
NeuroLKH: Combining Deep Learning Model with
Lin-Kernighan-Helsgaun Heuristic for Solving the

Traveling Salesman Problem

Liang Xin
Nanyang Technological University

Singapore
XINL0003@e.ntu.edu.sg

Wen Song
Shandong Unviersity

Qingdao, China
wensong@email.sdu.edu.cn

Zhiguang Cao∗
Singapore Institute of Manufacturing Technology

Singapore
zhiguangcao@outlook.com

Jie Zhang
Nanyang Technological University

Singapore
jzhang@ntu.edu.sg

Abstract

We present NeuroLKH, a novel algorithm that combines deep learning with the
strong traditional heuristic Lin-Kernighan-Helsgaun (LKH) for solving Traveling
Salesman Problem. Specifically, we train a Sparse Graph Network (SGN) with
supervised learning for edge scores and unsupervised learning for node penalties,
both of which are critical for improving the performance of LKH. Based on
the output of SGN, NeuroLKH creates the edge candidate set and transforms
edge distances to guide the searching process of LKH. Extensive experiments
firmly demonstrate that, by training one model on a wide range of problem sizes,
NeuroLKH significantly outperforms LKH and generalizes well to much larger
sizes. Also, we show that NeuroLKH can be applied to other routing problems such
as Capacitated Vehicle Routing Problem (CVRP), Pickup and Delivery Problem
(PDP), and CVRP with Time Windows (CVRPTW).

1 Introduction

Traveling Salesman Problem (TSP) is an important NP-hard Combinatorial Optimization Problem
with extensive industrial applications in various domains. Exact methods have the exponential worst-
case computational complexity, which renders them impractical for solving large-scale problems in
reality, even for highly optimized solvers such as Concorde. In contrast, although lacking optimality
guarantees and non-trivial theoretical analysis, heuristic solvers search for near-optimal solutions
with much lower complexity. They are usually desirable for real-life applications where statistically
better performance is the goal.

Traditional heuristic methods are manually designed based on expert knowledge which is usually
human-interpretable. However, supported by the recent development of deep learning technology,
modern methods train powerful deep neural networks to learn the complex patterns from the TSP
instances generated from some specific distributions [32, 1, 6, 21, 18, 34, 33, 35]. The performances
of deep learning models for solving TSP are constantly improved by these works, which unfortunately
are still far worse than the strong traditional heuristic solver and generally limited to relatively small
problem sizes.

∗Zhiguang Cao is the corresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

We believe that learning-based methods should be combined with strong traditional heuristic algo-
rithms, which is also suggested by [2]. In such a way, while learning the complex patterns from
data samples, the efficient heuristics highly optimized by researchers for decades can be effectively
utilized, especially for problems such as TSP which are well-studied due to their importance.

The Lin-Kernighan-Helsgaun (LKH) algorithm [12, 13] is generally considered as a very strong
heuristic for solving TSP, which is developed based on the Lin-Kernighan (LK) heuristic [25]. LKH
iteratively searches for λ-opt moves to improve the existing solution where λ edges of the tour are
exchanged for another λ edges to form a shorter tour. To save the searching time, the edges to add
are limited to a small edge candidate set, which is created before search. One of the most significant
contributions of LKH is to generate the edge candidate set based on Minimum Spanning Tree, rather
than using the nearest neighbor method in the LK heuristic. Furthermore, LKH applies penalty
values to the nodes which are iteratively optimized using subgradient optimization (will be detailed
in Section 3). The optimized node penalties are used by LKH to transform the edge distances for
the λ-opt searching process and improve the quality of edge candidate sets, both of which help find
better solutions.

However, the edge candidate set generation in LKH is still guided by hand-crafted rules, which
could limit the quality of edge candidates and hence the search performance. Moreover, the iterative
optimization of node penalties is time-consuming, especially for large-scale problems. To address
these limitations, we propose NeuroLKH, a novel learning-based method featuring a Sparse Graph
Network (SGN) combined with the highly efficient λ-opt local search of LKH. SGN outputs the edge
scores and node penalties simultaneously, which are trained by supervised learning and unsupervised
learning, respectively. NeuroLKH transforms the edge distances based on the node penalties learned
inductively from training instances, instead of performing iterative optimization for each instance,
therefore saving a significant amount of time. More importantly, at the same time the edge scores are
used to create the edge candidate set, leading to substantially better sets than those created by LKH.
NeuroLKH trains one single network on TSP instances across a wide range of sizes and generalizes
well to substantially larger problems with minutes of unsupervised offline fine-tuning to adjust the
node penalty scales for different sizes.

Same as existing works on deep learning models for solving TSP, NeuroLKH aims to learn complex
patterns from data samples to find better solutions for instances following specific distributions.
Following the evaluation process in these works, we perform extensive experiments. Results show
that NeuroLKH improves the baseline algorithms by large margins, not only across the wide range
of training problem sizes, but also on much larger problem sizes not used in training. Furthermore,
NeuroLKH trained with instances of relatively simple distributions generalizes well to traditional
benchmark with various node distributions such as the TSPLIB [27]. Also, we show that NeuroLKH
can be applied to guide the extension of LKH [14] for more complicated routing problems such as
the Capacitated Vehicle Routing Problem (CVRP), Pickup and Delivery Problem (PDP) and CVRP
with Time Windows (CVRPTW), using generated test datasets and traditional benchmarks [28, 30].

2 Related works

Till now, for routing problems such as TSP, most works focus on learning construction heuristics,
where deep neural networks are trained to sequentially select the nodes to visit with supervised
learning [32, 15] or reinforcement learning [1, 6, 26, 21, 22]. Similarly, networks are trained to pick
edges in [18, 20]. In another line of works [4, 33, 16, 9, 5], researchers employ deep learning models
to learn the actions for improving existing solutions, such as picking regions and rules or selecting
nodes for the 2-opt heuristic. However, the performance of these works is still quite far from the
strong non-learning heuristics such as LKH. In addition, they focus only on relatively small-sized
problems (up to hundreds of nodes).

A recent work [8] generalizes a network pre-trained on fixed-size small graphs to solve larger size
problems by sampling small sub-graphs to infer and merging the results. This interesting idea can
be applied to very large graphs, however, the performance is still inferior to LKH and deteriorates
rapidly with the increase of problem size.

In a concurrent work [36], a VSR-LKH method is proposed which also applies a learning method
in combination with LKH. However, very different from our method, VSR-LKH applies traditional
reinforcement learning during the searching process for each instance, instead of learning patterns for

2

TSP Instance

Sparse
Directed
Graph G* Subgradient

Optimization

TSP Instance

While not Convergence

Sensitivity Analysis
of Minimum

Spanning Tree

Create Edge
Candidate Set

Transform
Edge Distance

Random Tour
Initialization

LKH Searching
Process for

λ-opt Exchangeopt Exchange

Repeat for K Trials

While not
Convergence

NeuroLKH Algorithm Original LKH Algorithm

SGN Encoder
Node Embeddings

Transform
Edge Distance

Node Decoder Edge Decoder

Edge Embeddings

Node Penalties Edge Scores

Create Edge
Candidate Set

Figure 1: NeuroLKH algorithm and the original LKH algorithm.

a class of instances. Moreover, VSR-LKH aims to guide the decision on edge selections within the
edge candidate set, which is generated using the original procedure of LKH. NeuroLKH significantly
outperforms VSR-LKH by large margins in all the settings of our experiments on testing instances
following the training distributions, especially when the time limits are short. Even more impressively,
NeuroLKH achieves performance similar to VSR-LKH on traditional benchmark TSPLIB [27] with
various node distributions, which are very different from the training distributions for NeuroLKH.

3 Preliminaries: LKH algorithm

The Lin-Kernighan-Helsgaun (LKH) algorithm [12, 13] is a local optimization algorithm developed
based on the λ-opt move [24], where λ edges in the current tour are exchanged by another set of λ
edges to achieve a shorter tour. While solving one instance, the LKH algorithm can conduct multiple
trials to find better solutions. In each trial, starting from a randomly initialized tour, it iteratively
searches for λ-opt exchanges that improve the tour, until no such exchanges can be found. In each
iteration, the λ-opt exchanges are searched in the ascending order of variable λ and the tour will be
replaced once an exchange is found to reduce the tour distance.

One central rule is that the λ-opt searching process is restricted and directed by an edge candidate set,
which is created before search based on the α-measure using sensitivity analysis of the Minimum
Spanning Tree. Here we briefly introduce the related concepts. A TSP graph can be viewed as an
undirected graph G = (V,E) with V as the set of |V | nodes and E as the set of edges weighted
by distances. A spanning tree of G is a connected graph with |V | − 1 edges from G and no cycles
where any pair of nodes is connected by a path. A 1-tree of G is a spanning tree for the graph of
node set V \{1} combined with two edges in E connected to node 1, an arbitrary special node in
V . A minimum 1-tree is the 1-tree with minimum length. The α-measure of an edge (i, j) ∈ E for
graph G is defined as α(i, j) = L(T+(i, j))− L(T), where L(T) is the length of Minimum 1-Tree
T and L(T+(i, j)) is the length of Minimum 1-Tree T+(i, j) required to include the edge (i, j). The
α-measure of an edge can be viewed as the extra length of the Minimum 1-Tree to include this edge.

The edge candidate set consists of the k edges with the smallest α-measures connected to each node
(k = 5 as default). During the λ-opt searching process, the edges to be included into the new tour
are limited to the edges in this candidate set, and edges with smaller α-measures will have higher
priorities to be searched over. Therefore this candidate set not only restricts but also directs the search.

Moreover, the quality of α-measures can be improved significantly by a subgradient optimization
method. If we add a penalty πi to each node i and transform the original distance si,j of the edge
(i, j) to a new distance ci,j as ci,j = si,j + πi + πj , the optimal tour for the TSP will stay the same
but the Minimum 1-Tree usually will change. Because by definition, a Minimum 1-Tree with node
degrees all equal to 2 is an optimal solution for the corresponding TSP instance. With the length of
Minimum 1-Tree resulting from the penalty π = (π1, ..., π|V |) as L(Tπ), w(π) = L(Tπ)− 2Σiπi is
a lower bound of the optimal tour distance for the original TSP instance. LKH applies subgradient
optimization [11] to iteratively maximize this lower bound for multiple steps until convergence by
applying πτ+1 = πτ + tτ (dτ − 2) at step τ , where tτ is the scalar step size, dτ is the vector of node
degrees in the Minimum 1-Tree with penalty πτ . Therefore, the node degrees are pushed towards
2. The α-measures after this optimization will substantially improve the quality of edge candidate
set. Furthermore, the transformed edge distance ci,j after this optimization helps find better solutions
when used during the searching process for λ-opt exchanges.

3

4 The proposed NeuroLKH algorithm

The subgradient optimization in LKH can substantially improve the quality of edge candidate sets
based on the α-measures, and transform the edge distances effectively to achieve reasonably good
performance. However, it still has major limitations as the optimization process is over one instance
iteratively until convergence, which costs a large amount of time, especially for large-scale problems.
Moreover, even after subgradient optimization, some critical patterns could be missed by the relatively
straightforward sensitivity analysis of spanning tree. Therefore, the quality of edge candidate set
could be further improved by large margins, which will in turn improve the overall performance.

We propose the NeuroLKH algorithm, which employs a Sparse Graph Network to learn the complex
patterns associated with the TSP instances generated from a distribution. Concretely, the network
will learn the edge scores and node penalties simultaneously with a multi-task training process. The
edge scores are trained with supervised learning for creating the edge candidate set, while the node
penalties are trained with unsupervised learning for transforming the edge distances. The architecture
of NeuroLKH is presented in Figure 1, along with the original LKH algorithm. We will detail the
Sparse Graph Network, the training process and the proposed NeuroLKH algorithm in the following.

4.1 Sparse Graph Network

For the Sparse Graph Network (SGN), we format the TSP instance as a sparse directed graph
G∗ = (V,E∗) containing the node set V and a sparse edge set E∗ which only includes the γ shortest
edges pointed from each node, as shown in the leftmost green box in Figure 1, where the circles
represent the nodes and the diamonds represent the directed edges. Sparsification of the graph is
crucial for effectively training the deep learning model on large TSP instances and generalizing to
even larger sizes. Note that edge (i, j) belongs to E∗ does not necessarily mean that the opposite-
direction edge (j, i) belongs to E∗. The node inputs xv ∈ R2 are the node coordinates and the
edge inputs xe ∈ R are the edge distances. Though we focus on 2-dimensional TSP with Euclidean
distance as the other deep learning literature like [21], the model can be applied to other kinds of TSP.

The SGN consists of 1) one encoder embedding the edge and node inputs into the corresponding
feature vectors, and 2) two decoders for the edge scores and node penalties, respectively.

Encoder. The encoder first linearly projects the node inputs xv and the edge inputs xe into feature
vectors v0i ∈ RD and e0i,j ∈ RD, respectively, where D is the feature dimension, i ∈ V and
(i, j) ∈ E∗. Then the node and edge features are embedded with L Sparse Graph Convolutional
Layers, which are defined formally as follows:

attnli,j = exp(W l
ae
l−1
i,j)�

∑
(i,m)∈E∗

exp(W l
ae
l−1
i,m), (1)

vli = vl−1i +ReLU(BN(W l
sv
l−1
i +

∑
(i,j)∈E∗

attnli,j �W l
nv

l−1
j)), (2)

rli,j =

{
W l
re
l−1
j,i , if (j, i) ∈ E∗

W l
rp
l, otherwise

(3)

eli,j = el−1i,j +ReLU(BN(W l
fv
l−1
i +W l

tv
l−1
j +W l

oe
l−1
i,j + rli,j)), (4)

where � and � represent the element-wise multiplication and the element-wise division, respectively;
l = 1, 2, ..., L is the layer index;W l

a,W
l
s,W

l
n,W

l
r,W

l
f ,W

l
t ,W

l
o ∈ RD×D and pl ∈ RD are trainable

parameters; Eqs. (2) and (4) consist of a Skip-Connection layer [10] and a Batch Normalization layer
[17] in each; and the idea of element-wise attention in Eq. (1) is adopted from [3]. As the input graph
G∗ is directed and sparse, edges with different directions are embedded separately. But obviously the
embedding of an edge (i, j) should benefit from knowing whether its opposite-direction counterpart
(j, i) is also in the graph and the information of (j, i), which motivates our design of Eqs. (3) and (4).

Decoders. The edge decoder takes the edge embeddings eLi,j from the encoder and embeds them
with two layers of linear projection followed by ReLU activation into efi,j . Then the edge scores βi,j
are calculated as follows:

βi,j =
exp(Wβe

f
i,j)∑

(i,m)∈E∗ exp(Wβe
f
i,m)

, (5)

4

Algorithm 1 NeuroLKH Algorithm
Input: TSP instance, number of trials K
Output: TSP solution BestTour

1: Convert the TSP instance to SGN input G∗, xv, xe
2: Calculate the edge scores βi,j and the node penalties πi with Eqs. (5) and (6)
3: EdgeDistance=TransformEdgeDistance(π)
4: EdgeCandidateSet=CreateEdgeCandidateSet(β)
5: BestTour=LKHSearchingTrials(EdgeDistance, EdgeCandidateSet, K)
6: return BestTour

Similarly, the node decoder first embeds the node embeddings vLi with two layers of linear projection
and ReLU activation into vfi . Then the node penalties πi are calculated as follows:

πi = C tanh(Wπv
f
i), (6)

where Wβ ,Wπ ∈ RD×1 are trainable parameters; C = 10 is used to keep the node penalties in the
range of [−10, 10].

4.2 Training process

We train the network to learn the edge scores with supervised learning. And the edge loss Lβ is
detailed as follows:

Lβ = − 1

γ|V |
∑

(i,j)∈E∗

(1{(i, j) ∈ E∗o} log βi,j + 1{(i, j) /∈ E∗o} log(1− βi,j)), (7)

where E∗o = {(i, j) ∈ E∗|(i, j) in the optimal tour}. Effectively, we increase the edge scores βi,j if
the edge (i, j) belongs to the optimal tour and decrease them otherwise.

The node penalties are trained by unsupervised learning. Similar to the goal of subgradient opti-
mization in LKH, we are trying to transform the Minimum 1-Tree generated from the TSP graph G
closer to a tour where all nodes have a degree of 2. An important distinction from LKH is that we are
learning the patterns for a class of TSP instances following a distribution, instead of optimizing the
penalties for a specific TSP instance. The node loss Lπ is detailed as follows:

Lπ = − 1

|V |
∑
i∈V

(di(π)− 2)πi, (8)

where di(π) is the degree of node i in the Minimum 1-Tree Tπ induced with penalty π = (π1, ..., π|V |).
The penalties are increased for nodes with degrees larger than 2 and decreased for nodes with
smaller degrees. The SGN is trained for the task of outputting the edge scores and node penalties
simultaneously with the loss function L = Lβ + ηπLπ , where ηπ is the coefficient for balancing the
two losses.

4.3 NeuroLKH algorithm

The process of using NeuroLKH to solve one instance is shown in Algorithm 1. Firstly, the TSP
instance is converted to a sparse directed graph G∗. Then the SGN encoder embeds the nodes and
edges in G∗ into feature embeddings, based on which the decoders output the node penalties π
and edge scores β. Afterwards, NeuroLKH creates powerful edge candidate set and transforms the
distance of each edge effectively, which further guides NeuroLKH to conduct multiple LKH trials to
find good solutions. We detail each part as follows.

Transform Edge Distance. Based on the node penalties πi, the original edge distances si,j are
transformed into new distances ci,j = si,j + πi + πj , which will be used in the search process. With
such a transformation, the optimal solution tour will stay the same. And the tour distance calculated
with the transformed edge distances will be subtracted by 2

∑
i∈V πi to restore the tour distance for

the original TSP.

Create Edge Candidate Set. For each node i ∈ V , the edge scores βi,j are sorted for (i, j) ∈ E∗
and the edges with the top-k largest scores are included in the edge candidate set. Edges with larger

5

scores have higher priorities in the candidate set, which will be tried first for adding in the exchange
during the LKH search process. Note that neither the original LKH nor NeuroLKH can guarantee all
the edges in the optimal tour to be included in the edge candidate set. However, optimal solutions are
still likely to be found during the multiple trials.

LKH Searching Trials. To solve one TSP instance, LKH conducts multiple trials to find better
solutions. In each trial, one tour is initialized randomly, and iterations of LKH search are conducted
for the λ-opt exchanges until the tour can no longer be improved by such exchanges. In each iteration,
LKH searches in the ascending order of λ for λ-opt exchanges to reduce tour length, which will be
applied once found.

Based on the trained SGN network, NeuroLKH infers the edge distance transformation and candidate
set to guide the LKH trials, which is done by performing forward calculation through the model.
This is much faster than the corresponding procedure in the original LKH, which employs subgradi-
ent optimization on each instance iteratively until convergence and is apparently time-consuming
especially for large-scale problems. More importantly, rather than using the hand-crafted rules based
on sensitivity analysis in the original LKH, NeuroLKH learns to create edge candidate set of much
higher quality with the powerful deep model, leading to significantly better performance.

5 Experiments

In this section, we conduct extensive experiments on TSP with various sizes and show the effective
performance of NeuroLKH compared to the baseline algorithms. Our code is publicly available.1

Dataset distribution. Closely following the existing works such as [21], we experiment with the
2-dimensional TSP instances in the Euclidean distance space where both coordinates of each node
are generated independently from a unit uniform distribution. We train only one network using TSP
instances ranging from 101 to 500 nodes. Since the amount of supervision and feedback during
training is linearly related to the number of nodes. We generate 500000/|V | instances for each
size |V | in the training dataset, resulting in approximately 780000 instances in total. Therefore the
amounts of supervision and feedback are kept similar across different sizes. We use Concorde 2 to
get the optimal edges E∗o for the supervised training of edge scores. For testing, we generate 1000
instances for each testing problem size.

Hyperparameters. We choose the number of directed edges pointed from one node in the sparse
edge set E∗ as γ = 20, which results in only 0.01% of the edges in the optimal tours missed in E∗
for the training dataset. We also conduct experiments to justify this choice in Appendix Section A.
The hidden dimension is set to D = 128 in the network with L = 30 Sparse Graph Convolutional
Layers. The node penalty coefficient in the loss function is ηπ = 1. The network is trained by
Adam Optimizer [19] with learning rate of 0.0001 for 16 epochs, which takes approximately 4 days.
The deep learning models are trained and evaluated with one RTX-2080Ti GPU. The other parts of
experiments without deep models for NeuroLKH and other baselines are conducted with random
seed 1234 on an Intel(R) Core(TM) i9-10940X CPU unless stated otherwise. Hyperparameters for
the LKH searching process are consistent with the example script for TSP given by LKH available
online 3 and those used in [36].

5.1 Comparative study on TSP

Here, we compare NeuroLKH with the original LKH algorithm [13] and the recently proposed
VSR-LKH algorithm [36]. We do not compare with other deep learning based methods here because
their performances are rather inferior to LKH, and most of them can hardly generalize to problems
with more than 100 nodes. One exception is the method in [8], which is tested on large problems but
the performances are still far worse than LKH.

All algorithms are run once for each testing instance as we find running multiple times only provides
very marginal improvement. For each testing problem size, we run the original LKH for 1, 10, 100,
and 1000 trials, and record the total amounts of time in solving the 1000 instances. Then we impose

1https://github.com/liangxinedu/NeuroLKH
2https://www.math.uwaterloo.ca/tsp/concorde
3http://akira.ruc.dk/%7Ekeld/research/LKH-3/LKH-3.0.6.tgz

6

Table 1: Comparative results on training sizes
|V | = 100 |V | = 200 |V | = 500

Method Time(s) Obj Gap(‱) Time(s) Obj Gap(‱) Time(s) Obj Gap(‱)

Concorde 207 *7.753246 0.000 1072 *10.701303 0.000 17022 *16.541830 0.000

LKH (1 trial)
33

7.755071 2.353
80

10.707043 5.364
338

16.556733 9.009
VSR-LKH 7.754980 2.236 10.706739 5.080 16.557297 9.350
NeuroLKH 7.753332 0.111 10.701873 0.533 16.543197 0.826

LKH (10 trials)
43

7.754177 1.200
111

10.703724 2.263
445

16.548017 3.740
VSR-LKH 7.754184 1.209 10.703997 2.518 16.549591 4.692
NeuroLKH 7.753311 0.083 10.701623 0.299 16.542880 0.634

LKH (100 trials)
127

7.753450 0.263
368

10.701755 0.423
1147

16.543707 1.134
VSR-LKH 7.753407 0.207 10.701687 0.359 16.543085 0.759
NeuroLKH 7.753270 0.030 10.701381 0.073 16.542163 0.201

LKH (1000 trials)
938

7.753254 0.010
2805

10.701351 0.045
7527

16.542125 0.178
VSR-LKH 7.753322 0.097 10.701336 0.031 16.541934 0.063
NeuroLKH 7.753247 0.000 10.701303 0.000 16.541847 0.010

the same amounts of time as time limits to NeuroLKH and VSR-LKH for solving the same 1000
instances for fair comparison. Note that for NeuroLKH, the solving time is the summation of the
inference time of SGN on GPU and LKH searching time on CPU. In the following tables, for each
size and time limit, we report the average performance (tour distance) and the total solving time for
the 1000 testing instances.

Comparison on training sizes. In Table 1, we report the performances of LKH, VSR-LKH and
NeuroLKH on three testing datasets with 100, 200 and 500 nodes, which are within the size range of
instances used in training. Note that we train only one SGN Network on a wide range of problem
sizes and here we use these three sizes to demonstrate the testing performances. We also use the
exact solver Concorde on these instances to obtain the optimal solutions and compute the optimality
gap for each method. As shown in this table, it is clear that NeuroLKH outperforms both LKH and
VSR-LKH significantly and consistently across different problem sizes and with different time limits.
Notably, the optimality gaps are reduced by at least an order of magnitude for most of the cases,
which is a significant improvement.

Generalization analysis on larger sizes. We further show the generalization ability of NeuroLKH
on much larger graph sizes of 1000, 2000 and 5000 nodes. Note that while the edge scores in SGN
generalize well without any modification, it is hard for the node penalties to directly generalize.
This is because they are trained unsupervisedly and SGN does not have any knowledge about how
to penalize the nodes for larger TSP instances. Nevertheless, this could be resolved by a simple
fine-tuning step. As the learned node embeddings are very powerful, we only fine-tune the very small
amount of parameters in the SGN node decoder and keep the other parameters fixed. Specifically, for
each of the large sizes, we fine-tune the node decoder for 100 iterations with batch size of 5000/|V |,
which only takes less than one minute for each size of 1000, 2000 and 5000. This fast fine-tuning
process is for TSPs of one size generated from the distribution instead of specific instances, and may
be viewed as adjusting the scale of penalties for large sizes. The generalization results are summarized
in Table 2. Note that we do not run Concorde here due to the prohibitively long running time, and the
gaps are with respect to the best value found by all methods. Clearly, NeuroLKH generalizes well to
substantially larger problem sizes and the improvement of NeuroLKH over baselines is significant
and consistent across all the settings.

Further discussion. The inference time of SGN in NeuroLKH for the 1000 instances of 100, 200,
500, 1000, 2000 and 5000 nodes is 3s, 6s, 16s, 33s, 63s and 208s, which is approximately linear with
the number of nodes |V |. In contrast, the subgradient optimization in LKH and VSR-LKH needs
20s, 51s, 266s, 1028s, 4501s and 38970s, which grows superlinearly with |V | and is much longer
than SGN inference, especially for large-scale problems. For NeuroLKH, the saved time is used to
conduct more trials, which effectively helps to find better solutions. This effect is more salient with
short time limit. Meanwhile, the number of trials is also small for short time limit and the algorithm
only searches a small number of solutions, in which case the guidance of edge candidate set is more
important. Due to these two reasons, the improvement of NeuroLKH over baselines is particularly
substantial for short time limit. This is a desirable property especially for time-critical applications
and solving large-scale problems, for which large numbers of trials are not feasible.

7

Table 2: Comparative results on generalization sizes
|V | = 1000 |V | = 2000 |V | = 5000

Method Time(s) Obj Gap(‱) Time(s) Obj Gap(‱) Time(s) Obj Gap(‱)

LKH (1 trial)
1183

23.155916 10.593
4843

32.483851 11.264
40048

51.025519 12.284
VSR-LKH 23.154946 10.173 32.485551 11.788 51.025539 12.288
NeuroLKH 23.133494 0.899 32.449752 0.755 50.965382 0.484

LKH (10 trials)
1414

23.143435 5.197
5322

32.466953 6.056
41523

50.998721 7.026
VSR-LKH 23.143347 5.159 32.467997 6.377 51.000093 7.295
NeuroLKH 23.133066 0.714 32.449519 0.683 50.965219 0.452

LKH (100 trials)
2567

23.135427 1.735
7371

32.455454 2.512
47884

50.976677 2.700
VSR-LKH 23.134426 1.302 32.454427 2.195 50.979317 3.218
NeuroLKH 23.132258 0.365 32.448666 0.420 50.964677 0.345

LKH (1000 trials)
12884

23.132216 0.347
25613

32.448954 0.509
103885

50.965233 0.455
VSR-LKH 23.131658 0.105 32.447953 0.200 50.965300 0.468
NeuroLKH 23.131414 0.000 32.447304 0.000 50.962916 0.000

In Figure 2, we plot the performance of the LKH, VSR-LKH and NeuroLKH algorithms for solving
the testing datasets with different numbers of nodes against different running time to visualize the
improvement process (the resulting objective values after each trial). The time limits are set to
the longest ones used in Table 1 and Table 2, which are the running time of LKH with 1000 trials.
Clearly, NeuroLKH outperforms both LKH and VSR-LKH significantly and consistently across
different problem sizes and with different time limits. In particular, NeuroLKH is superior as it not
only reaches good solutions fast but also converges to better solutions eventually. With the same
performance (i.e. objective value), NeuroLKH considerably reduces the computational time. We
can also conclude that when the time limit is short, the improvement of NeuroLKH over baselines
is particularly substantial. In addition, we show that the subgradient optimization is necessary for
LKH and VSR-LKH. As exhibited in Figure 2, the performances of both LKH and VSR-LKH
are much worse without subgradient optimization (w/o SO). More impressively, even ignoring the
preprocessing time (IPT) used for subgradient optimization (pertaining to LKH and VSR-LKH) and
Sparse Graph Network inferring (pertaining to NeuroLKH), NeuroLKH still outstrips both LKH
and VSR-LKH. Note that this comparison is unfair for NeuroLKH as LKH and VSR-LKH consume
much longer preprocessing time which is unavoidable.

For the results reported in Table 1 and Table 2, almost all the improvements of NeuroLKH over
LKH and VSR-LKH on different sizes and with different time limits are statistically significant with
confidence levels larger than 99%. The only one exception is the performance on TSP with 100 nodes
and the running time of LKH with 1000 trials where the confidence levels are 90.5% and 97.6% for
the improvements, respectively.

In the Appendix Section A, we also show that NeuroLKH substantially outperforms other deep
learning based methods [21, 20, 33, 18, 15, 8, 22, 5].

Generalization to TSPLIB benchmark. Besides generalization to larger sizes, generalization to
different distributions remains a crucial challenge for deep learning based methods in existing works.
The TSPLIB benchmark contains instances with various node distributions, making it extremely hard
for such methods. We test on all the 72 TSPLIB instances with Euclidean distances and less than
10000 nodes. The number of trials is set to be the number of nodes and the algorithms are run 10
times for each instance following the convention for TSPLIB in [12, 36]. With the various unknown
node distributions, we do not fine-tune the model for the node penalties and only use the edge scores
in NeuroLKH. For the 24 instances labeled as hard in [36], which the original LKH fails to solve
optimally during at least one of the 10 runs, NeuroLKH trained with uniformly distributed data is
able to find optimal solutions 6.13 times on average, which is much better than LKH (3.75 times). As
an active learning method, VSR-LKH finds optimal solutions 6.42 times on average, slightly better
than NeuroLKH. While NeuroLKH improves the results on most hard instances, it could generalize
poorly on instances with certain special patterns such as where most nodes are located along several
horizontal lines, making it fail to solve 11 of the 48 easy instances optimally for some runs.

With the same training dataset size, we trained another model NeuroLKH_M using a mixture of
instances with uniformly distributed nodes, clustered nodes with 3-8 clusters, half uniform and half
clustered nodes following [30]. NeuroLKH_M finds optimal solutions 6.79 times on average for
the hard instances and fails to solve only 5 easy instances optimally for some runs, better than the

8

(a) TSP with 100 nodes (b) TSP with 200 nodes (c) TSP with 500 nodes

(d) TSP with 1000 nodes (e) TSP with 2000 nodes (f) TSP with 5000 nodes

Figure 2: Performances of LKH, VSR-LKH and NeuroLKH for solving TSP with different sizes
against different running time

NeuroLKH trained with only uniformly distributed instances. For all the 72 instances, NeuroLKH_M
finds optimal solutions 8.74 times on average, which is much better than LKH (7.92 times) but slightly
worse than VSR-LKH (8.78 times). Detailed results of each instance are listed in the Appendix
Section B.

5.2 Experiments on other routing problems

Finally, we show that NeuroLKH can be easily extended to solve much more complicated routing
problems such as the Capacitated Vehicle Routing Problem (CVRP), the Pickup and Delivery
Problem (PDP) and CVRP with Time Windows (CVRPTW). We briefly introduce the problems in
the Appendix Section C. Different from TSP, the node penalties do not apply to these problems.
Therefore, NeuroLKH only learns the edge candidate set. As these three problems are very hard to
solve and the optimal solutions are not available in a reasonable amount of time, we use LKH with
10000 trials to get solutions as training labels. The demands, capacities, starts and ends in the time
windows are taken as node inputs along with the coordinates. For PDP, we add connections between
each pair of pickup and delivery nodes and assign weight matrices for these connections in Eq. (2).
For PDP and CVRPTW, the edge directions affect the tour feasibility therefore the model learns the
in-direction edge scores and out-direction edge scores for each node with Eq. (5).

The node coordinates are also generated uniformly from the unit square for all three problems,
following [21, 23]. For CVRP, the demands of customers are generated uniformly from integers
{1..9} with the capacity fixed as 40 + 0.1 × |V |, compatible with the largest CVRP (100 nodes)
studied in [21]. For CVRPTW, we use the same way to generate demands, capacity, serving time and
time windows as [7]. A training dataset for CVRP with 101-500 nodes and 120000/|V | instances for
each size (about 180000 in total) is used to train the SGN for 10 epochs. PDP and CVRPTW are
harder to solve therefore we use a training dataset with 41-200 nodes and 240000/|V | instances for
each size. The other hyperparameters in SGN are the same as TSP and those for LKH searching
process are consistent with example scripts given by LKH for CVRP, PDP and CVRPTW (with the
SPECIAL hyperparameter).

In Table 3, we show the performance of NeuroLKH and the original LKH on testing datasets with
1000 instances for the smallest and largest graph sizes (number of customers) used in training as well
as a much larger generalization size. We use the solving time of LKH with 100, 1000, 10000 trials as
the time limits. For 100 trials, both methods fail to find feasible solutions for less than 1% of the PDP
and CVRPTW test instances with 300 nodes. Whenever this happens, we push the infeasible visits to

9

Table 3: Comparative results for other routing problems
Method Time(s) Obj Gap(%) Time(s) Obj Gap(%) Time(s) Obj Gap(%)

|V | = 100 |V | = 500 Generalization |V | = 1000
C

V
R

P
LKH (100 trials) 485 15.8363 1.675 2043 42.1621 5.394 4607 58.1372 9.750
NeuroLKH 15.7770 1.295 41.7311 4.316 56.6469 6.937

LKH (1000 trials) 4520 15.6483 0.468 15812 40.6103 1.515 30133 54.3412 2.584
NeuroLKH 15.6295 0.348 40.4974 1.233 54.0499 2.034

LKH (10000 trials) 45435 15.5823 0.044 166875 40.0670 0.157 319368 53.1093 0.259
NeuroLKH 15.5754 0.000 40.0043 0.000 52.9723 0.000

|V | = 40 |V | = 200 Generalization |V | = 300

PD
P

LKH (100 trials) 115 6.2495 0.819 2832 13.8390 5.535 7939 17.0913 6.916
NeuroLKH 6.2241 0.409 13.6246 3.899 16.7867 5.011

LKH (1000 trials) 845 6.2088 0.163 21216 13.2850 1.310 55643 16.2447 1.620
NeuroLKH 6.2041 0.087 13.2443 0.999 16.1857 1.251

LKH (10000 trials) 7989 6.1998 0.018 195220 13.1387 0.194 515377 16.0119 0.163
NeuroLKH 6.1988 0.000 13.1132 0.000 15.9857 0.000

|V | = 40 |V | = 200 Generalization |V | = 300

C
V

R
PT

W

LKH (100 trials) 147 9.3051 1.081 813 26.1757 7.124 1746 34.2301 8.798
NeuroLKH 9.2606 0.597 25.4000 3.949 32.9676 4.786

LKH (1000 trials) 1017 9.2276 0.239 4525 24.9770 2.218 7820 32.2671 2.559
NeuroLKH 9.2207 0.164 24.7857 1.435 32.0224 1.781

LKH (10000 trials) 9624 9.2073 0.018 45509 24.5338 0.405 75481 31.5719 0.350
NeuroLKH 9.2056 0.000 24.4350 0.000 31.4620 0.000

the end to get feasible solutions. The inferring time of SGN is 1s, 3s, 7s, 10s, 19s and 40s in total for
the 1000 instances in the testing datasets with 40, 100, 200, 300, 500 and 1000 nodes, which is a
tiny fraction compared to the LKH searching process. As shown in Table 3, NeuroLKH significantly
improves the solution quality compared with the original LKH which is a very strong heuristic solver
for all three problems, showing its potential in handling various types of routing problems.

Performance on traditional benchmarks. To show the effectiveness of NeuroLKH on complicated
routing problems with various distributions, we perform experiments on CVRPLIB [30] and Solomon
[28] benchmark datasets. CVRPLIB [30] contains various sized CVRP instances with a combination
of 3 depot positioning, 3 customer positioning and 7 demand distributions. Solomon benchmark
[28] contains CVRPTW instances with 100 customers and various distributions of time windows.
We detail the benchmarks, the training datasets and the results for each instance in the Appendix
Section D. In summary, tested on the 43 instances with 100-300 nodes in CVRPLIB [30], NeuroLKH
improves the average performances on 38, 38 and 31 instances when the time limits are set to the
time of LKH with 100, 1000 and 10000 trials, respectively. On the 11 Solomon R2-type instances,
NeuroLKH outperforms LKH almost consistently with all the settings (32 out of the 33).

6 Conclusion

In this paper, we propose an algorithm utilizing the great power of deep learning models to combine
with a strong heuristic for TSP. Specifically, one Sparse Graph Network is trained to predict the edge
scores and the node penalties for generating the edge candidate set and transforming the edge distances,
respectively. As shown in the extensive experiments, the improvement of NeuroLKH over baseline
algorithms within different time limits is consistent and significant. And NeuroLKH generalizes
well to instances with much larger graph sizes than training sizes and traditional benchmarks with
various node distributions. Also, we use CVRP, PDP and CVRPTW to demonstrate that NeuroLKH
effectively applies to other routing problems. NeuroLKH can effectively learn the routing patterns
for TSP which generalize well to much larger sizes and different distributions of nodes. However, for
other complicated routing problems such as CVRP and CVRPTW, although NeuroLKH generalizes
well to larger sizes, it is hard to directly generalize to other distributions of demands and time windows
without training, which is a limitation of NeuroLKH and is left for future research. In addition,
NeuroLKH can be further combined with other learning based techniques such as sparsifying the
TSP graph [29] and other strong traditional algorithms such as the Hybrid Genetic Search [31].

10

Acknowledgments and Disclosure of Funding

This work was supported by the A*STAR Cyber-Physical Production System (CPPS) – Towards Con-
textual and Intelligent Response Research Program, under the RIE2020 IAF-PP Grant A19C1a0018,
and Model Factory@SIMTech, in part by the National Natural Science Foundation of China under
Grant 61803104 and Grant 62102228, and in part by the Young Scholar Future Plan of Shandong
University under Grant 62420089964188.

References
[1] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimiza-

tion with reinforcement learning. In Proceedings of International Conference on Learning
Representations (ICLR)., 2016.

[2] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 2020.

[3] X. Bresson and T. Laurent. Residual gated graph convnets. arXiv preprint arXiv:1711.07553,
2017.

[4] X. Chen and Y. Tian. Learning to perform local rewriting for combinatorial optimization. In
Advances in Neural Information Processing Systems, pages 6278–6289, 2019.

[5] P. R. d. O. da Costa, J. Rhuggenaath, Y. Zhang, and A. Akcay. Learning 2-opt heuristics for the
traveling salesman problem via deep reinforcement learning. In Asian Conference on Machine
Learning, pages 465–480. PMLR, 2020.

[6] H. Dai, E. Khalil, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
algorithms over graphs. In Advances in Neural Information Processing Systems, pages 6348–
6358, 2017.

[7] J. K. Falkner and L. Schmidt-Thieme. Learning to solve vehicle routing problems with time
windows through joint attention. arXiv preprint arXiv:2006.09100, 2020.

[8] Z.-H. Fu, K.-B. Qiu, and H. Zha. Generalize a small pre-trained model to arbitrarily large tsp
instances. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

[9] S. Y. Hao Lu, Xingwen Zhang. A learning-based iterative method for solving vehicle routing
problems. In Proceedings of International Conference on Learning Representations (ICLR).,
2020.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[11] M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning trees: Part ii.
Mathematical programming, 1(1):6–25, 1971.

[12] K. Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic.
European Journal of Operational Research, 126(1):106–130, 2000.

[13] K. Helsgaun. General k-opt submoves for the lin–kernighan tsp heuristic. Mathematical
Programming Computation, 1(2-3):119–163, 2009.

[14] K. Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 2017.

[15] A. Hottung, B. Bhandari, and K. Tierney. Learning a latent search space for routing problems
using variational autoencoders. In Proceedings of International Conference on Learning
Representations (ICLR)., 2021.

[16] A. Hottung and K. Tierney. Neural large neighborhood search for the capacitated vehicle routing
problem. In European Conference on Artificial Intelligence, 2020.

11

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pages 448–456,
2015.

[18] C. K. Joshi, T. Laurent, and X. Bresson. An efficient graph convolutional network technique for
the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of
International Conference on Learning Representations (ICLR)., 2014.

[20] W. Kool, H. van Hoof, J. Gromicho, and M. Welling. Deep policy dynamic programming for
vehicle routing problems. arXiv preprint arXiv:2102.11756, 2021.

[21] W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems! In
Proceedings of International Conference on Learning Representations (ICLR)., 2019.

[22] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min. Pomo: Policy optimization with
multiple optima for reinforcement learning. In Advances in Neural Information Processing
Systems, volume 33, 2020.

[23] J. Li, L. Xin, Z. Cao, A. Lim, W. Song, and J. Zhang. Heterogeneous attentions for solving
pickup and delivery problem via deep reinforcement learning. IEEE Transactions on Intelligent
Transportation Systems, 2021.

[24] S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical Journal,
44(10):2245–2269, 1965.

[25] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman problem.
Operations research, 21(2):498–516, 1973.

[26] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác. Reinforcement learning for solving the
vehicle routing problem. In Advances in Neural Information Processing Systems, pages 9839–
9849, 2018.

[27] G. Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing,
3(4):376–384, 1991.

[28] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations research, 35(2):254–265, 1987.

[29] Y. Sun, A. Ernst, X. Li, and J. Weiner. Generalization of machine learning for problem reduction:
a case study on travelling salesman problems. OR Spectrum, 43(3):607–633, 2021.

[30] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian. New benchmark
instances for the capacitated vehicle routing problem. European Journal of Operational
Research, 257(3):845–858, 2017.

[31] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei. A hybrid genetic algorithm for
multidepot and periodic vehicle routing problems. Operations Research, 60(3):611–624, 2012.

[32] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems, volume 28, 2015.

[33] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim. Learning improvement heuristics for solving
routing problems. IEEE Transactions on Neural Networks and Learning Systems, 2021.

[34] L. Xin, W. Song, Z. Cao, and J. Zhang. Step-wise deep learning models for solving routing
problems. IEEE Transactions on Industrial Informatics, 17(7):4861–4871, 2020.

[35] L. Xin, W. Song, Z. Cao, and J. Zhang. Multi-decoder attention model with embedding glimpse
for solving vehicle routing problems. In Proceedings of the 35th AAAI Conference on Artificial
Intelligence, pages 12042–12049, 2021.

[36] J. Zheng, K. He, J. Zhou, Y. Jin, and C.-m. Li. Combining reinforcement learning with lin-
kernighan-helsgaun algorithm for the traveling salesman problem. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2021.

12

	Introduction
	Related works
	Preliminaries: LKH algorithm
	The proposed NeuroLKH algorithm
	Sparse Graph Network
	Training process
	NeuroLKH algorithm

	Experiments
	Comparative study on TSP
	Experiments on other routing problems

	Conclusion

