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Figure 1: Comparison between vanilla 3DGS and our CDC-GS on the rendering quality and distri-
bution of Gaussian primitives. CDC-GS allocates Gaussian primitives in a more efficient fashion,
using more primitives modeling complex region and less to model plain area, and thus significantly
improves the rendering quality with a similar level of primitive number.

Abstract

The essence of 3D Gaussian Splatting (3DGS) training is to smartly allocate Gaus-
sian primitives, expressing complex regions with more primitives and vice versa.
Prior researches typically mark out under-reconstructed regions in a rendering-
loss-driven manner. However, such a loss-driven strategy is often dominated by
low-frequency regions, which leads to insufficient modeling of high-frequency
details in texture-rich regions. As a result, it yields a suboptimal spatial alloca-
tion of Gaussian primitives. This inspires us to excavate the loss-agnostic visual
prior in training views to identify complex regions that need more primitives to
model. Based on this insight, we propose Complexity-Density Consistent Gaussian
Splatting (CDC-GS), which allocates primitives based on the consistency between
visual complexity of training views and the density of primitives. Specifically,
primitives involved in rendering high visual complexity areas are categorized as
modeling high complexity regions, where we leverage the high frequency wavelet
components of training views to measure the visual complexity. And the density
of a primitive is computed with the inverse of geometric mean of its distance to
the neighboring primitives. Guided by the positive correlation between primitive
complexity and density, we determine primitives to be densified as well as pruned.
Extensive experiments demonstrate that our CDC-GS surpasses the baseline meth-
ods in rendering quality by a large margin using the same amount of Gaussians.
And we provide insightful analysis to reveal that our method serves perpendicularly
to rendering loss in guiding Gaussian primitive allocation. Our implementations
are available on our project page: cdc-gs.github.io.

*Corresponding author. E-mail: jiangjunjun@hit.edu.cn.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://cdc-gs.github.io

1 Introduction

3D reconstruction, as a long investigated task of both computer vision and compute graphics com-
munities, aims to build 3D representation of the scene from a batch of posed input views, which
can be utilized for novel view synthesis, geometry reconstruction, semantic understanding and other
downstream tasks. 3D Gaussian Splatting (3DGS) [1] has emerged as the leading paradigm for
this task, offering a compelling combination of photorealistic and real-time rendering performance.
Benefiting from explicitly modeling the scene with a set of Gaussian primitives, 3DGS is friendly
to graphical rasterization pipeline, and thus being far more efficient than Neural Radiance Fields
(NeRF) [2] in novel view synthesis. Recent researches have revealed that the allocation of Gaussian
primitives is the key to high quality 3DGS representation [3, 4, 5, 6], referring to the densification
and pruning of Gaussian primitives in 3DGS training process.

The training of 3DGS starts with a set of sparse Gaussian primitives, which are then iteratively
optimized, densified, and pruned to form a well-distributed and compact representation. Vanilla
3DGS [1] assigns the positional gradient of each Gaussian primitive to themselves as the densification
score, and mark out the coarse primitives with a densification score above the densification threshold
to be densified. While recent works have explored alternative densification scores beyond positional
gradient [7, 4, 5, 8], they are basically driven by rendering loss. Such loss-driven densification
schemes typically struggle with expressing high-complexity visual details, where the rendering loss
is smoothed out and fails to mark out the coarse Gaussian primitives for densification (Figure 1).
Though one can solve this problem by decreasing the densification threshold for more primitives, this
will lead to explosive growth of primitives in plain regions. These redundant primitives can barely
improve the rendering quality but hinder the rendering efficiency.

Inspired by the fact that the failure of loss-driven densification happens in high visual complexity
regions, we argue that we can specify these regions with visual prior measuring the visual complexity.
Sparse Gaussian primitives in complex regions should be densified to allocate more primitives to the
regions, while the redundant dense primitives in plain regions should be pruned for simplification
and efficiency. With this insight, we propose Complexity-Density Consistent Gaussian Splatting
(CDC-GS), which serves perpendicularly as a Gaussian primitive allocation method to existing loss-
driven ones. Our method measures the visual complexity of training views with the high frequency
component of Discrete Wavelet Transform (DWT) [9], and categorizes the primitives involved
most with rendering the high frequency areas of training views as modeling complex regions. To
measure the density of the neighboring space around a primitive, we utilize the inverse of geometric
mean of its distance to the neighboring primitives. Combining the above two measurements, we
define a loss-agnostic prior-based densification score, partitioning all primitives into four quadrants,
where the two axes are complexity and density of primitives, as shown in Figure 2. Our CDC-GS
suppresses the primitives in the left-up and right-down corner (see Figure 4a), which corresponds to
the under-reconstructed and over-reconstructed regions, respectively.

To further improve the performance of CDC-GS, we introduce a complexity-aware adaptive den-
sification threshold scheme, which adjusts the densification threshold in a primitive-wise manner.
Primitives modeling complex regions are assigned with a lower densification threshold, which helps
to allocate more Gaussians to complex regions, and vice versa.

Extensive experiments are performed on standard 3DGS benchmarks, which demonstrate that our
method substantially improves the rendering quality with the same level of primitive number compared
to baselines. We also provide insightful analysis on why the proposed prior-based primitive allocation
strategy are perpendicular to existing loss-based ones, which further advocates the soundness of our
method. To summarize our contributions,

* We propose a novel Gaussian primitive allocation scheme based on loss-agnostic visual prior, which
guides 3DGS to allocate Gaussian primitives smartly by modeling complex regions with dense
primitives and plain regions with sparse ones.

* We develop Complexity-Density Consistent Gaussian Splatting, which utilizes the wavelet
frequency prior and primitive density to detect primitives in under-reconstructed and over-
reconstructed regions for densification and pruning.

* Insightful analysis is provided to demonstrate why the proposed complexity-density consistent
prior serves as a perpendicular primitive allocation strategy against existing loss-driven methods.



2 Related Work

3D Reconstruction. The target of 3D reconstruction is to obtain high quality 3D representation
of the scene. Each time when the representation paradigm evolves always brings a new trend to
the research community. Early works use point clouds to reconstruct the scene [10, 11, 12, 13],
which remain popular these days in certain domains but struggle to recover textures, failing in novel
view synthesis. Alternatively, Neural Radiance Fields (NeRF) [2] represents the scene as an implicit
radiance field encoded in a multi-layer perceptron (MLP). While showing significant advantage in
novel view synthesis against prior methods, NeRF based reconstruction methods have bottleneck in the
efficiency of training and rendering [14, 15, 16, 17]. More recently, 3D Gaussian Splatting (3DGS) [1]
emerges as a new leading paradigm for 3D reconstruction, highlighted with fast training and real-time
rendering. Over time, numerous extensions have further enhanced its efficiency [8, 18, 19, 20],
compactness [21, 22, 23, 24], and robustness under challenging conditions [25, 26, 27, 28, 29]. Using
a set of 3D Gaussian primitives expressing the scene, 3DGS can be adopted to extensive tasks,
such as novel view synthesis [30, 31, 32, 33], geometric reconstruction [34, 35, 36, 37, 38], 3D
segmentation [39, 40, 41], and semantic understanding [42, 43, 44, 45].

Primitive Allocation for 3DGS. To obtain high quality 3DGS representation of the scene, it is
vital to correctly allocate Gaussian primitives over the space. The allocation is expected to use
more primitives to model the complex regions and less primitives to model the plain regions. For
primitive densification, prior works propose different densification scores to measure if a primitive
is modeling an under-reconstructed region. Vanilla 3DGS [1] adopts high positional gradient of
primitives centers derived from the rendering loss as the densification score. Absgs [4] takes a step
forward by calculating the sum of pixel-wise absolute gradient, addressing the conflicts in gradient
direction of vanilla 3DGS [1]. Revising-3DGS [7] utilizes the primitive-involved high rendering
error instead, which differs from positional gradient but is still driven by the rendering loss. Taming-
3DGS [8] proposes a densification score mixing primitive attributes and positional gradient. All of
these methods specifies under-reconstructed primitives in a loss-driven manner, thus they are either
struggled with under-reconstruction in complex regions (vanilla 3DGS, Revising-3DGS, Taming-
3DGS) or over-reconstruction in plain regions (Absgs). On the other hand, redundant primitives
are pruned to slim the primitives. The most widely adopted metric is to prune primitives with low
opacity [46, 47, 48]. There are also methods pruning the primitives with over-dense neighbors [3, 21].

Frequency-based 3DGS Densification. Since our work use frequency information of training views
to guide the allocation of Gaussian primitives, we specifically introduce the works investigating the
use of frequency theory for primitive allocation. FreGS [49] improves 3DGS optimization with loss
in frequency domain, but at the cost of explosive primitive growth, resulting in two times of primitives
compared to 3DGS. Although FDS-GS [50] proposes a frequency-aware density control method, they
mainly focus on the connection between density and scale of primitives and do not really investigate
how visual frequency impacts 3DGS. Compared to them, our method explicitly utilize the frequency
information in training views as a prior to guide the densification, addressing the under-reconstruction
and over-reconstruction in a simple and efficient scheme. Furthermore, we provide experimental
evidence to prove that our method perpendicularly discovers under-reconstructed Gaussian primitives
ignored by prior loss-driven method, which further emphasizes the superiority of our method.

3 Method

In this section, we introduce our CDC-GS in detail. In Section 3.1, we first review preliminaries
about 3D Gaussian Splatting and Discrete Wavelet Transform. In Section 3.2, we introduce how
CDC-GS computes the complexity and density of Gaussian primitives. In Section 3.3, we explain
how CDC-GS utilizes complexity-density consistency to specify coarse and redundant primitives
in under-reconstructed and over-reconstructed regions, which is the key of our method to allocate
Gaussian primitives based on loss-agnostic visual prior.

3.1 Preliminary
3.1.1 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) represents a 3D scene using a set of Gaussian primitives {G; }¥ ;,
where N is the number of primitives. Each primitive G; is a 3D Gaussian distribution, parameterized
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Figure 2: Overview of our Complexity-Density Consistent Primitive Allocation. We extract
complexity maps for training images using DWT and back-projected the complexity maps onto
Gaussian primitives to parameterize their complexity, while the density of each primitive is estimated
with geometrical statistics about its neighbors. By densifying the primitives with low density vs. high
complexity and pruning the primitives with high density vs. low complexity, CDC-GS adaptively
allocates Gaussian primitives across the scene based on complexity of the space.

by its center u; € R>, opacity o; € R', a full 3D covariance matrix ¥; € R3*3, and Spherical
Harmonic (SH) coefficients i € R**16 encoding anisotropic appearance. The probability density
function of the primitive is defined as,

Gila) = oxp (50— )5 o = ). m

where 2 € R3 is an arbitrary point in 3D space. For rendering, primitives are projected to the image
plane as 2D Gaussians G727, and the color C(z') € R of a pixel 2’ € R? is rasterized as,

P Jj—1
C(x') = chajTj, a; =0;GIP (), T, = H(l — ayg), )
j=1 k=1

where P is the number of primitives covering pixel 2’, and ¢; is the response of cjh to the current
camera view. The optimization of primitives is supervised with color rendering loss [1].

Besides the numerical optimization for primitives, the vanilla 3DGS adopts adaptive primitive
allocation to express the scene better. Primitives receiving a positional gradient beyond threshold 74
from the rendering loss are recognized as underfitting, and are densified to allocate more primitive
to the region. Meanwhile, primitives possessing low opacity contribute little to modeling the scene
according to Equation 2, which are pruned to reduce the primitive redundancy.

3.1.2 Discrete Wavelet Transform

2D Discrete Wavelet Transform (DWT) [9] is a potent tool to analyze frequency information of
images. DWT decomposes an image into multiple sub-bands using a pair of orthogonal low-pass
and high-pass filters, denoted by Fi and Fy, respectively. Given a one-channel image I € R7*W
where H and W denote height and width of the image, one-level 2D Haar wavelet decomposition is

formulated as,
ILL ILH F
DWT(I) = [IHL IHH:| = l:F]I:I

Here, I'-, I"H HL THH are four sub components of I decomposed by DWT, where I denotes
the low-frequency structure (e.g., plain areas) and the rest three components correspond to high-
frequency structure of the image (e.g., complex areas and edges). Moreover, DWT is an in-
vertible transformation, which means one can obtain image I with its four sub-components, as
I = IDWT(J", M1 HE pHE)

] [T A, 3



3.2 Complexity and Density of Gaussian Primitives

Before introducing how our CDC-GS allocates Gaussian primitives with complexity-density consis-
tency prior, we first define the complexity and density of each Gaussian primitive in this section.

The complexity of a primitive is to measure whether it’s modeling a complex region, and we excavate
this information from the frequency information of training views. We apply DWT to each training
view I and break it down into four sub-components, as defined in Equation 3. By removing the low
frequency component /™ and retain the other three components, we extract the high frequency part
of image /. And we define the complexity map of image I as,

E; = IDWT(0, /™1, ML HH) 4)

which back projected to Gaussian primitives to compute the complexity of each primitive. Specifically,
given a primitive G; involved to rendering pixel 2’ with weight w;(z’) = a;T;, the complexity of G;
with respect to ' is defined as y(G;,2’) = Ep(2’) - w;(z)/ maxf:1 (w;(x")), where P takes the
same meaning as in Equation 2 and the max operator enumerates all the primitives covering z’ as
normalization. Considering all (G}, -), which is to enumerate all pixels covered by G; in all training
views {I}, we take the maximum complexity to represent the complexity of G;, which is formulated
as,

r,e{1y \a'el,

The definition of «y ensures that the complex areas in training views mainly affect the complexity of
the primitives involved most in their rendering, and suppress their influence to the invisible primitives
from the view.

I(G;) = max <max (W(th’)) . )

Complexity alone cannot affirm if a primitive is in a under-reconstructed region or an over-
reconstructed region. For example, high complexity region filled with dense Gaussian primitives
is probably well reconstructed, while sparse primitives in such region typically indicate under-
reconstruction, which can be ignored by loss-driven indicators such as gradient when the rendering
loss is smoothed out with the high-frequency details. It’s of necessity to cooperatively take both
complexity and density of primitives to specify under-reconstruction and over-reconstruction. To
estimate the density of the neighboring space of a primitive GG;, we compute the inverse of geometric
mean of the center distance between G; and its neighbors, formulated as,

[N

(G = | [T I — mll : (6)
JEN;

where N is the set of nearest neighbors of G;. Both formulations are empirically validated to yield
more stable and efficient primitive allocation (see Appendix B.1-B.2).

3.3 Complexity-Density Consistent Primitive Allocation

With the complexity and density of Gaussian primitive defined in Section 3.2, we can now introduce
how the proposed CDC-GS allocates primitives based on them. As already discussed, the complexity
and density of primitive are expected to share consistency in well-reconstructed region, otherwise it
could indicate possibility of under-reconstruction or over-reconstruction. To formulate the consistency
between the complexity and density of primitive GG;, we use the production of their normalized value,

F(Gl) - 1_\meam \IJ(GJ - \Ijmean
si= =% T, @
std std
where 'nean, Ymean are the mean of complexity and density of all primitive respectively, and s, Wq
denote the corresponding standard derivation. Positive value of s; indicates the consistency of
complexity and density, while low complexity vs. high density and high complexity vs. low density
results in negative s;, indicating over-reconstruction and under-reconstruction respectively.

Our complexity-density consistency serves as a perpendicular complementary to existing primitive
allocation method. Denoting primitives selected densified in a certain optimization step as M,
CDC-GS decomposes M into Mess and Mg, where M = Migs U Mge. Moss refers to the
primitives selected by existing loss-driven densification method (e.g., positional gradient), and Mg



Table 1: Quantitative comparison on novel view synthesis. Results are reproduced with the official
implementation of baselines. Bold indicates the best results. Our method consistently achieves
superior performance across datasets with a fewer or comparable number of Gaussian primitives.

Method MipNeRF 360[30] Tanks & Temples[51] Deep Blending[52]
PSNR 1T SSIM T LPIPS | #GS | PSNR T SSIM 1T LPIPS | #GS | PSNR 1 SSIM 1 LPIPS | #GS |
3DGSI1] 2779  0.826 0201 2.59M 2379 0853 0.170 1.57M 29.73 0906 0.238 247M
Taming-3DGS[8] 2791 0.821 0211 2.53M 2432 0862 0.157 1.60M 29.73 0908 0.234 2.07M
Ours (0.01) 28.02 0.836 0.183 2.53M 2442 0.866 0.149 1.60M 29.84 0909 0234 2.07M
AbsGS[4] 27.72 0.835 0.169 4.06M 2322 0856 0.152 1.90M 29.28 0.903 0233 3.13M
Mini-Splatting-D[3] 27.78  0.841  0.163 4.6IM 2331 0855 0.141 427M 2993 0907 0210 4.63M
Pixel-GS[5] 27.84 0.835 0.176 527M 23.66 0856 0.150 4.50M 2895 0.896 0.247 4.65M
Ours (0.02) 28.11 0.842 0.164 3.95M 2447 0.867 0.140 256M 30.03 0912 0218 249M

denotes the primitives selected by the proposed complexity-density consistency. For the primitives in
under-reconstructed regions, we randomly sample up to pq - N of them for densification, where the
sampling probability is determined with |s;|. For the primitives in over-reconstructed regions, we
randomly sample up to p,, - IV of them to be pruned, where the sampling probability is determined
with o;. The original pruning strategy of 3DGS at every 100 steps is removed, which is alternated to
pruning all primitives with opacity below 0.1 for every 3000 steps.

To further improve the quality of M, relieving more primitives from under-reconstruction, we
propose to adjust the densification threshold of each Gaussian primitive based on its complexity. The
complexity-aware densification threshold is defined as,

(1) = Tiow + (Tupp = Tiow) - [1 = o (A-T)], (®)

where Tjoy and 7p, are the lower and upper bound of the densification threshold, respectively. o
refers to the Sigmoid function, and A is a hyper-parameter.

4 Experiments

4.1 Experimental Settings

Dataset. We evaluate our method on the real-world datasets widely adopted in novel view synthesis.
Specifically, we follow the standard protocol in vanilla 3DGS [1], using 9 scenes from the MipNeRF-
360 [30] dataset, the playroom and drjohnson scenes from Deep Blending [52] dataset, and the train
and truck scenes from Tanks & Temples [51] dataset. The preprocess of training data also strictly
follows vanilla 3DGS [1].

Metrics. We report quantitative results with three standard metrics: Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Metrics (SSIM) [53] and Learned Perceptual Image Patch
Similarity (LPIPS) [54]. All metrics are computed on test views using the original evaluation protocol.
We report the average score across all scenes for each dataset. Each experiment is repeated three times
with different seeds, and we report the average performance across runs to account for randomness.

Baselines. We compare our method with representative methods investigating Gaussian primitive
allocation, including vanilla 3DGS[1], Taming-3DGS[8] (constrained to the same number of primi-
tives to our pg = 0.01 version), AbsGS[4] (with the densification threshold set to 0.0004, the dense
version of [4]), Mini-Splatting[3] (densification-only version without pruning), and Pixel-GS[5]. All
baseline results are reproduced using the official implementations and default configurations to ensure
fairness of experiments.

Implementation Details. Our method is implemented on top of the official 3DGS codebase [1].
We extract complexity map of input views using one-level Haar DWT. And the density of Gaussian
primitives is computed with 3 nearest neighbors, which is to say |A;| = 3 for all primitives. We
set pg = 0.01 and p, = 0.01 by default. We also evaluate an additional setting by increasing
the splitting ratio to pg = 0.02. Our complexity-aware densification threshold is configured with
Tiow = 1.5 x 1074, Tupp = 2 X 10=%* and \ = 6. Other hyper-parameters are consistent with the
vanilla 3DGS [1]. All experiments are performed on a single NVIDIA RTX 3090 GPU.
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Figure 3: Qualitative comparison on novel view synthesis results. Compared to baseline methods,
our method yields sharper textures, more faithful structures, and fewer artifacts without increasing
primitives, which is attributed to our CDC strategy that improves the allocation of primitives.

4.2 Comparison to Baseline Methods

Quantitative Comparison. We report quantitative comparison between our CDC-GS and baseline
methods in Table 1, where methods with approximate primitive number are grouped together for
fair comparison. In the sparse group, CDC-GS (pq = 0.01) consistently outperforms baselines,
demonstrating superior fidelity and perceptual quality without increasing the number of primitives.
In the dense group, we set pg = 0.02 to match the primitive number of baselines, ensuring a fair
and meaningful comparison. While utilizing fewer primitives in general, CDC-GS achieves the best
rendering quality across all benchmarks. The results further validate that our proposed complexity-
density consistent allocation strategy enables more precise modeling of intricate structures while
improving primitive allocation efficiency.

Qualitative Analysis. We show qualitative comparisons corresponding to Table 1 across various
scenes in Figure 3. Our method consistently presents more detailed textures, cleaner structural
boundaries, and fewer artifacts. The results advocates that our method success to discover the
under-reconstructed regions that the baseline methods tend to overlook.

4.3 CDC as a Perpendicular Densification Indicator to Rendering Loss

In this subsection, we reveal that the proposed complexity-density consistency serves as a perpendic-
ular indicator against the loss-driven ones to specify the under-reconstructed regions.
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Figure 4: Analysis for complexity-density consistency on the scene “kitchen” of MipNeRF-360
dataset [30]. (a) The scatters depict the primitives at the end of densification (15k iteration) for
3DGS and our CDC-GS, with each primitive localized by its density and complexity. The color of
each primitive indicates its consistency score s; (see Equation 7). The overall Pearson correlation [55]
of complexity and density of primitives is shown at top-right. Color in the two scatters are normalized
and aligned to ensure the same color corresponds to the same consistency score value. (b) Variation
of complexity-density Pearson correlation over the densification progress (600—15k iteration).

In Figure 4a, we present two scatter diagrams for vanilla 3DGS [1] and CDC-GS, with all Gaussian
primitives represented by their complexity and density. The scatters show the degree of the primitives
in the optimized 3DGS model of scene “kitchen” matching the rule of complexity-density consistency.
While vanilla 3DGS exhibits little consistency in complexity and density, CDC-GS significantly
reduces the primitives in the left-up and right-down corner, which indicates the most inconsistent
primitives are remove with our proposed primitive allocation strategy. Accompanied with Table 1 and
Figure 3, we can draw the conclusion that the reduction of primitives in these regions do contribute to
the quality of 3DGS model.

Moreover, in Figure 4b, we also provide the variation of complexity-density consistency along
the training process of CDC-GS and all the baselines on the scene “kitchen”. We use Pearson
correlation [55] to evaluate the overall consistency between the complexity and density over all
Gaussian primitives, which is to evaluate the degree of scatters in Figure 4 constrained in the first and
the third quadrant. While CDC-GS performs a consistent increase in the consistency, baseline methods
fail to largely improve the consistency alone the training process. Notably, slight improvement in the
consistency of the baseline methods can be observed along the training process, which demonstrates
that the complexity-density consistency naturally relates to the optimization of 3DGS, but struggles
to improve without explicit manipulation. This advocates that the complexity-density consistency is
perpendicular to loss-driven densification indicators.

To further consolidate this conclusion, we categorize the primitives in of vanilla 3DGS (left of
Figure 4a) into two groups with the positional gradient of primitives and the densification threshold,
which is presented in Figure Sa. We perform the same operation to AbsGS [4] and show the result in
Figure 5b. The color of primitives indicates their positional gradient. Patterns can be barely drawn
by splitting the primitives with the densification threshold, demonstrating that coarse primitives
recognized with positional gradient (Mg, see Section 3.3) doesn’t contain the primitives recognized
with complexity-density consistency (M. q.), which is to say that Mg, shares little cross with M.
We believe the above experiment results are convincing enough to support the perpendicularity of
complexity-density consistency against loss-driven densification indicators.

4.4 Ablations

We perform ablation studies on the Tanks & Temples dataset [S1] using the vanilla 3DGS [1]
as backbone to assess the individual contributions of the proposed Complexity-Aware Adaptive
Threshold (CAAT) and Complexity-Density Consistency (CDC) introduced in Section3.3. Result is
summarized in Table 2.

Ablation on CAAT. CAAT improves the reconstruction quality by manipulating densification
threshold with complexity of Gaussian primitives. Slight increase in the number of primitives is
observed because of aggressive densification in complex areas.
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Figure 5: Perpendicularity between complexity-density consistency and positional gradient. We
breakdown Figure 4a, categorizing the Gaussian primitives into two groups by if their positional
gradient are above the densification threshold or not. And we show the same statistical information for
AbsGS in Figure 5b. Color of primitives indicates the normalized magnitude of positional gradient.
Primitives are categorized in a complexity-density consistency agnostic way, advocating that the
proposed complexity-density consistency is perpendicular to the loss-driven positional gradient.

Table 2: Ablation study on Tanks & Temples dataset. We evaluate the contribution of the proposed
modules: Complexity-Aware Adaptive Threshold (CAAT) and Complexity-Density Consistency
(CDCQ). The full method (CDC-GS) combines both.

Method PSNRT SSIMT LPIPS| #GS |
3DGS 23.79 0.853 0.170 1.57TM
3DGS + CAAT 24.00 0.859 0.163 1.70M
3DGS + CDC 24.22 0.862 0.153 1.51IM

CDC-GS (Ours) 24.42 0.866 0.149 1.60M

Ablation on CDC. CDC achieves a substantial gain by simultaneous densification in under-
reconstructed region and pruning in over-reconstructed region. Improvement in visual quality
demonstrates that the proposed CDC strategy successfully mitigates the under-reconstructed problem
in vanilla 3DGS[1], while the concurrent reduction of Gaussian primitives confirms its effectiveness
in eliminating unnecessary primitives in low-complexity regions.

Full Method. When combining CAAT and CDC, the two modules act synergistically: CAAT intro-
duces complexity-aware densification to refine local details, while CDC enforces global complexity-
density consistency by adjusting the primitive distribution according to the complexity of the scene.
As aresult, CDC-GS significantly improve the reconstruction quality while maintaining a Gaussian
primitive count comparable to the vanilla 3DGS[1], demonstrating the strength of the proposed
Gaussian primitive allocation strategy.

5 Conclusion

In this paper, we propose CDC-GS, a novel Gaussian primitive allocation method, which is perpen-
dicular to existing loss-driven ones, such as the ones using positional gradient. Our method explores
the under-reconstructed region with high complexity and low density, and the over-reconstructed
region with low complexity and high density. Extensive experiments are performed to demonstrate
the superiority of our method and its perpendicularity to existing primitive allocation methods. It’s
power is fully played as a complementary to existing loss-driven primitive allocation methods. We
believe it is valuable for finding the sub-optimally reconstructed regions ignored by existing methods
in a prior driven manner.

Limitations. While improving Gaussian primitive allocation from an orthogonal perspective, our
method still requires existing loss-driven cues (e.g., positional gradients), as the visual prior itself
lacks direct awareness of reconstruction quality. In future work, we plan to further investigate how
visual priors influence primitive allocation, toward more coherent and adaptive allocation strategies.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We substantiate all the claims made in the abstract and introduction through
corresponding experimental results.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We provide a discussion of the limitations of our method in SectionS5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We present the complete set of assumptions in the introduction, outline the
validation methodology in the Section method, and verify the correctness of our assumptions
through experiments in experiments, especially in Section4.3.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed explanation of our method in the section method and
describe the implementation details in Section4.1.
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Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available datasets described in Section4.1, and the code will
be released in the future.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specifically emphasize the experimental details in Section4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Although the variance has minimal impact in our experiments, we repeat each
experiment three times and report the average to mitigate potential errors.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify in Section4.1 that our experiments were conducted using an
NVIDIA 3090 GPU.

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics in all respects.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research focuses on reconstructing real-world scenes and does not involve
any direct societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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12.

13.

Answer: [NA]

Justification: Our research focuses on reconstructing real-world scenes and does not involve
high risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite all the sources of the existing assets used in our work in the
references.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our work does not involve the release of any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing experiments or studies with
human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve related research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: All the content in our paper is written by ourselves and does not involve the
use of LLMs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Impletation Details

A.1 Algorithmic Implementation of CDC-GS

Algorithm 1 provides a detailed pseudocode of the training pipeline in CDC-GS. Built upon the vanilla
3DGS [1] framework, our procedure starts from a sparse initialization of Gaussian primitives and
proceeds with joint optimization and CDC-guided density control across iterations. This pseudocode
comprehensively implements the pipeline described in Section 3 of the main paper, integrating both
loss-driven and prior-based cues for efficient and high-fidelity Gaussian allocation.

A.2 Haar-based DWT Implementation

In our method, the visual complexity of each training view is extracted using a single-level 2D
Discrete Wavelet Transform (DWT)[9]. We adopt the Haar wavelet basis due to its simplicity and
efficiency. The filtering process is separable and implemented as two 1D convolutions along height
and width, as defined in Equation 3 of the main paper, where Fi. = [1,1]/v/2, Fy = [-1,1]/v2
are the 1D low-pass and high-pass Haar filters. The resulting four subbands correspond to different
frequency directions. Each 2D kernel derived from outer products of filters is summarized in Table 3.

Table 3: 2D Haar DWT convolution kernels derived from filter outer products.

Subband LL LH HL HH

1 1 -1 1 -1 -1 1 -1
Kernel K % 3 3 3

1 1 —1 1 1 1 —1 1

To compute the visual complexity of each image, we construct a high-pass filter by discarding the non-
directional low-frequency subband I, and reconstruct the complexity map as defined in Equation 4
of the main paper. This effectively preserves only the high-frequency directional responses (vertical,
horizontal and diagonal), enabling the resulting map E to serve as a spatially-varying representation
of complexity.

B More Ablations

B.1 Comparison to Classical High-Pass Filters
To validate the effectiveness of our DWT-based design, we replace our DWT-based frequency

estimation with three classical high-pass filters: Sobel[56], Scharr[57] and Laplacian[58], defined in
Table 4, then integrate each into the CDC-GS framework without any other modifications.

Table 4: High-pass filter kernels used for comparison.

Sobel Scharr Laplacian

As shown in Table 5, all methods achieve similar performance in rendering quality, demonstrating the
robustness of our CDC-GS framework to the choice of complexity estimator. Notably, the DWT-based
variant slightly outperforms the others in both rendering quality and Gaussian compactness. We
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Algorithm 1 CDC-GS Optimization and Density Control

Input: w, h: width and height of the training images

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

M <+ StM Points
S, C, A < InitAttributes()
140
(U, JUH AL THEY « DWT(T)
E « IDWT(0, /M1, [HL THH)
while not converged do
V, I <~ SampleTraining View()
I < Rasterize(M,S,C, A, V)
L « Loss(I, 1)
M,S,C, A+ Adam(VL)
if IsRefinementlteration(z) then
TI' «+ Complexity(M, S,C, A, E)
¥ < Density(M, S, C, A)
s; < ConsistencyScore(T", )
Compute sampling probabilities:
dens oc |, [ if Ty > pp, ¥; < pig
Py o if Ty < pr, U > pg
Sample Mcqc_density ~ Multinomial (p%", pg - N)
Sample Mcgc_prune ~ Multinomial(pP™", p,, - V)
for all Gaussians (u, >, ¢, ) in (M, S, C, A) do
if (14,2, ¢, @) € Mcdc_prune then
RemoveGaussian(u, 3, ¢, )
end if
if (i mod 3000 = 0) and (a < 0.1) then
RemoveGaussian(u, X, ¢, )
end if
7(T') + AdaptiveThreshold(T")
Migss {Gl | VpLz > T(FZ)}
Mdensify — Mloss U Mcdc_densify
if (1, %,c,a) € Mdensify then
if | X|| > 7 then
SplitGaussian(u, 2, ¢, o)
else
CloneGaussian(u, 23, ¢, @)
end if
end if
end for
end if
14—1+1
end while
return Optimized Gaussian primitives (M, S, C, A)

> Positions

> Covariances, Colors, Opacities
> Iteration Count

> Eq.3

> Eq.4

> Camera V" and Image 1
> Rendered Image I

> Loss

> Backprop & Step

> Eq.5
> Eq.6
> Eq.7

> High-complexity, Low-density
> Low-complexity, High-density

> CDC Pruning

> Periodic Pruning

> Eq.8
> Gradient-based

> Over-reconstruction

> Under-reconstruction

attribute this to the multi-scale and multi-directional nature of the DWT, which enables more accurate
modeling of visual complexity.

B.2 Geometric vs. Arithmetic Mean

In Table 6, we compare two variants of our CDC-GS framework that differ only in how they compute
the density of Gaussian primitives. Specifically, the Arithmetic Mean variant uses the inverse of the
arithmetic mean of distances to neighboring Gaussians, whereas the Geometric Mean variant (our
default, as defined in Equation 6 of the main paper) adopts the geometric mean formulation. Both
variants are evaluated under identical settings.

Results show that using the geometric mean consistently yields slightly better rendering quality and
reduces the number of Gaussians across all benchmarks. This confirms our choice, as the geometric
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Table 5: Comparison to classical high-pass filters on MipNeRF 360 [30]. We replace our DWT-
based complexity estimation with Sobel, Scharr and Laplacian filters to construct complexity maps
for CDC-GS. Our DWT-based formulation achieves the best performance across all metrics.

Filter PSNRT SSIMT LPIPS| #GS|

Sobel 27.96 0.834 0.186 2.60M
Scharr 27.97 0.835 0.186 2.59M
Laplacian 27.96 0.835 0.184 2.54M
DWT 28.02 0.836 0.183 2.53M

mean provides a more sensitive estimation of local density, especially for short distances. We adopt
the geometric mean formulation throughout the main paper.

Table 6: Geometric vs. Arithmetic Mean in density computation. We compare two variants of
CDC-GS that differ only in whether the geometric or arithmetic mean is used for density estimation.
The geometric mean consistently yields better performance with fewer Gaussians.

MipNeRF 360[30] Tanks & Temples[51] Deep Blending[52]
PSNR T SSIM T LPIPS | #GS | PSNR 1 SSIM 1 LPIPS | #GS | PSNR 1T SSIM 1 LPIPS | #GS |

Arithmetic  27.98  0.834  0.185 2.54M 2428 0.862 0.159 1.70M 29.82 0909 0.234 2.14M
Geometric  28.02 0.836  0.183 2.53M 2442 0866 0.149 1.60M 2983 0.909 0.234 2.07M

Method

B.3 Reverse-CDC Ablation

To further examine the role of complexity—density alignment, we designed a reverse variant in which
Gaussians are densified in low-complexity & high-density regions and pruned in high-complexity &
low-density ones, thereby inverting the CDC guidance.

Table 7: Reverse-CDC ablation on MipNeRF 360 [30]. Comparing vanilla 3DGS with Reverse-
CDC shows degraded quality and increased number of Gaussians, highlighting the necessity of
complexity—density alignment.

Method PSNRT SSIMT LPIPS| #GS |

3DGS 27.79 0.826 0.201 2.59M
Reverse-CDC 27.62 0.817 0.224 2.71M

As shown in Table 7, this reverse allocation leads to a degradation in rendering quality and a larger
number of Gaussians. Although more primitives are introduced, the reconstruction becomes worse,
demonstrating that enforcing complexity—density alignment is essential for efficient modeling.

B.4 Efficiency Analysis of CDC-GS

We summarize the additional training cost introduced by the complexity and density modules. As
shown in Table 8, the average overhead is dominated by the wavelet-based complexity computation,
whereas both modules benefit from CUDA acceleration, keeping the cost practical. Although the
training time increases, the rendering speed remains identical to vanilla 3DGS, and CDC-GS achieves
higher reconstruction quality with a moderate additional cost.

C Additional Experiment Results

C.1 Extended Visualization of Complexity-Density Correlation
As a supplement to the consistency analysis in Section 4.3 of the main paper, we provide additional

visualizations of the complexity-density correlation variation on three scenes from different datasets:
the outdoor scene “garden” from MipNeRF 360 [30], “train” from Tanks & Temples [51], and indoor
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Table 8: Training efficiency analysis of CDC-GS components on MipNeRF 360 [30]. “+ Density
Only” and “+ Complexity Only” denote adding the KNN- and DWT-based modules individually.

Method Variant Training Time ~ Overhead
3DGS (baseline) 29:06 -

+ Density Only (KNN) 30:40 +1:34
+ Complexity Only (DWT) 33:19 +4:13
CDC-GS (Full, Ours 0.01) 35:36 +6:30

Complexity-Density Correlation Variation on “Garden”
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(c) Scene: Drjohnson (Deep Blending). (d) Average across all 13 scenes.

Figure 6: Complexity-density correlation variation across datasets. We show the Pearson correla-
tion between visual complexity and local primitive density over training iterations. Our CDC-GS
consistently improves and maintains this correlation, indicating stronger structural consistency com-
pared to baseline methods.

scene “drjohnson” from Deep Blending [52]. We also report the average correlation variation across
all 13 evaluated scenes.

These results in Figure 6 further validate the robustness of our CDC-GS framework in aligning
visual complexity with local density across different scenes and datasets. In contrast, baseline
methods often show unstable correlation trends or even negative correlation values, which contradict
the expected relationship between structural complexity and spatial density, leading to persistent
under-reconstruction in complex regions and over-reconstruction in simple areas.

C.2 Supplementary Qualitative Results

As presented in Tables 9—12, our CDC-GS method consistently outperforms baselines across diverse
benchmarks in terms of PSNR, SSIM, and LPIPS, while maintaining a significantly lower or com-
parable number of Gaussians. Specifically, under the same or fewer primitives, CDC-GS achieves
better fidelity in high-complexity, detail-rich regions, thanks to its frequency-guided complexity
modeling. This highlights the effectiveness of our complexity-density consistency strategy in allo-
cating primitives to structurally complex areas, offering a complementary and orthogonal benefit
to existing loss-driven methods. Our approach proves especially advantageous under constrained
Gaussian budgets, delivering improved rendering quality without sacrificing efficiency.
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Table 9: Per-scene PSNR scores across three datasets. Bold indicates the best results. Our method
consistently achieves competitive or superior results across diverse scenes.

Method MipNeRF 360[30] Tanks & Temples[51] Deep Blending[52]
Flowers Treehill Garden Bicycle Stump Kitchen Bonsai Counter Room  Train Truck Drjohnson Playroom

3DGS[1] 21.92 2286 27.88 2568 2691 3142 3247 29.18 31.81 22.07 25.51 29.37 30.09
Taming-3DGS[8] 21.81 23.08 27.78 2547 26.63 32.05 32.84 2938 32.12 22.62 26.01 29.43 30.03
Ours (0.01) 22,01 2269 28.14 2596 27.13 3218 3232 2941 3237 2261 26.22 29.61 30.06
AbsGS[4] 21.78 22.19 27.87 2576 27.04 31.48 3232 29.18 31.87 21.14 2530 28.61 29.96
Mini-Splatting-D[3] 21.89 22.59 27.80 26.00 27.46 3148 3235 28.62 31.83 2122 2539 29.40 30.47
Pixel-GS[5] 21.94 2252 27.88 2572 27.18 3192 32,60 2929 3146 21.89 25.44 28.08 29.82
Ours (0.02) 22.14 2274 2826 2599 2739 3225 3238 29.51 3233 2274  26.19 29.68 30.39

Table 10: Per-scene SSIM scores across three datasets. Bold indicates the best results. Our method
consistently achieves competitive or superior results across diverse scenes.

Method MipNeRF 360[30] Tanks & Temples[51] Deep Blending[52]

Flowers Treehill Garden Bicycle Stump Kitchen Bonsai Counter Room  Train Truck Drjohnson Playroom
3DGS[1] 0.622  0.652 0.875 0.779 0.783 0933 0.948 0916 0.929 0.820  0.885 0.905 0.907
Taming-3DGS[8] 0.613 0.646 0.871 0.775 0.771 0930 0.946 0.910 0.922 0.831 0.893 0.908 0.908
Ours (0.01) 0.648 0.656 0.883 0.801 0.794 0.936 0.947 0.921 0.936 0.837 0.895 0.908 0.911
AbsGS[4] 0.654 0.645 0.883 0.801 0.795 0.935 0.951 0.920 0.935 0.822 0.890 0.899 0.907
Mini-Splatting-D[3] 0.659 0.659 0.884 0.811 0.816 0.936 0.953 0918 0.936 0.819 0.890 0.906 0.908
Pixel-GS[5] 0.653  0.652 0.879 0.792 0.798 0.936 0.952 0.922 0.930 0.825 0.887 0.887 0.905
Ours (0.02) 0.660 0.660 0.887 0.808 0.812 0.938 0.947 0.925 0.940 0.838  0.895 0.912 0.912

Table 11: Per-scene LPIPS scores across three datasets. Bold indicates the best results. Our
method consistently achieves competitive or superior results across diverse scenes.

Method MipNeRF 360[30] Tanks & Temples[51] Deep Blending[52]
Flowers Treehill Garden Bicycle Stump Kitchen Bonsai Counter Room  Train Truck Drjohnson Playroom
3DGS[1] 0.328 0.316 0.102 0.203 0.209 0.113 0.173 0.178 0.191 0.197 0.142 0.236 0.240
Taming-3DGS[8] 0.334 0.310 0.104 0.200 0.212 0.126 0.196 0200 0.217 0.190  0.123 0.233 0.235
Ours (0.01) 0.274 0289 0.090 0.175 0.206 0.109 0.165 0.167 0.170 0.181 0.118 0.232 0.235
AbsGS[4] 0.244 0256 0.089 0.157 0.182 0.106 0.155 0.162 0.168 0.182 0.122 0.236 0.229
Mini-Splatting-D[3] 0.246  0.256 0.086 0.151 0.163 0.105 0.142 0.152 0.162 0.181 0.100 0.218 0.203
Pixel-GS[5] 0.252 0270 0.093 0.173 0.180 0.106 0.161 0.162 0.183 0.179 0.120 0.255 0.240
Ours (0.02) 0.240  0.256 0.085 0.154 0.169 0.104 0.155 0.153 0.162 0.171 0.108 0.220 0.216

Table 12: Per-scene number of Gaussian primitives across three datasets. Values are reported in
millions; bold indicates the lowest per scene. Our CDC-GS achieves competitive or significantly
lower primitive counts, demonstrating its superior efficiency.

Method MipNeRF 360[30] Tanks & Temples[51] Deep Blending[52]

Flowers Treehill Garden Bicycle Stump Kitchen Bonsai Counter Room  Train Truck  Drjohnson Playroom

3DGS[1] 2.75M 3.16M 3.65M 4.68M 4.14M 1.54M 1.07M 1.04M 1.24M 1.09M 2.05M 3.11M 1.84M
Taming-3DGS[8] 3.09M 3.90M 3.62M 4.42M 3.92M 0.94M 1.00M 0.82M 1.07M 1.13M  2.07M 253M  1.60M
Ours (0.01) 3.09M 390M 3.62M 4.42M 3.92M 0.94M 1.00M 0.82M 1.07M 1.13M 2.07M 2.53M 1.60M

AbsGS[4] 5.16M 6.13M 4.68M 7.63M 5.62M 2.34M 1.42M 1.49M 2.12M 1.63M  2.16M 4.04M 2.22M
Mini-Splatting-D[3] 4.76M 4.83M 5.44M 5.85M 5.30M 3.69M 3.76M 3.83M 4.06M 3.95M 4.58M 491IM  435M
Pixel-GS[5] 7.10M 747M 7.64M 8.59M 6.49M 3.05M 2.06M 2.50M 2.49M 380M 5.2IM 5.55M 3.74M
Ours (0.02) 5.14M 539M 5.67M 7.05M 6.21M 1.50M 1.65M 1.33M 1.64M 1.78M  3.34M 3.09M 1.89M
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