Under review as a conference paper at ICLR 2026

CLOSED-FORM LAST LAYER OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks are typically optimized with variants of stochastic gradient de-
scent. Under a squared loss, however, the optimal solution to the linear last layer
weights is known in closed-form. We propose to leverage this during optimiza-
tion, treating the last layer as a function of the backbone parameters, and optimiz-
ing solely for these parameters. We show this is equivalent to alternating between
gradient descent steps on the backbone and closed-form updates on the last layer.
We adapt the method for the setting of stochastic gradient descent, by trading off
the loss on the current batch against the accumulated information from previous
batches. Further, we prove that, in the neural tangent kernel regime, convergence
of this method to an optimal solution is guaranteed. Finally, we demonstrate the
effectiveness of our approach compared with standard SGD on a squared loss in
several supervised tasks — both regression and classification — including Fourier
Neural Operators and Instrumental Variable Regression.

Figure 1: The squared loss landscape of a two-parameter neural
network
f(x) = W ReLU(6z)

with three random training data points. Dark / light regions cor-
respond to values of high / low loss respectively. We plot in blue
the optimal last layer parameter W *(6) as a function of the back-
bone parameter §. We propose to optimize along the blue curve,
rather than in two-dimensional space.

1 INTRODUCTION

Training deep neural networks is almost always done with variants of stochastic gradient descent
(SGD). Despite their empirical success, these iterative methods treat every layer of the network in
the same way. However, the linear last layer often admits a much simpler — and in the case of
squared loss, closed-form — optimal solution. This mismatch suggests an opportunity: if the optimal
last layer weights can be computed directly given the current features produced by the backbone,
we can regard the last layer as an implicit function of the backbone parameters. This could simplify
the optimization problem by constraining the last layer to be optimal throughout (see Fig. [I).

In SGD, gradients at each step are computed in minibatches. Because of computational constraints,
the closed-form solution of the last layer should also use minibatches. This risks overfitting the last
layer to each batch at each optimization step. To correct for this issue, there is the need to account
for previous last layer solutions.

In this paper, we develop a training procedure that can perform optimization with a closed-form
optimal last layer through SGD on the backbone parameters. Our contributions are as follows:

1. We propose leveraging the closed-form last layer solution for squared loss, and optimizing the
backbone parameters while treating the last layer as a deterministic function of those parameters.
We show that this requires no backpropagation through the closed-form solution (Section 3).

2. We adapt the approach to stochastic mini-batch training by regularizing for previous last layer
solutions, producing a practical algorithm that integrates cleanly with standard training pipelines
and that admits an approximate Kalman filter interpretation (Section).

Under review as a conference paper at ICLR 2026

3. We provide a theoretical analysis in the infinite width neural tangent kernel (NTK) limit, proving
convergence of the method to an optimal solution, in the deterministic and continuous time case
(Section[3)).

4. We validate the approach empirically, demonstrating improvements compared to standard train-
ing under squared losses, including applications in deep feature instrumental variable regression and
Fourier neural operators (Section|[6)).

1.1 RELATED WORK

‘We outline several strands of related work.

Two-timescale regime. Optimizing under a closed-form last layer can be seen as performing bilevel
optimization, where an optimization problem is nested into another (Zhang et al., 2024 Petrulionyte
et al.} 2024). In recent years, this last layer bilevel optimization approach has been considered in
several works as a simplifying assumption for demonstrating convergence of gradient descent in
neural networks. This framework was coined the two-timescale regime (Marion & Berthier, 2023
Berthier et al.| 2024} Biett1 et al., [2025; |Barboni et al., [2025)).

Marion & Berthier (2023)) noted that, by the envelope theorem, optimizing with an optimal last layer
as a function of the backbone parameters is equivalent to optimizing only the backbone parameters
while keeping the last layer optimal. In the present work, we bring this theoretical argument to
a practical method that can accelerate optimization, by observing that the envelope result can be
leveraged computationally in backpropagation. Indeed, unlike these works, our aim is to propose
novel methodology, and demonstrate its practicality in a number of scenarios. From the theoretical
side, our work is the first to analyze the critical points of the resulting loss in function space, and the
convergence to a global minimum in the NTK regime. Other works have investigated the mean-field
regime instead (Wang et al., 2024; [Takakura & Suzuki, [2024)).

In an experiment, [Barboni et al.| (2025)) propose to update the last layer by an exponential moving
average of closed-form solutions to account for the stochasticity in SGD. However, this approach
decouples the last layer from the backbone, as they no longer optimize the same loss, which leads
to instabilities. In contrast, our approach for stochasticity allows the last layer and the backbone to
continue optimizing for the same loss.

Layer-wise learning. Singh et al.| (2015);|You et al.|(2017)) propose to tune the learning rates of SGD
layer-wise. Without the regularization to previous last layer solutions, our method is analogous to
putting a large learning rate on the last layer. |You et al.| (2017) further show that, while shallower
layers tend to have smaller gradients, this is not a reason for such layers needing larger learning rates,
as the layer weights also appear to be smaller themselves. Indeed, |Chen et al.| (2022a) analyze the
convergence speeds of different layers during optimization, and show that, despite smaller gradients,
shallower layers learn faster than deeper layers. Our method thus remediates this layer convergence
bias for the last layer.

Bayesian last layers. These works leverage closed-form or quasi-closed-form solutions for last
layer Bayesian posteriors to train them with variational inference (Harrison et al., |2023; Brunzema
et al., 2024; Harrison et al., |2025). In contrast, the present work does not construct a Bayesian
posterior, and instead leverages closed-form solutions for the last layer to accelerate optimization.

Feature learning in instrumental variables regression. Training with a closed-form last layer
has found applications in instrumental variables regression (Xu et al.l 2020; |You et al.l 2017). In
these applications, the closed-form last layer solution is required to solve the bilevel optimization
problem. However, these works backpropagated through the closed-form solution, making them
computationally expensive. Moreover, they did not employ a regularized solution, and thus required
large batch sizes for the networks to train. We address both limitations in the present work, and
demonstrate superior performance of our method in these applications.

2 BACKGROUND

Non-linear multi-dimensional regression. We consider the regression problem with a squared
loss in which we aim to predict y € R from the input z € X (typically X C R™), where X is

Under review as a conference paper at ICLR 2026

some input space. We employ a model f(z; W, 0) = Wag(x), where ¢pg: X — R? is the neural
network feature map, which we call a backbone, parametrised by §# € ©, © C RY is the feature
parameter space, and W € R°*? is the weight matrix for the last linear layer. Given n observations
{(xs,y:)}1,, we want the find the parameters (W, #) that minimize the regularized squared loss

n

LOV,0) =" llys = Wea(:) 15 + BIW |17 (D

i=1
for some hyperparameter 5 > 0, where || - || r is the Frobenius norm.

For a fixed 6, the objective Eq. is a ridge regression problem which enjoys the closed-form
solution X
W?*(0) = argmin L(W,0) = Y'6(X) " (¢0(X)¢e(X)" + BI) @
W ERo*
where X = (71,...,%,), Y = (Y1,---,¥n) € R*™ and ¢(X) € RY*" is a matrix where we
apply ¢p to each x;.

Gradient descent. An approach to optimize Eq. (I)) for W and 6 is to use gradient descent,
an iterative optimization algorithm which starts from (W}, 6p) and at each iteration ¢ solves the
following linearized optimization problem

. 1 1
Wit1, 041 = argmin VL(W,, 0,) T [W, 0] + —||W — Wi||% + —]|0 — 6], 3)
W,0 2c 2n

where (a,n) are learning rates and [W, 0] denotes the concatenation operation. The solution to
Eq. (3) can be expressed with the familiar gradient descent updates

Wt+1 =W; — an»C(Wta gt), 9t+1 =0, — aVeﬁ(Wt,Gt). 4

3 OPTIMIZING WITH A CLOSED-FORM LAST LAYER

During optimization, we would like to leverage the fact that, for each 6, the optimal last layer /*(0)
is available in closed-form (Eq. (2))). The idea is that there is no need to update W; through gradient
steps as in Eq. (d), as we may treat it directly as a function of 6 through Eq. (Z). This leads to the
loss

L7(0) == L(W™(0),0) = Z lys = W*(0) o (i) |I3 + BIW*(O)]1 7 (5)

We now propose to optimize this loss instead of Eq. (I). Computationally, this involves alternating
between solving linear regressions to obtain W* () and gradient steps on 6 through £ (backprop-
agating through the closed-form solution to the regression). Explicitly, we start at some 6y and
iterate

W1 = W*(0), 041 =0, —aVeL*(6,). (6)
Note that VL£*(6,) involves backpropagating through W* () given by Eq. (2), and hence through
an inverse. This is computationally demanding. Fortunately, this operation is not needed, as the fol-
lowing theorem demonstrates (see also the envelope theorem and|Marion & Berthier| (2023, Remark

1)):
Theorem 1. For fixed 0, letting W* := W*(0) with Eq. , we have

Vo L*(0) = VoL(W™,0) @)

Proof. By the chain rule,
VoL*(0) = Vi LOW*,0) DW*(0)T + Vo L(W*,0)Did(0)" = VoL(W*,6) ®)

—_——— ——
-0 =1

where Vi L(W*,0) = 0 follows from the fact that W* = arg miny, £(WW,0) and D denotes the

differential operator. O

Under review as a conference paper at ICLR 2026

Compared to VyL*(6) which requires a complicated backpropagation, Vo L(W™, 0) requires just
a usual backpropagation through ¢y, keeping the last layer W* fixed. Theorem || thus shows that
Eq. (6) is equivalent to

Wig1 =W (0111), i1 = 0 — aVoL(Wig1,0;),)
i.e. it suffices to replace the gradient step on W in Eq. (@) by a closed-form update of the form

Eq. @).
4 THE STOCHASTIC SETTING

In practice, neural networks are not trained with gradient descent, but with sfochastic gradient de-
scent, or variants thereof. At time ¢ we observe a batch of data B; C {(«;, y;)}7_;. Then the squared
loss on the batch is given by

Ls,(W.0):= > llyi = Wea(z)5 + BIW |3 (10)
(%i,y:)EB:
Similarly we write
W, (0) := argmin Lp, (W, 0). (11)
W ERoxd

Naively, in the stochastic setting, we might use Eq. (9) but with £ replaced by £z, and W* replaced
Wj,. While such an approach will be valid for large batch sizes, it will be ineffective for small
batches as the last layer Wy (6) will overfit to each batch B; at each ¢. The last layer estimates
W1 (see Eq. (9)) will then vary drastically at each iteration. As a consequence, the features
¢, (X) might not be able to adapt to an unstable last layer. The smaller the batch size relative to the
complete dataset, the more severe the issue (see the experiments in Section [6).

Instead, we propose to optimize a different loss. Motivated by how gradient descent regularizes to
the previous estimates of the parameters (see Eq. (3))) we propose to regularize the objective function
against the distance from W to the previous estimate W;, yielding the proximal loss
LES, (W,0) = >y = Wea(x:) |5 + AW — W[(12)
(zi,y:)€B:
where || -|| ¢ is the Frobenius norm and A > 0 is some hyperparameter. This ensures that closed-form
solutions to Eq. (I2)) are close to the previous estimate W.

As before, we define
W&, w, (0) = argmin L5, (W,0) = (Yéo(X)T + AW3) (¢0(X)a(X)T + A1) (13)

WGRUXd
and
Loow, 0) = Ls,w, (Wi, w, (0).0). (14)
Thus we propose to start at some (W, 6y) and iterate
Wt+1 = Wét,Wt (Ht), 9t+1 = 9t — Oévgﬁ%t,wt (et) (15)

This approach addresses the stochasticity issues, while ensuring that W and 6 optimize for the same
loss, namely £P"*. Moreover, we can obtain a result analogous to Theorem|I] for the proximal loss:

Theorem 2. For fixed 0, letting W, v, == W,y (0), we have

Veﬁ%ﬂ?xwt (9) =VoLlp, (Wgt,Wt70)' (16)
Proof. Arguing as for Theorem [l we have VoL (0) = VoLZ W (W, w,.0). Now
since the regulariser ||WWj5 — Wt|| does not depend on ¢, we have VoLpZ"% (W5, y,,0) =
VoL, (W5, w.,0). 0

Like Theorem E[i Theorem P] allows us to replace the demanding backpropagation procedure to
compute Vgﬁp ¢) by a classical backpropagation step for VoLp, (W3, ,0). So Eq. (S
equivalent to

—

Wisr = Wg, w,(01), 0141 =0, —aVoLp,(Wiy1,0:). 17
In Appendix [A]we give another interpretation for Eq. as doing approximate Kalman filtering on
the last layer throughout SGD on the backbone parameters.

Under review as a conference paper at ICLR 2026

4.1 NUMERICAL CONSIDERATIONS

Use of a bias term. We could add an additional bias dimension to feature vector ¢y and a learnable
bias b to the last layer W, which lead to extended vectors ¢g = [¢g, 1] and W = [W, }].

Last layer initialization. First, we consider zeros, i.e. Wéj = 0, V4, 7, which worked the best in
practice. We then consider classical weight initializations — LeCun normal Wy’ ~ N (0, %), Xavier

normal W' ~ N (O, di(}) and He normal Wy’ ~ N (0, 2). Bias is always initialized as bj) = 0.

Full algorithm In practice, when we use Eq. (I7), the backbone parameters 6 will always be more
“up-to-date” than the last layer parameters, because the backbone is updated after the last layer. In
this case, at time ¢, the performance evaluated with (W3, 6;) might be sub-optimal. We propose two
different approaches in order to correct for this. In one approach, we structure the algorithm so that
the last layer is always up-to-date by updating the backbone parameters on the current batch and the
last layer parameters on the future batch. We describe this approach in Algorithm[2]in Appendix
Empirically, we found that an alternative approach worked better. In this variant, we simply update
the backbone first, and then the last layer on the current batch. It is simpler than the previous method
and can be easily plugged in the existing optimizers code. We describe this in Algorithm T}

Algorithm 1 Simple proximal closed-form SGD

1: Given: Batch size B, proximal coefficient A > 0, neural network ¢y with initial parameters 6y,
learning rate o > 0, initial last layer parameters IW.

2:t+0

3: while 6; has not converged do

4: t—1t+1

5: Update backbone on the current batch B,

6: 0p < 0,1 —aVeLlp,(Wi—1,0,—1)

7 Update last layer on the current batch 13,

8 W, Wgt7Wt—1(9t)

9:

Output: Optimized (W™, 6*)

Note that by swapping the order in which the backbone and last layer are updated, Algorithm
unlike Algorithm 2] slightly departs from Eq. and Theorem 2]

4.2 APPLICATION TO CLASSIFICATION

In classification, we treat the output y; as one-hot vectors, i.e., y; € {0, I}C such that Zle yi =1,
where C' = o is the number of classes. We then optimize a squared loss (see for instance [Hui &
Belkin! (2021) for the use of squared loss in classification). We use the strategy Eq. to optimize
W and 6. However, optimizing in this way does not guarantee that the model f(x; W, 0) = W¢g(x)
outputs probability vectors, i.e. Zle Wepg(x) # 1, where W€ is the ¢ row of W. Therefore,
for prediction, we simply take the arg max over output vectors, i.e. Cou(z) = arg max, W¢q(x).
While this strategy is a simple heuristic, we found that using it together with Eq. led to reason-
able performance.

5 THEORETICAL ANALYSIS OF THE LOSS

In the section we uncover theoretical insights for the loss £*(6) from Eq. . For a tractable analysis,
we will start by considering this loss as a function of the backbone, instead of the parameters 6.

Let F be the space of functions ¢ : X — R?. Then we define the loss Eq. (1) but taking a backbone
¢ as second argument:

Lr(W,¢) = llyi — Wo(x)|l5 + BIW | F (18)
where W € R°*?, ¢ € F and 8 > 0. Then, as before we define
Wi(¢) = argmin L(W, ¢) = Y(X) T (6(X)o(X)" + 5I) " (19)
WeRexd

Under review as a conference paper at ICLR 2026

and
L5x(0) = LrWE(8),0) =Y _ llyi = Wi(d)s(x)3 + BIW(0)7- (20)
i=1

% possesses unexpected characteristics. One set of critical points of L% are the minimizers ¢*,
which perfectly balance between fitting the data Wz (¢*)¢*(x;) = y; and the regularizer controlled
by 8. However, these are not all critical points.

Theorem 3. If Y # 0 then L% is not convex, and it admits critical points ¢* that are not global
minimizers.

The proof for this theorem can be found in Appendix [C|

In contrast, the usual squared (or ridge) loss >\, ||ly; — f(z;)||3, where f: X — R® which does
not use a closed-form solution on the last layer Wx(¢), is convex in f . The critical points of this
loss function are exactly the functions f* such that f*(x;) = y; for all ¢ (or f*(x;) = y; in the
absence of a ridge regularizer).

The non-trivial critical points of £ occur because, when the features ¢(X);. are orthogonal to all
the outputs Y., there is no gradient information for the features. For example ¢* = 0 is always a
critical point of L%

Is this an issue when ¢ is a neural network? We next analyze the loss in the neural tangent kernel
(NTK) infinite width neural network regime [Jacot et al.[(2018)). In this regime, the initial function
neural network function ¢ can be shown to be a Gaussian process with respect to the random initial-
ization, controlled by the neural Gaussian process kernel (NGPK). The training dynamics of ¢ are
given by kernel gradient descent in function space F with respect to the NTK. If the NTK is positive
definite, we know that ¢ will converge to a critical point of L% in F. The following result shows
that if we make the slightly stronger assumption that the NGPK is positive definite (see for example
Gao et al.| (2023, Theorem 4.5)), then ¢ will converge to a global minimizer.

Theorem 4. In the NTK regime with positive definite NGPK, assuming min(d,n’) > rank Y where
n' is the number of distinct x;, L% converges almost surely to a global minimizer.

The assumption min(d,n’) > rankY simplifies the proof, as it ensures that the outputs Y are
expressible through the features ¢(X), which have maximal rank min(d, n’). See Appendix [C.1|for
a formal description of the NTK regime and a proof of this theorem.

6 EXPERIMENTS

Studied methods. First, we consider our proximal closed-form approach Eq. (I7), which we call
“Uy c.f. proximal (X)”. Then, we also study the closed-form ridge regression approach (Eq. @)), “Uy
c.f ridge (). As baseline, we report performance of “¢5 loss”, which optimizes the ¢5 loss Eq.
with SGD. Finally, whenever it is suitable, we report performance of “Cross Entropy” which uses
SGD. For the experiments in the main paper, we report performance of Algorithm [I]since we found
it worked better in practice. The results for Algorithm [2]are provided in Appendix [F] For most of
the experiments, we study performance with different batch sizes. We expect “ls c.f. proximal (\)”
to be effective across batch sizes while “/5 c.f. ridge (3)” to only work well with large batch sizes.

Hyperparameters. Unless specified otherwise, for closed-form methods we use an additional bias
term and the zeros initialization. We always sweep over method-specific hyperparameters (A or /3)
as well as the learning rate a. Every experiment is run with 3 random seeds (unless specified
otherwise), and as a selection criterion, we compute the average performance across seeds (either
loss or accuracy) at the end of the training. We train the models on training set and we use a separate
validation set for selecting hyperparameters. The performance is reported on a hold-out test set and
the dashed regions denote the 95% confidence interval.

Regression. We consider the Fourier Neural Operator (FNO) setting described in (Li et al., [2021)
applied to 1d Burgers equation. We refer the reader to the github repository (Koehler, 2024)) which
we used for our experiments. We consider the equation

ou 10u? 0%u

% toar Vo @D

Under review as a conference paper at ICLR 2026

on the domain Q = (0,27) where the solution is periodic (u(t,x = 0) = u(t,x = 2x)) and
v = 0.1. Our dataset consists of 2048 initial conditions u(¢ = 0,2) on a N = 8192 resolution
grid together with their solution at time one w(¢t = 1,z). The data is split into training (1448
points), validation (200 points) and test (400 points) sets. We train for 100 epochs on the 32-fold
downsampled resolution grid (256 DoFs instead of 8192). The last layer W € R *1 is shared for
every resolution dimension. We report the mean squared error (MSE) on the whole N = 8192 grid.

Batch size = 8 Batch size = 32 Batch size = 128

1072 \
- 104 ~
104
-5

0 2500 5000 7500 10000 12500 15000 17500 [1000 2000 3000 4000 200 400 600 800 1000 1200

£, loss £, c.f. proximal (A) {, c.f. ridge (B)

Figure 2: Regression results. X-axis is the number of iterations, Y-axis is a test set mean squared
error (MSE), columns represents different batch sizes. Different colors indicate different methods.
We use a rolling average with window size 5 to smooth the curves.

The results are provided in Figure [2l Our approach “/5 c.f. proximal (\)” outperforms “/y loss”
across batch sizes. The method “ls c.f. ridge (3)” is worse than “ly c.f. proximal (A)” for small
batch sizes, but matches performance for large batch sizes. This is expected because in the large
batch size regime, the objective is close to the full dataset setting (I}) where the proximal term
is not necessary.

Deep Feature Instrumental Variable (DFIV) regression. We conduct experiments in a causal
two-stage regression setting. We refer the reader to Appendix [D] for more information. The exper-
imental details are provided in Appendix [E] In this two-stage regime, we adapt DFIV (Xu et all
2020) to a minibatch setting and we run our proximal variant which we call “DFIV Proximal”. For
evaluation, we use two strategies. The first follows (Xu et al.,|2020) and re-estimates first-stage and
second-stage last layers with ridge regression (we use 0.01 coefficient for this) on the whole training
set. The second strategy uses the current estimates of the last layers. The results are given in Fig.[3]
We observe that for small batches, similar to the previous section, our method outperforms DFIV
and achieves a similar performance in a large batch regime. An interesting feature of our method
is that the performance of the second strategy is very close to the first strategy, which removes the
need to re-estimate the last layers on the whole training set.

Batch size = 8 Batch size = 32 Batch size = 128

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

—— DFIV DFIV Proximal

Figure 3: DFIV results. X-axis is the number of iterations, Y-axis is a test set MSE. Each column
corresponds to a different batch size. Different colors indicate different methods. Solid lines use the
last layer re-estimated on the entire training set, while dashed lines use current last layer estimates.
We use a rolling average with window size 5 to smooth the curves.

Application to classification. We perform experiments on the CIFAR-10 and CIFAR-100
datasets (Krizhevsky & Hinton, [2009), across batch sizes B = [32,128,1024,4096], where we
use ResNet-18 (He et al.l 2016)) as a backbone ¢y. Please refer to Appendix for more details.

The results are presented for CIFAR-10 in Figure[d]and for CIFAR-100 in Figure[5] Our method “/,
c.f. proximal (\)” performs better than “¢5 loss” approach in both cases, as in the regression setting.

Under review as a conference paper at ICLR 2026

Test set accuracy

065

Batch size = 32

Batch size = 128

Batch size = 1024

Batch size = 4096

)

Test set accuracy

095

Test set accuracy

Test set accuracy

Step

Step

step

Step

—— Cross Entropy I loss —— [c.f. proximal (A) —— £ c.f. ridge (B)

Figure 4: CIFAR-10 results. X-axis is the number of iterations, Y-axis is a test set accuracy. Each
column corresponds to a different batch size. Different colors indicate different methods.

This performance gap becomes larger as the batch size increases. In CIFAR-10, “/5 c.f. ridge (5)”
performs similarly to “/5 c.f: proximal ()\)”, while in CIFAR-100 the method “¢s c.f. ridge (3)” fails
for small batch sizes. This highlights the impact of the proximal term in our approach which helps
avoid overfitting to every batch. For large batch size, both methods perform similarly. Surprisingly,
we found that “ls c.f. proximal (N\)” outperformed Cross Entropy on CIFAR-100. This finding
however does not hold in a larger scale regime on ImageNet as we observe below.

Batch size = 32

Batch size = 128

Batch size = 1024

Batch size = 4096

Test set accuracy

Test set accuracy

Test set accuracy

Test set accuracy

0z W
)
T 2006 200k 3 5 130k 175K

* w &
Step
—— £, c.f. ridge (B)

W
Step
—— £, c.f. proximal (A)

o 75 100
Step
—— Cross Entropy

I, loss
Figure 5: CIFAR-100 results. X-axis is the number of iterations, Y-axis is a test set accuracy. Each
column corresponds to a different batch size. Different colors indicate different methods.

Impact of A and 3. In Figure[6] we report performance at the end of the training as a function A
and f3, as well as the best learning rate « for every batch size. For the first two plots we used the
learning rates reported in the third plot. The method “ls c.f. proximal (X)” is overall robust to A
provided it is large enough. We only see some sensitivity for smaller batch sizes. The approach “/y
c.f. ridge () is more sensitive to the parameter 8 and works better for larger batch sizes. Finally,
both of the approaches benefit from large learning rates whenever batch size is increased, while
“Cross Entropy” and “(5 loss” require small learning rates.

1, c.f. proximal (A) £, c.f. ridge (B) Best learning rate
0.7
. 10 0 .
s 8 o & & O 06 e o ¢ & 8 3
> 06 > 9]
9) o e
Cos gos =
=] =1 o
O oa O o4 £
© © N c
03

03 5 3 ¢
) Do ° o o

02 .
F o1 F o1 o

. e []
00] ® . . ° 00l ® [° 0{ @ . i
0.0001 0.001 0.01 01 1.0 10.0 100.0 1000.0 0.0001 0.001 0.01 0.1 1.0 10.0 100.0 1000.0
s €O 121 i gge ®
o f ek ® 1 ¢
Batch size Method

o 32 128 o 1024 e 4096

Figure 6: Dependence on hyperparameters on CIFAR-100. X-axis is the number of iterations,
Y-axis is a test set accuracy. Left, ablation over A for ‘¢s c.f. proximal (\)”. Center, ablation over
B for “ly c.f. ridge (3)”. Right, the best learning rate per method.

Choice of the algorithm. We compare the performance of Algorithm[I]and Algorithm2in Fig.
We see that Algorithm|T|overall leads to better performance than Algorithm[2] Since in Algorithm |2}
the backbone is updated using the last layer from the same batch, we hypothesize that this leads to
more correlated updates and which may under-perform, while in Algorithm[I] we use the last layer
from the previous batch. This motivates the use of this approach.

Additional ablations. We ran an ablation on design choices for our method, see Appendix
We only provide a short summary here. We first verified that the inclusion of a bias term in the last

Under review as a conference paper at ICLR 2026

Batch size = 32

Batch size = 128

Batch size = 1024

Batch size = 4096

Test set accuracy

Test set accuracy

Test set accuracy

3 B3

.

/

Test set accuracy

T«

prasa ST

WA
| et
d

G0 300Kk 400k 500k 600k 700K
Step

sk 75 1006 135k 1506
Step
—— Algorithm 1

W 1k
Step
Algorithm 2

RN
Step

Figure 7: Comparison of Algorithm 2Jand Algorithm (1] X-axis is the number of iterations, Y-axis
is a test set accuracy. A column indicates a batch size while a color represents an algorithm.

layer did not lead to a difference in performance (see Figure [FI). Further, we found that the zeros
initialization strategy led to the best results (see Figure[F.2). Finally, we also saw that using Adam
for the backbone performed worse than SGD (see Figure [F.3). The Adam update keeps running
averages over the gradients and squared gradients which are used to rescale parameter updates.
While using momentum over gradients in the backbone works well with our method, the additional
step-size rescaling might require us to incorporate an adaptive strategy over A parameter and extend
these per last layer dimension, for use with Adam.

Large scale classification on ImageNet. We study the performance of our approach on ImageNet.
We use NF-Nets-FO architecture (Brock et al.l 2021) with batch size 4096 and the same training
regime as in (Brock et al., [2021)). We used 1 seed for these experiments. See Appendix |[E| for more
details. The results are given in Figure [§] We see that our method achieves better performance
than “ly loss” loss but under-performs “Cross Entropy”. While this is contrary to our finding on
CIFAR-100, ImageNet has ten times the number of classes, so is a significantly different regime.
The under-performance of the methods based on the squared loss could be due to advantageous
properties of the cross entropy loss in classification, or simply that the training practices with cross
entropy have been greatly perfected over the years.

o
©

—— Cross Entropy

£, loss
—— £, c.f. proximal (A)
—— £, c.f. ridge (B)

Test set accuracy
I I 4
N S o

o
o

T T T
60000 80000 100000

Steps

6 20600 40600
Figure 8: ImageNet results. X-axis is the number of iterations, Y-axis is a test set accuracy. Each
column corresponds to a different batch size. Different colors indicate different methods.

7 CONCLUSION

We have proposed to leverage closed-form optimal solutions for the last layer of neural networks
under squared loss throughout optimization. We observe that this accelerates training compared to
SGD on squared loss, outperforming SGD on regression tasks and yielding comparable speed to
SGD on cross entropy loss on tasks with small-to-moderate number of classes. Regression results
are thus particularly promising.

In future work, we will focus on adapting a similar closed-form strategy to the cross entropy loss
in the classification setting. We also aim to apply our proximal method to larger scale two-stage
settings than DFIV, such as offline reinforcement learning (Chen et al.l 2022b) and proxy variables
regression (Xu et al., 2021b). Moreover, understanding how to define parameters A per last layer
dimension and adapt these over the course of the training is of interest, since it could lead to a better
performance with the Adam algorithm.

Under review as a conference paper at ICLR 2026

REFERENCES

Raphaél Barboni, Gabriel Peyré, and Frangois-Xavier Vialard. Ultra-fast feature learning for the
training of two-layer neural networks in the two-timescale regime, July 2025. arXiv:2504.18208
[cs].

Raphaél Berthier, Andrea Montanari, and Kangjie Zhou. Learning Time-Scales in Two-
Layers Neural Networks. Foundations of Computational Mathematics, August 2024. ISSN
1615-3383. doi: 10.1007/s10208-024-09664-9. URL https://doi.org/10.1007/
s10208-024-09664-9.

Alberto Bietti, Joan Bruna, and Loucas Pillaud-Vivien. On learning Gaussian multi-index models
with gradient flow part I: General properties and two-timescale learning. Communications on
Pure and Applied Mathematics, n/a, 2025. ISSN 1097-0312. doi: 10.1002/cpa.70006.

Andrew Brock, Soham De, Samuel L. Smith, and Karen Simonyan. High-performance large-scale
image recognition without normalization, 2021. URL https://arxiv.org/abs/2102.
06171.

Paul Brunzema, Mikkel Jordahn, John Willes, Sebastian Trimpe, Jasper Snoek, and James Harri-
son. Bayesian Optimization via Continual Variational Last Layer Training. October 2024. URL
https://openreview.net/forum?id=1jcnvghayD.

Yixiong Chen, Alan Yuille, and Zongwei Zhou. Which Layer is Learning Faster? A Systematic
Exploration of Layer-wise Convergence Rate for Deep Neural Networks. September 2022a. URL
https://openreview.net/forum?id=wlMDF1JjQF86.

Yutian Chen, Liyuan Xu, Caglar Gulcehre, Tom Le Paine, Arthur Gretton, Nando de Freitas, and
Arnaud Doucet. On Instrumental Variable Regression for Deep Offline Policy Evaluation. Journal
of Machine Learning Research, 23(302):1-40, 2022b. ISSN 1533-7928. URL http://jmlr.
org/papers/v23/21-0614.html.

Tianxiang Gao, Xiaokai Huo, Hailiang Liu, and Hongyang Gao. Wide Neural Net-
works as Gaussian Processes: Lessons from Deep Equilibrium Models. Advances
in Neural Information Processing Systems, 36:54918-54951, December 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/hash/
ac24656b0b5£543b202£748d62041637-Abstract-Conference.html.

James Harrison, John Willes, and Jasper Snoek. Variational Bayesian Last Layers. October 2023.
URLhttps://openreview.net/forum?id=Sx7BIiPzysl

James Harrison, John Willes, Paul Brunzema, and Jasper Snoek. Heteroscedastic Variational Last
Layers. March 2025. URL https://openreview.net/forum?id=I7PelAwJ/I&
referrer=%5Bthe%20profile%200£f%20James$20Harrison%5D ($2Fprofile%
3Fid%3D~James_Harrisonl).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770-778, 2016. doi: 10.1109/CVPR.2016.90.

Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss vs cross-
entropy in classifications tasks. In International Conference on Learning Representations, 2021.
URLhttps://openreview.net/forum?id=hsFN92eQElal

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and
Generalization in Neural Networks. In Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. URL https://papers.nips.cc/paper_files/
paper/2018/hash/5ad4belfa34e62bbB8abec6b91d2462f5a—Abstract.htmll

Felix Koehler. Machine Learning and Simulation, 2024. URL https://github.com/
ceyron/machine-learning-and-simulation.

10

https://doi.org/10.1007/s10208-024-09664-9
https://doi.org/10.1007/s10208-024-09664-9
https://arxiv.org/abs/2102.06171
https://arxiv.org/abs/2102.06171
https://openreview.net/forum?id=1jcnvghayD
https://openreview.net/forum?id=wlMDF1jQF86
http://jmlr.org/papers/v23/21-0614.html
http://jmlr.org/papers/v23/21-0614.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/ac24656b0b5f543b202f748d62041637-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/ac24656b0b5f543b202f748d62041637-Abstract-Conference.html
https://openreview.net/forum?id=Sx7BIiPzys
https://openreview.net/forum?id=I7PeIAwJ7I&referrer=%5Bthe%20profile%20of%20James%20Harrison%5D(%2Fprofile%3Fid%3D~James_Harrison1)
https://openreview.net/forum?id=I7PeIAwJ7I&referrer=%5Bthe%20profile%20of%20James%20Harrison%5D(%2Fprofile%3Fid%3D~James_Harrison1)
https://openreview.net/forum?id=I7PeIAwJ7I&referrer=%5Bthe%20profile%20of%20James%20Harrison%5D(%2Fprofile%3Fid%3D~James_Harrison1)
https://openreview.net/forum?id=hsFN92eQEla
https://papers.nips.cc/paper_files/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://github.com/ceyron/machine-learning-and-simulation
https://github.com/ceyron/machine-learning-and-simulation

Under review as a conference paper at ICLR 2026

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cCs.
toronto.edu/~kriz/learning-features-2009-TR.pdfl

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew M. Stuart, and Anima Anandkumar. Fourier neural operator for parametric
partial differential equations. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=c8PINQVtmnO.

Pierre Marion and Raphaél Berthier. Leveraging the two-timescale regime to demonstrate conver-
gence of neural networks. Advances in Neural Information Processing Systems, 36:64996-65029,
December 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/hash/cd062£8003e38f55dcb93df55b2683d6-Abstract-Conference.
htmll

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement
testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

Ieva Petrulionyte, Julien Mairal, and Michael Arbel. Functional Bilevel Optimization for Ma-
chine Learning. Advances in Neural Information Processing Systems, 37:14016-14065, Decem-
ber 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
hash/19ae2b95d3831¢c14373271112f18%a22-Abstract—Conference.htmll

Bharat Singh, Soham De, Yangmuzi Zhang, Thomas Goldstein, and Gavin Taylor. Layer-Specific
Adaptive Learning Rates for Deep Networks. In 2015 IEEE 14th International Conference on
Machine Learning and Applications (ICMLA), pp. 364-368, December 2015. doi: 10.1109/
ICMLA.2015.113. URL|https://ieeexplore.ieee.org/document /7424337,

Simo Sarkka. Bayesian Filtering and Smoothing. Institute of Mathematical Statis-
tics Textbooks. Cambridge University Press, Cambridge, 2013. ISBN 978-
1-107-03065-7. doi: 10.1017/CB09781139344203. URL |https://www.

cambridge.org/core/books/bayesian—-filtering—and-smoothing/
C372FB31C5D9A100F8476C1B23721A67.

Shokichi Takakura and Taiji Suzuki. Mean-field Analysis on Two-layer Neural Networks from a
Kernel Perspective, April 2024. arXiv:2403.14917 [cs].

Michalis Titsias, Alexandre Galashov, Amal Rannen-Triki, Razvan Pascanu, Yee Whye Teh, and
Jorg Bornschein. Kalman filter for online classification of non-stationary data. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=ZzmKEpzeS8e.

Guillaume Wang, Alireza Mousavi-Hosseini, and Lénaic Chizat. Mean-Field Langevin
Dynamics for Signed Measures via a Bilevel Approach. Advances in Neu-
ral Information Processing Systems, 37:35165-35224, December 2024. URL

https://proceedings.neurips.cc/paper_files/paper/2024/hash/
3e0f495e21bdbdb4251792d0ff£57928-Abstract-Conference.html.

Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, and Arthur
Gretton. Learning Deep Features in Instrumental Variable Regression. October 2020. URL
https://openreview.net/forum?id=sy4Kg_ZQmS7.

Liyuan Xu, Heishiro Kanagawa, and Arthur Gretton. Deep proxy causal learning and its application
to confounded bandit policy evaluation. In Proceedings of the 35th International Conference on
Neural Information Processing Systems, NIPS *21, Red Hook, NY, USA, 2021a. Curran Asso-
ciates Inc. ISBN 9781713845393.

Liyuan Xu, Heishiro Kanagawa, and Arthur Gretton. Deep Proxy Causal Learning
and its Application to Confounded Bandit Policy Evaluation. In Advances in Neu-
ral Information Processing Systems, volume 34, pp. 26264-26275. Curran Associates,
Inc., 2021b. URL https://proceedings.neurips.cc/paper/2021/hash/
dcf3219715a7c9cd9286£19db46f2384-Abstract.html.

11

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=c8P9NQVtmnO
https://proceedings.neurips.cc/paper_files/paper/2023/hash/cd062f8003e38f55dcb93df55b2683d6-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/cd062f8003e38f55dcb93df55b2683d6-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/cd062f8003e38f55dcb93df55b2683d6-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/19ae2b95d3831c14373271112f189a22-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/19ae2b95d3831c14373271112f189a22-Abstract-Conference.html
https://ieeexplore.ieee.org/document/7424337
https://www.cambridge.org/core/books/bayesian-filtering-and-smoothing/C372FB31C5D9A100F8476C1B23721A67
https://www.cambridge.org/core/books/bayesian-filtering-and-smoothing/C372FB31C5D9A100F8476C1B23721A67
https://www.cambridge.org/core/books/bayesian-filtering-and-smoothing/C372FB31C5D9A100F8476C1B23721A67
https://openreview.net/forum?id=ZzmKEpze8e
https://openreview.net/forum?id=ZzmKEpze8e
https://proceedings.neurips.cc/paper_files/paper/2024/hash/3e0f495e21bdbdb4251792d0fff57928-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/3e0f495e21bdbdb4251792d0fff57928-Abstract-Conference.html
https://openreview.net/forum?id=sy4Kg_ZQmS7
https://proceedings.neurips.cc/paper/2021/hash/dcf3219715a7c9cd9286f19db46f2384-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/dcf3219715a7c9cd9286f19db46f2384-Abstract.html

Under review as a conference paper at ICLR 2026

Yang You, Igor Gitman, and Boris Ginsburg. Large Batch Training of Convolutional Networks,
September 2017. URL http://arxiv.org/abs/1708.03888. arXiv:1708.03888 [cs].

Yihua Zhang, Prashant Khanduri, Ioannis Tsaknakis, Yuguang Yao, Mingyi Hong, and Sijia Liu.
An Introduction to Bilevel Optimization: Foundations and applications in signal processing and
machine learning. IEEE Signal Processing Magazine, 41(1):38-59, April 2024. ISSN 1558-0792.
doi: 10.1109/MSP.2024.3358284.

12

http://arxiv.org/abs/1708.03888

Under review as a conference paper at ICLR 2026

A Kalman Filter Interpretation of the Proximal Algorithm| 13
(B Alternative Algorithm)| 14
|C Proofs for the Theoretical Analysis of the Loss| 14
[C.1 Neural Tangent Kernel Infinite Width Limit) 15
[D_Deep Feature Instrumental Variable Regression| 17
|E Experimental details| 17
F Tditional Result 19
[F.1 Hyperparameter ablations on CIFAR-100. 19
F2 CIFAR-T00] o o e e 20

A KALMAN FILTER INTERPRETATION OF THE PROXIMAL ALGORITHM

We can interpret the updates on the last layer in Eq. (T7) as a Kalman filter under several simplifying
assumptions. We take the Bayesian point of view, where we treat the last layer W, at time ¢ given the
feature parameters 6, as a random variable. See also (Titsias et al.,[2024) for a similar discussion.

First, we assume that the model fits the data perfectly during optimization, so we have the likelihood

p(yi | @i, Wi, 0:) = N (yi | Wede, (2:),031) (22)
where [is the identity matrix and o is some hyperparameter controlling the variance of the outputs
and (x;,y;) € By.

Next, we assume W; evolves like a random walk with Gaussian steps, as the parameters evolve
through time 6;, so
pP(Wis1 | W) = N(Wypy | Wy, 03 1) (23)

where 0% is some hyperparameter controlling the variance of the steps.

Equations (22) and (23)) provide us a way to update our belief about W, in closed-form through time.
Namely our belief about W, given our observations B, for s < t will be a Gaussian distribution
N (W, %), obtained by Kalman filtering (Sirkkd, 2013). Here, note that 3, will be a od X od
matrix, i.e. will be squared times the number of parameters in the last layer. For large last layers,
this can be intensive to store and manipulate.

Instead, we propose an additional simplifying assumption, where we approximate the dynamics at
each step

PWigr | We) = p(Wigr | W) = N(Wiga | W, 0 1), (24)
In other words, we ignore the covariance 3J; at each step, and collapse our belief over W; to the point
estimate W;. The resulting update on our point estimate of the last layer is given by maximum-a-
posteriori estimation:

Wig1 = argmirdl— Z log p(y; | x;, W, 0,) —logp(W | Wy)
W ERoX

(zi,y:)EB

= argmin — Z log N (y; | Wi, (x:), 0% 1) — log N (W1 | Wy, o 1)

Wekex (@i y:)EB: (25)

. 1 1

=argmin Y —|lyi — Wee(z:)|3 + 55 |W — Wil %

W eRoxd 20’Y QO'W

(zi,y:)EB:

= Wét,wt (9)

2

with A = ZTY in Eq. l| That is, such approximate Bayesian updates recovers precisely the
w

minimum of the proximal loss Eq. (I3), leading to the updates on W} as in Eqs. (I3) and (I7).

13

Under review as a conference paper at ICLR 2026

B ALTERNATIVE ALGORITHM

We present an alternative algorithm in Algorithm 2]

Algorithm 2 Proximal closed-form SGD

1: Given: Batch size B, proximal coefficient A > 0, neural network ¢y with initial parameters 6,
learning rate o > 0, initial last layer parameters Wj.
t<0
Fit last layer on the first batch
Wi = Wg, w, (0r)
while 6, has not converged do
t—1t+1
Update backbone on the current batch 5,
0y < 01 — aVoLlp, (Wi, 0,_1)
Update last layer on the next batch 5, ;
Wigr < W5, w, (04)

Output: Optimized (W™, 6*)

_
PR A B G AN Ul

Ju—

C PROOFS FOR THE THEORETICAL ANALYSIS OF THE LOSS

This appendix contains the proofs for Section 3}

Spelling out the expression for £% in matrix form,

Lx(9) = Z ly: = Wr(@)p ()3

* 2 (26)
=Y = Wx(0)o(X) I
= tr ((V = Wx(9)o(X)) (Y = Wi(#)o(X)))
where recall, ¢(X) € R, Y € R, Wi(¢) = Yo(X) " (¢(X)p(X)T +BI)71 € Rox4,

and

The derivative of L% at ¢ is a linear map DL%(¢): F — R. Just as in Theorem |1} to calculate
DL%(¢) we do not need to differentiate Wi (¢) with respect to ¢, and may treat it as constant
instead. So for ¢ € F,

DLE($)] = tr (=2(Y — Wi(9)p(X)) " Wir(9) ¥(X)). 27

=VLL(p)T

The definition of the gradient VL% (¢) € R°*" is just a standalone definition used for convenience
as — without an inner product on F — we do not have a well defined notion of gradients for the
functional £%-. Importantly, note that ¢* is a critical point of £% if and only if DL%(¢*) = 0, i.e. if
and only if DL%(¢*)[¢)] = 0 for all 1) € F, i.e. if and only if VL%-(¢) = 0.

Plugging in the expression for W3 () in the definition of VL% (¢) and writing ® := ¢(X) € R4*",
we get

VLE(9) = 2W(9) T (WE($)$(X) — Y)

(28)
=207 + B OY Y (T (DT 4+ BI) 1D —I).
Define
Y,=Y® (®d" + 370, Y, =Y -3 (dd" + BI)"'D). (29)
In particular
Y=Y, +Y,. (30)

Y, should be thought of the part of the outputs “attainable” by the features ®, and Y, the part
of the outputs “unattainable”. To see this, take a singular value decomposition of ¢ of the form

14

Under review as a conference paper at ICLR 2026

® = UXV" where U € R%*? has orthonormal columns, ¥ € R?*¢ is diagonal with the first
r := rank ® diagonal entries being non-zero and V' € R™*¢ has orthonormal columns. Moreover
write V, < R"™ for the subspace spanned by the rows of ®, or equivalently the first » columns of
V', the space of “attainable” outputs. Further let V; < R" its orthogonal complement, the space of
“unattainable” outputs. Observe that

(DT + 8O = V(X2 +BI) IV, (31)
When acting on the right, its image is V. Therefore the rows of Y, are in V,, and those of Y, are
in V. In particular, note that when 3 = 0 and assuming ® has full row rank, ® ' (®® ")~ ® is the
orthogonal projection onto V,, when acting on the right.

Now note that
(@D +80)710Y T = U248 'SV Y T = U2 4+81) 'SV TY, = (00 +41) oY,

(32)
So from Eq. (28),
VL5H(p) = —2(@d" 4+ pI)~ 1oy, Y. (33)
And applying ® " on the left we see that VL% (¢) = 0 if and only if T VL% (¢) = 0,ie. Y, Y| =
0.

We see for example that ¢ = 0 gives Y, = 0and Y| =Y, sois a critical point of L%, even though it
is not a global minimizer, assuming Y # 0. When min(d,n’) > rank Y, where n’ is the number of
distinct x;, being a global minimizer is equivalent to Y, = 0, because then the features can “attain”
Y.

When Y # 0, £% admits critical points which are not global minima thus it is not convex, so this
concludes the proof of Theorem 3]

Remark that a result such as Theorem [I] cannot be extended to second derivatives, otherwise we
could differentiate L% twice by keeping W (¢) constant, and would obtain that the Hessian of L%
is positive semi-definite since so is the one of the squared loss. But this is impossible since we
showed that L% is not convex.

C.1 NEURAL TANGENT KERNEL INFINITE WIDTH LIMIT

Before proving Theorem[d] we provide a self-contained overview of the neural tangent kernel (NTK)
limit, based on[Jacot et al.| (2018]).
g is assumed to be a neural network, 6 are its parameters consisting of weights W () and biases b(*),
such that ¢y (z) = aéL) (x), the pre-activations déé)(x): R% — R the activations aée)(x) : R0 —
R, d; = d and
al? () =2
0 =
N VR S OO %
! () = —=WWay’(z)+b
’ VP (34
¢ ~ (£
o) (@) = o (@) .
where o: R — R is a twice differentiable non-linearity function with bounded second derivative,
applied element-wise. The parameters 6 are initialized with Wif) ~ N(0,1), by) ~ N(0,1)
which, combined with the pre-multiplicative factors 1/1/d, in Eq. , corresponds to the LeCun
initialization (see Section[d.T).

We then consider gradient flow on the loss £*:

o N
o = VoL (). (35)

We further consider the infinite width limit n4,...,n; — o0 sequentially, that is we first take

ni; — 00, then ny — oo, etc. In this limit, the dynamics of the function ¢ = ¢y under Eq. are
given by kernel gradient descent: for z € R%,

dd;(tx) = —K(z, X)VLY(9)
_ QK(x,X)(‘I)‘I’T —&—,BI)_l‘I’Y*TYL

(36)

15

Under review as a conference paper at ICLR 2026

where we used Eq. (33), and K is a positive semi-definite kernel K : R% x R% — RZ*¢ the
neural tangent kernel (Jacot et al.| 2018, Theorem 2). Whenever this kernel is positive definite (see
for example|Jacot et al.| (2018}, Proposition 2)) we know that, as t — oo, ¢ will converge pointwise to
a critical point ¢* of L£%. The goal of TheoremE] is to show that, almost surely in the initialization,
¢* will be a global minimum of £%. In other words, Y, — Y and Y, — Oast — oo.

From Eq. (36), we see that

do
= 25(dd" + pI)" oY, Y, (37)

where = := K(X, X) € R™4. So

av, d
= — (YO (@D +BI)"'®
5 =g (Ye(eel +anTie)
e’ T -1 TiaaT _1d® T -1
=Y (@27 +)T YO (@] 4+ BN 0T (@0 + 1) TP
T T -1 de’ T -1 T T 1 d®
—YOH(®DT + BI) IO —(®®T + IR+ YT (DD + BI) 7
=2YY 'YV, 0T (0D + BI)1E(@P T + BI) 1D
—2Y® T (00" +) 'E(@2" 4 pI)7TOY, YV, O (9DT +BI) 1D (38)
=0
—2Y dT (@0 + 81OV V@ (@0 + BI)T1E(@DT + 8I) 1
=0
+2Y® T (®d" 4 BI)T'E(@DT 4+ BI)TTOY, Y,
=2V, V'V, @" (@D + BI)T'E(@DT + BI) D
+2Y, 0T (@7 + BI)IE(@D T + BI)IOY Y.
Hence T
dy, v, dy,
v =Y 4y, —2
a T Ty
=2V, YV, 0T (@0 + BI)'E(®D T + BI) @Y,
+2Y, 07T (0" + BN 1E(@P T +)oY, VY, (39)
N——
=0
=2V Y)) (Vi@ (@@" + BI)'E(@@" +pI)'OY,T).
N—_——
—:A =:B
So .
d dy, dy,
— (vY,) = =Y, +Y,—2 =2(AB + BA). 40

We can assume without loss of generality that rank Y = o; linearly related rows of Y will induce
linearly related rows of Y, and Y, at all time, so for the sake of analysis we may ignore linearly
dependent rows. We also assume without loss of generality that the x; are distinct, otherwise we
may ignore the corresponding duplicate columns of ®.

At initialization, the infinite width neural network is a Gaussian process (Jacot et al.,| 2018, Propo-
sition 1). If the corresponding neural Gaussian process kernel (NGPK) is positive definite (see
for example |Gao et al.| (2023, Theorem 4.5)), and if all z; are distinct, then the distribution of
the columns of ® follow a non-degenerate Gaussian at initialization ({ = 0). So, at t = 0,
dimV, = rank® = min(d,n) almost surely. Since min(d,n) > rankY = o, projecting the
rows of Y onto V, we get that rank Y, = o almost surely at ¢ = 0, so B is positive definite almost
surely.

A is positive semi-definite so, by Eq. , £ (Y,Y,T) is positive semi-definite. So the (almost
surely) positive eigenvalues of Y, Y, are non-decreasing through time. They converge when A = 0,

16

Under review as a conference paper at ICLR 2026

i.e. Y| = 0, which corresponds to a global minimum of £%. They are guaranteed to converge when
the NTK is positive definite.

We see in addition that, since the NTK is the sum of the NGPK with some other positive semi-
definite kernel (Jacot et al.| 2018, Theorem 1), the NGPK being positive definite implies that the
NTK is too. So this concludes the proof of Theorem {4

D DEEP FEATURE INSTRUMENTAL VARIABLE REGRESSION

In Instrumental Variable Regression, we observe a treatment X and an outcome Y. But we have an
unobserved confounder that affects both X and Y, specifically we have the relation

Y = fotruet(X) +€, Ele]=0, E[e| X]#0 1)

where fsiruct 1S called the structural function which we aim to infer, and € is an additive noise term.
Because E[e | X] # 0, we cannot use ordinary supervised learning techniques. Instead we assume
we have access to an instrumental variable Z which satisfies E[¢ | Z] = 0. Then we have that
E[Y | Z] = E[fstruct(X) | Z], so we solve this equation for fgtyruct.

Deep Feature Instrumental Variable Regression (DFIV) (Xu et al.l [2020) solves this by using two
neural networks. The first neural network models w " 1g, () = fstruct(), and the second neural
network models Wy, (2) = E[tpg, (X) | Z = z]. It alternates between two stages. In the first
stage W and 6 are regressed to fit

W, (2) = Elthoy (X) | Z = 2]. (42)

using a squared loss on some data {(z; ™ -(1))}:

LYW, 05) : Z IW g, (2 wex((1))||2 + regularizer(WW) (43)

Solving W in closed-form with a ridge or proximal regularizer makes it implicitly depend on fx,
which we write W*(6x). Leveraging this dependence, in the second stage w and € x are regressed
to fit

w W*(0x)po, (2) =E[Y | Z = 2] (44)

using a squared loss on some data {(y; @ .(2))}:

L (w,0x) ZHwTW* Yoo, (= (2)) y52)||§ + regularizer(W). (45)

When both Egs. @) and (44) are simultaneously satisfied we see that E[w "¢y, (X) | Z] = E[Y |
Z] = E[fstruct(X) | Z], as required. Since this is a bilevel optimization problem, we alternate
between the two stages. In both stages we use either “ls c.f. proximal (A)” or the original method,
which relies on “/5 c.f. ridge (3)” together with backpropagation through the closed-form solution.
Our “Us c.f. proximal (A)” is thus much cheaper. With “ls c.f proximal (X)”, we use three distinct
proximal hyperparameters \: one hyperparameter \; for the closed-form solution of W in stage 1,
one hyperparameter)y for the closed-form solution of w in stage 2, and one hyperparameter A o
for the closed-form solution of W in stage 2. This last step is performed before updating 6z and w
to obtain the closed-form solution W*(6x) as a function of §x. See Algorithm 3| for details.

E EXPERIMENTAL DETAILS

DFIV regression. For the experiments, we follow closely (Xu et al.l 2020) and we consider a
slightly modified version of d-spirtes task (Matthey et all 2017). This is an image dataset
described by five latent parameters (shape, scale, rotation,posX,posY). The images are
64 x 64 = 4096 dimensional. In this experiment, the authors fix the shape parameter to heart,
i.e., they only used heart-shaped images. The authors generated data for IV regression in which they
use each figure as a treatment variable X. Hence, the treatment variable is 4096-dimensional in this
experiment. To make the task more challenging, they used posY as the hidden confounder, which

17

Under review as a conference paper at ICLR 2026

Algorithm 3 DFIV proximal

1: Given: Stage 1 data {(xl(l), zi(l))}, stage 2 data {(yl@, ZZ(Q))}, batch sizes Bj, Ba, proximal
coefficients A1, A2, A1 2 > 0, neural networks ¢y, , ¢y, with initial parameters 6 x, 8¢ re-
spectively, learning rates a1, as > 0, initial last layer parameters wg, Wy, number of updates in
each stage T, T5.

2: t1+0

3: 1o+ 0

4: while 0z,, and 6x,, have not converged do

5: Sample B stage 1 data B ¢ {(xgl), zfl))} and Bj stage 2 data B> C {(ygz), 252))}
6: fort =1to 7} do

7: t1 < t1+1

8: Ozt, < Oz(,-1) — 0¢1V92£g<)1> (Wi —1,020,-1))

9: Wi, < Wiay w, _, (0z:,) onloss Eggl) with proximal coefficient A;
10: fort =1to 75 do

11: to < 19 + 1

12: W*(0x) + WE(U.Wt (0z0) on loss Eg()l) with proximal coefficient A; o
13: Oxt, < Ox(ta—1) — 042V9X£§<)2> (Wy—1,0x(t,-1))

14: W, < Wy, (Ox¢,) onloss Eg()z) with proximal coefficient Ay

15: Output: Optimized (w*, W*, 0%, 0%)

is not revealed to the model. They used three latent varaibles as the instrument variables Z. The
outcome Y is defined as

Y = fama(X) + 32(posy — 0.5) + ¢, (46)

where € ~ N (0,0.5). Here, we used fyuet(X) from a different paper (Xu et al.L[2021a), which was
defined as
(vec(B)T X)? — 3000

fstruct(X) = 500) (47)

where B € R64%64 B, = |3§;j | and vec(DB) collapses the matrix B to a vector of dimensionality
4096. The choice of this structural function was motivated by (Xu et al.,[2021a)), because the original

choice described in|Xu et al.[(2020) led to essentially a constant function (in expectation).

For our experiments, we use different batch sizes. The DFIV method (Xu et al. [2020) essentially
corresponds to two-stage “ly c.f. ridge (3)” where we have 81 and [3; parameters for the first and
second stage correspondingly. In our proximal method, DFIV proximal, as described in Appendix[D]
we have three parameters A;, Ao for the first and second stage proximal updates and \; » for first-
stage update inside the second stage. In practice, we sweep over A\; and A and we use Aq 2 to be
very small, i.e. A;2 = 0.0001 as we found that using large A; > did not work well. We choose
Ty =20 and 75 = 1 as in|[Xu et al.| (2020).

The datasets are split into the training set with 10000 points, validation set with 100 points and
holdout test set with 488 points.

When we evaluate performance, we use two strategies. One is following (Xu et al., 2020) and
whenever performance is reported, takes the first stage and second stage backbone parameters, and
re-estimates the corresponding last layers on the whole 10000 training set. In Figure [3]it is repre-
sented by the solid line. The second strategy just takes the current estimates of the last layers. In
Figure |3|it is represented by the dashed line.

The sweep range for 31, 52, A1, A2 is {0.00001, 0.0001,0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0}.
On top of that, we also sweep over the learning rate (we use the same learning rate for both stages)

in the range {0.001,0.005,0.01,0.05,0.1}. Each experiment is run with 3 seeds. The best
hyperparameters are selected by minimizing the mean squred error (MSE) on the validation set at

the end of the training, using the first evaluation strategy (re-estimating the last layers on the whole
dataset). The performance is reported on the holdout test set.

18

Under review as a conference paper at ICLR 2026

CIFAR-10,
v = 0.9
validation.

CIFAR-100. We always use SGD optimizer with Nesterov momentum
We train on the 80% of the training set and we use the remaining 20% for
For reporting performance, we use the corresponding test set. The sweep
ranges are o € {10.0,5.0,2.0,1.0,0.5,0.3,0.2,0.1,0.05,0.01, 0.005, 0.001, 0.0005 },
learning rate and A € {0.0001, 0.001,0.01,0.1,1.0,10.0, 100.0, 1000.0}, S €
{0.0001, 0.001,0.01,0.1,1.0, 10.0, 100.0, 1000.0}.

ImageNet. We follow closely the experimental setup described in (Brock et al., [2021)), including
learning rate schedule, label smoothing, data augmentations and Nesterov momentum in the SGD.
The learning schedule is a warmup cosine decay with the peak learning rate o = 1.6. We also
swept over « € [0.1,1.,1.6,2.,5.0] range. Overall, all the methods performed the best with o =
1.6 except for “/5 loss” which performed the best with « = 1. For “ls c.f. proximal (\)”, we
used A = 10000 and for “ls c.f. ridge (8)”, we used 5 = 0.01. To select these parameters,
we ran a sweep over 3 € [0.0001,0.001,0.01,0.1,1.0,10.0, 100.0, 1000.0, 10000.0] and over A €
[0.0001,0.001,0.01,0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0]. We used validation set of ImageNet for
the hyperparmaeters selection.

F ADDITIONAL RESULTS

F.1 HYPERPARAMETER ABLATIONS ON CIFAR-100.

In this section, we provide results for ablating hyperparameters and design choices for our method.

Use of a bias. We study the impact of using bias on the performance of “/5 c.f: proximal ()\)” on
CIFAR-100. The results are given in Figure[F.I] We observe similar performance for both strategies.

Batch size = 32 Batch size = 128 Batch size = 1024 Batch size = 4096

e T e

o
06

e
i Al
.ﬂw

[
‘

] | ‘ ‘ ‘
‘

Wk 1k
Step

DTest s:zt accuramcy
Test set accuracy
Test set accuracy
Test set accuracy

200 300k 400k 500k 600k 700K 0k a«
Step Step

No Bias

Figure F.1: Whether to use a bias. X-axis is the number of iterations, Y-axis is a test set accuracy.
Each column corresponds to a different batch size. Different colors indicate different methods.

Impact of initialization. We study impact of different initialization strategies (see Section @] for
more details). The results are given in Figure We see that using zero initialization leads to
overall better performance across batch sizes.

Batch size = 32

Batch size = 128

Batch size = 1024

Batch size = 4096

Test set accuracy

Test set accuracy

Test set accuracy

Test set accuracy

25k

0k

25k 151

0k 175k

W 1k T
Step Step

— LeCun

75 1006 1
Step
Xavier

200 300k 400k 500k 600K 700k
Step

—— Zeros — He

Figure F.2: Initialization strategy. X-axis is the number of iterations, Y-axis is a test set accuracy.
Each column corresponds to a different batch size. Different colors indicate different methods.

Adam optimizer. We train our method “l5 c.f. proximal (\)” but replacing the SGD update on
6 in Eq. by an Adam optimizer update. The results are reported in Fig. We observe that

19

Under review as a conference paper at ICLR 2026

using Adam together with our method leads to worse performance. The Adam update keeps running
averages over the gradients and squared gradients which are used to rescale parameter updates.
While using momentum over gradients in the backbone works well with our method, the additional
step-size rescaling might require us to incorporate an adaptive strategy over A parameter and extend
these per last layer dimension.

Batch size = 32 Batch size = 128 Batch size = 1024 Batch size = 4096

P

0625

575
550
0525
0 100k 200 300 400k 500k 600k 700k 0 25k S0k 75k 100k 125k 150k 175k] sk 10k 15 206 [I

3
Step Step Step Step
—— SGD Adam

Test set accuracy
Test set accuracy

Test set accuracy
Test set accuracy

Figure F.3: Adam vs SGD. X-axis is the number of iterations, Y-axis is a test set accuracy. Each
column corresponds to a different batch size. Different colors indicate different methods.

F.2 CIFAR-100
We present here the results for Algorithm 2] The summary results on CIFAR-100 are given

in Fig. The bias or no bias ablation is given in Fig. The SGD vs Adam ablation is
given Fig. The ablation on the initialization strategy is given in Fig.[F.7]

Batch size = 32 Batch size = 128 Batch size = 1024 Batch size = 4096

Test set accuracy
Test set accuracy
Test set accuracy
Test set accuracy

[PPSO —

0 100k 200k 300k 400k 500k 600k 700K 0 25k S0k 75k 100k 125k 150k 175k [sk 10k 15K 206 o e 2k 3k 4 sk 6k

Step Step Step
—— Cross Entropy £, loss —— I, c.f. proximal (A) —— I, c.f. ridge (B)

Figure F4: CIFAR-100 results, Algorithm [2]. X-axis is the number of iterations, Y-axis is a test
set accuracy. Each column corresponds to a different batch size. Different colors indicate different
methods.

. Batch size = 32 Batch size = 128 Batch size = 1024 Batch size = 4096
0675 RIS o - > >
8 0.650 o o O e [%)
e e e e AT
=1 S = S ooty
Qo6 I f I I o
9 o | 9 I 4
® 000 & | © ® 4
8 osrs 21 e 9 f
o 2] o P
goos g g A
= os2s =l = =

| |
° 0 100k 200k 300k 400k 500k 600k 700k 0 25k 50k 75k 100k 125k 150k 175k 0 5k 10k 15k 20k J 1k 2k 3k ak 5k 6k
Step Step Step Step

—— With bias No bias

Figure F.5: Whether to use a bias, Algorithm 2. X-axis is the number of iterations, Y-axis is a test
set accuracy. Each column corresponds to a different batch size. Different colors indicate different
methods.

20

Under review as a conference paper at ICLR 2026

Batch size = 32 Batch size = 128 Batch size = 1024 Batch size = 4096

0675
0,650
0550
0525

0 100k 200k 300 400k 500k 600k 700k 0 25k S0k 75 100k 125k 150k 175k [Sk 10k 15 206 1] T %

Test set accuracy

Test set accuracy
Test set accuracy
Test set accuracy

— SGD Adam

Figure F.6: Adam vs SGD, Algorithm X-axis is the number of iterations, Y-axis is a test set
accuracy. Each column corresponds to a different batch size. Different colors indicate different
methods.

Batch size = 32 Batch size = 128 Batch size = 1024 Batch size = 4096
/WMW"’“

0 100k 200k 300k 400k 500k 600k 700k O 25k S0k 75k 100k 125k 150k 175 © sk 106 15 20k I

3
Step Step Step
—— LeCun Xavier —— He —— Zeros

0675

0650

0625

0,600

Test set accuracy
Test set accuracy

0550

Test set accuracy
Test set accuracy

0525

ak sk 6k

Figure F.7: Initialization strategy, Algorithm 2] X-axis is the number of iterations, Y-axis is a test
set accuracy. Each column corresponds to a different batch size. Different colors indicate different
methods.

21

	Introduction
	Related Work

	Background
	Optimizing with a Closed-Form Last Layer
	The Stochastic Setting
	Numerical considerations
	Application to Classification

	Theoretical Analysis of the Loss
	Experiments
	Conclusion
	Kalman Filter Interpretation of the Proximal Algorithm
	Alternative Algorithm
	Proofs for the Theoretical Analysis of the Loss
	Neural Tangent Kernel Infinite Width Limit

	Deep Feature Instrumental Variable Regression
	Experimental details
	Additional Results
	Hyperparameter ablations on CIFAR-100.
	CIFAR-100

