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ABSTRACT

We present SD3.5-Flash, an efficient few-step distillation framework that brings
high-quality image generation to accessible consumer devices. Our approach
distills computationally prohibitive rectified flow models through a reformulated
distribution matching objective tailored specifically for few-step generation. We
introduce two key innovations: “timestep sharing” to reduce gradient noise and
“split-timestep fine-tuning” to improve prompt alignment. Combined with com-
prehensive pipeline optimizations like text encoder restructuring and specialized
quantization, our system enables both rapid generation and memory-efficient de-
ployment across different hardware configurations. This democratizes access
across the full spectrum of devices, from mobile phones to desktop computers.
Through extensive evaluation including large-scale user studies, we demonstrate
that SD3.5-Flash consistently outperforms existing few-step methods, making
advanced generative AI truly accessible for practical deployment.

1 INTRODUCTION

Today’s best image generation models are trapped in datacenters. While rectified flow models achieve
unprecedented quality, their computational demands – 25+ steps, 16GB+ VRAM, 30+ seconds per
image – make them inaccessible to everyday devices. We bridge this gap, enabling high-quality
generation from mobile phones to gaming desktops.

Timestep distillation offers a path forward. Approaches like distribution matching can reduce step
counts in multi-step diffusion inference, but the core challenge emerges from how distribution
matching operates in few-step flow distillation. Standard approaches (Yin et al., 2024a; Starodubcev
et al., 2025) require re-noising samples on trajectory end-points to compute distribution divergences
at various noise levels. This re-noising alters the flow trajectory, resulting in unreliable velocity
predictions and corrupted gradient estimates. In few-step regimes, this problem becomes particularly
pronounced as errors cannot be corrected through subsequent iterations, causing systematic quality
collapse. Additionally, the severe capacity constraints imposed by few-step distillation forces models
to sacrifice prompt-image alignment as they struggle to maintain both aesthetic quality and semantic
fidelity. Recent image generation pipelines (Starodubcev et al., 2025; Stability AI, 2024) improve
prompt-image alignment with parameter-heavy text encoders (Raffel et al., 2020) which further
reduces generation efficiency.

We propose SD3.5-Flash, a few-step rectified flow model that enables high-quality image generation
(see Fig. 1) on consumer hardware. To train for improved aesthetic quality with few-step flow
distillation, we introduce timestep sharing: computing distribution matching with student trajectory
samples rather than estimates to random trajectory points. This provides stable gradient signals for
known noise levels and reliable flow predictions on the ODE trajectory, improving training stability
and consequently model performance.

We also introduce Split-timestep fine-tuning which addresses the prompt alignment challenge by
temporarily expanding model capacity during training. Instead of forcing compressed parameters to
handle both aesthetic quality and semantic fidelity simultaneously, we branch our model for different
timestep ranges before merging them into a unified checkpoint.

To truly deliver on the “flash” promise, we implement pipeline optimizations extending beyond our
core algorithmic innovation. We restructure text encoders with optional (T5-XXL) and necessary
(CLIP-L/G) components by exploiting encoder dropout pre-training, and apply quantization schemes
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from 16-bit to 6-bit precision that balance memory footprint against inference speed. The result is
model variants that democratize access across the full spectrum of devices from mobile to desktop,
with tailored configurations for each computational tier (see Fig. 2).

Our contributions are aimed to improve accessibility to few-step image generation models through:
(i) timestep sharing that provides stable gradients by leveraging intermediate trajectory information,
(ii) split-timestep fine-tuning that resolves the capacity-quality tradeoff during distillation, and (iii)
comprehensive pipeline optimizations that enable practical deployment on a diverse range of com-
modity hardware. Through extensive evaluation including large-scale user studies, we demonstrate
that our approach consistently outperforms existing methods across diverse hardware configurations
while maintaining the quality standards of much larger, slower models.

Figure 1: First Look: High-fidelity samples (prompts and more samples in appendix) from our 4-step
model demonstrate exceptional prompt adherence and compositional understanding. Our method
excels where previous distillation approaches often struggle: anatomy and multi-object composition –
all while running on affordable consumer hardware.

2 RELATED WORKS

Diffusion-based generative models (Ho et al., 2020; Podell et al., 2023) are inherently slow due to
their iterative nature, starting from a base distribution (e.g., Gaussian noise) and gradually denoising
it to realistic samples. Skip-step schedulers (Song et al., 2020a) accelerate diffusion inference by
reducing the number of inference timesteps with deterministic sampling (Karras et al., 2022) while
distillation techniques (Luhman & Luhman, 2021; Ren et al., 2024; Chen et al., 2024a; Meng et al.,
2023; Kohler et al., 2024) learn a more efficient denoising trajectory.
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Figure 2: SD3.5-Flash suite: We introduce the SD3.5-Flash suite of models, preferred by users over
all other models at a variety of consumer compute budgets while offering comparable latency and
memory requirements. Bubble size indicates VRAM occupied and pipeline size on disk for gpus
and mobile devices respectively. We compute ELO ratings by assessing generated image quality via
human rankings for different models.

Trajectory preserving distillation distills a multi-step teacher into a few-step student by aligning the
student and teacher trajectories (Salimans & Ho, 2022; Lin et al., 2024) and fine-tuning the student
to skip steps progressively. The student learns to mimic an approximation of the teacher’s trajectory
in fewer steps than the teacher. Progressive Distillation of this nature, however, cannot learn extreme
low-step (e.g. two-step) inference (Lin et al., 2024) due to approximation errors.

Other approaches like discrete (Song et al., 2023; Song & Dhariwal, 2023; Chen et al., 2024b) and
continuous time (Lu & Song, 2024; Chen et al., 2025) Consistency Models involve learning to jump
directly to trajectory endpoints or intermediate points (Kim et al., 2023; Ren et al., 2024) using a
more efficient path from noise to data. This improves one-step inference quality while supporting
iterative refinement of generated samples through a self-consistency property. Alternately, recent
works inspired by Score Distillation Sampling (Poole et al., 2022; Wang et al., 2023), train the
student network by Score Matching (Song et al., 2020b) of teacher and student distributions (Yin
et al., 2024b;a; Starodubcev et al., 2025; Nguyen & Tran, 2024; Dao et al., 2024). Different from
these approaches, Insta-Flow (Liu et al., 2023) fine-tunes score based generative models in a rectified
flow setting for efficient inference. SWD (Starodubcev et al., 2025) applies DMD for scale wise
distillation in a rectified flow setup.

Approaches like progressive distillation, consistency distillation, and score matching are generally
unstable or inadequate by themselves and have been supplemented with adversarial techniques in
recent works like SDXL-Lightning (Lin et al., 2024), Hyper-SD (Ren et al., 2024) and DMD-2 (Yin
et al., 2024a). This adversarial objective is generally optimized by comparing fake samples generated
by the few-step student with real (Yin et al., 2024a) or synthetic samples (Sauer et al., 2024a) from
the multi-step teacher in a generator discriminator setting. Recent work (Sauer et al., 2024a; Lin
et al., 2024) also reformulates this GAN setup to use the teacher as a discriminative feature extractor,
for enhancing discriminator quality at no additional cost. This allows for adding multiple lightweight
discriminator heads (Chen et al., 2024a) to construct multi-discriminator setups (Sauer et al., 2022;
2023) which offer richer generator updates and training stability through diverse adversarial feedback
in GANs. Nitrofusion (Chen et al., 2024a) demonstrates that multi-discriminator adversarial setups
are enough without supplementary objectives for stable one-step distillation from low-step models.

Orthogonal to distillation, some methods look to reduce diffusion model parameters (Zhao et al.,
2024; Liu et al., 2024; Li et al., 2023; Choi et al., 2023) to further bring down inference cost both
in terms of speed and compute. Since attention units take up a large chunk of compute, particularly
in recent Diffusion Transformer (DiT) architectures, a majority of works focus on removing (Zhao
et al., 2024) or replacing (Liu et al., 2024) them with more efficient alternatives. Separate from the
diffusion model itself, the generation pipeline involves the text encoder (Raffel et al., 2020; Radford
et al., 2021) for conditional context and the VAE (Kingma et al., 2013) for decoding latent space
samples to image space. Some works (Zhao et al., 2024; Bohan, 2024) also focus on optimizing the
VAE based latent decoding (denoised latent → image ) by replacing the VAE with a lighter and more
efficient decoders.

3 BACKGROUND

Flow matching. Diffusion Models (Ho et al., 2020; Rombach et al., 2022; Podell et al., 2023) are
a family of generative models that learn a (Gaussian) noise to data trajectory and iteratively follow
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it to generate media with sampled noise. This trajectory from noise to data is typically modelled
as the solution to a Stochastic Differential Equation (SDE) in score-based generative frameworks
(Song et al., 2020a), and can be reformulated as an Ordinary Differential Equation (ODE) known as
the probability flow ODE (PF-ODE in Song et al. (2020b); Karras et al. (2022)). Diffusion models
in score based generative frameworks learn a score function — the gradient of the log probability
density — by training a neural network to estimate it at various noise levels along the trajectory. The
update direction can be defined as :

dxt =

[
µ(xt, t)−

1

2
σ(t)2∇ log pt(xt)

]
dt (1)

where ∇ log pt(xt) is referred to as the score function of pt(xt) and is parameterised by a neural
network as sθ(xt, t) and in a PF-ODE (Karras et al., 2022), µ(xt, t) = 0. In contrast, flow matching
(Lipman et al., 2022; Esser et al., 2024) models define a separate class of generative methods
that directly learn an ODE-based mapping without relying on an underlying SDE. These models
parameterise a velocity field that transports samples from noise to data along the ODE-defined
trajectory. The update direction with flow matching changes to dxt = vt(xt)dt where the velocity
vt(xt) is parameterised by a network as vθ(xt, t). In rectified flow pipelines (Liu et al., 2022) like
SD3.5 Medium (Stability AI, 2024), samples are noised following a straight path between the data
distribution and standard normal N (0, I) as xt = (1− t)x0 + t.ϵ

Distribution Matching Distillation. DMD (Yin et al., 2024b) proposes the distillation of a multi-
step teacher G into a distilled single-step student Gθ by matching the student distribution pfake with
that of the teacher preal. Given a sample x = Gθ(z) where z ∼ N (0, I) this distribution match is
calculated as the Kullback-Leibler (KL) divergence:

DKL(pfake||preal) = −Ex∼pfake

(
log preal(x)− log pfake(x)

)
(2)

However, using this divergence directly as loss is not possible as the probability densities are generally
intractable. Since only the gradient of this loss is needed, this can be circumvented, by substituting in
score function s(x) = ∇x log p(x) and computing the loss gradient as

∇θLDMD = −Ex∼pfake

(
(sreal(x)− sfake(x))

dGθ

dθ

)
(3)

To obtain these scores, generated samples x0 are re-noised up-to timestep t as xt =
√
αtx+

√
1− αtϵ.

Then the score is computed from the denoising signal of the pre-trained diffusion models as sreal(xt, t)

for teacher score and sfake(xt, t) for student score where sfake(xt, t) = −xt−αtGθ(xt,t)
σ2
t

from the
student Gθ. Since the few-step models work only on a subset of timesteps, a multi-step proxy model
is maintained that monitors the distribution of the few-step model and acts as a surrogate student
score estimator. To stabilise this pipeline, LDMD is accompanied by regression loss, calculated as the
MSE between images generated by the student and the teacher starting from the same noise. DMD2
(Yin et al., 2024a) proposes updating the student proxy Gϕ with a biased schedule to improve stability
without introducing this regression loss and supplements LDMD with an adversarial objective.

4 METHODOLOGY

4.1 TRAJECTORY GUIDANCE

For stable pre-training of our 4-step student network, we use a trajectory guidance objective LTG. For
timesteps t ∈ [0, 1] on the teacher model’s trajectory, we subsample points tsi which coincide with the
student trajectory (i.e. i ∈ [1, 4] for 4-step model) and calculate the trajectory guidance objective as:

LTG =
∑
i

∥tsi (Gθ(xtsi
, tsi )−

∫ tsi−1

tsi

vreal(xt, t)dt)∥2 (4)

where vreal corresponds to the velocity predictor teacher model and Gθ is the student being trained.

4.2 DISTRIBUTION MATCHING IN FLOW MODELS

We refine our pre-trained student using the DMD objective in Eq. (3) that computes the gradient for
the KL-divergence between teacher and student distributions with the proxy (vfake). We align the
distributions of the proxy and the student, to enable accurate representation of student distribution in

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

LDMD by finetuning on generated student samples x0. Particularly end-point estimates x0 are noised
to xt and flow-matching loss is computed as LFM = ||vtarget − vfake(xt, t)||22, where vtarget is from
added noise. To train student Gθ for timestep ti (i ∈ [2, 4]), we disable gradients and use the student
itself to generate upto ti−1. Unlike Yin et al. (2024a) we find that starting training directly on slightly
noisier samples xti−1

for timestep t = ti improves performance compared to training on sample xti .
After training stabilises, we switch back to training on xti for timestep t = ti, similar to “backward
simulation” proposed by Yin et al. (2024a).

Timestep Sharing. The DMD objective in Eq. (3), requires noising samples to xt from x0 to compute
the real and fake scores sreal(xt, t) and sfake(xt, t) respectively. In score based models, this is done
by adding random noise to samples which is already part of the denoising loop. However, pre-trained
flow based models have matching image noise pairs and adding random noise for reaching timestep t
can create noisy gradient updates. We simplify the training objective and prevent noise addition by
sharing DMD timesteps with those from the few-step denoising schedule.

🔥
Generator 

Teacher ❄️

Proxy ❄️

Proxy

`

Proxy

🔥

🔥

,

MMDiT Layers

❄️

Figure 3: Training Pipeline: We train Gθ with the distri-
bution matching objective ∇θLDMD and adversarial objec-
tive LG

adv. The proxy student vfake that is used to compute
∇θLDMD is trained with the standard flow matching objec-
tive LFM and the discriminator for the adversarial objective
is trained with LD

adv.

Specifically, we evaluate the KL diver-
gence gradient not by re-noising from
trajectory endpoints (i.e. x0 to xt in
Eq. (3)), but by simply using partially
denoised samples (xts ) on the student
trajectory for velocity estimation. In-
tuitively, we calculate the score for
assumed “pseudo” x0 that is noised
to xtsi

instead of estimating x0 itself
(see Fig. 3). This reduces low qual-
ity gradients from poor x0 estimation
from noisy timesteps (at t ≈ 1). Con-
sequently, this forces us to share dis-
tribution matching timesteps with the
student trajectory timesteps tsi , instead
of random t in Eq. (3). While this does
result in less variation in timesteps (us-
ing only few timesteps from student
trajectory), we find it improves image composition and generation quality (see Sec. 5.5).

Split-Timestep Fine-Tuning. Timestep distillation often weakens the correspondence between text
prompts and generated outputs (Sauer et al., 2024a). To counteract this, we design split-timestep fine-
tuning, inspired by previous works that employ diffusion models for multi-task learning (Ham et al.,
2025; Ma et al., 2025). We first duplicate the pretrained model into branches, M1 and M2 and train
them on disjoint timestep ranges t1 ∈ (0, 500] and t2 ∈ (500, 1000] respectively, to increase effective
model capacity. During fine-tuning, each branch uses an exponential moving average with a decay
of β = 0.99 to stabilise and keep weights close to the original checkpoint. After convergence, we
fuse the branches by weight interpolation, selecting a 3 : 7 ratio (M1 : M2) to maximise text-prompt
alignment as measured with GenEval (Ghosh et al., 2023). We perform split timestep fine-tuning
only for training our four step model where we observe a distinct jump in model performance.

4.3 ADVERSARIAL LOSS

Similar to prior works (Chen et al., 2024a; Yin et al., 2024a), we use an adversarial objective where
the proxy student vfake acts as a feature extractor to obtain discriminator features. This allows us
to perform adversarial training on the flow latent space as opposed to the image space in (Sauer
et al., 2024b). For extracting features using vfake, we noise samples x0 to pre-defined noise levels at
timesteps t∗ ∈ [0, 1] and extract intermediate outputs from vfake(xt∗ , t

∗) at multiple layers as feature
maps. Timesteps t∗ are well distributed in [0, 1] to capture both coarse-grained features (t∗ ≈ 1)
and fine-grained features (t∗ ≈ 0). We train MLP discriminator heads DH on top of these features
for real/fake prediction where synthetic samples generated by the teacher model are used as “real”
data. Similar to NitroFusion (Chen et al., 2024a), we periodically refresh our discriminator heads by
re-initializing their weights to reduce overfitting. We use the standard non saturating GAN objective
to train the discriminator heads and the generator Gθ:

LD
adv = Ext∗∼preal,t∗ logD(xt∗)−Ext∗∼pfake,t∗ logD(xt∗), LG

adv = −Ext∗∼pfake,t∗ logD(xt∗) (5)

where the discriminator heads DH (Fig. 3) and the feature extractor are collectively referred to as D.
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4.4 TWO STEP AND FOUR STEP GENERATION

For training a two step generator, we progressively distill a multi-step teacher down to a four step
student and continue training it towards two step inference. We start by initializing our teacher, student
and the proxy student with pre-trained weights from the multi-step teacher. Next, we perform two
stages of training, where we (i) pre-train the student model with LTG where the model is optimized to
replicate the teacher trajectory in few-steps. (ii) In the second stage, we minimize the KL divergence
of teacher and student distributions LDMD supplemented with an adversarial objective from our
multi-head discriminator. The first stage of training helps to align teacher and student trajectories and
speeds up training of the next stage considerably. The second stage constructs sharp features and
detailed images. We use the trained four step model as our pre-trained checkpoint to distill down to
two step following the second stage of our training pipeline. In here, we also use a MSE objective
between gram matrices (Gatys et al., 2016) of features from samples of teacher and student models.

4.5 PIPELINE OPTIMIZATION

We perform inference optimization on top of the Stable Diffusion 3.5 pipeline. This pipeline
consists of three text encoders (CLIP-L (Radford et al., 2021), CLIP-G (Radford et al., 2021), and
T5-XXL (Raffel et al., 2020)) besides the MM-DiT diffusion model (Stability AI, 2024), and a
VAE (Kingma et al., 2013). Of these, T5-XXL is the largest component, accounting for the bulk of
peak VRAM usage and inference time. The full distilled model in 16-bit precision requires 18 GiB
of GPU memory—beyond the reach of most consumer cards. To bring this down, we quantize the
MM-DiT diffusion model to 8-bit and leverage encoder dropout pre-training in SD3.5 to substitute
T5-XXL with null embeddings. This brings our memory requirement down to just about 8 GiB. To
truly support edge devices like phones and tablets, we use CoreML on Apple Silicon to quantize
our 8-bit model down to 6-bit (Fig. 2). Specifically for this quantization, we rewrite operations
like RMSNorm to better preserve precision on the Apple Neural Engine. We summarise the results
of our optimzation in Tab. 1, and highlight less than 10s latency on devices like iPhone (video in
supplementary zip) and iPad. We include more details on memory performance tradeoff in Fig. 8.
Table 1: Inference latency: Comparing inference latency of SD3.5-Flash models for different devices
with VRAM / unified memory below device names.

Model Steps Resolution
Latency (in seconds)

RTX 4090
24 GB

M3 MBP
32 GB

M4 iPad
8 GB

A17 iPhone
8 GB

SD3.5-Flash 16-bit
(w T5-XXL) 4

1024 px 0.58 18.65 – –
768 px 0.34 8.21 – –
512 px 0.19 3.74 – –

SD3.5-Flash 8-bit
(w/o T5-XXL) 4

1024 px 0.61 14.08 – –
768 px 0.35 6.32 – –
512 px 0.22 2.97 – –

SD3.5-Flash 6-bit
(w/o T5-XXL) 4

1024 px – 13.43 – –
768 px – 6.26 6.44 8.32
512 px – 3.12 2.62 3.25

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Dataset and Training. Following previous works (Chen et al., 2024a; Sauer et al., 2024a), we use
synthetic samples for training our model as they offer high prompt coherence and are consistent in
quality. For our training data, we generate synthetic samples using the SD3.5 Large (8B) model over
32 timesteps and a CFG scale of 4.0. We pre-train for 2K iterations and then train the 4-step and
2-step model for 1200 iterations each, using the 2.5B SD3.5M as teacher. The 2-step model starts
training from a 4-step intermediate checkpoint. We present more training details in the appendix.

Baselines. For comparisons, we look at DMD2 (Yin et al., 2024a), Hyper-SD (Ren et al., 2024),
SDXL-Turbo (Sauer et al., 2024b), Nitrofusion (Chen et al., 2024a) and SDXL-Lightning that are
trained from SDXL (Podell et al., 2023) as the teacher network. DMD2 distils SDXL by matching the
distributions of the teacher and the student with the gradient of a KL divergence objective. Hyper-SD
performs consistency distillation with trajectory guidance and uses human feedback learning (Xu
et al., 2023) for improving performance. SDXL-Turbo demonstrates adversarial distillation in
the rich semantic space of Dino-V2 (Oquab et al., 2023), decoding latents to images throughout
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training. SDXL-Lightning also uses adversarial distillation, but relaxes mode coverage for the student
with a mix of conditional and unconditional objectives in the discriminator. Nitrofusion stabilises
adversarial distillation with a multi-discriminator setup and a periodic discriminator refresh, training
on SDXL-DMD2 and SDXL-HyperSD. Improving upon SDXL and SDv2.1 (Rombach et al., 2022),
recent models like SD3.5 (Stability AI, 2024) and SANA (Xie et al., 2025) offer better generation
quality and higher prompt adherence by adopting rectified flow pipelines for faster convergence.
SWD (Starodubcev et al., 2025) distils SD3.5M by training a scale wise network, optimized with a
distribution matching objective. SANA-Sprint (Chen et al., 2025) uses continuous-time consistency
distillation (Song et al., 2023) to distil SANA to 1, 2, and 4-step models. We also include comparisons
with SD3.5M-Turbo released by TensorArt Studios (TensorArt Studios, 2025) as an stand-alone
checkpoint on top of SD3.5M. We do not compare with large models like SD3.5 Large (8B) and
Flux.1-dev (Black Forest Labs, 2024) (12B) which are difficult to fit into consumer grade hardware.

5.2 QUALITATIVE COMPARISONS With T5 Without T5

Figure 4: Removing T5: 4
step quality with and w/o T5
(prompts in appendix)

We include qualitative comparisons of our model (SD3.5-Flash
16-bit + T5) with other few-step generation pipelines like SANA-
Sprint1.6B, NitroFusion, SDXL-DMD2 and SDXL-Lightning in
Fig. 5, and additional comparisons (including SWD) in the ap-
pendix. 4-step results from SDXL-DMD2 (Yin et al., 2024a), SDXL-
Lightning f(Lin et al., 2024) and NitroFusion (Chen et al., 2024a)
show poor prompt alignment and composition in complex prompts
involving human interaction. SDXL-Lightning (Lin et al., 2024)
generates smooth images lacking sharpness and low in detail, and
sometimes generates artifacts (e.g. two corgis on sofa in last row, last
column). SDXL-DMD2 (Yin et al., 2024a) and NitroFusion (Chen
et al., 2024a) (distilled from SDXL-DMD2) generate better texture
but similarly perform worse in composition and result in artifacts
(second row, cat on the book and first row, three owls). Compara-
tively, our method (4-step) consistently generates high quality im-
ages and outperforms other 4-step pipelines in generation fidelity
considerably. In 2-step pipelines, we compare with SANA-Sprint
1.6B (Chen et al., 2025). SANA-Sprint (Chen et al., 2025) gener-
ates more details but with inconsistent style, sometimes generating
stylistic images (first and third column) without style prompt. SANA-
Sprint (Xie et al., 2025) also generates smudged facial features in
non close-up environments (see fourth row). Our 2-step method
outperforms SANA-sprint in generation fidelity, but lags behind
(missing book in third row and artifacts in fourth row) our 4-step
model. We also provide examples of our 4-step 16-bit model with and without T5 in Fig. 4.

5.3 USER STUDY

We conduct a user study based on image quality and prompt alignment with 124 annotators to evaluate
images generated with 4 different seeds. For generating samples, we use a diverse curated set of 507
prompts consisting of expert-designed prompts and a subset of Parti prompts (Yu et al., 2022). For
each generated sample, 3 users vote on two images from two different methods, rating them on visual
quality and image-prompt correlation (prompt adherence). From our user studies (in Fig. 6), we find
SD3.5-Flash outperforms other few-step models and even our 50 step teacher in image quality. For
prompt-adherence, the difference is marginal (< ±1.6%) across all methods (more in appendix).
We also compare select competitors against each other to compute ELO scores (see Fig. 2). In all
compute scenarios our models appear on the top of the ELO ladder demonstrating high quality image
generation across a variety of compute budgets.

5.4 QUANTITATIVE COMPARISONS

We conduct extensive quantitative validation (in Tab. 2) by generating 30K samples for captions from
the COCO dataset (Lin et al., 2014), where we use metrics like ImageReward (Xu et al., 2023)
CLIPScore (Radford et al., 2021), FID (Heusel et al., 2017), and Aesthetic Score (Schuhmann
et al., 2022) to quantify generation performance. ImageReward (IR) and Aesthetic Score (AeS) are
human preference metrics and are trained to reflect human preferences on image quality. Metrics
like CLIPScore and FID are computed for quantifying text alignment and similarity to real images

7
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Prompt: Four owls standing on a telephone wire

Prompt: A large open book showing text and an illustration of a cat

Prompt: A smiling sloth wearing a leather jacket, a cowboy hat, a kilt and a bowtie. The sloth is holding a 
quarterstaff and a big book. A shiny VW van with a cityscape painted on it and parked on grass.

Prompt: Photo of 2 people sitting on a sofa

Ours Ours SANA-Sprint 1.6B NitroFusion SDXL-DMD2 SDXL-Lightning
4-Step 2-Step 4-Step 4-Step 4-Step2-Step

Prompt: A cozy living room with a painting of a corgi on the wall above a couch and a round coffee table in front 
of a couch and a vase of flowers on a coffee table

Figure 5: Qualitative comparisons: Comparing 2-step and 4-step text-to-image generation.

Figure 6: User study: Comparing images generated by SD3.5-Flash with other models.

Prompt: A Chinese girl, half body portrait photography，her cheek rest on her hand, light from the window, dramatic light, long shadow cast, 
standing beside the window, indoor, Fuji film, medium shot, super detailed, high realistic, award-winning photography,

Prompt: A woman sitting on an train seat holding a cell phone.

Prompt: A beautiful woman standing in a kitchen preparing food.

w/o Timestep 
Sharing

w/o Adversarial
 Objective

w/o Student
Pre-Training Oursw/o Discriminator

Refresh

Figure 7: Ablative study: Demonstrating the importance of each component in our training pipeline.
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Table 2: Quantitative comparison: Comparison with other models on automated metrics. Models
that use SD3.5M are coloured in green.

Methods Steps Latency
(s) (↓)

Peak VRAM
(GiB) (↓)

CLIP
(↑)

FID
(↓)

AeS
(↑)

IR
(↑)

GenEval
(↑)

SDXL (Podell et al., 2023) 50 5.81 8.95 31.65 14.72 6.32 0.72 0.54
SD3.5M (Stability AI, 2024) 50 10.58 19.47 32.00 20.06 5.99 0.91 0.64

SDXL-Turbo (Sauer et al., 2024b) 4 0.43 8.95 31.67 20.76 6.19 0.84 0.56
SDXL-Lightning (Lin et al., 2024) 4 0.43 8.96 31.25 21.48 6.48 0.74 0.54
SDXL-DMD2 (Yin et al., 2024a) 4 0.43 8.96 31.64 16.64 6.28 0.88 0.56
SDXL-HyperSD (Ren et al., 2024) 4 0.45 9.32 31.59 24.01 6.67 1.05 0.56
NitroFusion (Real.) (Chen et al., 2024a) 4 0.43 8.96 31.28 22.66 6.41 0.91 0.55
SWD-M (Chen et al., 2024a) 4 0.66 17.88 32.00 25.90 6.37 1.12 0.72
SD3.5M-Turbo (w CFG) (TensorArt Studios, 2025) 4 1.06 17.59 31.16 26.14 5.86 0.30 0.54

SD3.5-Flash 16-bit (w T5-XXL) 4 0.58 17.58 31.65 29.80 6.38 1.10 0.70
SD3.5-Flash 16-bit (w/o T5-XXL) 4 0.55 8.71 31.63 28.65 6.39 1.08 0.68
SD3.5-Flash 8-bit (w 8-bit T5-XXL) 4 0.66 11.17 31.64 29.99 6.37 1.10 0.70
SD3.5-Flash 8-bit (w/o T5-XXL) 4 0.61 6.61 31.62 28.84 6.39 1.08 0.68

SDXL-Turbo (Sauer et al., 2024b) 2 0.30 8.95 31.73 22.65 6.22 0.81 0.55
SDXL-Lightning (Lin et al., 2024) 2 0.30 8.96 31.18 21.99 6.40 0.66 0.69
SDXL-DMD2 (Yin et al., 2024a) 2 0.31 8.96 31.63 16.67 6.28 0.87 0.56
SDXL-HyperSD (Ren et al., 2024) 2 0.32 9.32 31.97 27.26 6.50 1.12 0.55
NitroFusion (Real.) (Chen et al., 2024a) 2 0.30 8.96 31.47 20.83 6.36 0.91 0.55
SANA-Sprint 0.6B (Chen et al., 2025) 2 0.22 8.2 31.39 24.99 6.54 0.98 0.77
SANA-Sprint 1.6B (Chen et al., 2025) 2 0.24 10.17 31.43 23.10 6.61 1.01 0.73

SD3.5-Flash 16-bit (w T5-XXL) 2 0.39 17.58 31.82 29.37 6.32 1.00 0.70
SD3.5-Flash 16-bit (w/o T5-XXL) 2 0.36 8.71 31.73 28.88 6.36 0.94 0.67
SD3.5-Flash 8-bit (w 8-bit T5-XXL) 2 0.44 11.17 31.81 29.43 6.31 1.00 0.70
SD3.5-Flash 8-bit (w/o T5-XXL) 2 0.40 6.61 31.73 28.92 6.35 0.94 0.67

respectively. CLIPScore is measured as the similarity between text prompts and generated images in
CLIP ViT-B/32 (Kolesnikov et al., 2021) semantic space. FID (Heusel et al., 2017) is calculated as
the distance between distributions of generated and real images (from COCO here) in the Inception-
V3 (Szegedy et al., 2016) feature space. We also include comparisons on the GenEval (Ghosh et al.,
2023) score where images of specific objects are generated in different settings and evaluated with an
object detection framework for identifying text-to-image alignment. We compare against all baselines
and competitors with these metrics along with their corresponding Latency as the time taken to
generate a sample on a RTX 4090 GPU with 16-bit float precision (BF16) unless otherwise specified.
From Tab. 2, we find that our method offers competitive performance for text to image generation
compared to recent works like SDXL-DMD2 and NitroFusion, while surpassing the teacher model
SD3.5M in metrics like GenEval, AeS and IR. Despite being calculated on the same COCO-30K
dataset, we note that our FID is worse off while other metrics have competitive scores. We attribute
this to FID difference between teachers SDXL and SD3.5M themselves, noting that SD3.5M-Turbo
and SWD trained from SD3.5M have worse FID on average.

5.5 ABLATIVE STUDIES

We conduct ablative experiments (Fig. 7) by distilling SD3.5M (16-bit 4-step) without individual
components in our pipeline, showing their importance for generation fidelity. Particularly, we distill
the model: (i) w/o Adversarial Objective: where we do not use GAN training for guiding generation,
(ii) w/o Pre-Training: Where we do not pre-train the student generator Gθ, (iii) w/o Timestep
Sharing: Where we use random timestep t for xt in LDMD instead of those on the student trajectory,
and (iv) w/o Discriminator Refresh: Where the discriminator heads are not periodically re-initialised
to correct overfitting. We train the ablation students for the same iterations as our student model. We
find that removing the adversarial objective destabilises training. resulting in poor generation quality.
Without pre-training, colour and composition are impacted the most. Training without timestep
sharing also results in poor texture, colour, and composition. Finally, without discriminator refresh
we find minor compositional errors and over smooth images.

6 CONCLUSION

As in all distillation processes, we trade-off some aspect of quality and diversity with inference
speed in complex generation tasks. We find that removing T5 for faster inference with lower
memory also makes it difficult to construct complex compositions from worse conditional context
(Fig. 4). However, these limitations are not unique to our method and are a natural consequence
of approximating diffusion trajectories with low-step models. Despite them, we find our 4-step
model offers up-to ∼ 18× speed-up on the teacher and surpasses it in average performance on large
scale user studies with various levels of prompt complexity. We include a summary video in the
supplementary zip for a quick overview.
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A APPENDIX

A.1 TRAINING

We distill SD3.5 Medium (SD3.5M) from 50 steps down to 4 steps and 2 steps. For our multi-head
discriminator setup, we extract features from layers 3,4,5,6,8,10 and 11 of proxy SD3.5M student
with MM-DiT architecture. Each of these heads consists of 8 MLP layers where in the first 4 layers,
patch features are individually attended to, and then combined to compute discriminator logits in the
next 4 layers. We use LayerNorm and SiLU activation units in between MLP layers. At each iteration,
discriminator heads have a probability p = 0.005 of getting re-initialised to reduce overfitting and are
updated with the proxy student network (vfake) 10 times for every single generator (Gθ) update. In
the pre-training stage we train Gθ for 2K iterations with a learning rate of 1e− 6, optimizer AdamW,
and an effective batch size of 140 per GPU over 8 H100s taking 17 hours. For stage two, we use an
effective batch size of 80 (per GPU) and train vfake, Gθ and discriminator network (D) with learning
rates 1e− 6, 5e− 6, and 5e− 5 respectively (with AdamW) for 800 iterations, taking 6 hours on 8
H100s. We train on top of the 4-step model for 2-step generation with stage 2 of our training pipeline,
training for 1200 iterations (9 hours on 8 H100s) . For both our 4-step and 2-step model, we distribute
denoising timesteps uniformly over [0, 1]. For split-timestep fine-tuning, we further train our 4-step
checkpoint for 400 iterations (4 hours on 8 H100s).

A.2 QUANTIZATION TRADEOFF

We provide a visual analysis of the memory v/s performance tradeoff for quantizing SD3.5-Flash on
a M3 Macbook Pro with 32 GiB of memory (Fig. 8).

Figure 8: Latency v/s GenEval: Comparison of Latency and GenEval scores for 4-step inference
pipelines

A.3 USER STUDY ANALYSIS

We include results from our user study for prompt adherence in Fig. 9 and perform an analysis of
the 507 prompts used (Fig. Fig. 6 and Sec. 5.3) in Fig. 10. Specifically, we use GPT-4 to categorise
prompts into pre-determined labels and to score prompt complexity particularly for image generation.
Through our ablations, we found it beneficial to disentangle image quality and prompt alignment
preferences, because otherwise users tend to conflate the two factors and we obtain a less clear signal.
Specifically, when participants were asked to choose the better image in terms of aesthetics, the
prompt was hidden. Conversely, for the prompt alignment task, participants were instructed to focus
solely on alignment with the prompt and disregard image quality. While this setup increases the cost
of the study, we adopted it to ensure clearer results. We also include a screenshot of the user interface
in Fig. 11 and Fig. 12 for the image quality and prompt alignment tasks. User studies are performed
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Figure 9: Prompt Adherence: User ratings for prompt adherence demonstrated by different models.

with candidates who have prior experience in ranking generated images, and as such do not require
any explicit instructions, after multiple rounds of quality check.

Figure 10: User study prompt analysis: Left: Our prompt set covers a wide distribution of
complexity as a function of prompt length and categories. Right: Top 15 prompt labels and their
frequency.

A.4 ADDITIONAL QUALITATIVE ANALYSIS

We include more images from our 4-step model in Fig. 15 and comparisons of our 4-step and 2-step
results with those from other models in Figs. 13 and 14.

A.5 PROMPT LIST

We include all prompts used to generate Figs. 1, 4 and 15 here:

Fig. 1 From top to bottom, left to right:

• Portrait of a man with glowing circuitry embedded in his skin, neutral expression
• A radiant galaxy seen from a cliff above the clouds, with a giant flower blooming from the

mountaintop in the foreground
• A white owl soaring vertically between two cliff walls with sunlight streaming from above
• A majestic red fox standing upright on its hind legs in a glowing forest, fireflies swirling

around
• Portrait of a person with holographic sunglasses reflecting a carnival scene in vivid daylight
• A vending machine overgrown with flowers and ivy, humming softly in the center of a ruined

cathedral with stained glass light pouring in
• Extreme close-up of a cybernetic eye with rotating mechanical parts and glowing red

highlights
• Portrait of a smiling person with multicolored face paint under a clear blue sky, confetti

falling around

Fig. 4 From top to bottom:
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Figure 11: User Study for image quality: Users are asked to select their preferred image only based
on image quality

Figure 12: User Study for prompt alignment: Users are asked to select their preferred image only
based on prompt alignment, while discarding image aesthetic
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Ours
4-Step

NitroFusion
4-Step

SDXL-DMD2
4-Step

SDXL-Lightning
4-Step

SWD
4-Step

Prompt: a rabbit sitting on a turtle's back.

Prompt: two violins standing up with their bows on the ground in front of them.

Prompt: A richly textured oil painting of a young badger delicately sniffing a yellow rose next to a tree trunk. A 
small waterfall can be seen in the background.

Prompt: orange jello in the shape of a man

Prompt: a small kitchen with a white goat in it.

Prompt:A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grassin front 
of the Sydney Opera House holding a sign on the chest that says Welcome Friends.

Figure 13: Qualitative Comparison: Additional qualitative comparisons with other four step distilled
models.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Prompt: Close up of a hand holding a cute cat plushie

Prompt: A photograph of an ostrich wearing a fedora and singing soulfully into a microphone

Prompt: A snowy owl standing in a grassy field

Prompt: A wooden toy horse with a mane made of rope

Ours Ours SANA-Sprint 1.6B NitroFusion SDXL-DMD2 SDXL-Lightning
4-Step 2-Step 4-Step 4-Step 4-Step2-Step

Prompt: The word 'START' on a blue t-shirt

Prompt: An oil surrealist painting of a dreamworld on a seashore where clocks and watches appear to be 
inexplicably limp and melting in the desolate landscape. a table on the left, with a golden watch swarmed by ants. a 

strange fleshy creature in the center of the painting

Prompt: A painting of an ornate treasure chest with a broad sword propped up against it, glowing in a dark cave

Figure 14: Qualitative Comparison: Additional qualitative comparisons with other few-step distilled
models.
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Figure 15: Qualitative Comparison: Additional high fidelity results from our 4-step model in
different aspect ratios.
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• A photo of a cat with a hat that says "Flash" in white letters. Artistic style.
• A building wall and pair of doors that are open, along with vases of flowers on the outside

of the building.
• A passenger train traveling through a tunnel covered with a forest.
• A whimsical and creative image depicting a hybrid creature that is a mix of a waffle and a

hippopotamus. This imaginative creature features the distinctive, bulky body of a hippo, but
with a texture and appearance resembling a golden-brown, crispy waffle. The creature might
have elements like waffle squares across its skin and a syrup-like sheen. It’s set in a surreal
environment that playfully combines a natural water habitat of a hippo with elements of a
breakfast table setting, possibly including oversized utensils or plates in the background.
The image should evoke a sense of playful absurdity and culinary fantasy.

Fig. 15 From top to bottom, left to right:

• A fantasy bookstore carved into the glowing cap of a massive mushroom, nestled in a
bioluminescent forest at night

• A humanoid face made of smooth obsidian with glowing cracks, set against a black back-
ground

• A small frog wearing a crown and cape, leaping up toward a floating lily pad in a glowing
swamp

• Close-up of an anime girl with glowing rainbow hair flowing in the wind, surrounded by
neon butterflies under a pink sky

• A bouquet of paper-white lilies growing from a crack in an endless marble floor, petals
emitting a gentle phosphorescent glow that blends into the radiant surroundings

• A sculpted marble sofa hovering above a cloud deck lit by an overexposed noon sun, cushions
shimmering like polished alabaster

• A blue butterfly on a white wall
• A vivid yellow umbrella alone in a rainy city street
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