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Abstract

We present EasyGen, an efficient model de-001
signed to enhance multimodal understanding002
and generation by harnessing the capabilities003
of diffusion models and large language models004
(LLMs). Unlike existing multimodal models005
that predominately depend on encoders like006
CLIP or ImageBind and need ample amounts007
of training data to bridge the gap between008
modalities, EasyGen leverages a bidirectional009
conditional diffusion model named BiDiffuser,010
which promotes more efficient interactions be-011
tween modalities. EasyGen handles image-to-012
text generation by integrating BiDiffuser and013
an LLM via a simple projection layer. Unlike014
most existing multimodal models that are lim-015
ited to generating text responses, EasyGen can016
also facilitate text-to-image generation by uti-017
lizing the LLM to create textual descriptions,018
which can be interpreted by BiDiffuser to gener-019
ate appropriate visual responses. Furthermore,020
EasyGen can be effortlessly integrated into ex-021
isting advanced multimodal LLMs like LLaVA022
to improve their performance. Extensive quanti-023
tative and qualitative experiments demonstrate024
the effectiveness of EasyGen, whose training025
can be easily achieved in a lab setting.026

1 Introduction027

In recent years, remarkable progress has been made028

in the field of artificial intelligence generated con-029

tent (AIGC), notably in technologies like large lan-030

guage models (LLMs) (Chiang et al., 2023; Tou-031

vron et al., 2023; Brown et al., 2020; Chowdhery032

et al., 2022; Zeng et al., 2022) for text generation033

and diffusion models (Rombach et al., 2022; Nichol034

et al., 2022; Saharia et al., 2022) for visual genera-035

tion. These breakthroughs have paved the way for036

the development of large-scale multimodal gener-037

ative models, sparking a recent trend of incorpo-038

rating extra visual modules into LLMs. Collabo-039

rative models, such as Visual ChatGPT (Wu et al.,040

2023a) and MM-REACT (Yang et al., 2023), strate-041

gically use externally pre-trained tools to translate 042

visual information into text descriptions and feed 043

the data into LLMs. However, they are exclusively 044

dependent on pre-trained tools for inference. Con- 045

trarily, end-to-end trained models including the 046

BLIP series (Li et al., 2023b), LLaVA series (Liu 047

et al., 2023b,a), MiniGPT-4 (Zhu et al., 2023), and 048

mPLUG-Owl (Ye et al., 2023) focus on mapping 049

image information to the text space of LLMs, en- 050

abling LLMs to comprehend visual inputs. 051

Existing end-to-end models are also not without 052

limitations. First, most of these multimodal models 053

rely on either CLIP (Radford et al., 2021) or Image- 054

Bind (Girdhar et al., 2023) as their image encoder. 055

While these encoders excel in learning unified rep- 056

resentations that encompass both text and images, 057

they face challenges when it comes to transform- 058

ing between different modalities. This predica- 059

ment makes current vision-language models rely- 060

ing heavily on sizable data sets to align CLIP/Bind- 061

encoded images with the language model, due to 062

the disparity between different modalities. Further- 063

more, most of existing multimodal models lack 064

the ability of generating multimodal responses, as 065

they are primarily designed to understand multi- 066

modal content and often fall short in generating 067

content beyond text. A recent work Emu (Sun 068

et al., 2023) takes a unified approach to generate 069

visual or textual tokens, but it also heavily relies on 070

vast quantities of training data. 071

In this work, we propose EasyGen, a model that 072

facilitates multimodal generation by harnessing the 073

strengths of diffusion models and LLMs. Diffusion 074

models with multiple skills, such as Versatile Dif- 075

fusion (Xu et al., 2023) and UniDiffuser (Bao et al., 076

2023b), have exhibited remarkable capabilities in 077

accurately capturing multimodal distributions. Uni- 078

Diffuser, in particular, shows great potential in ac- 079

commodating multimodal interactions. It views 080

both image and text as sequential token streams 081

for diffusion calculations, making it well-suited for 082
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Could you please provide an introduction 

to this model in the picture?

What other types of green energy 

irrigation systems are feasible?

I’m really intrigued by wind-powered 

irrigation systems. Could you please 

provide a brief introduction and show 

me some pictures related to it?

The image features a solar irrigation system 

working model that is displayed on a table. 

It is made of various materials, such as 

plastic, and features various components, 

including solar panels, water tanks, a pump, 

piping, valves, hoses, faucets, plants, soil, 

dirt, pebbles, bottles, cups, spoons, straws, 

screws and nuts, among others.

There are several other types of 

green energy irrigation systems apart 

from solar power. Some of them 

include wind-powered irrigation 

system, hydro-powered irrigation 

system, tidal-powered irrigation 

system …

A wind-powered irrigation system is a 

type of green energy irrigation system 

that utilizes wind energy to power the 

irrigation process. It involves the use of 

wind turbines, typically mounted on 

towers, which capture the kinetic 

energy of the wind and convert it into 

electrical energy. The generated 

electricity can be stored in batteries … 

Here are some possible pictures:

Figure 1: Our model EasyGen can understand multimodal inputs and generate multimodal responses, as illustrated
by model-generated speech bubbles in grey color, which include both text and images.

the text representations in LLMs that are typically083

structured as sequences. However, since UniDif-084

fuser aims to fit all conditional distributions (in-085

cluding those conditioned on noisy inputs) into one086

model, it is less effective on particular tasks such as087

conditional generation based on noise-free inputs.088

To address this limitation, we finetune UniDiffuser089

with a specific focus on the targeted image-to-text090

and text-to-image tasks. The finetuned model, re-091

ferred to as BiDiffuser, forms a core component of092

EasyGen for text and image generation.093

BiDiffuser is able to convert image data into094

a textual format, which simplifies the process of095

synchronizing its embedding space with that of an096

LLM for semantic comprehension and reasoning.097

As illustrated in Figure 2, we bridge BiDiffuser and098

the LLM using a simple projection layer, which099

can be trained efficiently with a small amount of100

data for image-to-text tasks such as image caption-101

ing and visual question answering. Alternatively,102

the LLM can be utilized to generate detailed de-103

scriptions and cues derived from text contexts like104

dialogues, which can aid BiDiffuser in generating105

accurate visual responses, as illustrated in Figure 2.106

<Image> <Text>

BiDiffuser

BiDiffuser

Projection Layer

LLM

LLM

Text Generation Image Generation

(a) (b)

Figure 2: Overview of EasyGen.

Figure 1 demonstrates the capability of EasyGen107

in processing multimodal inputs and generating the108

appropriate multimodal responses. Notably, Easy- 109

Gen achieves competitive performance compared 110

to state-of-the-art models with less training data 111

and training time. Without employing parameter- 112

efficient fine-tuning techniques like LoRa (Hu 113

et al., 2021), EasyGen only requires about 120 114

A100 (80G) GPU hours during the pre-training 115

process (for training BiDiffuser) and 20/72 A100 116

(80G) GPU hours during the alignment process 117

for FlanT5XL/Vicuna-7B (see Table 10 in Ap- 118

pendix H). Furthermore, EasyGen can be conve- 119

niently incorporated into contemporary advanced 120

multimodal LLMs such as LLaVA to improve 121

their performance, as depicted in Figure 6 in Ap- 122

pendix G. 123

2 Basics of Diffusion Models 124

Unconditional Generation Given a data sample 125

taken from a real data distribution x0 ∼ q(x0), 126

diffusion models (Sohl-Dickstein et al., 2015; Ho 127

et al., 2020) first destruct the data by constructing 128

a Markov forward process and gradually injecting 129

noise to the data: 130

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1), (1) 131

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (2) 132

where βt ∈ (0, 1) is the variance added at diffusion 133

step t. Then, they learn to reverse the process: 134

p(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (3) 135

pθ(xt−1|xt) = N (xt−1;µt(xt, t), σ
2
t I), (4) 136

where p(xT ) = N (xT ; 0, I) is the standard Gaus- 137

sian distribution and µt(·) is the parameterization 138

of the predicted mean. Diffusion models are trained 139
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to maximize the marginal likelihood of the data140

E[log pθ(x0)], and the canonical objective is the141

variational lower bound of log pθ(x0). Denoising142

diffusion probabilistic models (Ho et al., 2020) gen-143

erate samples xt ∼ q(xt|x0) by injecting noise144

ϵ ∼ N (0, I) to the data x0, and train a network145

ϵθ(·) to predict the added noise ϵ using a standard146

mean squared error loss:147

L := Ex0,ϵ,t[∥ϵ− ϵθ(xt, t)∥2]. (5)148

Note that µt(xt, t) can be derived from ϵθ(xt, t).149

Conditional Generation For conditional gen-150

eration, a paired data (x0,y0) is given, and the151

aim is to model the conditional data distribution152

q(x0|y0), where y0 can be image class or text153

prompt. Conditional generation includes classi-154

fier guidance (Dhariwal and Nichol, 2021) and155

classifier-free guidance (Ho and Salimans, 2021).156

Classifier guidance requires training an extra clas-157

sifier on noisy data at inference time to improve158

the sample quality. For classifier-free guidance,159

no classifier needs to be trained. The denosing160

network ϵθ(xt|y0) simply conditions on the infor-161

mation encoded in y0. At inference time, with a162

guidance scale s, the modified score estimate is163

further in the direction of ϵθ(xt|y0) and away from164

the unconditional model ϵθ(xt|∅) (∅ is a null token)165

as follows:166

ϵ̂θ(xt|y0) = ϵθ(xt|∅) + s · (ϵθ(xt|y0)− ϵθ(xt|∅)).
(6)167

3 EasyGen: Easy Multimodal Generation168

with a Bidirectional Conditional169

Diffusion Model and LLMs170

We propose EasyGen, a model capable of process-171

ing multimodal inputs and generating multimodal172

outputs. It achieves easy multimodal generation173

by leveraging a bidirectional conditional diffusion174

model to effectively bridge the gap between differ-175

ent modalities and an LLM to comprehend mul-176

timodal tasks and produce textual responses con-177

taining cues for multimodal message creation. In178

the subsequent section, we outline the multimodal179

generation process of EasyGen.180

3.1 BiDiffuser: A Bidirectional conditional181

Diffusion Model182

Since the text space of LLMs is discrete, to mini-183

mize the disparity between the output of a diffusion184

model and the input of LLMs, we leverage Unidif- 185

fuser (Bao et al., 2023b), a unified diffusion model 186

capable of transforming images into the discrete 187

text space. 188

During the training process, UniDiffuser injects 189

noise ϵx and ϵy to a set of paired image-text data 190

(x0,y0) and generates noisy data xtx and yty , 191

where 0 ⩽ tx, ty ⩽ T represent two individual 192

timesteps (perturbation levels). It then trains a joint 193

noise prediction network ϵθ(xtx ,yty , t
x, ty) to pre- 194

dict the noise ϵx and ϵy by minimizing the mean 195

squared error loss: 196

Eϵx,ϵy ,x0,y0 [∥[ϵx, ϵy]− ϵθ(xtx ,yty , t
x, ty)∥2],

(7) 197

where the output of ϵθ is the concatenation of the 198

estimated noise ϵxθ and ϵyθ , i.e., ϵθ = [ϵxθ , ϵ
y
θ ]. 199

By predicting ϵθ(xtx ,yty , t
x, ty) for any tx and 200

ty, UniDiffuser learns all distributions related to 201

(x0,y0) simultaneously. This includes all condi- 202

tional distributions: q(x0|y0) for text-to-image 203

generation, q(y0|x0) for image-to-text genera- 204

tion, and those conditioned on noisy input, i.e., 205

q(x0|yty) and q(y0|xtx), for 0 < tx, ty ≤ T . 206

Learning a conditional distribution q(x0|yty) or 207

q(y0|xtx) can be seen as learning a distinct task. 208

From a multitask learning perspective, due to lim- 209

ited network capacity, learning many tasks simul- 210

taneously (i.e., fitting all distributions to a single 211

network) may result in task competition or task con- 212

flict, ultimately leading to suboptimal performance 213

in particular tasks such as q(x0|y0) and q(y0|x0). 214

To resolve this issue and enhance the perfor- 215

mance of both image-to-text and text-to-image gen- 216

eration tasks, we finetune UniDiffuser with exclu- 217

sive emphasis on the two tasks: 218

L = Eϵx,ϵy ,x0,y0 [∥ϵx − ϵxθ (xtx ,y0, t
x, 0)∥2+

α∥ϵy − ϵyθ(x0,yty , 0, t
y)∥2].

(8) 219

where α is a hyperparameter to balance the learn- 220

ing paces of the two tasks. As depicted in Figure 3, 221

our training objective entails predicting the text 222

y0 based on the input image x0 and vice versa, 223

where the input conditions for the model are noise- 224

free. We employ classifier-free guidance. Dur- 225

ing training, we estimate the noise injected to the 226

image (i.e., ϵxθ (xtx ,y0, t
x, 0)) conditioned on the 227

noise-free text y0 and the noise to the text (i.e., 228

ϵyθ(x0,yty , 0, t
y)) given the noise-free image x0. 229

During inference, with a guidance scale s ⩾ 0, we 230

use the modified prediction ϵ̂θ to guide towards the 231
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Lever Tillman Fromlet 

Fromlet Fromlet …
S  ‘It’s an ‘It’s an ‘It’s an ‘It’s 

an ‘It’s an interesting

Leveridgee standing in the 

middle of the middle of …

two people standing on top of 

snowy mountain with a ski pole

two people standing on 

top of snowy mountain 

with a ski pole

XT

XT

Xt

Xt

X0

X0

<textual noise> Image-to-Text

Text-to-Image

BiDiffuser (ours)

UniDiffuser Backbone

<visual noise>

Figure 3: The training process of BiDiffuser involves finetuning UniDiffuser (Bao et al., 2023b) with a joint
objective of image-to-text and text-to-image tasks.

condition:232

ϵ̂xθ (xtx ,y0, t
x, 0) = ϵxθ (xtx , ϵ

y, tx, T )+

s · (ϵxθ (xtx ,y0, t
x, 0)− ϵxθ (xtx , ϵ

y, tx, T )),

ϵ̂yθ(x0,yty , 0, t
y) = ϵyθ(ϵ

x,yty , T, t
y)+

s · (ϵyθ(x0,yty , 0, t
y)− ϵyθ(ϵ

x,yty , T, t
y)).

(9)233

where ϵxθ (xtx , ϵ
y, tx, T ) ( ty = T and yT = ϵy)234

and ϵyθ(ϵ
x,yty , T, t

y) (tx = T and xT = ϵx) rep-235

resent the unconditional models when T is suffi-236

ciently large. We name the finetuned model “BiD-237

iffuser”, signifying its specialized ability in bidirec-238

tional conditional generation.239

3.2 Image-to-Text Generation240

BiDiffuser can convert images into vectors in the241

text space, facilitating alignment with the vector242

space of LLMs. In the following, we show how243

BiDiffuser can be integrated with LLMs to per-244

form image-to-text generation tasks such as image245

captioning and visual question answering (VQA).246

3.2.1 Aligning BiDiffuser with LLMs247

We connect BiDiffuser and LLMs via a simple248

projection layer, which maps text embeddings ob-249

tained from the output of the diffusion model to the250

embedding space of LLMs. As shown in Figure 4,251

the alignment can take place either prior to the252

LLM (referred to as Pre-Align manner) or between253

its encoder and decoder components (referred to as254

Mid-Align manner).255

Pre-Align Manner As shown in Figure 4a, the256

projection layer is placed before the LLM to map257

the output of BiDiffuser (image representations)258

to the text embedding space of the LLM. The text259

embedding of the input image is then concatenated260

with the embeddings of the textual instructions and261

fed to the LLM for decoding. To synchronize the 262

text space of BiDiffuser with that of the LLM, we 263

propose to use the image-grounded text generation 264

(ITG) objective to drive the model to generate texts 265

based on the input image by computing the auto- 266

regressive loss: 267

LITG = − 1

L

L∑
l=1

log pθ(w
g
l |w

g
<l, I, TI), (10) 268

where wg = (wg
1, ..., w

g
L) represents the ground- 269

truth caption of image I with length L, TI is the 270

text instruction, and θ denotes the model parame- 271

ters, which include the parameters of the projection 272

layer and the LLM. 273

Mid-Align Manner As shown in Figure 4b, the 274

projection layer is placed between the LLM’s en- 275

coder and decoder, aiming to map the output of 276

BiDiffuser to the embedding space of the text that 277

is encoded by the LLM’s encoder. Particularly, we 278

argue that the output of BiDiffuser, once mapped 279

by the projection layer and denoted as ddiff , should 280

align with the image caption that is encoded by 281

the LLM’s encoder, denoted as dllm. Therefore, to 282

accurately learn the alignment between the image 283

and text representations, in addition to the ITG loss 284

in Eq. 10, we also employ an image-text distance 285

minimization (ITDM) loss: 286

LITDM =
1

N

N∑
i=1

∥ddiff − dllm∥22,

Lmid = LITG + LITM.

(11) 287

where N is the batch size, and Lmid is the overall 288

loss. In this manner, the model parameters θ only 289

include the parameters of the projection layer. 290
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Two people standing on the top of a snowy mountain holding on to a ski pole.

Decode

<Textual Noise><Image>

BiDiffuser

LLM

Projection Layer

Text EmbeddingText Embedding Text Embedding

### Human: <Query> ### Assistant: 

Describe the image concisely.

(a) Pre-Align manner.

Two people standing on the top of a snowy mountain holding on to a ski pole.

Decode

<Textual Noise><Image>

BiDiffuser

LLM Decoder

Projection Layer

Text EmbeddingText Embedding Text Embedding

### Human: 

LLM Encoder LLM Encoder

<Query> ### Assistant: 

Describe the image concisely.

(b) Mid-Align manner.

Figure 4: Two different ways of aligning BiDiffuser with LLMs.

After aligning BiDiffuser with LLMs, EasyGen291

gains the capability of zero-shot image-to-text gen-292

eration, which includes tasks such as image cap-293

tioning and VQA.294

3.2.2 Instruction-Tuning LLMs295

When aligning BiDiffuser with an LLM, we per-296

form instruction-tuning on the LLM to equip it297

with the capability of understanding multimodal298

tasks. We designed different instructions for differ-299

ent LLMs, as shown in Table 1. General instruction300

template is denoted as follows:301

USER: <Img><image></Img> + Instruction. As-302

sistant: <answer>.303

For the <image> placeholder, we substitute it304

with the output of BiDiffuser. To avoid over fit-305

ting to the specific task and counter the model’s306

inclination to generate excessively short outputs,307

we have devised specific instructions (blue texts in308

Table 9), which enable the LLM to produce con-309

cise responses when necessary. For different tasks,310

the distinct instruction templates are as outlined in311

Appendix G.312

3.3 Text-to-Image Response Generation313

Most of existing multimodal models, including the314

BLIP series and LLaVA series are unable to pro-315

vide a multimodal response as they are primarily316

designed to generate only textual outputs. On the317

other hand, Emu (Sun et al., 2023) takes a unified318

approach to predict the subsequent visual or textual319

token in an auto-regressive manner, but it is heavily320

reliant on vast quantities of training data. Contrary321

to the limitations of these existing models, Easy-322

Gen, by leveraging the bidirectional generation ca-323

Different Instruction Templates:

Caption
Generation

Provide a brief description of the given im-
age. Assistant:

Response Buses parked with a snow mountain view be-
hind them.

VQA What numbers are displayed on the front of the
bus on the right? Short answer: Assistant:

Response 6044

Multimodal
Dialogue

What might be the purpose of the buses in this
location? Assistant:

Response It is plausible that they are in this location for
multiple reasons. Some possible reasons might
be: 1)...2)...

Table 1: Examples of different instructions with dif-
ferent output formats. We use bold fonts to indicate
different instructions.

pability of BiDiffuser and the inference capability 324

of LLMs, can produce accurate and high-quality 325

visual response with ease. 326

To tackle multimodal response generation tasks 327

such as PhotoChat (Zang et al., 2021), we first fine- 328

tune the LLM to generate detailed image captions 329

based on dialogue context. Then, we employ BiD- 330

iffuser to create the corresponding images with the 331

produced captions. Specifically, we replace the 332

image featured in the dialogue with its correspond- 333

ing descriptive caption, encapsulating it with task- 334

specific tokens <Img>,</Img> and constructing the 335

following instruction templates: 336

USER: Dialog history + <Img><caption></Img> + 337

Dialog history. Assistant: <response>. 338

USER: Dialog history. Assistant: <response> + 339
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<Img><caption></Img>.340

A: We went out to go to a 

garage sale this morning. 

B: �at’s awesome! Do 

you play guitar?

<img> An acoustic 
guitar with a 
headstock on top of a 
brick wall. </img>

AutoKL 
Decoder

<Dialogue Context>

Yeah, take a look. <Description>

LLM

BiDiffuser

Te
x
t-

to
-T

e
x
t 

G
e

n
e

ra
ti

o
n

Figure 5: Text-to-image generation by EasyGen. (Bot-
tom) LLM generates response and description of the
image. (Top) BiDiffuser takes the description as input
and generates images.

When <caption> appears in response, it repre-341

sents the generated description of the image. Train-342

ing with the instruction data enables our model to343

not only produce text responses but also perform344

image intent classification and generate image cap-345

tions that BiDiffuser can interpret.346

4 Experiments347

4.1 Experimental Setup348

We initialize the encoder-decoder LLM using pre-349

trained weights from FlanT5XL or decoder-only350

LLM from Vicuna-7B, along with the utilization351

of the diffusion module from BiDiffuser. During352

the alignment process, we maintain the frozen state353

of the BiDiffuser. The statistics of the datasets354

for pre-training, alignment and instruction-tuning355

can be found in Appendix C. For the image cap-356

tioning task, EasyGen is evaluated on both the357

MS-COCO (Lin et al., 2014) Karpathy test set358

and the NoCaps (Agrawal et al., 2019) validation359

set. For the VQA task, our method is evaluated on360

OK-VQA (Marino et al., 2019) validation set and361

GQA (Hudson and Manning, 2019) test-dev set.362

To adapt the model for multimodal dialogue gen-363

eration, we fine-tune the LLM and projection layer364

on the PhotoChat dataset. We incorporate photo-365

sharing activities into the dialogue context by gen-366

erating <Img><caption></Img>, and utilize cross-367

entropy loss exclusively for fine-tuning the multi-368

modal generation task. Given the limited expres-369

siveness of image descriptions in the PhotoChat370

dataset, as evidenced by Figure 7 in Appendix J,371

we regenerate image annotations in a text format372

similar to that used in MS-COCO.373

4.2 Evaluation 374

We evaluate EasyGen on various vision-language 375

tasks including image captioning (MS-COCO (Lin 376

et al., 2014), NoCaps (Agrawal et al., 2019)), vi- 377

sual question answering (OK-VQA (Marino et al., 378

2019), GQA (Hudson and Manning, 2019)), and 379

multimodal dialog generation (PhotoChat (Zang 380

et al., 2021)). We use BLIP (Li et al., 2022), 381

Flamingo (Alayrac et al., 2022), BLIP-2 (Li et al., 382

2023b), InstructBlip (Dai et al., 2023), MiniGPT- 383

4 (Zhu et al., 2023), and LLaVA (Liu et al., 384

2023b) as baselines for image-to-text tasks, and 385

Maria (Liang et al., 2021) and Divter (Sun et al., 386

2021) as baselines for the multimodal response 387

generation task. See details in Appendix D and F. 388

4.3 Overall Results 389

Table 2 lists the evaluation results for each baseline 390

and our models on MS-COCO and VQA (zero- 391

shot) datasets. EasyGen outperforms most of the 392

baseline models on both the COCO test set and No- 393

Caps validation set (zero-shot transfer). Although 394

EasyGen is only pre-trained on a small dataset 395

MS-COCO, its performance on the image caption- 396

ing generation task is comparable to models (e.g., 397

BLIP-2) pre-trained on a large dataset. This in- 398

dicates that EasyGen can effectively combine the 399

strength of diffusion module and LLM to gener- 400

ate smooth and informative captions. GPT scores 401

do not vary significantly because the captions pro- 402

duced by the models in the image-captioning task 403

tend to be quite alike. For the OK-VQA and GQA 404

dataset, the performance of EasyGen is improved 405

compared with other models of a similar scale. For 406

example, BLIP-2 adopts the task-special decoding 407

method and achieves 39.4% accuracy on OK-VQA 408

validation set, while ours can get 45.2% even with 409

a simple decoding method, i.e., greedy search. 410

Table 3 lists the evaluation results on the Pho- 411

toChat dataset. The results of Divter are cited from 412

(Sun et al., 2021). We fine-tune Maria on Pho- 413

toChat dataset only for the response generation task. 414

Since our EasyGen model can generate response 415

and image description simultaneously, the response 416

and description generation task has a similar PPL. 417

Compared with other models, our method has clear 418

advantages in the performance of PPL, indicating 419

that our model demonstrates strong performance 420

on text generation tasks. Besides, we find that the 421

image descriptions in the PhotoChat dataset are 422

too concise to convey the information of images. 423
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Model Dataset Size NoCaps (val) COCO (Karpathy) OK-VQA GQA

PT IT CIDEr SPICE BLEU@4 CIDEr Accuracy Accuracy

BLIP (Li et al., 2022) 129M - 113.2 14.8 40.4 136.7 - -
Flamingo (Alayrac et al., 2022) 1.8B - - - - 138.1 50.6 -
BLIP-2 OPT-6.7B (Li et al., 2023b) 129M - 121.0 15.3 43.5 145.2 36.4 36.4
BLIP-2 FlanT5XL (Li et al., 2023b) 129M - 121.6 15.8 42.4 144.5 39.4 44.4
InstructBlip 7B (Dai et al., 2023) 129M 1.2M 123.1 - 40.8 140.7 61.0⋆ 49.2⋆

MiniGPT-4 (Zhu et al., 2023) - 5M 42.4 - - - 37.5 30.8
LLaVA (Liu et al., 2023b) 558K 158K 33.1 - 7.9 30.0 54.4 41.3

EasyGen FlanT5XL 169K 90K 121.2 15.5 43.5 145.7 41.1 37.2
EasyGen Vicuna-7B 169K 90K 121.8 15.8 42.4 144.6 45.2 44.6

Table 2: Automatic evaluation and GPT evaluation of our model and the baselines on various vision-language
tasks. PT, IT indicate the number of samples in pretraining and instruction tuning stage respectively. The results of
EasyGen on NoCaps, OK-VQA and GQA are obtained in a zero-shot setting. ⋆ indicates that the model was trained
on other VQA datasets.

Model Response Generation Description Generation Image
BLEU-1 BLEU-2 PPL↓ ROUGE-L BLEU-1/2 ROUGE-L PPL↓ FID↓

Divter (Sun et al., 2021) 6.5 1.7 59.63 5.69 15.1/11.4 15.81 5.12 29.16
Maria (Liang et al., 2021) 13.8 9.2 48.75 15.17 - - - -

EasyGen FlanT5XL
+ w/ generated desc. 22.3 18.7 4.32 17.24 13.5/10.2 13.84 4.16 10.30
+ w/o generated desc. 17.8 12.4 7.61 15.12 17.4/13.2 16.71 6.23 75.46

Table 3: Automatic evaluation of our model and the baselines on the PhotoChat dataset.

Therefore, we used the pre-trained model from the424

first stage to regenerate the image description (re-425

ferred to as “w/ generated desc.” in Table 3) which426

led to a large gap towards ground-truth descrip-427

tions, resulting in lower BLEU-1/2 and ROUGE-L.428

However, the performance of our model on BELU-429

1/2 and ROUGE is higher than other models on re-430

sponse generation tasks, indicating that introducing431

richer image descriptions is beneficial for generat-432

ing more relevant and informative responses.433

4.4 Ablation Study434

In Table 4, we examine the impact of freez-435

ing/tuning BiDiffuser and the LLM. We conducted436

ablation studies on image captioning and VQA437

tasks. It can be observed that the frozen Mid-Align438

method outperforms the Pre-Align method in im-439

age captioning. This shows that the ITDM loss440

function is effective. However, the frozen Mid-441

Align method exhibits inferior performance in the442

VQA task. We hypothesize that this is due to the443

integration of mid-aligned target image features444

with query information, and the projection layer445

is insensitive to instruction information. We con-446

duct instruction-tuning on Pre-Align T5 and Vi-447

cuna. Compared to models at the same scale, these448

instruction-tuned models achieve superior results.449

4.5 Fine-tuning for VQA Tasks 450

In order to enhance the performance of EasyGen 451

on VQA and OCR tasks, we take into account the 452

potential information dilution or omission that may 453

occur when using BiDiffuser to convert images to 454

text space. So we opt to integrate BiDiffuser with 455

CLIP ViT-L/14 as image encoder (as shown in Fig- 456

ure 6 in Appendix). In this process, we freeze CLIP 457

and BiDiffuser while fine-tuning the parameters of 458

the LLM and projection layers. Table 5 presents 459

the results on traditional short QA and the modern 460

benchmark MMBench (Liu et al., 2023c). For fine- 461

tuning EasyGen, we utilize train and val splits from 462

VQAv2, Text Captions, AOK-VQA, and TextVQA 463

datasets. Though we do not pre-align CLIP with 464

LLM and use smaller instruction data for tuning, 465

EasyGen’s performance is better than LLaVA on 466

VQAv2 dataset, which shows BiDiffuser can effec- 467

tively help LLM understand images. Furthermore, 468

BiDiffuser can also be plug-and-played into other 469

MLLMs and improve their performance. We specu- 470

late that BiDiffuser provides guidance information 471

to MLLMs, enabling them to better understand the 472

details of CLIP encoded images. 473

5 Related Work 474

Multimodal Language Models. Recent re- 475

search has witnessed a surge of interest in mul- 476

timodal LLMs, including collaborative models 477
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LLM Diffusion
Model Alignment NoCaps COCO(Karpathy) OK-VQA

CIDEr SPICE BLEU@4 CIDEr Accuracy

T5 UniDiffuser Pre-Align 62.4 18.0 26.8 90.7 33.0
T5 BiDiffuser Pre-Align 119.1 25.5 42.6 145.1 41.1
T5 BiDiffuser Mid-Align 121.2 25.1 43.5 145.7 31.5
T5 BiDiffuser Mid-Align 121.5 25.3 43.6 145.7 36.4

Vicuna-7B BiDiffuser Pre-Align 121.8 24.9 42.4 144.6 45.2
Vicuna-7B BiDiffuser Pre-Align 119.0 24.6 40.3 140.3 42.7

Table 4: Ablation studied on image captioning and VQA tasks. / represents we tune/freeze the weights of the
LLM during the alignment process.

Model IT VQAv2 (test-dev) TextVQA MMbench (test)

MiniGPT-4 (Zhu et al., 2023) 5M - 19.4 23.0
InstructBLIP Vicuna-7B (Dai et al., 2023) 1.2M - 50.1 33.9
LLaVA-1.5 Vicuna-7B (Liu et al., 2023a) 665K 78.5 58.2 65.2
LLaVA-1.5 Vicuna-13B (Liu et al., 2023a) 665K 80.0 61.3 67.8
EasyGen Vicuna-7B w/ ViT-L 251K 79.4 57.9 63.9
LLaVA-1.5 Vicuna-7B w/ EasyGen 665K 80.2 58.8 66.1
LLaVA-1.5 Vicuna-13B w/ EasyGen 665K 80.5 61.5 69.2

Table 5: Automatic evaluation of our model variants and baselines on more VQA datasets and the MMBench
benchmark. “w/ EasyGen” means incorporating the core components of our model into existing models as depicted
in Figure 6 in Appendix G. EasyGen variants rank among the top models on the leaderboard of MMBench.

such as Visual ChatGPT (Wu et al., 2023a),478

MM-REACT (Yang et al., 2023), and Hugging-479

GPT (Shen et al., 2023), and end-to-end meth-480

ods including Flamingo (Alayrac et al., 2022),481

Img2LLM (Guo et al., 2022), BLIP series (Li482

et al., 2023b; Dai et al., 2023; Li et al., 2022),483

BEiT series (Bao et al., 2021; Wang et al., 2022b),484

LLaVA (Liu et al., 2023b), mPLUG-owl (Ye et al.,485

2023), MiniGPT-4 (Zhu et al., 2023), Llama-486

adapter (Zhang et al., 2023a), Otter (Li et al.,487

2023a), OFA (Wang et al., 2022a), and PaLI (Chen488

et al., 2022). EasyGen is built upon a bidirectional489

conditional diffusion model, which promotes more490

efficient interactions between modalities.491

Multimodal Diffusion Models. Diffusion genera-492

tive models (Rombach et al., 2022; Ramesh et al.,493

2021; Nichol et al., 2022; Ruiz et al., 2023) have494

achieved strong results in text conditioned image495

generation works. Specifically, Versatile Diffu-496

sion (Xu et al., 2023) employs the U-Net (Ron-497

neberger et al., 2015) architecture with a multi-498

flow design to tackle multiple modalities and tasks,499

while UniDiffuser (Bao et al., 2023b) adopts the500

U-ViT (Bao et al., 2023a) framework to treat both501

image and text as sequential token streams for dif-502

fusion calculations. However, these models are503

unable to complete complex language tasks. Easy-504

Gen combines the advantages of diffusion models505

and LLMs and achieves competitive performance506

in both image-to-text and text-to-image tasks.507

Multimodal Response Generation. Recent works 508

have shown significant progress on multimodal re- 509

sponse generation (Koh et al., 2023b; Aghajanyan 510

et al., 2022; Zhang et al., 2023b; Wu et al., 2023b; 511

Pan et al., 2023; Koh et al., 2023a). Divter (Sun 512

et al., 2021) incorporates text-to-image generation 513

into text-only dialogue response generation to pro- 514

duce a multimodal response. Leveraging the power 515

of diffusion models, CoDi (Tang et al., 2023) can 516

generate any combination of output modalities. 517

Emu (Sun et al., 2023) takes a unified approach 518

to predict the subsequent visual or textual token 519

in an auto-regressive manne. In EasyGen, we effi- 520

ciently combine the diffusion model and LLMs to 521

generate multimodal outputs. 522

6 Conclusion 523

We have introduced EasyGen, a model that facil- 524

itates multimodal understanding and generation. 525

In contrast to existing models that rely on en- 526

coders like CLIP or ImageBind and require signifi- 527

cant amounts of training data to integrate different 528

modalities, EasyGen offers a more efficient solu- 529

tion by employing a bidirectional diffusion model 530

named BiDiffuser. This allows for more effective 531

modal interactions, handling both image-to-text 532

and text-to-image generations by the fusion of BiD- 533

iffuser and LLMs. Additionally, EasyGen can be 534

easily integrated into existing advanced multimodal 535

LLMs to further boost their performance. 536
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A Limitations872

This section aims to highlight the limitations of our873

work and provide further insights into the research874

in this area. Our model relies on diffusion for multi-875

modal interaction, which means that the text-to-876

image and image-to-text processes may take longer.877

In our experiments, we tested the performance of878

our model on one A100(80G) GPU. During infer-879

ence, using 1000 image-caption pairs, EasyGen880

took approximately 2.95 seconds for the caption881

generation task (with the diffusion module taking882

about 2.41 seconds) and around 4.96 seconds to883

generate an image. We believe it would be bene-884

ficial to explore more efficient sampling methods,885

such as DPM-Solver++(Lu et al., 2022), to improve886

the overall efficiency of EasyGen.887

B Ethics Statement888

We adhere to the ACL Ethics Policy and have889

conducted our research using publicly available890

repositories and datasets. Our primary focus is on891

investigating the integration of diffusion models892

and LLMs for multimodal generation. Therefore,893

the results should be seen as AI-generated content.894

While we have not observed deliberate harmful895

content, the model has the potential to generate896

such content if triggered. We have taken steps to897

minimize this risk through fine-tuning on public898

datasets, but caution is still exercised. In future, we899

will prioritize improving downstream performance900

and exploring methods to enhance control over the901

generation process. To ensure reproducibility and902

support future research, we have made all resources903

publicly available and provided proper citations to904

previous research within the code.905

C Datasets906

We test the effectiveness of EasyGen by experi-907

menting on different tasks including image caption-908

ing, visual question answering (VQA), and multi-909

modal dialogue tasks. Table 6 shows the statistics910

of the pre-training datasets for BiDiffuser, align-911

ment and VQA tasks.912

We use the MS-COCO (Lin et al., 2014) dataset913

for image captioning. Following BLIP-2 (Li et al.,914

2023b), we fine-tune EasyGen on MS-COCO and915

evaluate its performance on the Karpathy test set916

and the NoCaps (Agrawal et al., 2019) validation917

set. In MS-COCO, each image typically has five918

captions that convey similar meanings. The train-919

ing set consists of 82,783 images with 414,113920

captions, while the COCO Karpathy test set has 921

5,000 images and the NoCaps validation set has 922

4,500 images. 923

For multimodal dialogue, we utilize the Pho- 924

toChat (Zang et al., 2021) dataset, which is a high- 925

quality dataset consisting of 10,917 images and 926

12,286 dialogues. Each dialogue is associated with 927

a user image and its corresponding text descrip- 928

tion. The dataset is divided into 10,286 training 929

instances, 1,000 development instances, and 1,000 930

testing instances. Moreover, PhotoChat includes 931

photo-sharing activities, defined as the process 932

of creating <Img><caption></Img> in this study. 933

Each conversation in PhotoChat is broken down 934

and constructed into multiple samples so that each 935

round of responses can be learned. Specifically, 936

we regard the first three turns as the dialog context, 937

and the subsequent turns as the prediction targets. 938

By converting the dialogues of this dataset into the 939

form mentioned in 3.3, we obtained 49,240 train, 940

4,792 dev, and 4,836 test dialogue pairs. 941

For the VQA task, we conduct a quantitative 942

evaluation on both the OK-VQA (Marino et al., 943

2019) validation set (5,046 questions) and the 944

GQA (Hudson and Manning, 2019) test-dev set 945

(12,578 questions). As shown in Table 4, for the 946

frozen LLM, following BLIP-2, we employ the 947

length penalty in beam search to encourage short 948

answer generation. On the contrary, for the tuned 949

LLM, we use the VQA instructions (as shown in 950

Table 8) to do instruction tuning during the align- 951

ment process. The data for instruction tuning is 952

constructed by randomly selecting 5K data from 953

VQAv2 (Goyal et al., 2017) and 5K data from Vi- 954

sual Dialog (Murahari et al., 2019) training set. 955

D Baselines 956

We compare our proposed model with the follow- 957

ing state-of-the-art baselines: 958

BLIP (Li et al., 2022) is a multimodal mixture 959

of encoder-decoder. It can be used as an image- 960

based text encoder or decoder. We use it to perform 961

caption generation and VQA tasks. 962

BLIP-2 (Li et al., 2023b) is pre-trained through 963

bootstrapped learning from frozen visual encoder 964

and LLMs using an efficient pre-training strategy. 965

Flamingo (Alayrac et al., 2022) incorporates new 966

cross-attention layers into Chinchilla language 967

model (Hoffmann et al., 2022) to inject visual fea- 968

tures, and pre-trains the new layers on billions of 969

image-text pairs. We use it to perform caption gen- 970
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Data types Dataset Size BiDiffuser Alignment Fine-tuning

Caption MS-COCO caption (Lin et al., 2014) 83K " " %

Visual Genome (Krishna et al., 2017) 86K " % %

Multimodal instruction LLaVA dataset (Liu et al., 2023b) 80K % " "

VQA VQAv2 (Goyal et al., 2017) 83K % - "

AOK-VQA (Schwenk et al., 2022) 66K % % "

OCR-related tasks Text Captions (Sidorov et al., 2020) 22K % % "

TextVQA (Singh et al., 2019) % % "

Table 6: Description of datasets used in our alignment and VQA fine-tuning stages. Noting that in alignment process,
we used 5K images from VQAv2 dataset.

Dataset Task Split Metric

Image-to-Text
MS-COCO (Lin et al., 2014) Image captioning Test CIDEr, BLEU, SPICE
NoCaps (Agrawal et al., 2019) Image captioning Val CIDEr, SPICE
OK-VQA (Marino et al., 2019) VQA Val Accuracy
GQA (Hudson and Manning, 2019) VQA Test Accuracy

Multimodal Generation PhotoChat Zang et al., 2021 Image dialogue Test PPL, BLEU, ROUGE, FID

Table 7: Summary of the evaluation datasets and metrics.

eration and VQA tasks.971

InstructBlip (Dai et al., 2023) is a vision-language972

instruction tuning framework that is trained with973

BLIP-2 and capable of solving various visual lan-974

guage tasks.975

MiniGPT-4 (Zhu et al., 2023) utilizes a single pro-976

jection layer to align visual information from a pre-977

trained vision encoder with an LLM. It employed978

the same visual encoder as used in BLIP-2.979

LLaVA (Liu et al., 2023b) employs a solitary pro-980

jection layer to convert image features extracted981

from the pre-trained CLIP-ViT-L/14 visual encoder982

into the language embedding space of Vicuna.983

Maria (Liang et al., 2021) is a neural conversation984

agent which can leverage visual world experiences985

sourced from a vast image index. It possesses the986

ability to fetch a relevant image specific to the con-987

versation and extract visual knowledge from it.988

Divter (Sun et al., 2021) focuses on exploring mul-989

timodal dialogue generative models. Given the990

dialogue context, this model first generates a text991

response or image description and then generates992

an image according to the description.993

E Evaluation994

For evaluating the quality of text generation, we995

utilize metrics such as BLEU, Rouge-L, Accu-996

racy, and PPL (Perplexity). Additionally, follow-997

ing the approach of Vicuna (Chiang et al., 2023)998

and LLaVA (Liu et al., 2023b), we employ Chat-999

GPT to assess the generated responses from our1000

model. Specifically, for the image captioning task,1001

   BiDiffuser

Projection Layer

  CLIP ViT-L

Projection Layer

Image EmbeddingText Embedding Text Embedding

What might be the purpose 
of the buses in this 
location? ### Assistant:

LLM

Embedding Layer

Figure 6: Model’s architecture for VQA finetuning. The
module with blue background is referred to as BiDif-
fuser, while the rest is the architecture of MLLM using
CLIP as the image encoder (such as LLaVA).

we randomly select 30 images from the MS-COCO 1002

Karpathy split and then let ChatGPT score the re- 1003

sponses generated by EasyGen and the baseline 1004

models. ChatGPT evaluates the models’ responses 1005

based on relevance, details, and accuracy and as- 1006

signs an overall score between 1 and 10, with a 1007

higher score indicating better performance. To eval- 1008

uate the quality of image generation, we use the 1009

Frechet Inception Distance (FID) score (Heusel 1010

et al., 2017), which measures the divergence be- 1011

tween two multivariate normal distributions. 1012

F Implementation Details 1013

LLM During the alignment process, we utilize 1014

the AdamW optimizer with β0 = 0.9, β1 = 0.99, 1015

13



Task Instruction Template

Image Captioning USER: <image>+random[query] Assistant:

LLaVA 80K
USER: Please answer question from this image: <image> Question: <question> Assistant:
USER: Image: <image> Question: <question> Assistant:
USER: Answer question <question> through the image <image> Assistant:

Multimodal Dialogue USER: Dialog history+<photo>+Dialogue history Assistant:

VQA USER: Image: <image> Question: <question> Short answer: Assistant:
USER: Image: <image> Question: <question> Answer the option’s letter. Assistant:

Table 8: Examples of task instruction templates. <image> represents the input image, <question> denotes the
question in the VQA and LLaVA 80K dataset, and <photo> is the image description of the input image.

and weight decay of 0. The LLMs are trained with1016

a cosine learning rate of 2e-5 and a warmup rate1017

of 0.03. We use a batch size of 96 for the frozen1018

LLMs and 32 for the tuned LLMs. During training,1019

we convert the LLMs (FlanT5XL/Vicuna-7B) to1020

BFloat16/FP16 and BiDiffuser to FP16. During the1021

VQA tuning process, we use CLIP ViT-L/14 336px1022

as additional image encoder. We finetune EasyGen1023

on mixture datasets for 1 epoch with a batch size1024

of 32. We adopt the AdamW optimizer with β =1025

(0.9, 0.99) with the learning rate is 2e-5. We use1026

a cosine learning rate decay with a learning rate is1027

2e-5 and warmup ration is 0.03.1028

Diffusion Module We inherit the settings from1029

UniDiffuser and utilize pre-trained weights from1030

its checkpoint for our text-to-image generator. The1031

model is fine-tuned on the MS-COCO and VG1032

dataset, which contains images with a resolution1033

of 512 × 512, for 10 epochs with a batch size of1034

312. For all of our sampling processes, we employ1035

DPM-Solver with 50 steps.1036

1. Describe the image concisely.
2. Provide a brief description of the given image.
3. Can you describe this image briefly?
4. Provide a summary of visual elements depicted in the image.
5. Give me the essential characteristics of the photograph in a
concise manner.
6. Rephrase the image depicted in a concise manner.
7. Describe the objects in this image no in detail.
8. Please introduce the image for me briefly.
9. Give me the image’s short descriptions.
10. Please provide a general depiction of the image presented.

Table 9: For the image captioning task, a query instruc-
tion is randomly selected.

G Instruction Tuning1037

We list the instructions for different tasks in the1038

main paper in Table 8. Specifically, the queries1039

used to describe image contents are presented in1040

Table 9. Table 8 shows the templates used in Vi-1041

cuna, if the LLM is FlanT5, kindly use “Human”1042

to substitute “USER” in the instruction templates.1043

Model architecture for VQA finetuning is shown in 1044

Figure 6. EasyGen integrates the outputs of BiDif- 1045

fuser with images encoded by CLIP ViT-L/14. We 1046

freeze CLIP and BiDiffuser while only tuning the 1047

parameters of the LLM and projection layers. 1048

H Training Efficiency 1049

Table 10 summarizes the key factors in training 1050

EasyGen. The training process of EasyGen is com- 1051

putationally efficient, especially with the utiliza- 1052

tion of the parameter-efficient fine-tuning method 1053

LoRa (Hu et al., 2021). To enable multimodal 1054

response generation, we further train the aligned 1055

EasyGen. This process entails fine-tuning the LLM 1056

(FlanT5XL) on the PhotoChat dataset for 2 epochs, 1057

which typically requires approximately 4 A100 1058

(80G) GPU hours. 1059

I Impact of Alignment Manners 1060

In Table 11, we investigate the impact of different 1061

alignment manners on EasyGen. After removing 1062

the ITDM loss, the performance is slightly weaker 1063

than the original model. It is evident that the MSE 1064

Loss can help to align the semantic spaces of the 1065

two models. Furthermore, the performance of the 1066

model will drop significantly after removing the 1067

cross-entropy loss, suggesting that constraints via 1068

the language model play a key role. 1069

J More Qualitative Results 1070

We present several instances on PhotoChat dataset 1071

in Figure 7 and the image-captioning task in Fig- 1072

ure 8. In Figure 9, 11, 10, we compare EasyGen 1073

with state-of-the-art multimodal language models. 1074

The responses of MiniGPT-4, LLaVA, mPLUG- 1075

owl and InstructBlip are obtained from their offi- 1076

cial demos. Morever, in Figure 12, 13, we show 1077

EasyGen’s ability to accept multimodal inputs and 1078

generate multimodal responses. 1079
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Model Trainable Param. Training Images Training Cost
Pre-training

BiDiffuser 952M 169K 120 (A100 80GB) GPU hours

Alignment
Projection Layers + T5XL 4M 163K 20 (RTX3090 24GB) GPU hours
Projection Layers + T5XL 3B 173K 20 (A100 80GB) GPU hours
Projection Layers + Vicuna 7B 7B 173K 72 (A100 80GB) GPU hours
Projection Layers + Vicuna 7B(LoRa) 610M 251K 20 (A100 80GB) GPU hours

Table 10: EasyGen’s trainable parameters, training data size, and training cost during alignment process.

Model NoCaps (val) COCO (Karpathy) OK-VQA GQA

CIDEr SPICE SPICE BLEU@4 CIDEr Accuracy Accuracy

EasyGen Mid-Align FlanT5XL 121.2 15.5 25.1 43.5 145.7 31.5 22.6
+ w/o ITDM 118.6 15.3 24.8 42.2 141.5 - -
+ w/o ITG 93.2 12.9 23.0 35.1 127.6 - -

Table 11: Ablation studies on the instruction-tuning process and loss functions.

A: I just got back from the pet store and you wouldn’t believe what I saw? 

B: What you saw, can you tell me? 

A: I saw the cutest golden retriever ever… I couldn’t stop looking at this animal… 

A: Check it out - I took a picture. <Img>

A: What’s onn your mind?              B: Good. �anks. I am thinking to make a cake. 

A: Sound yummy, what kind? 

B: I saw a chocolate cake topped with whipped cream. It looks so yummy.  

B: I hope you can see the photo. <Img>

Objects in the photo: Animal, 

Golden retriever, Dog, Carnivore.

Objects in the photo: Baked goods, 

Cake, Dairy

B: Lovely and cute dude A: �e cake looks beautiful, but 

should not be hard to make.

A golden retriever puppy peeking 

through a stuffed animal

A chocolate cake covered with 

whipped cream

B: What a cute golden retriever, I 

want to play with him.

A: Delicious! Do you have a recipe in 

mind for your chocolate cake with 

whipped cream topping?

Ground Truth Ground TruthEasyGen (Ours) EasyGen (Ours)

Dialogue 

Context

Image 

Description

Response

Images

Figure 7: Examples of the generated responses on PhotoChat dataset. The text highlighted in red indicates the
objects present in the image. The turns prefixed with A/B denote the given context.

EasyGen: A giraffe eating 
grass on a green grass field.

EasyGen: A kitchen with a stove 
and oven in a fireplace.

EasyGen: Two children are 
riding on skis with their parents 
in a snowy street.

EasyGen: A snowboarder flying 
through the air on a frozen 
mountain slope.

EasyGen: Two cats separated by the 
window are looking forward at the 
same time.

EasyGen: A long wooden bench 
with pictures of the world.

Figure 8: Examples of image captioning results by EasyGen.
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MultiModal Chat Group

Please tell me the information about this picture.

Generating some pictures like this.

This painting is a classic representation of a young girl from the 17th century. The girl is depicted wearing a blue 

and white dress, with a pearl earring in her ear. The painting is a masterpiece of Dutch Golden Age art, a period of 

great cultural and economic prosperity in the Netherlands. The girl in the painting is likely depicted as a middle-

class citizen, and the painting may have been commissioned as a portrait or for a specific purpose, such as a 

family crest or a religious painting. The painting is known for its attention to detail, vivid colors, and beautifully 

rendered textures. It is a true masterpiece of Dutch art, and a must- see for anyone interested in the history of art.

EasyGen (ours):

EasyGen (ours):

mPLUG-Owl:

mPLUG-Owl:

LLaVA:

LLaVA:

MiniGPT-4:

MiniGPT-4:

The image is a painting depicting a young girl, likely a Dutch girl in a yellow dress, with her hair tied up in braids 

and a gold earring. She is looking directly into the viewer’s eyes, creating an intimate connection with the observer. 

The painting is set in an indoor scene with a table and chairs visible in the background. The girl is positioned in 

front of the table, and there is an additional person standing to her left. There are also several other people in 

various positions around the room, suggesting a social gathering or a family setting.

Here are a few examples of paintings that are similar in style to the one you described: 1. “Girl with a Pearl Earring” 

by Johannes Vermeer; 2. “The Procuress” by Pieter de Hooch; 3. “The Artist’s Mother” by Gerard van Honthorst …. 

These paintings are all from the 17th century and depict women or groups of people in various settings, often with 

a focus on everyday life. They are known for their attention to detail and realistic depiction of light and shadow.

The image is a portrait of a woman wearing a blue headscarf, a yellow dress, and a pearl earring. 

She is looking to her left, and her outfit and accessories create a visually appealing contrast against 

the background. The woman’s attire and appearance suggest a sense of style and elegance.

I’m sorry, as an AI language model, I am not able to generate images. However, I 

can suggest some ideas for paintings that share a similar style to the portrait of the 

woman in the blue headscarf, yellow dress, and pearl earring by Johannes Vermeer:

The painting depicts a young woman with a pearl earring looking out into the distance. The woman is 

wearing a yellow dress with a blue and white headband. The background is a mix of blue and green, 

with a few trees visible in the distance. The overall mood of the painting is peaceful and contemplative. 

The painting is likely a representation of a woman reflecting on her thoughts or feelings.

Here are some pictures that resemble the painting, featuring young girls with their hair up in braids and 

wearing gold earrings: A young girl in a yellow dress and braided hair, looking directly into the viewer’s eyes. 

Another young woman with her hair in similar braid styles, wears a white dress with gold accents, and has a 

gold necklace. Two girls in matching yellow outfits, with braiding and gold jewelry, standing together and 

looking into each other’ s eyes, creating a warm and inviting atmosphere.

Figure 9: In this case study, for the first question, EasyGen can give an accurate answer including the background
information of the image. With the image generation ability of BiDiffuser, EasyGen can generate visual responses.
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MultiModal Chat Group

Where can I see this object appeared in this image?

I plan to travel here, what should I pay attention to?

EasyGen (ours):

mPLUG-Owl:

LLaVA:

As you’re looking at a rendering of an iconic white and gold statue of a woman in a field, pay attention to the 
details of the sculpture, the sky, and the surroundings. The statue is situated in a green field, which provides a 
picturesque and serene atmosphere. The sky in the background is blue, suggesting a clear and sunny day. 
To fully appreciate the beauty and significance of the statue, it’s crucial to observe its detail, size, and the 
overall composition of the image. The statue may depict a woman, an important figure in history, or a 
symbol of liberty and freedom. Additionally, pay attention to the field’s surroundings, such as the grass, 
vegetation, and any other elements that contribute to the overall aesthetic.

When visiting the Statue of Liberty, there are a few things you should keep in mind: 
1. The Statue of Liberty is a colossal neoclassical sculpture on Liberty Island in New York Harbor within New York City, 
United States. It was a gift from the people of France to the people of the United States and was dedicated on October 28, 
1886, to commemorate the centennial of the signing of the United States Declaration of Independence. 
2. The statue is 301 feet (92 meters) tall, including its pedestal and base, and is made of iron and steel. It was designed by 
the French sculptor Frederic Auguste Bartholdi and the American architect Emmanuel Louis Masqueray. 
3. To get to the Statue of Liberty, you can take a ferry from Battery Park in Lower Manhattan. There are several ferry 
services that offer tours to the statue, and it’s important to plan ahead and book your tickets in advance to avoid long 
lines. Once you’re on Liberty Island, you can take an elevator or stairs to the top of the pedestal, where you’ll have a 
stunning view of 
4. New York Harbor and the surrounding city skyline. It’s important to note that the pedestal is closed to visitors, but you 
can still get a close-up view of the statue from the observation deck. 
5. Be sure to check the weather forecast before your visit, as the statue can be closed due to high winds or other inclement 
weather conditions. And don’t forget to bring your camera to capture the stunning views and memorable moments!

When planning a trip to visit the Statue of Liberty, there are several things you should pay attention to: 
1. Tickets: You will need to purchase tickets in advance to visit the Statue of Liberty and Ellis Island. You can 
do this through the official Statue of Liberty National Monument website or through authorized ticket sellers. 
2. Accessibility: The Statue of Liberty is accessible via ferry from Battery Park in Lower Manhattan. There are 
also guided tours available, which can provide more information about the history and significance of the 
statue. 
3. Closed areas: Some areas of the Statue of Liberty, such as the pedestal and the crown, are closed to visitors 
due to safety concerns. Make sure to check the official website for the most up-to-date information on 
accessibility and restrictions. 
4. Clothing and footwear: Wear comfortable shoes and dress appropriately for the weather, as you will be 
walking and standing for extended periods of time.

The Statue of Liberty is located in New York City, United States. It is a famous landmark and 
tourist attraction, and you can see it in person by visiting Liberty Island in New York Harbor.

EasyGen (ours):

mPLUG-Owl:

LLaVA:

You can see this blue and white 3D rendering of the Statue of Liberty located in the United States. 
The image features an artistically detailed representation of the famous landmark, which stands tall 
and proud in the skyline. The statue represents the ideals of freedom, democracy, and human rights. 
The scene is captured in a blue sky, emphasizing the beauty and grandeur of the iconic structure.

You can see the Statue of Liberty in the image, standing tall and proud in front of a blue sky.

Figure 10: In this case study, for the first question, EasyGen can give an accurate answer, but the responses of the
other two models are a bit biased. For the second question, EasyGen and LLaVA both give reasonable advice.
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How can the girl improve her working environment?

In the image, the young girl is sitting in a room with a laptop in front of her, which suggests that she 

might be working or studying. To improve her working environment, she can consider several factors: 

1. Ergonomics: Ensure that the laptop is placed at eye level or slightly below, and the desk is at a 

comfortable height for her to maintain a neutral posture. Adjustable furniture like a desk or a chair 

can help achieve a comfortable working height. 

2. Lighting: Ensure that the room is well-lit, with natural light or artificial lighting to minimize eye 

strain and improve focus. 

3. Organization: Keep the room clean and organized, with important items within easy reach. This 

can help maintain focus and prevent distractions. 

4. Comfortable environment: Creating a comfortable environment, such as a dedicated workspace 

separate from her bedroom, can help establish boundaries and promote productivity. 

5. Time management: Establish a routine and allocate specific time slots for studying or working on 

her laptop. This can help her stay on track and avoid procrastination. 

By implementing these suggestions, the girl can enhance her working environment and achieve 

better focus, productivity, and overall comfort while working on her laptop.

EasyGen (ours):

mPLUG-Owl:

MiniGPT-4:

To improve her working environment, the girl could consider several options: 

1. Organize her space: Ensure the area where she is working is clean, uncluttered, and well-lit. Remove 

distractions such as toys or other items that might cause her to lose focus. Arrange her books and laptop 

in a manner that is easy to access and comfortable for her to work in. 

2. Create a designated work area: Set up a designated space for her to work, such as a desk, table, or a 

specific corner in the living room. This helps her maintain her focus and minimize distractions. 

3. Provide a comfortable chair and proper lighting: Select a chair with good back support and proper 

ergonomics to ensure she is comfortable while working. Lighting should be bright and evenly distributed 

to minimize shadows and glare. 

4. Set reasonable work hours: Set a reasonable time limit for her to work, and let her know when it’s time 

to take a break. This can help her maintain focus and minimize fatigue. 

By creating a well-organized, comfortable, and productive working environment, the girl can improve her 

focus and efficiency while minimizing distractions during her time spent studying and doing homework.

There are several ways the girl can improve her working environment. One way is to make sure her desk and 

chair are comfortable and adjustable to her height. Another way is to have a clean and organized workspace, 

so she can easily find what she needs. Additionally, she could have a good lighting system to help her see her 

work better. Finally, she could have a cushion or pillow to sit on to help reduce fatigue.

InstructBlip:

The girl in the image can improve her working environment by organizing her surroundings and creating 

a designated study area. To achieve this, she could separate the laptop from other items in the room and 

create a consistent workspace. This can help her maintain focus and reduce distractions, which can 

ultimately enhance her productivity and creativity. Additionally, using a comfortable chair and positioning 

the laptop at a suitable height can help prevent eye strain and promote better posture during long 

periods of work. Using a calm atmosphere with adequate lighting and placing the laptop away from 

windows or other sources of glare can also aid in ensuring a more conducive working environment.

MultiModal Chat Group

Figure 11: From this example, we can find that the response from EasyGen is more comprehensive and coherent.
This shows EasyGen can give reasonable suggestions based on the given image.
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EasyGen

I like the flowers in this picture. Please 

introduce these flowers.

Show me some close up pictures 

about hydrangeas with pink petals.

The flowers in the picture are blue hydrangeas. 

Hydrangeas are a popular flowering plant that 

are known for their large, showy flowers and 

clusters of small, delicate flowers in shades of 

pink, blue, and white. The blue hydrangeas in the 

picture are likely the “Hydrangea macrophylla” 

variety, which is known for its large, cone-

shaped flowers and blue or pink petals. These 

flowers are often used in floral arrangements 

and as a decorative element in landscap

Figure 12: Example of multimodal response generation.

EasyGen

What is the object in the picture and who 

invented it?

What other things did he invent?

Wow, I am interested in phonograph, 

please introduce it and show me some 

picture about it.

The object in the picture is an old 

incandescent light bulb, which was invented 

by Thomas Edison.

In addition to the incandescent light bulb, 

Edison also invented numerous other things, 

including the electric motor, the 

phonograph, and the first practical electric 

lighting system. He was recognized as one of 

the most prolific inventors in history, with 

over 1,000 patents to his name.

A phonograph, also called a record player, is 

an apparatus that plays recorded sound 

using a disk or cylinder of grooved media, 

called a record or a cylinder. The record is 

placed onto a turntable, which is connected 

to a motor that rotates the record at a 

specific speed ….

Here are some possible pictures:

Figure 13: Example of multimodal response generation.
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