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Abstract—This paper investigates the secure consensus track-
ing control problem of second-order nonlinear multi-agent sys-
tems against sparse sensor attacks. A secure data selector is
designed to extract unattacked output data from a set of output
measurements affected by sensor attacks. Subsequently, utilizing
the unattacked output data, a neural network (NN) secure
state observer is constructed to estimate the unavailable system
states. Then, an adaptive NN consensus controller is proposed
via dynamic surface control technique. The designed control
method ensures that all signals of the closed-loop systems are
ultimately bounded, and consensus tracking control is achieved
with bounded tracking errors in the presence of sparse sensor
attacks. Finally, the effectiveness of the proposed control scheme
is validated through a simulation of unmanned aerial vehicle
attitude control systems.

Index Terms—nonlinear multi-agent systems, sparse sensor
attacks, secure state observer, adaptive NN control

I. INTRODUCTION

Multi-agent systems (MASs) have gained significant atten-
tion in recent years and are widely applied in fields such as
transportation systems, industrial manufacturing, and power
system management [1]-[3]. However, since agents rely on
communication network to transmit real-time monitoring data,
and they are vulnerable to potential cyber-attacks from various
signals, MASs are facing significant security challenges. For
instance, in power grid systems, adversaries can disrupt grid
operations through attacks like injecting false data or channel
interference [4]. Therefore, studying the consensus control of
MASs under cyber-attacks is crucial.

Typical cyber-attacks can be divided into two cases. The first
case is denial-of-service(DoS) attacks and the second case is
deception attacks, sensor attacks are one of the most common
deception attacks. DoS attacks can prevent information trans-
mission, while sensor attacks can easily modify the system
data, both of which can greatly influence system stability
[5]-[7]. Therefore, many efforts have been focused on DoS
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and sensor attacks recently. In [8], a distributed cooperative
control problem was addressed for a class of linear MASs
under two types of attacks. The author in [9] developed a
distributed secure consensus control with event-triggering for
linear leader-following MASs under DoS attacks. The article
[10] proposed an event-triggered scheme to reach consensus of
systems with DoS attacks. In [11], stability analysis of stochas-
tic systems with DoS attacks was investigated by designing
an observer-based event-triggered protocol. In [12], observers
were designed to estimate the states of encountered sensor
attacks. In the article [13], a new dynamic event-triggered
strategy was introduced that could adjust the variables online,
and a resilient control strategy was further devised for the
paralyzed MASs under the sensor attacks [14]. In addition, the
article [15] introduced two induced parameters and adaptive
laws to compensate them to avoid the effect of corrupted data.
However, most of the above studies are for known nonlinear
systems, and there is still little research for unknown nonlinear
MASs against sparse sensor attacks.

Motivated by the above discussions, this paper solves the
secure consensus tracking control problem of second-order
nonlinear MASs against sparse sensor attacks. A secure data
selector is proposed to extract the unattacked output data from
a set of output measurements affected by sensor attacks, and
an NN secure state observer is constructed to estimate the
unavailable system states by using the unattacked output data.
Then, we design an adaptive NN consensus controller by using
the dynamic surface control technique, which ensures that all
signals of the closed-loop systems are ultimately bounded, and
consensus tracking is achieved with bounded tracking errors
in the presence of sparse sensor attacks.

II. PROBLEM FORMULATION

A. Graph Theory

The commmunication topology of N agents is described
by the directed graph G = (V, E), where the node set
V = {1, ..., N} with ”1, ..., N” standing for the follows.
E = {(j, i) : i, j ∈ V, i ̸= j} is a set of edges, where
the ordered edge (j, i) implies that node i can receive the



information from node j. Further, define the neighbor set of
node i as Ni = {j ∈ V|(j, i) ∈ E}. Define an adjacency matrix
as A = [ai,j ] ∈ RN×N , where the weight ai,j > 0 if and only
if j ∈ Ni and ai,j = 0 otherwise. The in-degree diagonal
matrix is expressed as D = diag{d1, ..., dN} with di =∑

j∈Ni
ai,j . The Laplacian matrix of graph G is represented as

L = D−A. The augmented graph is described as Ḡ = (V̄, Ē)
with V̄ = {0, 1, ..., N} and Ē ⊆ V̄×V̄ , where “0” is the leader.
Similarly, define C = diag{a1,0, ..., aN,0}, and a1,0 > 0
if and only if the node i can receive the information from
node 0 and a1,0 = 0 otherwise, denotes the communication
weight from the leader to followers, B = diag[b1, ..., bN ]T

where bi > 0 if the leader 0 ∈ Ni and bi = 0 otherwise.
Then, suppose that the directed communication graph G has a
spanning tree, rank(L+ B) = N from (L+ B)1N = b where
b = [b1, ..., bN ]T and 1N is an N -vector of all ones. Therefore,
(L+ B) is invertible.

B. Problem statement

In this paper, the framework of second-ordor MASs is
described as follows. Suppose that there exist N followers,
labeled as agaents 1 to N , the i th agent is described as a
class of strict-feedback nonlinear systems with sensor attacks:

ẋi,1 = xi,2 + fi,1(xi,1)
ẋi,2 = ui + fi,2(x̄i)
yζ,i = Cix̄i + ζi(t)

(1)

where i = 1, 2, ..., N , x̄i = [xi,1, xi,2]
T ∈ R2 is the un-

available state vector, fi,1(xi,1) and fi,2(x̄i) are the unknown
continuous nonlinear functions, ui is the controller to be
designed. yζ,i ∈ Rpi is the attacked output vector with pi being
the number of the output sensors. ζi(t) = [ζi,1(t), ..., ζi,pi(t)]

T

denotes the injected data caused by the adversarial attacker,
i.e., if the sensor k (k ∈ {1, 2, ..., pi}) is compromised,
then ζi,k(t) ̸= 0 for some t ≥ 0; otherwise ζi,k(t) = 0
for all t ≥ 0. The output distribution matrix is defined as
Ci = [E1, ..., E1]

T ∈ Rpi×2, E1 ∈ R2 is a vector with the first
th element being one and the rest being zero. The unattacked
output vector of the ith agent is ȳi = Cix̄i = [xi,1, ..., xi,1]

T ∈
Rpi .

The control objective of this paper is to design an adaptive
NN consensus controller ui for N followers (1), such that
under the sparse sensor attacks, the unattacked outputs of all
followers ⌣

y i converge to a small neighborhood of the virtual
leader’s output y0.

III. MAIN RESULT

A. Secure Data Selector

Consider that the attack vector ζi(t) is si-sparse, which
means that at most si (si < pi) elements of the vector ζi(t) are
simultaneously nonzero. To design an effective data selector,
the following assumption is introduced.

Assumption 1: For each agent in MASs (1), the number of
simultaneously attacked sensors si satisfies 2si < pi.

Based on Assumption 1, a median value operator Med[·] is
designed to pick out the sensor data that is not attacked. Given

a vector yζ,i(t), rearrange its elements in increasing numerical
order to produce a new vector ℏi(t) = [ℏi,1(t), ..., ℏi,pi(t)]T .
Then, the operator Med[·] is designed as

Med[·] =
{

ℏi,Mi
if pi is odd

1
2 (ℏi,Mi

+ ℏi,Mi+1) if pi is even
(2)

where Mi = 0.5(pi+1) if pi is an odd integer, and Mi = 0.5pi
otherwise. Under Assumption 1, a secure data selector of the
ith (i = 1, 2) agent is given as

⌣
y i(t) =Med[yζ,i(t)] (3)

Proposition 1: For the system (1) under sparse sensor
attacks, if Assumption 1 is satisfied, then the output of data
selector (3) is equal to the unattacked output, i.e., yi(t) =
⌣
y i(t),∀t ≥ 0 with yi(t) = [ȳi]1,1.

B. Secure State Observer

With the help of secure data selector and adaptive NN, a
secure state observer is designed to estimate the unavailbale
states. The system (1) can be rewritten as

ẋi = Ai0xi + Fi(x̄i) + E2ui (4)

where Ai0 =

[
0 I1
0 0

]
, Fi(x̄i) = [fi,1(xi,1), fi,2(x̄i)]

T .

The NN secure state state observer is constructed as

˙̂xi = Ai0 ˆ̄xi + Li(
⌣
y − x̂i,1) + F̂i(χ̄i) + E2ui (5)

where ˆ̄xi = [x̂i,1, x̂i,2]
T is the observation value of x̄i, the

observation error is expressed as x̃i = xi−x̂i, Li = [li,1, li,2]
T

is the observation gains to be specified, χ̄i = [xi,1, x̂i,2]
T ,

F̂i(χ̄i) = [θ̂Ti,1ϕi,1(xi,1), θ̂
T
i,2ϕi,2(ˆ̄xi)]

T .
Accroding to (4) and (5), the dynamics of x̃i are derived as

˙̃xi = Aix̃i + Fi(x̄i)− F̂i(χ̄i) (6)

where Ai = Ai0 − LiE
T
1 .

C. Consensus Controller Design

Based on the outputs of the secure data selector and NN
secure state observer, the error surfaces are defined as

zi,1 =
M∑
j=1

aij(
⌣
y i −

⌣
y j) + bi(

⌣
y i − y0)

zi,2 = x̂i,2 − ᾱi,2

(7)

and
si,2 = ᾱi,2 − αi,2 (8)

where i = 1, 2, ..., N , αi,2 and ᾱi,2 are the virtual control law
and the filterd virtual control law, respectively.

Step 1: The derivative of zi,1 along (1), (7) and (8), is

żi,1 = ki[zi,2 + si,2 + αi,2 + fi,1(xi,1)

+ Γi,1(xj,1)]−
N∑
j=1

aijxj,2 − biẏ0
(9)

where ki = di + bi and Γi,1(xj,1) = − 1
ki

M∑
j=1

aijfj,1(xj,1).



Use two RBF NNs to approximate unknown nonlinear
function fi,1(xi,1) and Γj,1(xj,1). They can be described as
following forms:

fi,1(xi,1) = θ∗Ti,1ϕi,1(xi,1) + εi,1

Γj,1(xj,1) = θ∗
T

j,1ϕj,1(xj,1) + εj,1

where θ∗i,1, θ∗j,1 are the optimal NN weight vectors, ϕi,1(xi,1),
ϕj,1(xj,1) are the Gaussian basis functions, and εi,1, εj,1 are
the minimum approximation errors, respevtively.

To stabilize (9), the first virtual control law αi,2 for the ith
follower is designed as

αi,2 =
1

ki
[−ci,1zi,1 + dixj,2 + biẏ0]

− θ̂Ti,1ϕi,1(xi,1)− θ̂Tj,1ϕj,1(xj,1)

(10)

where ci,1 is a positive parameter.
Choose the Lyapunov function Vi,1 as

Vi,1 =
1

2
z2i,1 +

1

2λi,1
θ̃Ti,1θ̃i,1 +

1

2λj,1
θ̃Tj,1θ̃j,1 (11)

The derivative of Vi,1 with respect to time is

V̇i,1 = zi,1żi,1 −
1

λi,1
θ̃Ti,1

˙̂
θi,1 −

1

λj,1
θ̃Tj,1

˙̂
θj,1

= −ci,1z2i,1 + kizi,1zi,2 + kizi,1si,2 + kizi,1(εi,1 + εj,1)

+
1

λi,1
θ̃Ti,1[λi,1kizi,1θ̃

T
i,1ϕi,1(xi,1)−

˙̂
θi,1]

+
1

λj,1
θ̃Tj,1[λj,1kizi,1θ̃

T
j,1ϕj,1(xj,1)−

˙̂
θj,1]

(12)
Design the adaptive law as

˙̂
θi,1 = λi,1kizi,1θ̃

T
i,1ϕi,1(xi,1)− σi,1θ̂i,1

˙̂
θj,1 = λj,1kizi,1θ̃

T
j,1ϕj,1(xj,1)− σj,1θ̂j,1

(13)

where σi,1 and σj,1 are positive parameters.
From (10)-(13), V̇i,1 follows that:

V̇i,1 ≤ −ci,1z2i1 −
σi,1
2λi,1

∥∥∥θ̃i,1∥∥∥2 − σj,1
2λj,1

∥∥∥θ̃j,1∥∥∥2
+ kizi,1zi,2 + kizi,1si,2 + kiz

2
i,1 + ki(

1

2
ε2i,1 +

1

2
ε2j,1)

+
σi,1
2λi,1

∥∥θ∗i,1∥∥2 + σj,1
2λj,1

∥∥θ∗j,1∥∥2
(14)

Then, in order to obtain the filtered virtual control law ᾱi,2,
we pass αi,2 through a first order filter with a small time
constant τi,2 > 0.

τi,2 ˙̄αi,2 + ᾱi,2 = αi,2, ᾱi,2(0) = αi,2(0) (15)

Step 2: According to (1), (8), we get

żi,2 = ˙̂xi,2 − ˙̄αi,2

= ui + li,2x̃i,1 + θ̂Ti,2ϕi,2(ˆ̄xi) + θ̃Ti,2ϕi,2(ˆ̄xi)

− θ̃Ti,2ϕi,2(ˆ̄xi)− ˙̄αi,2

(16)

Choose the controller ui and the adaptive law ˙̂
θi,2 as:

ui = −[li,2x̃i,1 + θ̂Ti,2ϕi,2(ˆ̄xi) + ci,2zi,2 + ˙̄αi,2]

˙̂
θi,2 = λi,2zi,2θ̃

T
i,2ϕi,2(ˆ̄xi)− σi,2θ̂i,2

(17)

Then żi,2 can be rewritten as

żi,2 = −ci,2zi,2 + θ̃Ti,2ϕi,2(ˆ̄xi)− θ̃Ti,2ϕi,2(ˆ̄xi) (18)

Choose the Lyapunov funtion

Vi,2 =
1

2
z2i,2 +

1

2λi,2
θ̃Ti,2θ̃i,2 +

1

2
s2i,2 (19)

The derivative of Vi,2 with respect to time is

V̇i,2 ≤ −ci,2z2i,2 +
1

2
z2i,2 +

1

2

∥∥∥θ̃i,2∥∥∥2
+
σi,2
λi,2

θ̃Ti,2θ̂i,2 −
1

τi,2
s2i,2 − si,2α̇i,2

(20)

According to the following the Young’s inequality

−si,2α̇i,2 = si,2Bi,2 ≤ |si,2Bi,2| ≤
s2i,2B̄

2
i,2

2δi,2
+ 2δi,2

σi,2
λi,2

θ̃Ti,2θ̂i,2 ≤ −σi,2
λi,2

θ̃Ti,2θ̃i,2 +
σi,2
λi,2

θ∗Ti,2 θ
∗
i,2

(21)

Then, (20) follows that

V̇i,2 ≤ −ci,2z2i,2 −
1

τi,2
s2i,2 −

σi,2
λi,2

∥∥∥θ̃i,2∥∥∥2 + 1

2
z2i,2

+
1

2

∥∥∥θ̃i,2∥∥∥2 + σi,2
λi,2

∥∥θ∗i,2∥∥2 + s2i,2B̄
2
i,2

2δi,2
+ 2δi,2

(22)

D. Stability Analysis

Theorem 3.1: For nonlinear second-order systems (1), if we
consider the controller (17), virtual control law (10), and the
adaptive laws (13), (17), we can get the overall control scheme
has the following performance:

• Close-loop system is semi-globally uniformly asymptot-
ically stable;

• Consensus tracking errors between followers and leader
converge to a small neighborhood of the virtual leader’s
output y0.

Proof: Choosing the total Lyapunov candidate funtion V as

V =

N∑
i=1

[Vi,1 + Vi,2] (23)



Then, the time derivative of V along (11)-(13), (21), (23)
is computed as

V̇ ≤
N∑
i=1

[(
− ci,1z

2
i,1 −

σi,1
2λi,1

∥∥∥θ̃i,1∥∥∥2 − σj,1
2λj,1

∥∥∥θ̃j,1∥∥∥2
+ kizi,1zi,2 + kizi,1si,2 + kiz

2
i,1 + ki(

1

2
ε2i,1 +

1

2
ε2j,1)

+
σi,1
2λi,1

∥∥θ∗i,1∥∥2 + σj,1
2λj,1

∥∥θ∗j,1∥∥2)− ci,2z
2
i,2 −

1

τi,2
s2i,2

− σi,2
λi,2

θ̃Ti,2θ̃i,2 +
1

2
z2i,2 +

1

2

∥∥∥θ̃i,2∥∥∥2 + σi,2
λi,2

θ∗Ti,2θ
∗
i,2

+
s2i,2B̄

2
i,2

2δi,2
+ 2δi,2

]
(24)

Using the Young’s inequality, we have

V̇ ≤
N∑
i=1

[(
− (ci,1 − 2ki)z

2
i,1 − (ci,2 −

ki + 1

2
)z2i,2

− (
1

τi,2
− ki

2
)s2i,2 −

σi,1
2λi,1

∥∥∥θ̃i,1∥∥∥2 − σi,2
2λi,2

∥∥∥θ̃i,2∥∥∥2
− σj,1

2λj,1

∥∥∥θ̃j,1∥∥∥2 + ki
2
ε2i,1 +

ki
2
ε2j,1 +

σi,1
2λi,1

∥∥θ∗i,1∥∥2
+

σj,1
2λj,1

∥∥θ∗j,1∥∥2 + 1

2

∥∥∥θ̃i,2∥∥∥2 + σi,2
λi,2

∥∥θ∗i,2∥∥2
+
s2i,2B̄

2
i,2

2δi,2
+ 2δi,2

]
(25)

Choosing the parameters satisfy ci,1−2ki > 0, ci,2− ki+1
2 >

0, 1
τi,2

− ki
2 > 0 and from the known above σi,1, σj,1, λi,1, λj,1,

λi,2, τi,1, τi,2, δi,2 are positive parameters, we can obtain that

V̇ ≤ −ηV +D (26)

where η = min[(ci,1−2ki, ci,2− ki+1
2 , 1

τi,2
− ki

2 ] > 0, and D =
N∑
i=1

[
ki
2 ε

2
i,1+

ki
2 ε

2
j,1+

σi,1

2λi,1

∥∥θ∗i,1∥∥2+ σj,1

2λj,1

∥∥θ∗j,1∥∥2+ 1
2

∥∥∥θ̃i,2∥∥∥2+
σi,2

λi,2

∥∥θ∗i,2∥∥2 + s2i,2B̄
2
i,2

2δi,2
+ 2δi,2

]
.

According to (27), we have V (t) ≤ e−ηtV (t0) +
(Dη )[1 − e−ηt]. Then, the signals in closed-loop systems
are SGUUB. Moreover, ultilizing 1

2∥z1∥
2 ≤ V (t) with

z1 = [zT1,1, ..., z
T
N,1]

T , we get ∥zi,1∥2 ≤ 2V (t0)e
−ηt +

( 2Dη )[1 − e−ηt]. According to z1 = (L + B)(y − (1N ⊗ y0))

where y = [
⌣
y1, ...,

⌣
yN ]T and ⊗ stand for the Kronecker prod-

uct. Therefore, the tracking errors can be made as small as
possible by choosing appropriate design parameters.

IV. SIMULATION RESULTS

Based on the above analysis, in this section we Desige
a system which has a virtual leader and four UAVs with
the C = diag{1, 0, 0, 0}, and the adjacency matrix A =
[0, 0, 0, 0; 1, 0, 0, 0; 1, 0, 0, 0; 1, 0, 0, 0]. The ith (i = 1, 2, 3, 4)
UAV model is described as

ẋi,1 = xi,2 + fi,1(xi,1)
ẋi,2 = ui + fi,2(x̄i)
yζ,i = Cix̄i + ζi(t)

(27)

where xi,1 = [ρi, βi, ψi]
T are the roll, pitch, yaw angles

of UAV, xi,2 = [ωρi , ω
β
i , ω

ψ
i ]
T are the angular velocities

where −π
2 < βi < π

2 . Design the coefficient matrix as
γi = diag{I−1

x , I−1
y , I−1

z } which has Ix = 0.0027kg · m2,
Iy = 0.0027kg · m2, Iz = 0.0047kg · m2, and ui =

[uρi , u
β
i , u

ψ
i ]
T represent the roll, pitch and yaw torques. Then

the output distribution matrix is Ci = [I3,0] ∈ R3×6, define
x′i = [xTi,1, x

T
i,2]

T with x̄i = [x′i, ..., x
′
i] ∈ R6×pi . Therefore the

real output matrix is ȳi = Cix̄i = [xi,1, ..., xi,1]
T ∈ R3×pi .

We choose the number of the output sensors as p1 = 5, p2 = 6,
p3 = 7, p4 = 7. Besides, the unknown functions fi,1 and fi,2
are given as

fi,1 =

 ωβi sin(ρi) tan(βi) + ωψi cos(ρi) tan(βi)

ωβi (cos(ρi)− 1)− ωψi sin(ρi)

ωβi
sin(ρi)
cos(βi)

+ ωψi

(
cos(ρi)
cos(βi)

− 1
)

 (28)

fi,2 =

 ωβi ω
ψ
i
Iy−Iz
Ix

ωρi ω
ψ
i
Iz−Ix
Iy

ωρi ω
β
i
Ix−Iy
Iz

 (29)

We choose the adaptive NN membership function as

µF 1
i,k
(x̂i) = exp[− (x̂i,k−8)2

2 ], µF 2
i,k
(x̂i) = exp[− (x̂i,k−6)2

2 ]

µF 3
i,k
(x̂i) = exp[− (x̂i,k−4)2

2 ], µF 4
i,k
(x̂i) = exp[− (x̂i,k−2)2

2 ]

µF 5
i,k
(x̂i) = exp[− (x̂i,k−0)2

2 ], µF 6
i,k
(x̂i) = exp[− (x̂i,k+2)2

2 ]

µF 7
i,k
(x̂i) = exp[− (x̂i,k+4)2

2 ], µF 8
i,k
(x̂i) = exp[− (x̂i,k+6)2

2 ]

µF 9
i,k
(x̂i) = exp[− (x̂i,k+8)2

2 ]
(30)

and order that

ϕi,1,l(x̂i,1) =
µF 1

i,1
(x̂i,1)

9∑
l=1

µF l
i,1
(x̂i,1)

, ϕi,2,l(ˆ̄xi,2) =

2∏
i=1

µF 1
i,2
(ˆ̄xi,2)

9∑
l=1

(
2∏
i=1

µF l
i,2
(ˆ̄xi,2))

(31)

ϕi,1(x̂i,1) = [ϕi,1,1(x̂i,1), ..., ϕi,1,l(x̂i,1)]
T

ϕi,2(ˆ̄xi,2) = [ϕi,2,1(ˆ̄xi,2), ..., ϕi,2,l(ˆ̄xi,2)]
T (32)

As for the injected data matrices, we design ζi(t) to
describe them as

ζi(t) = [ζ ′i(t), ζ
′
i(t), ζ

′
i(t)]

T , i = 1, 2, 3, 4

ζ ′1(t) =

{
[0, xT1,1 sin(x1,2), 0, sin(t), 0]

T , t ≤ 10
[cos(t), 0, xT1,1x1,1, 0, 0]

T , t > 10
ζ ′2(t) = [0, xT2,1 cos(x2,2), 0, cos(t), 0, 0]

T

ζ ′3(t) = [0, xT3,1 cos(x3,2), 0, cos
2(t), 0, xT3,1x3,1, 0]

T

ζ ′4(t) = [0, xT4,1 cos(x4,2), 0, sin
2(t), 0, xT4,1x4,1, 0]

T

(33)

The attitude of the virtual leader is determinded by y0 =
[yρ0 , y

β
0 , y

ψ
0 ]
T = [0.1π sin(0.1πt),−0.1π cos(0.1πt), 0]T , and

we designed other parameters as follow ci,1 = diag[2, 2, 1],
ci,2 = diag[20, 20, 50], λi,1 = λi,2 = 2, σi,1 = σi,2 =
20, τi,2 = 0.005, li,1 = diag[136.49, 192.94, 18.07],
li,2 = diag[154.47, 240.93, 0.01]. And we choose the initial
conditions as x1,1(0) = [0.02,−0.3,−0.01]T , x2,1(0) =



x3,1(0) = x4,1(0) = [0.03,−0.4, 0]T , xi,2(0) = [0, 0, 0]T ,
x̂1,1(0) = [0.02,−0.3,−0.01]T , x̂i,1(0) = xi,1(0), x̂i,2(0) =
[0, 0, 0]T .

Simulation results are shown in Figs. 1-4. Fig. 1 shows the
leader’s and UAVs’ angles and their observations under the
attacks above parameters. Fig. 2 shows the leader’s and UAVs’
angular velocities and their observations. Both figs exhibit that
the followers’ attitude can be consistent with the leader’s under
the sparse sensor attacks. The tracking errors are described in
Fig. 3, from which we can see that the tracking error converges
to zero asymptotically. Fig. 4 represents the control output of
four UAVs.

0 5 10 15 20 25 30 35 40

Time(sec)

-2

0

2

4

0 5 10 15 20 25 30 35 40

Time(sec)

-2

0

2

4

0 5 10 15 20 25 30 35 40

Time(sec)

(a)

-2

0

2

4

0 5 10 15 20 25 30 35 40

Time(sec)

-2

0

2

4

0 5 10 15 20 25 30 35 40

Time(sec)

-2

0

2

4

0 5 10 15 20 25 30 35 40

Time(sec)

(b)

-2

0

2

4

Fig. 1. (a) Curves of UAV1’s angles xi,1 = [ρi, βi, ψi]
T and UAV1’s

angles estimates x̂i,1 = [ρ̂i, β̂i, ψ̂i]
T . (b) Curves of UAV1’s angular

velocities xi,2 = [ωρi , ω
β
i , ω

ψ
i ]
T and UAV1’s angular velocities estimates

x̂i,2 = [ω̂ρi , ω̂
β
i , ω̂

ψ
i ]
T .

V. CONCLUSION

This paper studied the secure consensus tracking control
problem of second-order nonlinear MASs against the sparse
sensor attacks. By designing a secure data selector to extract
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Fig. 2. Four UAVs’ angles and leader’s angles.
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Fig. 3. Cooperative errors zi,1.

0 5 10 15 20 25 30 35 40

Time(sec)

-4

-2

0

2

0 5 10 15 20 25 30 35 40

Time(sec)

-4

-2

0

2

0 5 10 15 20 25 30 35 40

Time(sec)

-4

-2

0

2

Fig. 4. Control output of four UAVs.



a set of unattacked sensor data and using an NN secure
state observer to reconstructed the unavailable system states,
adaptive NN consensus controller via dynamic surface control
technique is employed to ensure that all signals of the closed-
loop systems are ultimately bounded. Furthermore, the consen-
sus tracking control errors between followers and the leader
converge to a small neighborhood. Finally, the effectiveness of
the proposed control method is proved through a simulation
of multiple UAVs.
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