
Embodied LLM Agents Learn to
Cooperate in Organized Teams

Xudong Guo1 Kaixuan Huang2 Jiale Liu3 Wenhui Fan1 Natalia Vélez2
Qingyun Wu3 Huazheng Wang4 Thomas L. Griffiths2 Mengdi Wang2

1Tsinghua University 2Princeton University
3Penn State University 4Oregon State University

gxd20@mails.tsinghua.edu.cn, fanwenhui@tsinghua.edu.cn
{kaixuanh,nvelez,tomg,mengdiw}@princeton.edu

{jjl7199,qingyun.wu}@psu.edu
huazheng.wang@oregonstate.edu

Abstract

Large Language Models (LLMs) have emerged as integral tools for reasoning,
planning, and decision-making, drawing upon their extensive world knowledge
and proficiency in language-related tasks. LLMs thus hold tremendous potential
for natural language interaction within multi-agent systems to foster cooperation.
However, LLM agents tend to over-report and comply with any instruction, which
may result in information redundancy and confusion in multi-agent cooperation.
Inspired by human organizations, this paper introduces a framework that imposes
prompt-based organization structures on LLM agents to mitigate these problems.
Through a series of experiments with embodied LLM agents and human-agent
collaboration, our results highlight the impact of designated leadership on team
efficiency, shedding light on the leadership qualities displayed by LLM agents
and their spontaneous cooperative behaviors. Further, we harness the potential of
LLMs to propose enhanced organizational prompts, via a Criticize-Reflect process,
resulting in novel organization structures that reduce communication costs and
enhance team efficiency. 1

1 Introduction

Modern intelligent systems, such as autonomous vehicle networks and swarms of drones, often
involve complex decision-making processes where multiple agents must collaborate seamlessly to
achieve specific objectives [58, 56, 67, 59]. In these systems, communication among the various
agents is pivotal, as it dictates the flow of information, coordination of tasks, and overall system
performance [70, 14, 10, 8]. Agents in traditional multi-agent systems often have to communicate in
pre-specified ways, such as exchanging gradients, sharing data, state observations and actions, etc
[21, 28, 10]. The emergence of large language models (LLMs) makes it possible for AI agents to
communicate and cooperate using natural language, bringing enormous flexibility and potential for
more nuanced and human-understandable interactions [37, 17, 33, 5].

Despite the flexibility of LLMs, integrating them into practical multi-agent systems remains a
challenge. While LLMs are trained and finetuned for text generation and instruction-following, they
are not necessarily tailored to multi-agent cooperation. LLMs are prone to over-reporting and obeying
instructions, as a by-product of RLHF finetuning [2], and they can ignore critical information [29]
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or be distracted by irrelevant information [47], especially when the context is long (see Figure 5 for
examples). While recent studies involving agent-based LLMs have demonstrated they are capable
of solving problems through multi-agent collaboration [25, 66, 33], it is worth noting that such
collaborations often follow predefined patterns designed using heuristics to channel the behavior of
the models productively [25]. Creating systems that support free-flowing interaction between LLMs
in a way that could potentially scale to include humans is still an open problem.

This paper investigates the collaborative potential of LLM agents working in teams. Drawing on
prior studies in human collaboration from cognitive and economic perspectives, there is potential
for organizations to be redesigned to more effectively manage the limited attention span within
teams, as suggested by Simon et al. [50], and mitigate individual limitations and enhance overall
team performance, as highlighted by Van Zandt [54] and Vélez et al. [55]. Specifically, we study
two research questions. First, what role do organizational structures play in multi-LLM-agent
systems? Second, how can we optimize these organizational structures to support efficient multi-
agent coordination? By leveraging AutoGen [61], a generic multi-agent conversation framework, we
develop a framework for studying how to best organize embodied LLM agents to communicate and
collaborate in physical/simulated non-text environments [66]. Our framework offers the flexibility
to prompt and organize LLM agents into various team structures, facilitating versatile inter-agent
communication. It also serves as a testbed to empirically evaluate the traditional ideas proposed in
the organization theory literature.

Our initial experiments in this setting reveal that uncoordinated LLM agents often send redundant
and repetitive messages and interrupt others’ actions, leading to chaos (see Fig. 5 and Appendix I). To
remedy these issues, we explore organizational structures, i.e., the dynamics of information exchange,
that allow multiple LLM agents to collaborate and complete a common task efficiently.

The first organizational structure we explore is a hierarchy, a classic object of study in organizational
theory [34, 43, 7, 3, 12, 9]. With a designated leader, LLM agents work more efficiently and
collaboratively. For the example of a three-agent team, imposing a leader improves efficiency by up
to 30% with almost no extra communication cost (up to 3%), consistent with findings for human
organizations [9]. This also holds true in five-agent cases. Further, LLM agents demonstrated the
potential to elect their own leader and adjust leadership dynamically via communication. With
proper organizations, LLM agents exhibit a variety of cooperative behaviors that mimic humans.
For example, agents can provide constructive suggestions and seek help from others; they can also
execute appropriate interactions for a hierarchy such as reporting back on task progress; see Figures
6, 7 and Appendix H. We also tested human-agent collaboration, and observe that, unsurprisingly,
human leaders are much better at coordinating a team of agents when compared to AI agents.

In addition to testing existing organizational structures, we explore the use of LLMs to improve the
organizational prompts. To this end, we develop a Criticize-Reflect framework, adopting a dual LLM
architecture, to reflect on the team performance and generate improved and novel organizational
prompts. Through this iterative process, our LLM agents spontaneously form novel, effective team
structures, leading to reduced communication cost and improved efficiency; see Figures 4 and 16.

To summarize, our main contributions are:

• We design a novel multi-LLM-agent architecture for ≥ 3 embodied agents, facilitating
flexible communication to implement emergent organizational structures.

• We develop a Criticize-Reflect framework based on LLMs to improve the organizational
prompts automatically.

• Extensive experiments demonstrate that hierarchical organization improves team efficiency,
which aligns well with existing literature on human organizations.

2 Method

2.1 Architecture and Multi-Agent Communication

We adopt the embodied LLM-agent architecture proposed by Zhang et al. [66] and expand it to enable
organized teams of ≥ 3 agents to communicate, plan, and act in physical/simulated environments.
Figure 1 illustrates our architecture. Borrowing insights from Zhang et al. [66], we adopt four
standard modules: Configurator, Perception Module, Memory Module, and Execution Module. They
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Figure 1: Multi-LLM-agent architecture. (a) The modules and prompts of an LLM agent. (b) There
are two phases in one time step: Communication phase and Action phase. In the communication phase,
the agents take turns communicating by broadcasting or selecting receivers to send distinct messages.
The agents can also choose to keep silent. Comm: Communication; PO: Partial Observation.

Figure 2: Criticize-Reflect architecture for improving organizational structure. The red agent
represents the leader in a hierarchically-organized team. After the team completes one episode, the
Critic evaluates the trajectories and analyzes the agents’ performance. Together with the external
costs from the environment, the Coordinator proposes a new organizational prompt to improve the
team efficiency. The new prompt will be applied to the next episode to continue the iteration.

are responsible for configuring the agents, translating environmental observations into text, storing &
retrieving historical information, and executing actions, respectively (Fig. 1(a)).

Previous works focused on two-agent cooperation, in which case the communication can be simply
treated as an extra action [33, 66]. In contrast, we aim to enable three or more agents to work in a
team and cooperate through emergent organized communication. Thus we design the architecture
with several features that facilitate organized multi-agent communication (Figure 1(b)):

• We disentangle the communication decision-making from the action decision-making by
adopting two separate LLMs as Actor and Communicator.

• We impose an organizational structure for the agent team via prompting, i.e., including a
textual description as part of the prompts for both the Actor and Communicator.

• LLM agents keep alternating between two phases during their task: the communication
phase and the action phase. The standalone communication phase supports richer team
structures and flexible communication patterns.

• During communication, agents take turns to communicate. An agent can choose to broadcast
a message, select one recipient for a message, choose multiple recipients and send them
distinct messages, or remain silent. Agents keep their own history of communication and
can respond to messages from previous communications.
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Figure 3: Organized teams with a designated leader achieve higher efficiency. (a,b) Comparison
between the case of disorganized agents, the case where a leader is appointed, the case where agents
choose their own leader dynamically, and the case where a human player replaces an agent to be
the leader. Note that GPT-3.5-turbo doesn’t support leadership election. (c,d) Comparing leadership
quality for GPT-3.5-turbo vs. GPT-4. The confidence intervals of Human as the leader group are
calculated over 3 seeds while others are over 20 seeds.

2.2 Criticize-Reflect Method for Improving Organizational Structure

We leverage powerful LLMs to optimize the organizational prompt, borrowing insights from [63].
To do so, we introduce a dual-LLM framework to allow the multi-LLM-agent system to ponder and
improve the organizational structure. Figure 2 illustrates our framework with two LLMs as follows:

LLM critic: Inspired by the Actor-Critic method of reinforcement learning [22], we introduce an
LLM critic to evaluate the team’s performance based on verbal feedback. The team critic takes as
input the dialogue and action history of one episode. Then, the critic analyzes the input and reasons
to extract and summarize the key steps that are believed to influence the performance. Also, the critic
provides a textual evaluation of agents’ behaviors and the ranking of their leadership. See the prompts
in Appendix D and technical details (including the ranking criteria) in Appendix E.1.

LLM coordinator: The LLM coordinator takes as input the outputs of the LLM critic as well as cost
metrics (time to task completion and communication cost) of previous episodes from the environment.
It reflects on these data and generates thoughts based on the analysis of the past episodes and the
initial examples. With the reflection of organizational prompts and their performance, the coordinator
proposes a new and different organizational prompt for the next episode. Please refer to Appendix D
for the prompts and Appendix E.2 for the details of reflection. For each new organizational prompt,
we run for one episode and then return the dialogue and action history to the critic. By criticizing and
reflecting on the prompts iteratively, the framework discovers more effective, novel organizational
structures with self-improvement.

3 Main Results

3.1 A Designated Leader Enhances Performance

We chose VirtualHome [40, 41] to evaluate the proposed method. See Appendix C for more details.

We first studied the effect of organizational structures and leadership on LLM agents. For benchmark-
ing, we experimented with disorganized LLM agents without providing any organizational prompt. In
this case, agents still communicate with one another and work to complete the overall task. However,
we discovered frequent occasions where agents send redundant, repetitive messages and interfere
with one another. See Figure 5 for an illustration and see Appendix I for more examples. Numeric
metrics are reported in Table 1.

When a leader is appointed via the organizational prompt, we observe improved team performance –
the teams completed the task in less time (Figure 3(a)). Compared to the disorganized teams, teams
with a designated leader only have a slightly increased or even less communication cost (Figure
3(b)). This is consistent with patterns seen in previous models of hierarchical organizations [9].
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Figure 4: The reflection and improvement process for finding novel organizational structures.
(a) The experiment was done using the 1×GPT-4+2×GPT-3.5-turbo team. The organizational prompt
evolves during the iterations, and takes on additional keywords such as "central", "hierarchical", and
"dynamic". (b) The confidence intervals are calculated over 20 seeds.

When we asked the agents to elect their own leader, the performance improved with a much higher
communication cost. Replacing the leader with a human resulted in even better performance. Please
find the detailed analysis in Appendix F.

Teams with a leader also emerge centralized communication patterns shown in Figure 16 and
Appendix J.6. For additional experiments on other LLMs such as Llama2-70B, please see Table 1.
The communication styles of leaders and non-leaders were clearly differentiated, as shown in Figure
9. We further scaled up the team sizes and found that the communication costs only increased in a
nearly linear way, without a curse of dimension (See Table 2). The comparison with other multi-agent
baselines can be found in Appendix G.5.

Moreover, we find that, within this hierarchical organization of LLM agents, leadership and open
communication are crucial. In Figure 3(c, d), leadership quality and feedback to the leader influence
the performance (See Appendix J.5 for further analysis). We also conducted both qualitative and
quantitative analyses of the emergence of cooperative behaviors in Appendix G.3.

3.2 Novel Organizational Structures

Having evaluated the human-designed structures, we let the LLMs propose novel organizational
structures and iteratively refine the organizational prompts using the Criticize-Reflect method.

Figure 4(a) visualizes the reflection process. The system was initialized with a basic organizational
prompt, i.e., "Agent_1 as the leader to coordinate the task". As the Reflection process moves forward,
the Coordinator generates a sequence of evolving organizational prompts, picking up key words like
"hierarchical" and "dynamic" that imply more complex team structures.

In Figure 4(b), the performance improved after reflection but declined when the Critic was removed.
See Appendix F for further discussion. We also visualize the team structures proposed after reflection
in Appendix L and test the generalizability in Appendix G.6.

4 Conclusion

We develop a novel multi-LLM-agent architecture to facilitate communication and organize the
embodied agent teams for enhanced cooperation. Moreover, we propose the Criticize-Reflect frame-
work based on LLMs to generate more efficient organizational prompts. Extensive experiments with
various group settings demonstrate that a hierarchically-organized team with a designated/elected
leader has superior team efficiency, which can be further improved by Criticize-Reflect.

The current work is performed in a single environment and lacks human evaluation. Future work
shall extend to a broader set of environments, allowing human evaluation. As VirtualHome cannot
hold hundreds of agents, future work can also explore larger organizations in other environments.
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A Motivation

LLMs are prone to over-reporting and obeying instructions, and they can ignore critical information
or be distracted by irrelevant information. See examples of unnecessary communication and plan
disruption in Figure 5.

Figure 5: Example of disorganized communication and interruption, without a designated
leader. In a team of three GPT-4 agents, two agents engaged in unnecessary communication and
made disordered decisions, causing a delay due to the lack of a predefined organization. We identified
many more examples including conflicting messages and repetitive communications, see Appendix I.

B Related Works

B.1 LLM Agents

As powerful LLMs inherit abundant world knowledge and also general reasoning ability, there are
increasing efforts to deploy LLMs as the reasoning core for decision-making to build human-like
autonomous agents [51, 75, 15]. This requires observations of the RL environment to be translated
into natural language in a way that is easier for LLMs to process. The reasoning of the LLMs also
needs to be turned into a viable action for execution. Popular prompting techniques for doing so
include ReAct [64] and Reflexion [49]. Other methods that involve fine-tuning the language models
have also been explored [16]. In addition, various techniques have been proposed to mitigate the
biases and constraints of LLMs, including chain-of-thought reasoning [60], external tools [46, 38],
external documents [57] and skill libraries [75].

B.2 Multi-Agent Cooperation

Multi-agent cooperation has been extensively studied for decades under various topics such as
communication efficiency, planning, leadership, and team dynamics using different platforms [31, 45,
44, 41] (see recent surveys for detail [35, 69, 13]). Previous works mainly focused on communication
through continuous vectors [8] or discrete symbols [31, 19]. Recent works [62, 68, 61, 24, 18, 27, 52]
showed that multiple LLM agents or human-agent teams can improve upon single LLM in solving pure
text-based tasks, such as creative writing, reasoning, and code generation. Other works [30, 17, 72]
further explored agent selection or role assignment to improve the performance.

LLMs have also been applied to multi-agent cooperation for embodied tasks [1, 33, 37, 5]. Besides,
Zhang et al. [65] proposed an intention inference framework to enhance the cooperation of LLM
agents without explicit communication. Li et al. [25] investigated LLM-agents collaboration for
Theory of Mind inferences tasks with a broadcast-only communication protocol and homogeneous
policies. Zhang et al. [66] studied embodied multi-agent cooperation in the two-agent and the
one-human-one-agent settings. Chen et al. [6] explored different fixed communication structures
for multi-LLM-robots. Zhao et al. [71] and Chen et al. [4] organized the agents by predefined and
fixed communication with a virtual manager. These initial explorations are limited to fixed team
structures and are not optimized for communication efficiency. In contrast, our work explores the
impact of deploying and optimizing organizational structures, allowing ≥ 3 agents in a team, for
efficient multi-agent communication and cooperation.
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B.3 Prompt Optimization

Language models are sensitive to prompts. The format of the prompt can have a substantial influence
on performance [11, 60, 73, 47, 76, 42]. Various research efforts have aimed at prompt optimization.
Typical approaches include heuristic search using language models’ knowledge [11, 48], first-order
methods like soft prompt tuning [23], and prefix tuning [26]. In this work, we focus on obtaining an
interpretable prompt in the form of natural language, drawing on insights from Yang et al. [63], Zhou
et al. [74], and Pryzant et al. [39].

C Environment Setup

We chose VirtualHome-Social [40, 41] as the environment and extended it to support multi-LLM-
agent communication and interaction. In this environment, agents are humanoid helpers in a virtual
home doing housekeeping, where the tasks include Prepare afternoon tea, Wash dishes, Prepare a
meal, Put groceries, Set up a dinner table, etc. For instance, in Figure 5, the agents cooperate to
prepare afternoon tea by searching for and transporting task-specific items (chocolate, juice, wine,
etc.) to a target location (the coffee table). The environment generates symbolic observations of the
objects in the home and their relations. Each agent only observes the objects in the open containers
located in her room and teammates in the same room, but she can walk to another room to explore.
Any agent can communicate with any other agent, not subject to a range limit.

Each episode starts from an initial state where agents are randomly located in the environment and
all containers are closed. The episode terminates when the task is fully completed. To evaluate
the team’s efficiency we measure the number of time steps taken to task completion, and we report
the average number of tokens communicated between agents per step. In our experiment, each run
initializes with an independently randomized state to obtain the mean and a confidence interval. We
adopt GPT-4, GPT-3.5-turbo [36], and Llama2-70B [53] as LLMs in our agents. The temperature is
set as 0.8, the maximum number of output tokens is 256, and the number of completion choices to
generate is 1. In practice, we use two Nvidia 80GB A100 GPUs to do the inference on Llama2-70B.
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D Prompt Templates

We list the prompts of Actor, Communicator, Critic, and Coordinator as follows.

Actor and the Communicator. ORGANIZATION_INSTRUCTION is the placeholder for the organiza-
tion instruction prompt, either manually designed or automatically generated. The environment will
provide text descriptions for the current GOAL, PROGRESS, and AVAILABLE_ACTIONS. We include
the latest 12 sent and received messages as DIALOGUE_HISTORY, and the latest 20 steps of actions as
ACTION_HISTORY.
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Critic. We provide the full trajectory as the input to TRAJECTORIES. Additionally,
ORGANIZATION_INSTRUCTION and GOAL of the current task and organization are also provided
as an additional context.
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Coordinator. In “Instruction examples”, we include the basic setting (goal, organization structure in-
struction), the communication cost, the number of steps taken, as well as the summarized information
generated by the Critic (leadership ranking, problems, summary of the trajectory) for the Coordinator.
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Classifier. We feed the messages to the GPT-4 classifier and get the labels. The rubrics are manually
written after investigating the communication logs.
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E Technical Details

E.1 Details of the Critic

The Critic offers assessments of several episodes with different organizations for the Coordinator
to improve the organizational prompt. The Critic does not directly influence the specific agent’s
behaviors, but instead, the Critic provides insights into organization design to influence the team’s
performance.

As included in the Critic’s prompt in Appendix D, the Critic will sequentially output the thoughts
of this episode’s trajectories, then the summary and problems for each agent in this episode, and
finally the leadership ranking of the agents. The Critic will rank the agents according to key factors
of leadership: communication skills, conflict resolution skills, flexibility, and strategy. Note that we
do not ask the Critic to score the agents because the scoring criteria could vary for different episodes,
making the scores not comparable.

An example output of the Critic is provided as follows:

In the trajectory evaluation, the Critic compresses the trajectories with key steps and behaviors. Then
the Critic gives the ranking where Agent_3 has the best leadership. Together with similar evaluations
of other episodes, the Coordinator will redesign the organizational prompts, for example, Agent_3
now has more possibilities to be chosen as the leader in this case.

E.2 Details of the Coordinator

In this paper, we define organizational structure as the dynamics of information exchange among the
LLM agents. Specifically, when the Coordinator generates a new organizational prompt, it contains
three parts - topology, role assignment, and rules.

Here, "topology" is the type of the organization’s topology, such as decentralized, centralized with
one specific leader, or pyramid. The topology can be visualized as shown in Figure 16.

"Role assignment" is the description of each agent’s duty and whether she is a leader or not. Multiple
leaders with different roles are also allowed. For example, in Figure 4, the generated new prompt is

“Agent_1 will act as the central coordinator, Agent_2 will execute tasks with updates only upon task
completion or if issues arise, and Agent_3 will operate in a support role, assisting when called upon
and avoiding repetitive queries”, giving each agent a different role.

"Rules" are the additional guidance to the agents’ behaviors, for instance, sentences like “If the
leader’s instructions are not right, you can correct the leader” can be added to the new prompt.
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F Analysis of Main Results

F.1 A Designated Leader Enhances Performance

In Figure 3(a), after running the 3×GPT-3.5-turbo experiments with 20 random seeds, we performed
two-sample t-tests, showing a statistically significant improvement by 9.76% in performance (t(38) =
1.71, p < .05). Similarly, a designated leader brings benefits to the team of 3×GPT-4 (improved by
5.28%, t(38) = 0.86, p = 0.20) and the team of 1×GPT-4+2×GPT-3.5-turbo (improved by 9.61%,
t(38) = 1.43, p = 0.08).

Next, we asked the agents to elect their own leader. The leadership was reelected about every 9
time steps, based on information extracted from the latest 12 messages. We observe that agents are
generally not power-seeking: they often vote for others to lead. In some occasions, agents favored
candidates who exhibited higher knowledge levels, for example, one agent thought that "Given that
Agent_2 has found a necessary item, it makes sense for him to be the leader in this round." However,
on most occasions, we could not tell whether agents made their votes based on rational reasoning
or just random thoughts (see Appendix J.2). In the case of the 3×GPT-4 team2, implementing
leadership election resulted in improved team efficiency when compared to consistently following
a predetermined leader (t(38) = 1.84, p < .05; see Figure 3(a)). However, this improvement was
accompanied by a substantial increase in communication cost, akin to real-world scenarios where
relaxing hierarchical structure potentially increases communication cost [32].

The proposed multi-LLM-agent architecture is also human-friendly to support human-AI collabora-
tion. In the experiment, we ask a human player to replace the leader in the team of 3 GPT-4 agents.
We recruit three human players to conduct the experiments. Figure 3(a, b) demonstrates that human
leadership achieved better task completion time and improved communication efficiency compared
with GPT-4 as the leader. Please find more examples of dialogues between the human leader and
LLM agents in Appendix J.3.

F.2 Novel Organizational Structures

We compared the team’s performance before and after the Criticize-Reflect steps. Figure 4(b)
illustrates the team’s efficiency. We observe that for 3×GPT-3.5-turbo, the new organizational
structure improved the team’s efficiency in completing the task (t(38) = 1.73, p < .05), at slightly
increased communication cost. While for 3×GPT-4 and 1×GPT-4+2×GPT-3.5-turbo, the commu-
nication cost is reduced with improved task efficiency (t(38) = 1.56, p = 0.06 for 3×GPT-4, and
t(38) = 0.32, p = 0.38 for 1×GPT-4+2×GPT-3.5-turbo).

The Critic analyzes the records of action and dialogue, and performance metrics from the most
recent episode. It provides evaluation for the full team’s trajectory, feedback to individual agents
and their rankings. See the example of the Critic outputs in Appendix E.1. As an ablation study,
we removed the Critic from our architecture and only performed the Reflection step. The results
are shown in Figure 4(b), indicating that Reflection without the Critic leads to performance decline
(t(38) = 1.96, p < .05). In this case, the Coordinator needs to digest all dialogue history and
generate a new organizational prompt. This did not work well and led to rather vague outcomes. This
comparison highlights the role of the Critic and the importance of having a dual Criticize-Reflect
architecture. For more prompts generated with/without the Critic, please refer to Figure 17.

In addition, it is worth mentioning that LLMs are able to generate highly complex prompts that
imply novel organizational structures that are rarely seen in human societies. We illustrate the
communication patterns as team structures in Figure 16 together with the three novel structures
proposed by Criticize-Reflect: (c) chain, (d) dual-leader, and (e) dynamic structures, which are the
best structures of the three settings in Figure 4(b, c) respectively.

Finally, to test the generalizability of the novel organizational structures, we pick the best novel
prompt, the one illustrated in Figure 16(e), proposed by the Criticize-Reflect architecture on the
Prepare afternoon tea task. We test it on a set of six new tasks, comprising of three easy tasks

2Note that GPT-3.5-turbo agents do not support election probably due to their alignment policy and always
ignore the demand of election.
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and three hard tasks3, as shown in Figure 8. In the three hard tasks, the team with the novel
organizational structure had better performances than the team appointing a fixed GPT-4 agent as the
leader (Figure 8(a,b)). In the three easy tasks, the benefits are marginal. We compared the two teams
across all tasks, performed a t-test and concluded that the novel team structure leads to more efficient
performance than the fixed leader (t(22) = 2.08, p < .05).

G Additional Results

G.1 Complete List of Basic Experimental Results

We present the full results of various group settings and organization instructions in Table 1. Here,
we also include the results of other LLMs such as Llama2-70B, Llama-3.1-70B-Instruct, and Claude-
3.5-sonnet.

Table 1: Performance for different organization instructions. When there are two different kinds
of LLMs in the group, Agent_1 is GPT-4/Claude-3.5-sonnet, and Agent_2 is the other type of LLM.

GROUP SETTING ORGANIZATION INSTRUCTION TIME COMMUNICATION COST

3×GPT-4 NONE 57.75 ±13.09 67.03 ±9.68
3×GPT-4 AGENT 1 IS THE LEADER TO COORDINATE THE TASK. 54.70 ±8.92 54.73 ±8.89
3×GPT-4 AGENT 1 IS THE LEADER TO COORDINATE THE TASK.

IF THE LEADER’S INSTRUCTIONS ARE NOT RIGHT,
YOU CAN CORRECT THE LEADER.

50.70±13.92 63.49±8.61

3×GPT-4 ELECT A NEW LEADER EVERY 10 STEPS TO COOR-
DINATE THE TASK. ... AFTER THE ELECTION, THE
OTHER AGENTS SHOULD FOLLOW THE LEADER’S IN-
STRUCTIONS.

49.20±9.97 135.03±20.45

3×GPT-3.5-TURBO NONE 102.95±21.88 53.73±6.04
3×GPT-3.5-TURBO AGENT 1 IS THE LEADER TO COORDINATE THE TASK. 92.90±14.70 59.87±6.33
3×GPT-3.5-TURBO AGENT 1 IS THE LEADER TO COORDINATE THE TASK.

IF THE LEADER’S INSTRUCTIONS ARE NOT RIGHT,
YOU CAN CORRECT THE LEADER.

94.20±16.22 60.53±3.66

1×GPT-4+2×GPT-3.5-TURBO NONE 81.10±18.35 54.00±5.06
1×GPT-4+2×GPT-3.5-TURBO AGENT 1 IS THE LEADER TO COORDINATE THE TASK. 73.30±16.12 55.82±6.57
1×GPT-4+2×GPT-3.5-TURBO AGENT 1 IS THE LEADER TO COORDINATE THE TASK.

IF THE LEADER’S INSTRUCTIONS ARE NOT RIGHT,
YOU CAN CORRECT THE LEADER.

85.67±14.52 61.57±0.55

1×GPT-4+2×GPT-3.5-TURBO AGENT 2 IS THE LEADER TO COORDINATE THE TASK. 75.65±15.43 58.39±8.11
1×GPT-4+2×GPT-3.5-TURBO AGENT 2 IS THE LEADER TO COORDINATE THE TASK.

IF THE LEADER’S INSTRUCTIONS ARE NOT RIGHT,
YOU CAN CORRECT THE LEADER.

72.33±6.60 74.21±7.73

1×GPT-4+2×LLAMA2-70B NONE 77.00±2.94 119.48±1.28
1×GPT-4+2×LLAMA2-70B AGENT 1 IS THE LEADER TO COORDINATE THE TASK. 83.67±10.96 135.22±16.39
1×GPT-4+2×LLAMA2-70B AGENT 2 IS THE LEADER TO COORDINATE THE TASK. 76.00±5.72 142.24±11.85
3×CLAUDE-3.5-SONNET NONE 78.33±12.86 95.76±18.90
3×CLAUDE-3.5-SONNET AGENT 1 IS THE LEADER TO COORDINATE THE TASK. 74.33±24.13 70.06±21.33
1×CLAUDE-3.5-
SONNET+2×GPT-3.5-TURBO

AGENT 1 IS THE LEADER TO COORDINATE THE TASK. 75.50±12.02 49.00±19.03

3×LLAMA-3.1-70B-INSTRUCT NONE 69.67±12.58 72.27±5.32
3×LLAMA-3.1-70B-INSTRUCT AGENT 1 IS THE LEADER TO COORDINATE THE TASK. 60.00±10.15 75.22±4.38
2×GPT-4+3×GPT-3.5-TURBO NONE 42.67±4.03 98.03±9.86
2×GPT-4+3×GPT-3.5-TURBO AGENT 1 IS THE LEADER TO COORDINATE THE TASK. 39.67±9.46 94.73±4.01
2×GPT-4+3×GPT-3.5-TURBO AGENT 2 IS THE LEADER TO COORDINATE THE TASK. 48.50±9.50 96.53±2.51

3The hard tasks have typical numbers of steps to accomplish the tasks > 60, while those of easy tasks are
< 60.
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G.2 Leadership and Open Communication Matters

LLM agents have different levels of leadership. In the team with a mixture of GPT-4 and GPT-3.5-
turbo agents, appointing GPT-4 as the leader increases the team efficiency higher than if GPT-3.5-turbo
is the leader (Figure 3(c,d), Appendix J.5). We ran this experiment on teams of three agents and
five agents, respectively. In both scenarios, the task completion time and communication cost are
reduced when GPT-4 acts as the leader. This finding implies different levels of leadership between
these LLMs.

We also observed that encouraging constructive feedback to the leader agent helped performance.
Motivated by successful human organizations, we tried to promote open communications among
LLM agents by adding an additional prompt that "If the leader’s instructions are not right, you can
correct the leader". Figure 3(c, d) illustrates the results. Interestingly, this modification improves
the team’s overall efficiency and reduces the time to task completion when the team is made up of
3×GPT-4 (t(38) = 0.87, p = 0.14). In contrast, the same modification lowers the team efficiency
when GPT-3.5-turbo agents try to correct the leader (t(38) = 0.27, p = 0.40). In both experiments,
the communication cost increases. We present more details about these behaviors in Appendix J.4.

G.3 Emergence of Cooperative Behaviors

We delved into the behaviors of LLM agents in an organized team to investigate how organizational
prompts influence agents’ communication and decisions. Analysis of their dialogue history revealed
that agents demonstrated a variety of cooperative behaviors, such as reporting, correction, task
allocation, and asking for help (see Figure 6 for an example dialogue).

Figure 6: Examples of cooperative behaviors in a dialogue. Agent_3 leads the team (3×GPT-4
agents). The agents emerge three types of cooperative behaviors: information sharing, leadership &
assistance, and request for guidance.

One may argue that these types of behaviors could also emerge due to the nature of LLMs, even
without a pre-specified team structure. Thus we performed a quantitative analysis to study the impact
of an organizational prompt on these behaviors. We followed a three-step process:

(1) We defined three major categories of human cooperative behaviors: (i) Information sharing:
agents influence others by offering new information, either actively or by being asked.
Reporting to the leader, sharing new observations, and answering questions belong to this
category. (ii) Leadership & assistance: agents, especially the leader if there is one, can
influence others by changing their plans. The behaviors include task allocation, correction,
and asking for help. (iii) Request for guidance: agents actively request new information or
plans for their own decision-making.

(2) We developed a standalone prompt-based GPT-4-classifier to analyze each piece of dialogue.
The classifier decides whether to label the dialogue with any subset of the aforementioned
labels. The classifier has an accuracy of 91.67% when tested on 20 human-labeled dialogue
samples with 60 labels (see Appendix D for the prompt and Appendix K for the test samples).

(3) We use the classifier to label messages generated by the agents and report the percentages of
messages with cooperative behaviors. Note that one message may have multiple labels.

Figure 7 reports the results and illustrates the behavior patterns for different LLM agents. The results
support several observations. Even in a disorganized team, LLM agents love to tell others what to
do. Leadership & assistance accounts for around > 50% of all the behavior (Figure 7(a)). However,

20



Figure 7: Emergent cooperative behaviors of LLM agents. We analyzed the communication
log of the mixture team (1×GPT-4+2×GPT-3.5-turbo) and asked another GPT-4 to annotate agent’s
cooperative behaviors. (a) Behavior of disorganized agents. (b) Behavior of a team led by a GPT-4
agent. (c) Behavior of a team led by a GPT-3.5-turbo agent.

other than telling others what to do, agents in the disorganized team do not show much cooperative
behavior, for example, they would request for guidance in < 10% of the dialogues.

In contrast, when the team has a hierarchical organization, the lead LLM agent would presume a
dominant role and give orders to others (amount to > 60% of their communication), while other
members tend to follow and give fewer orders compared with the disorganized case. (Figure 7(b, c)).
In such a team, agents tend to share and ask for more information, especially for the follower agents
in the team. But still, the agents may fail to cooperate well, such as being lazy and confused about
numbers, please see examples in Appendix J.7.

G.4 Scaling Up the Team Size

We conduct experiments with 3, 5, 7, and 9 agents to scale up the team size of 3 3×GPT-3.5-turbo
agents, and observe that the communication costs increased in a nearly linear way, which suggests that
our approach will not have dimension explosion when scaling up. In addition, the time to complete
the task does not always improve with more agents. The performance of 9 agents (60.67±15.06) is
worse than that of 7 agents (43.00±2.16), as the apartment may be too crowded to hold 9 agents.

Table 2: Performance for different team sizes.

GROUP SETTING ORGANIZATION INSTRUCTION TIME COMMUNICATION COST

3×GPT-3.5-TURBO AGENT 1 IS THE LEADER TO COORDINATE THE TASK. 92.90±14.70 59.87±6.33
5×GPT-3.5-TURBO AGENT 1 IS THE LEADER TO COORDINATE THE TASK. 80.00±20.51 132.01±5.76
7×GPT-3.5-TURBO AGENT 1 IS THE LEADER TO COORDINATE THE TASK. 43.00±2.16 233.40±70.96
9×GPT-3.5-TURBO AGENT 1 IS THE LEADER TO COORDINATE THE TASK. 60.67±15.06 296.55±65.17
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G.5 Comparison with Other Multi-Agent Frameworks

We implement two multi-agent collaboration frameworks, group debate [20] and tree of agents [4],
to replace our communication protocol as baselines. We conduct experiments to compare their
performance with our method in a 3-agent team with a fixed leader with 3 seeds in Table 3. Group
debates bring frequent broadcasts, causing high communication cost and information redundancy.
On the other hand, tree of agents saves communication overhead, but the time to finish the task is
not stable. The communication in our method is more flexible, relying on the emergent organization
instead of predefined patterns, resulting in more robust performance.

Table 3: Comparison with other multi-agent frameworks. The experiments are all conducted with
the first agent as the leader.

GROUP SETTING FRAMEWORK TIME COMMUNICATION COST

3×GPT-4 OURS 54.70±8.92 54.73±8.89
3×GPT-4 GROUP DEBATE 69.67±38.40 134.26±4.06
3×GPT-4 TREE OF AGENTS 81.67±16.26 30.55±13.23
1×GPT-4+2×GPT-3.5-TURBO OURS 73.30±16.12 55.82±6.57
1×GPT-4+2×GPT-3.5-TURBO GROUP DEBATE 78.00±10.00 105.82±6.89
1×GPT-4+2×GPT-3.5-TURBO TREE OF AGENTS 72.67±26.35 36.79±7.63

G.6 Across Task Generalizability

We conduct experiments across the tasks to test the generalizability of the prompt “dynamic leadership”
(Figure 16(e)) found using Criticize-Reflect architecture on the Prepare_Afternoon_Tea task and
report the performance in Figure 8; see Section 3.2 for the complete setting and discussions.

Figure 8: The organized team structure with a designated leader and the novel structure
proposed by Criticize-Reflect architecture generalized to different tasks. The prompt for dynamic
leadership is proposed by Criticize-Reflect architecture on the Prepare_Afternoon_Tea task shown in
Figure 4(a). The experiment was done using the 1×GPT-4+2×GPT-3.5-turbo team over two seeds for
each task. (a, b) Hard tasks (read_book, put_dishwasher_hard, prepare_food) with typical numbers of
steps to accomplish the tasks > 60. (c, d) Easy tasks ( put_dishwasher_easy, put_fridge, setup_table)
with typical numbers of steps to accomplish the tasks < 60.
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H Emergent Cooperative Behaviors in an Organization

By investigating the messages between agents, we mainly observe the following cooperative behaviors,
as summarized in Table 4.

Table 4: Typical cooperative behaviors.

Type Description Example
Sharing information An agent shares her observa-

tions to others, reports her
task-related progress to oth-
ers, or responds to other
agents’ requests

(Ex 1.)“I’m in the bathroom. There’s an unchecked
<bathroomcabinet> (190).”
(Ex 2.) “I’ll check the cabinet in the bedroom ”

Giving orders An agent gives orders to oth-
ers, either by directly giving
a command or by a polite re-
quest

“I still need to find <pudding> (371). Can you help me
search the bedroom for the remaining item?”

Asking for informa-
tion

An agent asks other agents
about their location, task
progress, or other informa-
tion

(Ex 1.) “Where are you now?”
(Ex 2.) “Any updates from the kitchen?”
(Ex 3.) “Do we know the location of the coffeetable?”

Exchanging informa-
tion

An agent shares one agent’s
information to another agent

Agent 3 → Agent 1: “ Found cupcake and juice in bed-
room, plus a wine. ”;
Agent 1 → Agent 2: “Agent3 found a wine, cupcake, and
juice in the bedroom.”

Asking for orders An agent asks what she needs
to do or whether she can help
others

“I’m in the kitchen with the dishwasher, stove, microwave
unchecked. Need me to check these or something else?”

Correction An agent corrects the plan of
others

(Ex 1.) Agent 2 → Agent 3: “After I place the pudding
on the coffeetable, let’s split up. You check the bathroom,
I’ll check the bedroom.”; Agent 3 → Agent 2: “You don’t
need to search the bedroom, the juice (380) is there. ”
(Ex 2.) “There are no more wine or juice in the kitchen
cabinets. We need to come up with another plan.”
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I Ineffective Communication

There are also cases in which language model agents fail to communicate efficiently. From the
messages between agents, we summarize the typical categories in Table 5.

Table 5: Typical ineffective communication behaviors.

Type Description Example
Duplicated message The same message is said

more than once
Agent 1 → Agent 3: “Check kitchencabinet or dishwasher
for wine, I’ll check the stove.”,
Agent 2 → Agent 3: “Agent 1 will check the stove for
wine.”

Repeated command The same command is said
more than once

Agent 3 → Agent 1: “Explore the bathroom for the second
wine.”
Agent 2 → Agent 1: “Go to the bathroom and look for the
wine. ”

Conflicting command An agent gives another agent
an order that conflicts with
her current task

Agent 1 → Agent 3: “Find <juice> and check
<bathroomcabinet> (190)”
Agent 2 → Agent 3: “Check the kitchen containers for the
last wine.”

Conflicting plans An agent claims to commit
to two conflicting plans

Agent 3 → Agent 1: “I found the pudding and will check
the dishwasher, stove, and microwave for the second wine.”
Agent 3 → Agent 2: “I will continue searching for the
second wine in the bedroom and bathroom.”

Improper delegation An agent asks another agent
to do her own task

Agent 1 → Agent 2: “Continue checking the kitchen
cabinets for remaining items.”
Agent 2 → Agent 3: “Please continue checking the other
kitchen cabinets for the remaining items. ”

Ignoring requests An agent ignores other
agents’ questions

Agent 2 → Agent 3: “I haven’t found any of the remaining
items in the kitchen. Have you found any of the required
items in the living room?”
Agent 3 → Agent 2: “I haven’t explored the bathroom
yet.”
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J Examples of Dialogues

J.1 Communication Styles of Different LLM Types

The communication styles of leaders and non-leaders were clearly differentiated for different LLM
types, as shown in Figure 9.

Figure 9: Examples of communication messages when there is a designated leader. Left: messages
from lead agents; Right: messages from non-lead agents. GPT-4 (upper), GPT-3.5-turbo (center), and
Llama2-70B (lower) demonstrated different communication styles.

J.2 Examples of Election

In Figure 10, the agents vote to elect a new leader. We can observe behaviors such as nominations
for themselves and other agents, voting, and consensus achievement. We find that the agents are
not power-seeking and may give up leadership early. The agents prefer to vote for others instead
of nominating themselves (5 times more during the whole task). The elected leader also does not
plan to keep the position but to nominate others for the next round. Also, the agents’ standpoint
can be easily influenced by others. The agents do not debate much to win the election but reach a
consensus soon. For example, Agent_1 gives up running for herself but votes for Agent_2 because of
Agent_3’s support. Furthermore, sometimes nominations and votes are determined by hallucinations.
For example, at step 2, Agent_2 nominates Agent_1 as he was the first one to propose a search
strategy. However, based on the previous dialogues, Agent_1 has not proposed any strategy yet.

Figure 10: Examples of the election of a new leader. It takes two steps to vote and negotiate to
determine the new leader in this case. Note that Agent_3 chooses not to send a message as the
election is done and no more information to be shared for now. All the messages in the figure are
broadcasts.
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J.3 Examples of Human-AI Collaboration

We conducted experiments involving a team consisting of one human player and two GPT-4 agents,
with the human player acting as the leader. Figure 11 illustrates the remarkable collaboration between
humans and AI.

Figure 11: Examples of human-AI collaboration when the human player leads two GPT-4 agents
(Agent_2&3).

J.4 Examples of Correction

Due to hallucination and the limit of the dialogue history buffer, the leader may forget what has
happened and give wrong orders. When the prompt encourages the agents to correct the leader
when necessary by adding If the leader’s instructions are not right, you can correct the leader, some
correction behaviors appear, as shown in Figure 12.

In the first example, the leader Agent_1 gives an unnecessary and repetitious instruction. Then
Agent_2 corrects the leader to avoid time wasting. In the second example, the leader Agent_1 may
have hallucinations and cannot remember what Agent_3 is holding clearly (cupcake and wine in the
message while juice and wine in the thoughts). Therefore, Agent_3 clarifies that she is not holding
the cupcake and wine and shares her next plan with the leader.

Figure 12: Examples of correction dialogues and the corresponding thoughts. The prompt
includes If the leader’s instructions are not right, you can correct the leader.
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J.5 Examples of Leadership Comparison

We provide more examples to compare the leadership between GPT-4 and GPT-3.5-turbo.

Figure 13: Comparison of the leadership between GPT-4 and GPT-3.5-turbo. Compared with
GPT-3.5-turbo, GPT-4’s instructions are more specific, clear, and holistic.

J.6 Examples of Scaling Up

When scaling up the number of agents, the agents can emerge with more organizational structures.
For example, a team of nine agents forms a pyramid structure.

Figure 14: The pyramid structure in a team of nine agents. Agent_1 is the primary leader and
Agent_2 and Agent_3 are designated as vice leaders in the prompt.
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J.7 Examples of Failure Cases

Though LLM agents show great capabilities to cooperate and make decisions, there are still some
failure cases shown in Figure 15, such as being lazy and incorrect reasoning over the number of
objects. There are also failure cases in some specific scenarios, for example, electing the leader based
on hallucinations in Appendix J.2.

Figure 15: Examples of failure cases. The first case is being lazy. Instead of completing the subtask
ordered by the leader Agent_1, Agent_2 directly repeats the order to Agent_3. However, this order
is conflicted with the one Agent_3 received from the leader. The second case is confusion about
numbers. The task demands placing two wines on the table and the team only gets one of them till
now. When the leader Agent_1 asks Agent_2 to check the remaining wine, Agent_2 tries to correct
the leader due to the hallucination that the team does not need an additional wine. The agents are
GPT-3.5-turbo in both cases.
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K Examples of Cooperative Behaviors Classification by Humans and GPT-4

We ask a human evaluator and GPT-4 to label the dialogues into three different behavior categories
shown in Table 6.

Table 6: Dialogues and behavior labels given by humans and GPT-4. Label 1: information sharing;
Label 2: leadership & assistance; Label 3: Request for guidance.

Dialogue Human GPT-4
Label 1* Label 2 Label 3 Label 1 Label 2 Label 3

Hey, where are you? Please let me know your location
so that I can assign you a task.

0 1 1 0 1 1

I’m currently in the bedroom where I found an
unchecked cabinet. Please explore the livingroom and
start checking for the required items.

1 1 0 1 1 0

I’m currently in the bedroom where I found an
unchecked cabinet. I haven’t found any of the required
items yet.

1 0 0 1 0 0

Check the cabinet in the bedroom. I’ll check the one
in the bathroom.

1 1 0 0 1 0

I haven’t found any of the required items yet. Did you
find any in the kitchen?

1 0 1 1 0 1

I haven’t found any of the required items yet. Have
you found any in the bathroom?

1 0 1 1 0 1

Agent 3, I found a pudding in one of the kitchen cabi-
nets. Please continue checking the other kitchen cabi-
nets for the remaining items.

1 1 0 1 1 0

I haven’t found any of the required items yet. Did you
find any other required items in the kitchen?

1 0 1 1 0 1

I haven’t found any of the remaining items yet. 1 0 0 1 0 0
I’m in the living room searching for the remaining
items.

1 0 0 1 0 0

Okay, I will keep checking the kitchen cabinets for the
remaining items.

1 0 0 1 0 0

I’m currently in the living room searching for the re-
maining items.

1 0 0 1 0 0

I haven’t found any of the remaining items yet. 1 0 0 1 0 0
I’m still searching the living room. Have you found
any of the required items?

1 0 1 1 0 1

Put items on the table once you find them. Keep search-
ing your current areas.

0 1 0 0 1 0

I haven’t found any of the remaining items in the
kitchen. Have you found any of the required items
in the living room?

1 0 1 1 0 1

I haven’t explored the bathroom yet. Have you found
any of the required items in the living room?

1 0 1 1 0 1

I have explored the bedroom and found wine, cupcake,
and juice. I still need to find pudding. Can you help
me search the bedroom for the remaining item?

1 1 1 1 1 0

I found the wine, cupcake, and juice in the bedroom.
Agent 1 wants me to put them on the coffee table and
then check the bathroom cabinet.

1 0 0 1 1 0

Agent 1 wants us to check if there’s another wine in
the kitchen.

1 0 0 0 1 0
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L Examples of Communication Patterns and New Prompts after Reflection

We illustrate the communication patterns as team structures in Figure 16 together with the three novel
structures proposed by Criticize-Reflect: (c) chain, (d) dual-leader, and (e) dynamic structures. We
list more prompts generated by Criticize-Reflect with and without the Critic in Figure 17.

Figure 16: Communication patterns and the corresponding organizational prompts. (a) Team
without organizational prompts. (b) Team with a leader. (c) A team in the chain structure. (d) A
dual-leader team. (e) A team with a dynamic leadership. (c, d, e) are proposed by Criticize-Reflect.
Red-robot nodes mark the lead agents, and other nodes are the followers. Edges mark the accumulated
communication cost between the two nodes (darker edge means higher token cost).

Figure 17: Examples of Prompts generated via Reflection. The first row is generated with the
Critic, while the second row is without the Critic, where the new prompts are relatively vague. Note
that there is no Agent Z in the team.

M Broader Impacts

This research studies the integration of prompt-based organizational structures to teams of LLM
agents, contributing to more efficient and coherent multi-agent interactions. These findings have the
potential to greatly influence the deployment of more effective and autonomous multi-agent systems
in various fields, including robotics, virtual assistants, etc. For example, the study has potential
applications in disaster response scenarios, where efficient multi-agent coordination is crucial.

On the other hand, as our ability to bound and evaluate LLMs’ behaviors remains immature, when
applied to human-LLM cooperative tasks, we still need to rely on some mandatory termination
measures (such as human approval for high-stakes actions) instead of instructions in natural language
only.
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