjacency relationships between cells. The label Y contains
instance-level annotations, with each instance uniquely iden-
tified by an identification, while ei,j indicates that cells vi
and vj are adjacent. Next, we assign color encodings to
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Figure 3. The non-uniqueness of four color encoding can be sum-
marized as the following three cases: (a) Encoding substitution;
(b) Encoding exchange, and (c) Encoding rule modification.

the nodes v ∈ V using a greedy algorithm. Specifically,
for each node v, we first compute its set of neighboring
nodes N(v) = {u | (v, u) ∈ E} and collect the colors Cused
already assigned to these neighboring nodes as follows:

Cused = {C(u) | u ∈ N(v), C(u) ̸= 0} . (1)

We assign the smallest available color from the four color
set C = {1, 2, 3, 4} to the current node v, ensuring that it
does not conflict with the colors of its neighboring nodes:

C(v) = min(C \ Cused). (2)

This process guarantees that two adjacent nodes vi and vj
are assigned different colors, i.e., C(vi) ̸= C(vj). After
encoding all cells, we generate the final segmentation mask
M . For each pixel p in the image, if the pixel belongs to a
specific nucleus v, it is assigned the color encoding C(v)
corresponding to that nucleus. The final output segmenta-
tion mask M provides a four class semantic segmentation
representation based on the four color theorem.

3.2. Non-uniqueness Property of Encoding

While four-color encoding ensures heterogeneity of adja-
cent cell colors, its non-uniqueness may lead to convergence
issues during model training. To illustrate the potential prob-
lems of this encoding more intuitively, Figure 3 presents the
differences in cell encoding under various distribution sce-
narios. The first row shows the spatial relationships between
cells, and the second row represents the corresponding cell
graph structures, which cover the most common cell distri-
bution scenarios. Combinations of these basic patterns can
represent more complex cell distributions. Moreover, the
third row illustrates encoding representations. In detail, the
cells marked in red represent the initial encoding generated
by the greedy algorithm. In contrast, the cells marked in
black correspond to the equivalent encoding that satisfies
the four-color theorem. The differences between the greedy
algorithm’s results and the equivalent encoding contain the
following three cases:

(a) Substitution: The color of a cell is replaced with another
color while maintaining the same number of colors.

(b) Exchange: The color assignments between two or more
cells are swapped, preserving the overall color count.

(c) Rule Modification: Certain cells are assigned new col-
ors, resulting in an increase in the total number of colors.

Algorithm 1 Cell Encoding by Greedy Algorithm
1: Input: Cell graph G = (V,E), where V is the set of

cells and E represents adjacency relation.
2: Output: Four-color encoded mask C(v).
3: Initialize color set C = {1, 2, 3, 4}.
4: Initialize mask C(v)← 0,∀v ∈ V .
5: for each nucleus v ∈ V do
6: Get the set of neighbors: N(v) = {u | (v, u) ∈ E}.
7: Collect used colors: Cused = {C(u) | u ∈

N(v), C(u) ̸= 0}.
8: Assign the smallest available color:
9: C(v)← min(C \ Cused).

10: end for
11: Generate segmentation mask M :
12: for each pixel p in the image do
13: Assign pixel p to the color of the cell it belongs to:
14: M(p)← C(v), where v is the cell containing p.
15: end for
16: Return M (Four-color annotation mask)

Segmentation networks typically learn semantic categories
based on the object’s morphological and textural features
(Jain et al., 2023), while four-color encoding emphasizes
the spatial relationships between cells. When faced with the
issue of encoding non-uniqueness, conventional networks
often struggle to converge stably (Ronneberger et al., 2015).
To propose a reasonable solution, we further analyze the
characteristics of the greedy algorithm in the next section.

3.3. Low-rank Property of Greedy Encoding

Greedy algorithms (GAs), as heuristic methods, are com-
monly used to generate locally optimal solutions. However,
in the cell coloring problem, GAs can achieve globally opti-
mal solutions. The reasons for this are twofold: First, the
cells usually exhibit global dispersion and local aggregation,
with a relatively small number of cells in each cluster, which
differs from the distribution of countries. Second, adjacent
cells in the image usually follow a chain-like or rectangular
arrangement. Hence, each cell has much fewer neighbors.
These structural properties render the cell coloring problem
more straightforward than the map coloring problem.

To clarify the above fact, we statistics the number of colors
distributed on each image under four-color encoding in
Figure 4. The scatter plot on the left corresponds to each
sample, and the box plot shows the distribution of encoding
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Figure 4. Statistics of the number of cells with different color in
the DSB2018 and PanNuke datasets.

numbers. The results demonstrate that only a tiny proportion
of images require more than two colors and almost no image
requires four colors. Based on these, we will present the
global optimal theory of greedy algorithm coloring.

Theorem 1. Global Optimality of Greedy Coloring: Let
G = (V,E) be an undirected graph; among them, V is the
set of vertices, and E is the set of edges. Suppose G satisfies
the following conditions:

(1) G is planar, meaning it can be embedded in the plane
without any edges crossing each other.

(2) The maximum degree of G, denoted ∆(G), satisfies:

∆(G) ≤ k, where k ≤ 4. (3)

(3) The vertex distribution of G follows a specific structure,
either a chain structure (vertices are ordered linearly) or
a rectangular structure (vertices are arranged in a grid
pattern).

Then, the chromatic number with the greedy algorithm is
equal to the chromatic number:

χgreedy(G) = χ(G). (4)

Where χ(G) denote the chromatic number, which is the mini-
mum number of colors, and χgreedy(G) denote the chromatic
number obtained by applying the greedy coloring algorithm.
Some related definitions and proofs are included in the Sup-
plementary Material.

4. Method Designs
4.1. Asymptotic Training Strategy

Previous research primarily focused on designing power-
ful feature extractors (Liu et al., 2022; Yu et al., 2024) or
context-aware modules (Liu et al., 2021; Li et al., 2024)
to enhance the network classification ability. However, in
the scenario of four-color encoding, the model not only re-
quires learning semantic features to distinguish foreground
and background but also needs to learn positional informa-
tion, ensuring adjacent cells are assigned distinct colors. To
address the dual requirements, we propose an asymptotic
training strategy as illustrated in Figure 5 (a).

Binary Classification Semantic Prediction

Given an input image Xi, an encoder-decoder network is
employed to generate a five-channel feature map Ŷi ∈
RH×W×5, where H and W are the height and width of
input. Among these channels, the first represents the back-
ground probability, and the remaining four represent the
prediction of the four-color encoding. Hence, the probabil-
ity map of background Ŷb is extracted as follows:

Ŷb = Ŷi[:, 0], (5)

where Ŷi[:, 0] denotes the first channel of the prediction fea-
ture map. For obtaining the foreground probability, we use
a convolution operation to transform the last four channels
into a single-channel foreground probability:

Ŷf = Conv(Ŷi[:, 1 : 5]), (6)

where Conv(·) represents convolutional layers. Combined
the probility maps of background Ŷb and foreground Ŷf , the
binary semantic prediction can be formulated as:

Ŷb,i = Concat(Ŷb, Ŷf ), (7)

where Concat(·, ·) denotes the concatenation operation
along the channel dimension. To optimize the binary seman-
tic predictions, we define the semantic loss as:

Lsem = CE(Ŷb,i, Yi) + Dice(Ŷb,i, Yi), (8)

where CE(·, ·) represents the cross-entropy loss, and
Dice(·, ·) is the Dice coefficient loss. Where Yi denotes
the ground truth labels for binary segmentation.

Four-Color Category Prediction

To accurately identify foreground regions and ensure dis-
tinct encodings for adjacent cells, we propose a negative
sampling constraint method, as shown in Figure 5 (b). This
method enforces heterogeneity for adjacent cells while pre-
serving the accuracy of four-color encoding.

First, based on cell connectivity relationships, we sample
features from the adjacent cell pairs (vi, vj). Meantime, the
sampled feature sets can be formulated as follows:

Fi = {fα
i | α = 1, . . . ,M}, (9)

Fj = {fβ
j | β = 1, . . . , N}, (10)

where M and N are the number of sampling obtained from
cells vi and vj , respectively, and fα

i denotes the feature
vector of the α-th pixel in cell vi.

To ensure that the feature representations of adjacent cells
exhibit sufficient heterogeneity, we impose an orthogonality
constraint in the feature space. This constraint is formulated
using a cosine similarity loss:

Lort =
1

|E|
∑

(vi,vj)∈E

Cos(Fi, Fj), (11)
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where Cos(·, ·) denotes the cosine similarity function, E
is the set of all edges representing adjacent cell pairs, and
|E| is the total number of edges. By minimizing Lort, the
similarity of feature representations is suppressed, thereby
enhancing the model’s ability to distinguish cells.

4.2. Encoding Transformation

Although the orthogonality constraint ensures heteroge-
neous encoding, this sampling-based supervision remains
weak and may not effectively guide model training. To
provide stronger supervision, we introduce four-color en-
coding as the target label. However, the non-uniqueness
of the encoding can lead to inconsistencies in supervision,
potentially hindering model convergence. To mitigate this is-
sue, we propose an encoding transformation method, whose
mechanism is established in the following theorem.

Theorem 2. Greedy Coloring Compatibility: In the cell
instance segmentation task, let the encoding matrix gener-
ated by the greedy algorithm be:

C ∈ Rn×k, (k ≤ 4). (12)

And the encoding matrix predicted by the network is:

P ∈ Rn×k′
, (13)

n represents the number of cells, k is the number of col-
ors used in the greedy algorithm, and k

′
is the number of

predicted encodings.

If the predicted encoding matrix P has one of the relations
with the greedy encoding C, i.e., substitution, exchange,
rule modification. Then there exists a mapping function:
f : P → C, such that the network’s predicted result can
be transformed into the four-color encoding result. The
detailed proof is shown in Supplementary Material.

Based on the above theory, we propose an encoding trans-
formation method consisting of two convolutional layers,
which maps the network’s predicted output Ŷf into the op-
timal encoding Ŷt, as shown in Figure 5 (c). This transfor-
mation ensures adherence to the four-color encoding rules,

improving the model’s overall performance and accelerating
its convergence during training. Employing the transformed
prediction, we compute a classification loss specific to the
foreground as follows:

Lcls = CE(Ŷt, Yf ) + Dice(Ŷt, Yf ), (14)

Where Ŷt and Yf represent the predicted and ground truth
foreground regions, respectively. In the optimization objec-
tive, we only calculate the loss of the foreground region.

Total Loss Function

The overall loss function integrates the semantic, orthogo-
nality, and classification losses and is formulated as follows:

Ltotal = Lsem + λ1Lort + λ2Lcls. (15)

where λ1 and λ2 are hyperparameters that control the im-
portance of the orthogonality and classification losses. In
the paper, we set λ1 = 2 and λ2 = 1. More experiment
comparisons are added in Supplementary Material.

5. Experiments
5.1. Datasets

We evaluated our proposed method on multiple types of
cell images, including pathological images, fluorescence-
stained images, bright-field images and phase-contrast im-
ages. Specifically, the datasets used include BBBC006v1
(Ljosa et al., 2012), DSB2018 (Caicedo et al., 2019), Pan-
Nuke (Gamper et al., 2020) and YeaZ (Dietler et al., 2020).

The BBBC006v1 consists of 768 Hoechst 33342 marker-
stained images, each with a resolution of 696×520 pixels.
Following the dataset split used by CPP-Net (Chen et al.,
2023), we divide the dataset into 462 training, 153 valida-
tion, and 153 testing images.

The DSB2018 source from the Data Science Bowl 2018
competition, contains 670 fluorescence-stained images with
resolutions ranging from 256×256 to 520×696 pixels using
DAPI and Hoechst stains. We split the dataset into 380
training, 67 validation, and 50 testing images.
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Figure 6. The visualization comparisons between different methods.

Methods
Metrics

DICE (↑) AJI (↑) DQ (↑) SQ (↑) PQ (↑)
DCAN (Chen et al., 2016) 0.795 0.676 0.743 0.780 0.626

HoverNet (Graham et al., 2019) 0.898 0.762 0.863 0.877 0.762
NucleiSegNet (Lal et al., 2021) 0.904 0.671 0.784 0.843 0.682

DoNet (Jiang et al., 2023) 0.823 0.716 0.787 0.829 0.673
CPP-Net (Chen et al., 2023) 0.914 0.813 0.866 0.879 0.758

GeNSeg (Xu et al., 2024) 0.856 0.781 0.843 0.791 0.759
Un-SAM (Chen et al., 2025) 0.902 0.786 0.826 0.834 0.747

CellPose (Stringer, 2025) 0.923 0.824 0.862 0.871 0.764
FCIS (Ours) 0.939 0.828 0.875 0.878 0.770

Table 2. The comparison performances on DSB2018 dataset.

Methods
Metrics

DICE (↑) AJI (↑) DQ (↑) SQ (↑) PQ (↑)
DCAN (Chen et al., 2016) 0.778 0.587 0.659 0.721 0.506

HoverNet (Graham et al., 2019) 0.798 0.646 0.718 0.782 0.595
NucleiSegNet (Lal et al., 2021) 0.752 0.544 0.618 0.689 0.457

DoNet (Jiang et al., 2023) 0.781 0.612 0.684 0.750 0.544
CPP-Net (Chen et al., 2023) 0.814 0.638 0.711 0.776 0.583
Un-SAM (Chen et al., 2025) 0.801 0.629 0.704 0.767 0.570

CellPose (Stringer, 2025) 0.787 0.626 0.703 0.764 0.591
FCIS (Ours) 0.816 0.653 0.721 0.796 0.610

Table 3. The comparison performances on PanNuke dataset.

The PanNuke dataset includes 7901 H&E-stained images,
each 256×256 pixels, originating from 19 organs, with a
total of 189,744 annotated nuclei. We divide this dataset into
2656 training, 2523 validation, and 2722 testing images.

The YeaZ comprises 306 bright-field (BF) images with
resolutions ranging from 301×301 to 1463×1311 pixels,
and 43 phase-contrast (PC) images with resolutions ranging
from 256×256 to 1988×2000 pixels. Due to the limited
number of PC images, we merge the BF and PC datasets to
train a unified model, resulting in 300 training, 20 validation,
and 29 testing images.

5.2. Implementation Details and Evaluation Metrics

Our all experiments are conducted using PyTorch on an
NVIDIA A100 GPU. We employ stochastic gradient de-
scent (SGD) as the optimizer, with a learning rate of 0.01,

Methods
Metrics

DICE (↑) AJI (↑) DQ (↑) SQ (↑) PQ (↑)
DCAN (Chen et al., 2016) 0.921 0.816 0.875 0.850 0.773

HoverNet (Graham et al., 2019) 0.941 0.891 0.924 0.911 0.856
NucleiSegNet (Lal et al., 2021) 0.939 0.671 0.809 0.844 0.719

DoNet (Jiang et al., 2023) 0.933 0.836 0.882 0.871 0.794
CPP-Net (Chen et al., 2023) 0.944 0.914 0.917 0.914 0.898

GeNSeg-Net (Xu et al., 2024) 0.934 0.907 0.913 0.911 0.915
Un-SAM (Chen et al., 2025) 0.933 0.912 0.909 0.911 0.904

CellPose (Stringer, 2025) 0.949 0.917 0.912 0.922 0.914
FCIS (Ours) 0.954 0.921 0.926 0.945 0.935

Table 4. The comparison performances on BBBC006v1 dataset.

Methods
Metrics

DICE (↑) AJI (↑) DQ (↑) SQ (↑) PQ (↑)
DCAN (Chen et al., 2016) 0.881 0.772 0.571 0.736 0.446

HoverNet (Graham et al., 2019) 0.907 0.814 0.602 0.739 0.445
NucleiSegNet (Lal et al., 2021) 0.874 0.788 0.583 0.734 0.439

DoNet (Jiang et al., 2023) 0.878 0.754 0.577 0.720 0.431
GeNSeg-Net (Xu et al., 2024) 0.869 0.747 0.572 0.722 0.433
Un-SAM (Chen et al., 2025) 0.904 0.808 0.597 0.734 0.442

CellPose (Stringer, 2025) 0.911 0.823 0.609 0.740 0.451
FCIS (Ours) 0.922 0.819 0.599 0.741 0.456

Table 5. The comparison performances on YeaZ dataset.

momentum of 0.9, and weight decay of 0.0005. The net-
work is trained for 200 epochs. Segmentation performance
is evaluated using the DICE coefficient, Aggregated Jac-
card Index (AJI) (Kumar et al., 2017), Detection Quality
(DQ) (Kirillov et al., 2019), Segmentation Quality (SQ), and
Panoptic Quality (PQ) metrics. In all tables presented in
this paper, the highest performance scores are highlighted
in bold, while the second-best scores are underlined.

5.3. Main Experiments

We evaluate the performance of our proposed method
against eight state-of-the-art models across three bench-
mark datasets. The compared methods include the detection-
based DoNet (Jiang et al., 2023); contour prediction-based
approaches such as DCAN (Chen et al., 2016), NucleiSeg-
Net (Lal et al., 2021), and GeSegNet (Xu et al., 2024);
distance mapping-based methods including HoverNet (Gra-
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Settings
DSB2018

Settings
PanNuke

DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ

Baseline 0.876 0.751 0.847 0.856 0.746 Baseline 0.786 0.627 0.705 0.778 0.580

w. Four-color 0.843(-3.3) 0.725(-2.6) 0.805(-4.2) 0.827(-2.9) 0.674(-7.2) w. Four-color 0.766(-2.0) 0.617(-1.0) 0.686(-1.9) 0.752(-2.6) 0.559(-2.1)

Asymp. Trans. Samp. DICE AJI DQ SQ PQ Asymp. Trans. Samp. DICE AJI DQ SQ PQ

✓ 0.862 0.740 0.812 0.831 0.679 ✓ 0.773 0.624 0.691 0.763 0.565

✓ ✓ 0.883 0.756 0.829 0.844 0.701 ✓ ✓ 0.787 0.630 0.710 0.774 0.572

✓ 0.910 0.785 0.846 0.863 0.741 ✓ 0.803 0.642 0.714 0.776 0.598

✓ ✓ ✓ 0.939 0.828 0.875 0.878 0.770 ✓ ✓ ✓ 0.816 0.653 0.721 0.796 0.610

Table 6. Ablation studies on the DSB2018 and PanNuke datasets. Baseline denotes the binary semantic segmentation model based on
U-Net (Ronneberger et al., 2015). w. Four-color increases the number of channels from two to five by directly employing four-color
encoding in Algorithm 1 as ground truth. Asymp. represents the asymptotic training method, Trans. applies the encoding transformation
method, and Samp. introduces a negative sampling constraint for adjacent cells.

Lo
ss

AJ
I

w/o Trans
w Trans

w/o Trans
w Trans

Figure 7. Convergence analysis of the training loss and AJI on val-
idation set before and after applying the encoding transformation.

ham et al., 2019), CPP-Net (Chen et al., 2023), and CellPose
(Stringer, 2025); as well as SAM-based foundation model
Un-SAM (Chen et al., 2025). Quantitative results are sum-
marized in Tables 2–5. It is worth noting that GeSegNet,
which was not designed for pathological image segmenta-
tion and performs poorly on the PanNuke dataset, is ex-
cluded from comparisons on that dataset.

From the results, we can see that FCIS consistently out-
performs existing methods across all datasets. It achieves
the highest DICE and AJI scores, demonstrating superior
segmentation accuracy and instance-level consistency. In
the DSB2018 dataset, our model achieves a DICE score
of 0.939, surpassing Un-SAM and CellPose, among the
best-performing prior methods. The PQ metric of 0.770
further indicates our model’s ability to maintain segmenta-
tion quality and object-level distinction. In BBBC006v1,
we can observe similar trends. While segmenting in the
more challenging PanNuke, FCIS achieves 0.610 on the
PQ, outperforming all previous methods and confirming its
generalization capabilities. Although HoverNet achieves
comparable performance to our method but incurs signifi-
cantly higher parameter counts and computational complex-
ity, as shown in Table 1. Therefore, considering the trade-off
between model performance and computational cost, our
method demonstrates a more pronounced overall advantage.

Furthermore, we visually compare different models in Fig-
ure 6. First, the results from “FC Pred” demonstrate that
our method strictly adheres to the four-color encoding rule,

Figure 8. The visualization comparisons between different settings.
The blue box indicates that the binary semantic prediction cannot
distinguish adjacent cells. The red boxes indicate the four-color
encoding lacks effective supervision for adjacent cells. The white
boxes indicate our FCIS encodes adjacent cells with distinct colors.

ensuring that adjacent cells are assigned distinct colors, en-
hancing instance differentiation. By comparing the cell mor-
phologies produced by different methods, we also observe
that our segmentation results align more closely with the
ground truth. This improvement can be attributed to incor-
porating the negative sampling learning method, effectively
enhancing the boundary delineation. Additionally, due to
page constraints, more visualization results are provided in
the Supplementary Material.

5.4. Ablation Studies

Effectiveness Analysis of the Method Designs

We conduct an ablation study to evaluate the module’s
performance under various configurations. The ablation
methods include employing an asymptotic training strat-
egy, applying encoding transformations to the network’s
predictions, and introducing a sampling constraint for adja-
cent cells. The experimental results are presented in Table
6. From the table, we observe the following: (1) When
using the four-color encoding as supervision, the model
performance decreases significantly, indicating the inherent
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challenges of directly employing this encoding as a training
signal. (2) Adding the asymptotic training strategy or encod-
ing transformation methods leads to slight performance im-
provements, suggesting that these techniques provide some
regularization benefits to the learning process. (3) Introduc-
ing the sampling constraint for adjacent cells results in a
substantial performance boost, highlighting the effective-
ness of this design in enforcing spatial consistency among
predictions. These findings demonstrate that the proposed
designs contribute positively to model performance.

Analysis of Training Convergence

We analyze the model’s convergence behavior by comparing
the training loss and the validation AJI before and after ap-
plying the encoding transformation, as illustrated in Figure
7. The results indicate that incorporating the encoding trans-
formation accelerates the convergence of the training loss,
leading to faster stabilization with lower loss. Additionally,
the AJI metric shows a significant improvement after apply-
ing the transformation, demonstrating the effectiveness of
this design in enhancing model performance.

Visualization of Different Settings

Based on the experimental results in Table 6, we conduct
the visualization comparisons as shown in Figure 8. The
red annotations represent the binary semantic segmenta-
tion ground truth (GT), the four-color encoding GT, and
the instance segmentation GT, respectively. First, from
the baseline results (b), it is evident that using only dual-
channel predictions fails to distinguish adjacent cells effec-
tively. Second, when directly using four-color encoding (b)
as a supervision, the model lacks awareness of encoding
inconsistency for adjacent cells, resulting in not only in-
distinguishable instances, but also fragmented predictions.
By incorporating the asymptotic training (c) strategy, these
issues are partially alleviated; however, distinguishing ad-
jacent cells remains challenging. In contrast, our proposed
method (f) demonstrates that the predicted results ensure
not only that adjacent cells are encoded with different colors
but also that the structural integrity of each instance.

6. Conclusions
We present a novel approach to cell instance segmentation
by leveraging the four-color theorem, which reformulates
the instance segmentation problem as a four-class semantic
segmentation task. This transformation significantly reduces
computational overhead and simplifies model design. To
address challenges arising from the non-uniqueness of color
encodings, we propose an asymptotic training strategy and
an encoding transformation mechanism that ensure stable
optimization. Extensive experiments on diverse biomedi-
cal imaging modalities, including fluorescence, H&E, and
bright-field microscopy, demonstrate that our method con-

sistently achieves superior segmentation accuracy and effi-
ciency compared to state-of-the-art approaches. Future work
will explore adaptive encoding strategies that dynamically
respond to varying tissue architectures and cell densities,
further improving generalization across datasets. Addition-
ally, extending the proposed framework to downstream tasks
such as cell nucleus classification represents a promising
research direction.
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Supplementary Material

A. Data Splitting

We applied an overlapping cropping method to the DSB2018, BBBC006V1, and YeaZ datasets during
the data preprocessing stage. Specifically, we used a sliding window with a stride of 128 to extract
256×256 patches. Since the original image size in the PanNuke dataset is already 256×256, no
additional processing was required. The number of samples in the training, validation, and test sets is
shown in Table 7.

Datasets No. Traing No. Valiadation No. Testing
DSB2018 602 109 89
PanNuke 2656 2522 2722

BBBC006v1 1848 612 612
YeaZ 1000 140 200

Table 7. The number of samples in the training, validation, and test datasets.

B. Related Work

B.1. Detection-Based Cell Segmentation

The challenge of distinguishing individual cells in overlapping regions has long been a critical issue in
instance segmentation. With the introduction of Faster R-CNN Ren et al. (2016), Mask R-CNN He et al.
(2017) extended this detection framework by incorporating an instance segmentation module. This
two-stage approach first generates bounding boxes to locate individual instances and then performs
segmentation within these regions. Mask R-CNN’s inherent ability to separate instances without
requiring complex post-processing has made it a widely adopted framework for semi-supervised cell
instance segmentation tasks Zhou et al. (2020).

B.2. Contour Prediction-Based Cell Segmentation

Contour-based segmentation methods focus on explicitly predicting cell boundaries to achieve instance
separation. Early works, such as U-Net Ronneberger et al. (2015), facilitated boundary learning by
assigning higher pixel-wise weights to cell edges, followed by post-processing techniques like watershed
or contour detection to delineate individual instances. This architecture significantly influenced deep
learning-based segmentation, particularly in medical imaging. Subsequent advancements introduced
explicit contour prediction to improve instance separation. DCAN Chen et al. (2016) incorporated
additional semantic categories for boundary pixels, enabling clearer differentiation between cells and
the background. UNet++ Zhou et al. (2018) refined U-Net’s performance by employing nested skip
connections, while FullNet Qu et al. (2019) and CIA-Net Zhou et al. (2019) leveraged multi-scale
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context aggregation to enhance boundary delineation. More recent models, such as TSFD-Net Ilyas
et al. (2022) and GeNSeg-Net Xu et al. (2024), continue to advance the field by integrating sophisticated
architectures designed to improve boundary prediction accuracy.

B.3. Distance-Based Cell Segmentation

Distance-based segmentation approaches predict spatial relationships between pixels and their corre-
sponding cell instances, facilitating robust separation of adjacent cells. StarDist Schmidt et al. (2018),
one of the pioneering methods in this category, introduced radial distance predictions, which proved
effective for segmenting cells with irregular shapes. HoverNet Graham et al. (2019) extended this con-
cept by simultaneously predicting a distance map and a classification map, enabling accurate instance
separation in densely packed regions. CDNet He et al. (2021) further improved generalization across
datasets by employing multi-task learning. Recent advancements have explored more sophisticated
architectures to enhance both segmentation accuracy and computational efficiency. SONNET Doan et al.
(2022) introduced a self-organizing network to model complex spatial relationships, while TransUNet
He et al. (2023) combined transformer-based architectures with distance prediction to enhance feature
representation. CPP-Net Chen et al. (2023) and SMILE Pan et al. (2023) incorporated context-aware
modules to improve adaptability to diverse cell morphologies. Emerging models such as CellViT Hörst
et al. (2024) and RepSNet Xiong et al. (2025) integrate vision transformers with structural priors, further
advancing distance-based segmentation techniques for challenging datasets.
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Figure 9. Visualization of four-color encoding results.

C. The Analysis of Four-color Encoding

The four-color encoding method highlights the feasibility of transforming cell instance segmentation
into a semantic segmentation task. To better understand the characteristics of four-color encoding, we
present visualizations of encoded images from multiple datasets, as shown in Figure 9. In this figure,
we randomly selected images from three different datasets and applied four-color encoding. The results
reveal the following patterns:
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(1) The majority of cells are encoded in red, while a smaller proportion are assigned green;

(2) Cells encoded in blue are scarce, appearing only in highly dense regions (highlighted by white box),
typically with one or two occurrences;

(3) The fourth encoding category (represented by yellow) does not appear, indicating that cell encoding
is more constrained and simplified than the traditional map-coloring problem.

Furthermore, the statistical analysis of the four-color encoding results, illustrated in Figure 10, aligns
with the observed distribution of cell color assignments, further validating the characteristics of this
encoding approach.
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Figure 10. Statistics of different color encodings

D. Preliminaries

We provide essential definitions and concepts to establish the foundation for the proposed method.

Definition 1. Undirected Graph. An undirected graph is represented as G = (V,E), where V is the
set of vertices, and E is the set of edges. An edge e = (u, v) ∈ E indicates that vertices u and v are
adjacent.

Definition 2. Coloring Number. The chromatic number of a graph G, denoted as χ(G), is the minimum
number of colors required to color the vertices of G such that no two adjacent vertices share the same
color.

Definition 3. Maximum Degree. The degree of a vertex v ∈ V , denoted as d(v), is the number of
vertices adjacent to v. The maximum degree of the graph G is defined as ∆(G) = maxv∈V d(v).

Definition 4. Chain Structure: A type of graph where the vertices are arranged in a linear path,
formally known as a path graph Pn. In the structure, each vertex is connected to at most two adjacent
vertices. For instance, in the graph P4 with 4 vertices, the coloring sequence can be described as:

v1 → color 1, v2 → color 2, v3 → color 1, v4 → color 2.

Definition 5. Rectangular Structure: A rectangular structure is a graph where vertices are arranged in
a regular rectangular grid. Such graphs are a specific type of planar graph, where each vertex typically
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has a degree of 2 or 4, satisfying ∆(G) ≤ 4.

Definition 6. Planar Graph. A planar graph is a graph that can be embedded in the plane such that no
edges intersect. According to the Four-Color Theorem, the chromatic number of a planar graph satisfies
χ(G) ≤ 4.

E. Theorem and Proof

Theorem 1. Global Optimality of Greedy Coloring: Let G = (V,E) be an undirected graph
representing a cell distribution, where V is the set of vertices (cells), and E is the set of edges
representing adjacency relationships between cells. Suppose G satisfies the following conditions:
(1) G is a planar graph, meaning it can be embedded in a plane such that no two edges intersect;
(2) The maximum degree of G, denoted by ∆(G), satisfies:

∆(G) ≤ k, where k ≤ 4;

(3) The vertex distribution of G follows either a chain structure (a path graph Pn) or a rectangular
structure (a grid-like planar graph).

Then, the chromatic number of G, defined as the minimum number of colors required to color the
vertices such that no two adjacent vertices share the same color, satisfies:

χgreedy(G) = χ(G).

Where χgreedy(G) is the coloring number by applying the greedy algorithm with any arbitrary vertex
ordering. This result demonstrates that the greedy algorithm produces a globally optimal solution to the
graph coloring problem.

Proof 1:

Definition and Properties of Greedy Algorithm: The greedy algorithm colors graph G as follows: -
Traverse all vertices in the order v1, v2, . . . , vn; - For each vertex vi ∈ V , assign the smallest color that
has not been used by any of its adjacent vertices; - Each vertex checks at most ∆(G) adjacent vertices,
and the number of colors needed is at most ∆(G) + 1.

Thus, the chromatic number generated by the greedy algorithm satisfies:

χgreedy(G) ≤ ∆(G) + 1

Optimality Analysis under Special Structures:

(a) Chain Structure (Path Graph Pn): For a path graph Pn, each vertex has a degree ∆(Pn) = 2. - The
chromatic number of a path graph is χ(Pn) = 2; - When the greedy algorithm colors in any vertex
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order, it uses at most two colors:
χgreedy(Pn) = χ(Pn) = 2

Therefore, the greedy algorithm is optimal for path graphs.

(b) Rectangular Structure: For cells arranged in a rectangular grid, graph G is planar, and ∆(G) ≤ 4.
According to the Four Color Theorem:

χ(G) ≤ 4

The greedy algorithm, in each iteration, uses the smallest available color, and each vertex checks at
most 4 adjacent vertices. Therefore, the chromatic number generated by the greedy algorithm satisfies:

χgreedy(G) ≤ 4 = χ(G)

Thus, the greedy algorithm is also optimal for rectangular structures. Extending Local Optimality to
Global Optimality:

Local Sparsity: Due to the distribution properties of graph G, in locally clustered regions, the number
of vertices is limited and the maximum degree is low. Hence, the greedy algorithm is optimal in local
regions.

Global Sparsity of Planar Graphs: The global distribution of planar graphs is sparse, and edges
connecting different regions are limited, causing little interference with the local optimal solution. As a
result, the local optimality of the greedy algorithm extends to global optimality.

Based on the above analysis, the chromatic number of graph G, which satisfies the given conditions, is
equal to the minimum chromatic number:

χgreedy(G) = χ(G)

Thus, the greedy algorithm is an effective method for generating the minimum color coding in this
scenario.

Theorem 2. Greedy Coloring Compatibility: In the cell instance segmentation task, let the encoding
matrix generated by the greedy algorithm be:

C ∈ Rn×k, (k ≤ 4). (16)

And the encoding matrix predicted by the network is:

P ∈ Rn×k′ , (17)

where n represents the number of cells, k is the number of colors used in the greedy algorithm, and k
′

is the number of predicted encodings. If the predicted encoding matrix P has one of the relations with
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the greedy encoding, i.e., substitution, exchange, modification of rules. Then there exists a mapping
function:

f : P→ C, (18)

such that the network’s predicted result P can be transformed into the four-color encoding result C.

Proof 2:

The four-color encoding matrix C generated by the greedy algorithm satisfies the following properties:

(a) Sparsity: Each row has at most one nonzero element (C[i, j] ∈ {0, 1}), representing that the i-th
node uses the j-th color;

(b) Optimality: The number of colors used is minimized, rank(C) = k, and k ≤ 4;

(c) Adjacency constraint: Any two adjacent nodes (vi, vj) satisfy C[i, :] ̸= C[j, :] (i.e., they cannot use
the same color).

These properties can be formally expressed as follows:

(1) Sparsity:
∑k

j=1C[i, j] = 1,∀i. (2) Adjacency constraint: If ei,j = 1, then C[i, :] ·C[j, :]⊤ = 0.

The encoding matrix P ∈ Rn×k′ predicted by the network exhibit non-uniqueness due to the following
reasons:

(a) Substitution: Some rows of the encoding are replaced, introducing redundancy;

(b) Exchange: The order of the columns is changed;

(c) Rule modification: Additional colors are introduced, resulting in k′ > k.

Thus, the column rank of P satisfies:

rank(P) ≥ k. (19)

Hence, we need to construct a mapping function f : P→ C to transform the predicted encoding matrix
P into the four-color encoding matrix C that satisfies the constraints.

(1) Column Redundancy Elimination

A linear transformation is applied to eliminate redundant columns in P, ensuring that the resulting
matrix has rank k. Specifically: Define a column transformation matrix T ∈ Rk′×k, where

T = argmin
T
∥PT−C∥2F , s.t. rank(PT) = k.

The transformed matrix is
P′ = PT,
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where P′ ∈ Rn×k, and rank(P′) = k.

(2) Column Order Adjustment

The columns of P′ are reordered to align with the column order of C. Let the column permutation
matrix be S ∈ Rk×k, then

C = P′S.

The matrix S is a permutation matrix satisfying S⊤S = I.

(3) Adjacency Constraint Verification

After the mapping, the adjacency constraint is verified to ensure that the resulting matrix satisfies the
four-color encoding rule:

C[i, :] ·C[j, :]⊤ = 0, ∀ei,j = 1.

It can be seen that, for any predicted matrix P, the three-step mapping function f ensures that the
transformed matrix C satisfies:

(1) The rank of the transformed matrix is k, i.e., rank(P′) = k;

(2) The column order is aligned with C;

(3) The adjacency constraint holds, making C a valid four-color encoding result.

Therefore, we design encoding transformation and orthogonal constraints to ensure the rationality of
four-color prediction.

F. Hyper-parameter Ablation Experiments

We conducted an ablation study on hyperparameter selection using the DSB2018 and BBBC006v1
datasets, focusing on the impact of the sampling rate and the weight of the orthogonal constraint loss
function. The experimental results are presented in Tables 8 and 9.

The results indicate that increasing the sampling rate generally improves model performance. However,
the performance gain from 0.5 to 0.7 is less significant than the improvement observed when increasing
the sampling rate from 0.3 to 0.5. We set the sampling rate to 0.5 in the main experiments to balance
model performance and computational efficiency.

Furthermore, we examined the effect of the orthogonal constraint loss weight on model performance. A
significant performance drop is observed when the weight is set to 1. We hypothesize that this is due to
the insufficient enforcement of the orthogonal constraint at lower weights, reducing the model’s ability
to distinguish adjacent instances and ultimately degrading segmentation performance effectively.
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Ratio
DSB2018

Ratio
BBBC006v1

DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ
r = 0.3 0.913 0.803 0.854 0.871 0.758 r = 0.3 0.947 0.917 0.893 0.926 0.899
r = 0.5 0.939 0.828 0.875 0.878 0.770 r = 0.5 0.954 0.921 0.926 0.945 0.935
r = 0.7 0.941 0.832 0.866 0.881 0.779 r = 0.7 0.946 0.924 0.933 0.951 0.938

Table 8. Ablation studies of sampling ration on DSB2018 and BBBC006v1 datasets.

Weight
DSB2018

Weight
BBBC006v1

DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ
λ = 1 0.908 0.798 0.832 0.825 0.716 λ = 1 0.922 0.898 0.891 0.904 0.880
λ = 2 0.939 0.828 0.875 0.878 0.770 λ = 2 0.954 0.921 0.926 0.945 0.935

Table 9. Ablation studies of weight setting on DSB2018 and BBBC006v1 datasets.

G. More Visualization Results

We present the semantic and instance segmentation results, including error analysis, as shown below.
Specifically, the subfigures include the input image, pixel-wise error analysis, four-class semantic
ground truth, and instance segmentation labels (the last two subfigures can be ignored). The results
in the DSB2018 and BBBC006v1 datasets demonstrate that our method not only achieves accurate
instance segmentation but also excels in pixel-wise classification by significantly reducing false positive
(FP) and false negative (FN) prediction errors. These results validate the effectiveness of our approach.
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H. Others

To better demonstrate the rationality of our model’s module design, we plot the convergence curves of
various loss functions during the training process on the PanNuke dataset, as shown in Figure 11. The
results indicate that our method ensures stable model convergence.

Figure 11. The convergence of loss function and Dice in training process.
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