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ABSTRACT
In light of the remarkable advancements made in time-series anom-

aly detection (TSAD), recent emphasis has been placed on exploiting

the frequency domain as well as the time domain to address the

difficulties in precisely detecting pattern-wise anomalies. However,

in terms of anomaly scores, thewindow granularity of the frequency
domain is inherently distinct from the data-point granularity of the

time domain. Owing to this discrepancy, the anomaly information

in the frequency domain has not been utilized to its full potential for

TSAD. In this paper, we propose a TSAD framework, Dual-TF , that
simultaneously uses both the time and frequency domains while

breaking the time-frequency granularity discrepancy. To this end,

our framework employs nested-sliding windows, with the outer and

inner windows responsible for the time and frequency domains,

respectively, and aligns the anomaly scores of the two domains. As

a result of the high resolution of the aligned scores, the boundaries

of pattern-wise anomalies can be identified more precisely. In six

benchmark datasets, our framework outperforms state-of-the-art

methods by 12.0–147%, as demonstrated by experimental results.
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KEYWORDS
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1 Introduction
Time series, which is ubiquitous in variousWeb-based contexts such

as Web servers and cloud services, is a fundamental resource for

analyzingWeb traffic patterns. Time-series anomaly detection (TSAD)
is usually formulated as identifying the data points that significantly

diverge from the normal or usual behavior. TSAD is commonly

used to monitor states in many Web-related domains (e.g., cloud
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Figure 1: Difficulty of detecting a pattern-wise anomaly
(right) compared with a point-wise anomaly (left).

services [45]) as well as manufacturing, healthcare, finance, energy,

and environment [16, 33].

Time-series anomalies are mainly categorized into point-wise
and pattern-wise (or collective) anomalies [17, 40], each of which

is specified for a particular point and sequence. According to the

behavior-driven taxonomy [32], the pattern-wise anomalies are

further divided into shapelet, seasonality, and trend anomalies. De-

tecting pattern-wise anomalies is considered more difficult than

detecting point-wise anomalies. As shown in Figure 1, a point-wise

anomaly has a very unusual value deviating from the normal range

of the probability distribution, whereas a pattern-wise anomaly

may still have usual values that fall in the normal range [42].

In order to enhance the capability of capturing pattern-wise

anomalies, recent studies have notably started considering both

the time and frequency domains [56, 60, 64]. The former represents

the values as a function of time, while the latter represents the

periods (or cycles) as a function of frequency (see Appendix A for

details). These recent approaches exploit the time domain mainly

for finding point-wise anomalies and the frequency domain mainly

for finding pattern-wise anomalies. The uncertainty principle for
time-series representation [23], which can be taken to mean that if a

particular anomaly is well represented in one domain, the anomaly

may not be well represented in the other domain, provides strong

support for this family of approaches.

Fully taking advantage of both domains for TSAD is, however,

very challenging. Anomalies are specified at timestamps—i.e., in the

time domain. Thus, the anomaly information found in the frequency

domain needs to be aligned to the time domain for use in TSAD.

Even worse, the finest granularity of the anomaly information in the

frequency domain is coarser than that in the time domain. In detail,

an anomaly score (f-anomaly score) in the frequency domain needs

to be defined for a window (a sequence of data points), because

a frequency spectrum can only be derived from a window (not a

data point); in contrast, an anomaly score in the time domain (t-
anomaly score) can be defined for a data point, e.g., reconstruction
error [1, 49, 58, 63] and association discrepancy [55]. This problem

is named the time-frequency granularity discrepancy.
1
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Figure 2: Comparison of ideal anomaly scores in (a) window
granularity (existing) and (b) data-point granularity (ours).

To resolve this discrepancy, existing approaches (e.g., TFAD [59])

sacrifice the data-point granularity even for the time domain and

stick to the window granularity for both domains. That is, in both

domains, an anomaly score is assigned to a window, and all data

points in the window share the same score. Even with sliding win-

dows, sharing the same score with all data points in a window sig-

nificantly degrades the resolution of detecting pattern-wise anom-

alies. Especially when a window contains both normal and anoma-

lous data points in Figure 2(a), the window granularity scheme

inevitably fails to detect the exact boundaries of pattern-wise anom-

alies, thereby resulting in low overall accuracy.

In this paper, we propose a novel TSAD method, Dual-TF , which
exploits both the time and frequency domains without the time-

frequency granularity discrepancy. Our key solution is to use the

nested sliding window (NS-window) to accommodate both time and

frequency information while aligning them in the data-point gran-

ularity. As shown in Figure 3, for calculating t-anomaly scores, the

outer window slides as usual to capture various time contexts. For

calculating f-anomaly scores, the inner window slides only within

the corresponding outer window to produce multiple frequency

spectrums for each data point; these diverse frequency spectrums

are compared with one another to return f-anomaly scores. Finally,

these multiple t-anomaly scores and f-anomaly scores are consoli-

dated for each data point to satisfy the data-point granularity. As a

result, the boundaries of pattern-wise anomalies are more clearly

and precisely identified in Figure 2(b).

Meanwhile, deep neural networks (DNNs) have demonstrated

their capability to recognize intricate correlations within complex

data characterized by large volume and dimensionality over the last

decade. This trend has extended tomultivariate time-series anomaly

detection, resulting in an explosion of DNN-based methods suggest-

ing methodological advances and improved performance [6, 38].

Notably, attention-based models, such as Transformer, offer the

benefit of considering sequence dependencies and outperform pre-

vious state-of-the-art methods by a significant margin in time-series

analysis [51]. The capability to effectively identify and analyze com-

plex patterns and correlations in data is the reason for using the

Anomaly Transformer [55] as the backbone.

Dual-TF includes two Anomaly Transformers for calculating the

t-anomaly and f-anomaly scores, respectively. These scores are cal-

culated and combined using the proposed NS-windowing scheme.

Through the extensive comparison with ten TSAD methods for

six datasets, Dual-TF is shown to improve the TSAD accuracy by

12.0–147%. Furthermore, consistent with our expectation, Dual-TF ’s
higher ability to capture the boundaries of pattern-wise anomalies

t-anomaly f-anomaly

Anomalies

⋯

Time
series

Anomaly
Score

Outer window

Inner windows

Data-point granularity alignment
Frequency
spectrums

Figure 3: Our NS-windowing technique.

is visually confirmed, thus explaining the overall accuracy improve-

ment. The idea of using the NS-window for combining both domains
is very intuitive and widely applicable to any TSAD method based

on the sliding window. We believe that the simplicity of our ap-

proach is a strong benefit because simple algorithms often make a

big impact and gain widespread acceptance [48].

2 Related Work
2.1 Time-Series Anomaly Detection (TSAD)
Themajority of TSADmethods are designed for unsupervised learn-

ing owing to a lack of anomaly labels. Traditional TSAD methods

can be classified into statistical [10, 13, 46] and machine learning-

based methods [19, 47]. In recent years, many studies have adopted

deep learning, which is typically superior to traditional machine

learning. Forecasting-based [18, 26, 61] and reconstruction-based

methods are two well-known approaches. The former uses pre-

diction errors as anomaly scores, while the latter uses reconstruc-

tion errors. Previous research has shown that reconstruction-based

methods generally outperform forecasting-based methods [21, 62].

BeatGAN [63] is a reconstructive approach based on a genera-

tive adversarial network (GAN), which uses time-series warping

for data augmentation to improve accuracy. MSCRED [58] exploits

an attention-based ConvLSTM to account for temporal dependency.

Autoencoder models are similarly employed for reconstruction in

OmniAnomaly [49] and USAD [5]. RANSynCoders [1] improves

autoencoder training efficiency via feature synchronization, boot-

strapping, and quantile loss. Notably, a new reconstructive approach

that combines series and prior association to make anomalies dis-

tinctive is proposed as Anomaly Transformer [55].

2.2 Frequency Domain Analysis for Time Series
Several recent methods use both the time and frequency (i.e., spec-

tral) domains [57]. For forecasting, DEPTS [20] models complex pe-

riodicities with a learnable cosine function on top of residual learn-

ing. Autoformer [53] uses the auto-correlation generated via fast

Fourier transform for long-term forecasting. FEDFormer [64], tar-

geting long-term forecasting, extracts important frequency compo-

nents using the frequency-enhanced block and frequency-enhanced

attention. For unsupervised representation learning, CoST [52] has

separate trend and seasonal encoders and compares the ampli-

tude and phase of each sample to compute the time and frequency

domain contrastive losses. BTSF [56] conducts iterative bilinear

temporal-spectral fusion, where information on each domain is con-

veyed to a bilinear feature to model time-frequency dependencies.

2
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Figure 4: Overview of the Dual-TF framework for the training and inference phases.

TF-C [60] augments the time and frequency domains independently

to produce positive samples, followed by regularization to ensure

coherence in the representation of both domains. However, these

studies primarily focus on capturing general time-series features

and thus are unsuitable for detecting time-series anomalies. To iden-

tify pattern-wise features that can be defined only in the frequency

domain, it is necessary to acquire frequency information that is

appropriate for anomaly detection, as opposed to general frequency

information obtained in the existing studies.

2.3 Frequency Domain Analysis for TSAD
Frequency-based models for TSAD have received much attention in

recent years. The spectral residual (SR) introduced in SR-CNN [45]

uses a frequency-based technique to generate a saliency map for

TSAD. PFT [44] is a partial Fourier transform that achieves a speedup

of an order of magnitude without sacrificing accuracy. TFAD [59]

utilizes frequency domain analysis for TSAD with augmentation

and decomposition. To the best of our knowledge, TFAD is the

closest to our work since it uses the time and frequency domains

together. Nevertheless, the existing methods (including TFAD) do

not offer the data-point granularity for the frequency domain, still

facing challenges in precisely detecting pattern-wise anomalies.

3 TSAD Framework: Dual-TF
Problem Formulation: Let’s consider a multivariate time series,

X = {𝒙1, 𝒙2, . . . , 𝒙𝑛} (X ∈ R𝑛×𝑑 ), where 𝑛 is the number of data

points and 𝑑 is the number of features. Using X as a training set,

we aim at building an anomaly detector A(𝒙𝑡 ,Θ𝑡𝑖𝑚𝑒 ,Θ𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
that returns an anomaly score for a given data point using deep neu-

ral networks (e.g., autoencoders and Transformers) parameterized

by Θ𝑡𝑖𝑚𝑒 and Θ𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 respectively for the time and frequency

domains. Then, given another multivariate time series as a test set,

X′ ∈ R𝑛′×𝑑 , the anomaly detectorA() is used to classify each data

point 𝒙′𝑡 in X′ as being either normal or anomalous. Our problem

is categorized as unsupervised anomaly detection because no label

information is used.

Window Specification: For the NS-windowing scheme in Fig-

ure 3, an outer window and its inner windows are continuously

extracted from a multivariate time-series X (or X′). An outer win-
dow at timestamp 𝑡 is defined as𝑂𝑊𝑡 = {𝒙𝑡 , 𝒙𝑡+1, . . . , 𝒙𝑡+𝑤𝑜𝑢𝑡𝑒𝑟 −1}

of length 𝑤𝑜𝑢𝑡𝑒𝑟 . Then, the original time series X (or X′) is re-
organized as a sequence of overlapping outer windows, OW =

{𝑂𝑊1,𝑂𝑊2, . . . ,𝑂𝑊𝑛−𝑤𝑜𝑢𝑡𝑒𝑟+1}1. For a given outer window 𝑂𝑊𝑡 ,

its inner window of length𝑤𝑖𝑛𝑛𝑒𝑟 at timestamp 𝑖 ∈ [𝑡, 𝑡 +𝑤𝑜𝑢𝑡𝑒𝑟 −
𝑤𝑖𝑛𝑛𝑒𝑟 ] is defined 𝐼𝑊𝑖 = {𝒙𝑖 , 𝒙𝑖+1, . . . , 𝒙𝑖+𝑤𝑖𝑛𝑛𝑒𝑟 −1}. Then, again,
an outer window is reorganized as a sequence of overlapping inner

windows IW𝑡 = {𝐼𝑊𝑡 , 𝐼𝑊𝑡+1, . . . , 𝐼𝑊𝑡+𝑤𝑜𝑢𝑡𝑒𝑟 −𝑤𝑖𝑛𝑛𝑒𝑟 }1.
Time-Frequency Granularity Discrepancy: The number of de-
grees of freedom represents the number of values that can vary

freely [12]. If the anomaly scores satisfy the data-point granular-

ity, the degree of freedom should be the length of a time series

𝑛; on the other hand, if the anomaly scores follow the window

granularity, the degree of freedom should be much smaller than 𝑛

because the scores cannot vary within the same window. Therefore,

the time-frequency granularity discrepancy is formally defined as

when d.f.({t-anomaly scores}) ≠ d.f.({f-anomaly scores}), where d.f.(·)
denotes the degree of freedom.

3.1 Overall Framework of Dual-TF
Figure 4 shows the overall procedure of Dual-TF . By the scheme of

NS-windowing, a multivariate time series X (or X′) is transformed

into a sequence of outer windows and a sequence of inner win-

dows for each outer window. Dual-TF employs two neural network
reconstructors: the time reconstructor and the frequency reconstruc-
tor, each for time and frequency domain. The outer windows are

fed to the time reconstructor. On the other hand, a fast Fourier

transform (FFT) [39] converts each inner window from its original

time domain to a representation in the frequency domain; then, the

converted inner windows are fed to the frequency reconstructor.

These reconstructors are individually trained to minimize the

reconstruction losses, following the conventional procedure of

reconstruction-based TSAD [1, 50, 55]. The batches for the two

reconstructors should be constructed separately due to the differ-

ent dimensionalities of the inputs to the two reconstructors. Dur-

ing the inference phase, an anomaly score for each data point is

calculated using the reconstruction losses from the two reconstruc-

tors. To break the time-frequency granularity discrepancy and thus

achieve the data-point granularity in both domains, we align the

1
The slide step is set to be 1 for finding the boundaries of pattern-wise anomalies more

precisely as well as for simplifying the expression.
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time-domain reconstruction losses from an outer window with the

frequency-domain reconstruction losses from its inner windows.

3.2 Time-Frequency Dual-Domain Training
Optimal Window Length: For the NS-windowing scheme, one

of the most important issues is to determine the proper window

lengths,𝑤𝑜𝑢𝑡𝑒𝑟 and𝑤𝑖𝑛𝑛𝑒𝑟 . Because the primary goal of using in-

ner windows is to capture pattern-wise anomalies, we set them to

embody major periods based on spectral analysis. In detail, each

dimension of the entire time series X is converted to the frequency

domain by the fast Fourier transform (FFT). The output of the FFT

is Hermitian-symmetric; that is, the positive-frequency terms are

the complex conjugates of the corresponding negative-frequency

terms. The negative frequency terms can be ignored because of the

redundancy. Here, a frequencymagnitude is defined as the absolute
value (or modulus) of a complex number. Then, the most dominant
frequency whose magnitude is the largest in each dimension is

identified; the smallest dominant frequency in all dimensions is

chosen as the representative frequency 𝜈𝑚𝑎𝑗𝑜𝑟 in X. Last, we set
𝑤𝑖𝑛𝑛𝑒𝑟 = ⌈ 1

𝜈𝑚𝑎𝑗𝑜𝑟
⌉, because the period is the reciprocal of the fre-

quency, and𝑤𝑜𝑢𝑡𝑒𝑟 = 𝜌 ·𝑤𝑖𝑛𝑛𝑒𝑟 , where 𝜌 (> 1) is a hyperparameter.

See Appendix B for the details of the window-length selection.

We briefly discuss the optimality of the inner windows. The time-

frequency uncertainty principle [22] states that the exact time and

frequency of a signal can never be known simultaneously [25]. In

determining the window size, this principle indicates the trade-off

between time and frequency uncertainty within a window. In the

time domain, the smaller𝑤𝑖𝑛𝑛𝑒𝑟 , the lower the uncertainty; in the

frequency domain, the smaller𝑤𝑖𝑛𝑛𝑒𝑟 , the greater the uncertainty.

Let U𝑡𝑖𝑚𝑒 (𝑤𝑖𝑛𝑛𝑒𝑟 ) and U 𝑓 𝑟𝑒𝑞 (𝑤𝑖𝑛𝑛𝑒𝑟 ), respectively, denote the

uncertainty in the time and frequency domains, given a window

of length 𝑤𝑖𝑛𝑛𝑒𝑟 . (See Appendix C the formal definition of the

uncertainty.) Then, the uncertainty in the two domains is

U(𝑤𝑖𝑛𝑛𝑒𝑟 ) = U𝑡𝑖𝑚𝑒 (𝑤𝑖𝑛𝑛𝑒𝑟 ) + U 𝑓 𝑟𝑒𝑞 (𝑤𝑖𝑛𝑛𝑒𝑟 ) . (1)

Theorem 3.1 formally states the optimal condition for the inner

window length𝑤𝑖𝑛𝑛𝑒𝑟 .

Theorem 3.1 (Optimal Window Length). When 𝑤𝑖𝑛𝑛𝑒𝑟 =

⌈ 1

𝜈𝑚𝑎𝑗𝑜𝑟
⌉, the uncertainty within the window,U(𝑤𝑖𝑛𝑛𝑒𝑟 ) in Eq. (1),

is minimized.

Proof. See Appendix C for the proof. □

Reconstructor Network:While any neural network reconstructor

is applicable to Dual-TF , we choose Anomaly Transformer [55]

because it has shown the state-of-the-art performance. To make

this paper be self-contained, we briefly describe the key mechanism

of the Anomaly Transformer. Each input is 𝑋 0 = 𝑂𝑊𝑡 for the time

reconstructor and 𝑋 0 = IW𝑡 for the frequency reconstructor.

Following the self-attention mechanism, the output of the 𝑙-th layer

(𝑙 ∈ [1, 𝑛𝑙𝑎𝑦𝑒𝑟 ]) is defined by

𝑄,𝐾,𝑉 = 𝑋 𝑙−1𝑊 𝑙
𝑄 , 𝑋

𝑙−1𝑊 𝑙
𝐾 , 𝑋

𝑙−1𝑊 𝑙
𝑉

Attention(𝑋 𝑙 ) = Softmax( 𝑄𝐾⊤
√
𝑑𝑚𝑜𝑑𝑒𝑙

)𝑉

Θ∗ (𝑋 𝑙 ) = 𝑋 𝑙 = LayerNorm(𝑋 𝑙−1 + Attention(𝑋 𝑙−1)),

(2)

where 𝑄 , 𝐾 , and 𝑉 are queries, keys, and values; 𝑊 𝑙
𝑄
, 𝑊 𝑙

𝐾
, and

𝑊 𝑙
𝑉
are the learnable parameters for them; 𝑑𝑚𝑜𝑑𝑒𝑙 is the number

of hidden channels; and 𝑋 𝑙 is the output of the reconstruction

network. More importantly, the association discrepancy is defined

as the KL-divergence between the prior association (𝑃𝑙 ) and the

series association (𝑆𝑙 ),

𝐴𝑠𝑠𝐷𝑖𝑠 (𝑃, 𝑆 ;𝑋 ) = 1

𝑛𝑙𝑎𝑦𝑒𝑟

𝑛𝑙𝑎𝑦𝑒𝑟∑︁
𝑙=1

(KL(𝑃𝑙 ∥𝑆𝑙 ) + KL(𝑆𝑙 ∥𝑃𝑙 )) . (3)

where 𝑃𝑙 is generated by the Gaussian kernel to represent the

adjacent context and 𝑆𝑙 is defined as the usual self-attention in Eq.

(2) to represent the overall context.

The 𝑛𝑙𝑎𝑦𝑒𝑟 layers of the Anomaly Transformer backbone in

Eq. (2) are used for both reconstructors. For the time reconstructor,

𝑄,𝐾,𝑉 ∈ R𝑤𝑜𝑢𝑡𝑒𝑟 ×𝑑𝑚𝑜𝑑𝑒𝑙
;𝑊 𝑙

𝑄
,𝑊 𝑙

𝐾
,𝑊 𝑙

𝑉
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙

; 𝑃𝑙 , 𝑆𝑙 ∈
R𝑤

𝑜𝑢𝑡𝑒𝑟 ×𝑤𝑜𝑢𝑡𝑒𝑟
. In the same manner, for the frequency reconstruc-

tor, 𝑄,𝐾,𝑉 ∈ R(𝑚×𝑤𝑖𝑛𝑛𝑒𝑟 )×𝑑𝑚𝑜𝑑𝑒𝑙
;𝑊 𝑙

𝑄
,𝑊 𝑙

𝐾
,𝑊 𝑙

𝑉
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙

;

𝑃𝑙 , 𝑆𝑙 ∈ R(𝑚×𝑤𝑖𝑛𝑛𝑒𝑟 )×(𝑚×𝑤𝑖𝑛𝑛𝑒𝑟 )
, where𝑚 denotes the number of

inner windows per outer window, i.e.,𝑚 = 𝑤𝑜𝑢𝑡𝑒𝑟 −𝑤𝑖𝑛𝑛𝑒𝑟 + 1.
Time Reconstructor Loss: Time reconstructor forms each outer

window 𝑂𝑊𝑡 = {𝒙𝑡 , 𝒙𝑡+1, . . . , 𝒙𝑡+𝑤𝑜𝑢𝑡𝑒𝑟 −1} (𝑂𝑊𝑡 ∈ R𝑤
𝑜𝑢𝑡𝑒𝑟 ×𝑑

),

where 𝑡 ∈ [1, 𝑛−𝑤𝑜𝑢𝑡𝑒𝑟 +1], to𝑂𝑊 𝑡 = {𝒙̂𝑡 , 𝒙̂𝑡+1, . . . , 𝒙̂𝑡+𝑤𝑜𝑢𝑡𝑒𝑟 −1}
(𝑂𝑊 𝑡 ∈ R𝑤

𝑜𝑢𝑡𝑒𝑟 ×𝑑
) using the parameter Θ𝑡𝑖𝑚𝑒 . Then, the recon-

struction loss of 𝑂𝑊𝑡 is formulated by

𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝑡𝑖𝑚𝑒 (𝑂𝑊𝑡 ,𝑂𝑊 𝑡 ) =
𝑡+𝑤𝑜𝑢𝑡𝑒𝑟 −1∑︁

𝑖=𝑡

∥𝒙𝑖 − 𝒙̂𝑖 ∥22 . (4)

It is evident that the time domain satisfies the data-point granularity

in Eq. (4). The association discrepancy is (optionally) added to the

final loss,

L𝑡𝑖𝑚𝑒 (𝑂𝑊𝑡 ,𝑂𝑊 𝑡 ) = 𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝑡𝑖𝑚𝑒 (𝑂𝑊𝑡 ,𝑂𝑊 𝑡 )
− 𝜆 · 𝐴𝑠𝑠𝐷𝑖𝑠𝑡𝑖𝑚𝑒 (𝑃, 𝑆 ;𝑂𝑊𝑡 ),

(5)

where 𝜆 (> 0) is the hyperparameter for weighting the association

discrepancy. These losses for the outer windows in a batch are

summed up to update the parameter Θ𝑡𝑖𝑚𝑒 via backpropagation.

Frequency Reconstructor Loss: A sequence of overlapping in-

ner windows IW𝑡 = {𝐼𝑊𝑡 , 𝐼𝑊𝑡+1, . . . , 𝐼𝑊𝑡+𝑤𝑜𝑢𝑡𝑒𝑟 −𝑤𝑖𝑛𝑛𝑒𝑟 } is de-
rived, given an outer window 𝑂𝑊𝑡 . First, each inner window 𝐼𝑊𝑡

(∈ R𝑤𝑖𝑛𝑛𝑒𝑟 ×𝑑
) is converted to a frequency spectrum FFT (𝐼𝑊𝑡 )

(∈ R𝑤𝑖𝑛𝑛𝑒𝑟 ×𝑑
), where FFT () returns a sequence of the magni-

tudes in the result of the FFT. That is, FFT (𝐼𝑊𝑡 ) is regarded

as the counterpart of the data point 𝒙𝑡 in the frequency domain.

Here, FFT () is separately applied to each of 𝑑 dimensions. Then,

{ �FFT (𝐼𝑊𝑡 ), �FFT (𝐼𝑊𝑡+1), . . . } is reconstructed by the frequency
reconstructor from {F FT (𝐼𝑊𝑡 ), FFT (𝐼𝑊𝑡+1), . . . }. Last, the re-
construction loss of IW𝑡 generated from 𝑂𝑊𝑡 is defined as

𝑅𝑒𝑐𝐿𝑜𝑠𝑠 𝑓 𝑟𝑒𝑞 (IW𝑡 ,�IW𝑡 )

=

𝑡+𝑤𝑜𝑢𝑡𝑒𝑟 −𝑤𝑖𝑛𝑛𝑒𝑟∑︁
𝑖=𝑡

𝑑∑︁
𝑗=1

∥F FT (𝐼𝑊𝑖 )[ 𝑗 ] − �FFT (𝐼𝑊𝑖 ) [ 𝑗 ] ∥22 . (6)

Here, FFT ()[ 𝑗 ] is the frequency spectrum of the 𝑗-th dimen-

sion. By virtue of the sequence of inner windows, the frequency

4
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Figure 5: Data-point granularity alignment.

domain also satisfies the data-point granularity in Eq. (6) because an

inner window is created for every data point except the last𝑤𝑖𝑛𝑛𝑒𝑟

ones within the outer window; we note that these uncovered data

points will be covered soon by the succeeding outer windows. Sim-

ilar to Eq. (5), for the update of the parameter Θ𝑓 𝑟𝑒𝑞 , the total loss
is defined as

L 𝑓 𝑟𝑒𝑞 (IW𝑡 ,�IW𝑡 ) = 𝑅𝑒𝑐𝐿𝑜𝑠𝑠 𝑓 𝑟𝑒𝑞 (IW𝑡 ,�IW𝑡 )

− 𝜆 · 𝐴𝑠𝑠𝐷𝑖𝑠 𝑓 𝑟𝑒𝑞 (𝑃, 𝑆 ;IW𝑡 ).
(7)

3.3 Data-Point Granularity Alignment for
Anomaly Scoring

Using the two trained reconstructors Θ𝑡𝑖𝑚𝑒 and Θ𝑓 𝑟𝑒𝑞 , we derive
the anomaly score for each data point 𝒙′ in a test set X′. First, an
anomaly score in the time domain (t-anomaly score) and an anom-

aly score (f-anomaly score) in the frequency domain are derived

separately from the two reconstructors. Then, the t-anomaly score

and the f-anomaly score are combined to form the final anomaly

score, which will be compared against a threshold.

Because an entire time series (or an outer window) is converted

to a sequence of overlapping outer (or inner) windows, each data

point is covered by multiple outer (or inner) windows. Definitions
3.2 and 3.3 formalize the sets of covering outer and inner windows

for a given data point.

Definition 3.2 (Covering Outer Window). Given a data point

𝒙𝑡 , the set of covering outer windows is defined by 𝐶𝑜𝑣𝑜𝑢𝑡𝑒𝑟 (𝒙𝑡 ) =
{𝑂𝑊𝑖 | 𝒙𝑡 ∈ 𝑂𝑊𝑖 , 1 ≤ 𝑖 ≤ 𝑛 −𝑤𝑜𝑢𝑡𝑒𝑟 + 1}.

Definition 3.3 (Covering Inner Window). Given a data point

𝒙𝑡 and its covering outer window 𝑂𝑊𝑖 ∈ 𝐶𝑜𝑣𝑜𝑢𝑡𝑒𝑟 (𝒙𝑡 ), the set of
covering inner windows is defined by 𝐶𝑜𝑣𝑖𝑛𝑛𝑒𝑟 (𝒙𝑡 ;𝑂𝑊𝑖 ) = {𝐼𝑊𝑗 |
𝒙𝑡 ∈ 𝐼𝑊𝑗 ∧ 𝐼𝑊𝑗 ∈ 𝑂𝑊𝑖 , 𝑖 ≤ 𝑗 ≤ 𝑖 +𝑤𝑖𝑛𝑛𝑒𝑟 − 1}.

Figure 5 illustrates how t-anomaly scores and f-anomaly scores

are calculated and then aligned. First, a t-anomaly score is easily
calculated for each data point within a given outer window using the

reconstruction loss. Though any reconstruction-based criterion is

usable, we follow the one proposed for the state-of-the-art model,

Anomaly Transformer [55],

A𝑡𝑖𝑚𝑒 (𝒙𝑡 ;𝑂𝑊𝑖 ) = [Softmax(−𝐴𝑠𝑠𝐷𝑖𝑠𝑡𝑖𝑚𝑒 (𝑃, 𝑆 ;𝑂𝑊𝑖 ))

⊙ 𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝑡𝑖𝑚𝑒 (𝑂𝑊𝑖 ,𝑂𝑊 𝑖 )]𝒙𝑡
,

(8)

where 𝐴𝑠𝑠𝐷𝑖𝑠 () and 𝑅𝑒𝑐𝐿𝑜𝑠𝑠 () are the association discrepancy and

the reconstruction loss used in Eq. (5), and []𝒙𝑡
returns the value

for 𝒙𝑡 . Second, an f-anomaly score is calculated in two steps. (i) A
score A 𝑓 𝑟𝑒𝑞 (𝐼𝑊𝑗 ;IW𝑖 ) is derived for each covering inner window
within the context of all inner windows from the outer window; that
is, it basically represents the spectral difference of 𝐼𝑊𝑗 to the other

inner windows in IW𝑖 . (ii) The exponential function is applied

to each A 𝑓 𝑟𝑒𝑞 (𝐼𝑊𝑗 ;IW𝑖 ), and these results are averaged for the

outer window, where 𝐶𝑜𝑣𝑖𝑛𝑛𝑒𝑟 = 𝐶𝑜𝑣𝑖𝑛𝑛𝑒𝑟 (𝒙𝑡 ;𝑂𝑊𝑖 ),

A 𝑓 𝑟𝑒𝑞 (𝒙𝑡 ;𝑂𝑊𝑖 ) =
1

|𝐶𝑜𝑣𝑖𝑛𝑛𝑒𝑟 |
∑︁

𝐼𝑊𝑗 ∈𝐶𝑜𝑣𝑖𝑛𝑛𝑒𝑟

exp (A 𝑓 𝑟𝑒𝑞 (𝐼𝑊𝑗 ; IW𝑖 ) ),

A 𝑓 𝑟𝑒𝑞 (𝐼𝑊𝑗 ; IW𝑖 ) = [Softmax(−𝐴𝑠𝑠𝐷𝑖𝑠 𝑓 𝑟𝑒𝑞 (𝑃, 𝑆 ; IW𝑖 ) )

⊙ 𝑅𝑒𝑐𝐿𝑜𝑠𝑠 𝑓 𝑟𝑒𝑞 (IW𝑖 ,�IW𝑖 ) ]𝐼𝑊𝑗
.

(9)

We note that an f-anomaly score is derived for each data point

using its covering inner windows, where different windows cover

different intervals in an outer window. By supporting the data-point

granularity for f-anomaly scores, we want to distinguish between

when 𝒙𝑡 is at the center of or near the boundary of a pattern-wise

anomaly. As 𝒙𝑡 is located at a more central location of this anomaly,

its set of covering inner windows overlap the anomaly more signif-

icantly, where each A 𝑓 𝑟𝑒𝑞 (𝐼𝑊𝑗 ;IW𝑖 ) in Eq. (9) becomes higher.

Thus, to make the f-anomaly score for the central data point stand
out, we take the exponential of each A 𝑓 𝑟𝑒𝑞 (𝐼𝑊𝑗 ;IW𝑖 ). This sim-

ple treatment for TSAD is proven to be very effective, as shown in

the ablation study.

Next, Eqs. (8) and (9) are averaged for all of 𝒙𝑡 ’s covering outer

windows, where 𝐶𝑜𝑣𝑜𝑢𝑡𝑒𝑟 = 𝐶𝑜𝑣𝑜𝑢𝑡𝑒𝑟 (𝒙𝑡 )

A𝑡𝑖𝑚𝑒 or 𝑓 𝑟𝑒𝑞 (𝒙𝑡 ) =
1

|𝐶𝑜𝑣𝑜𝑢𝑡𝑒𝑟 |
∑︁

𝑂𝑊𝑖 ∈𝐶𝑜𝑣𝑜𝑢𝑡𝑒𝑟
A𝑡𝑖𝑚𝑒 or 𝑓 𝑟𝑒𝑞 (𝒙𝑡 ;𝑂𝑊𝑖 ),

(10)

and this score for each 𝒙𝑡 is min-max normalized with respect to

the scores of all data points in X.
At last, considering both the t-anomaly and f-anomaly scores,

the final anomaly score is defined by

A𝑡𝑜𝑡𝑎𝑙 (𝒙𝑡 ) = A𝑡𝑖𝑚𝑒 (𝒙𝑡 ) + A 𝑓 𝑟𝑒𝑞 (𝒙𝑡 ) . (11)

Remark 3.4. The t-anomaly and f-anomaly scores in Eq. (10)
break the time-frequency granularity discrepancy.

Proof. Given any pair of 𝒙𝑖 and 𝒙 𝑗 where 𝑖 ≠ 𝑗 ,𝐶𝑜𝑣𝑜𝑢𝑡𝑒𝑟 (𝒙𝑖 ) ≠
𝐶𝑜𝑣𝑜𝑢𝑡𝑒𝑟 (𝒙 𝑗 ) and 𝐶𝑜𝑣𝑖𝑛𝑛𝑒𝑟 (𝒙𝑖 ; ·) ≠ 𝐶𝑜𝑣𝑖𝑛𝑛𝑒𝑟 (𝒙 𝑗 ; ·) by the defini-

tion of the NS-windows. Therefore, d.f.({A𝑡𝑖𝑚𝑒 (𝒙𝑡 ) | 1 ≤ 𝑡 ≤ 𝑛)})
= d.f.({A 𝑓 𝑟𝑒𝑞 (𝒙𝑡 ) | 1 ≤ 𝑡 ≤ 𝑛)}) = 𝑛. □

4 Evaluation
For reproducibility, the source code of our framework is available

at https://anonymous.4open.science/r/DualTF.

4.1 Experiment Settings
Datasets: Table 1 summarizes the benchmark datasets used in the

experiments. Here, each anomaly is categorized as a pattern-wise

anomaly if the length of its anomaly interval is greater than 1 and

a point-wise anomaly otherwise [7]. The number in the parenthe-

sis along the number of point-wise or pattern-wise anomalies is

the ratio of the number of anomaly-labeled data points of a spe-

cific category to the total number of anomaly-labeled data points.

5
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Table 1: Benchmark dataset statistics.

Datasets Applications 𝑤𝑖𝑛𝑛𝑒𝑟 # Train # Test Entity×Dim. # Point Anomaly # Pattern Anomaly Avg. Length of
(Ratio) (Ratio) Pattern Anomaly

TODS (Point) Synthetic 25 20,000 5,000 2 × 1 250 (100%) 0 (0%) N/A

TODS (Pattern) Synthetic 25 20,000 5,000 3 × 1 0 (0%) 250 (100%) 10

ASD Server Monitoring 288 8,527 4,320 12 × 19 0 (0%) 199 (100%) 31

ECG Medical Checkup 143 6,995 2,851 9 × 2 0 (0%) 208 (100%) 208

PSM Server Monitoring 360 132,481 87,841 1 × 25 16 (0.07%) 24,365 (99.93%) 435

CompanyA Server Monitoring 144 21,600 13,302 3 × 8 10 (8.53%) 104 (91.47%) 4

Table 2: Performance comparison between TSAD methods in terms of the best point-wise 𝐹1 score with the highest scores
highlighted in bold.

Methods TODS (Point) TODS (Pattern) ASD ECG PSM CompanyA Avg. ↑ Rank ↓Gloabl Contextual Shapelet Seasonal Trend

ISF

0.943 0.164 0.103 0.093 0.209 0.295 0.256 0.478 0.134 0.297

9(±0.017) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.002)

LOF

0.933 0.093 0.096 0.092 0.093 0.376 0.327 0.524 0.059 0.288

11(±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.067) (±0.000) (±0.099) (±0.019) (±0.010)

OCSVM

0.937 0.170 0.104 0.093 0.094 0.266 0.264 0.469 0.266 0.296

10(±0.019) (±0.000) (±0.000) (±0.000) (±0.000) (±0.071) (±0.000) (±0.000) (±0.019) (±0.011)

VAE

0.915 0.584 0.503 0.847 0.181 0.327 0.274 0.443 0.261 0.482

4(±0.031) (±0.034) (±0.094) (±0.017) (±0.002) (±0.022) (±0.003) (±0.000) (±0.028) (±0.014)

MS-RNN

0.839 0.553 0.248 0.799 0.180 0.379 0.276 0.443 0.228 0.438

5(±0.000) (±0.000) (±0.144) (±0.022) (±0.000) (±0.003) (±0.002) (±0.000) (±0.003) (±0.014)

OmniAnomaly

0.543 0.542 0.149 0.203 0.185 0.197 0.216 0.467 0.182 0.298

8(±0.001) (±0.008) (±0.004) (±0.017) (±0.013) (±0.096) (±0.037) (±0.098) (±0.046) (±0.009)

RANSynCoders

0.674 0.482 0.166 0.163 0.175 0.383 0.208 0.571 0.112 0.326

7(±0.127) (±0.000) (±0.002) (±0.007) (±0.011) (±0.234) (±0.003) (±0.017) (±0.027) (±0.026)

TranAD

0.569 0.553 0.165 0.179 0.169 0.294 0.461 0.443 0.225 0.340

6(±0.000) (±0.000) (±0.000) (±0.030) (±0.000) (±0.007) (±0.028) (±0.000) (±0.008) (±0.000)

TFAD

0.878 0.871 0.558 0.854 0.363 0.432 0.356 0.537 0.276 0.569

3(±0.000) (±0.009) (±0.150) (±0.018) (±0.001) (±0.003) (±0.002) (±0.080) (±0.071) (±0.035)

Anomaly Transformer

0.943 0.942 0.730 0.867 0.460 0.425 0.464 0.578 0.317 0.636

2(±0.000) (±0.000) (±0.000) (±0.028) (±0.005) (±0.017) (±0.001) (±0.001) (±0.099) (±0.011)

Dual-TF 0.968 0.943 0.741 0.925 0.476 0.661 0.538 0.723 0.436 0.712
1(±0.017) (±0.001) (±0.005) (±0.041) (±0.017) (±0.019) (±0.076) (±0.047) (±0.021) (±0.011)

See Appendix D for the generation of the TODS dataset [32]. The

ASD [34], ECG [28], and PSM [2] are public datasets commonly used

for evaluating TSAD. The only proprietary dataset is the Compa-

nyA (anonymized) dataset, which is derived from the operation of

cloud servers and represents service traffic.

Baselines: We conduct a comparative analysis of Dual-TF against

both traditional and recent works. For traditional methods, ISF [35],

LOF [11], OCSVM [47], and Variational Autoencoder (VAE) [24]

are included. For the state-of-the-art methods, Modified-RNN (MS-

RNN) [30], OmniAnomaly [49], RANSynCoders [1], TranAD [50],

TFAD [59], and Anomaly Transformer [55] are included. See Ap-

pendix D for the descriptions of the baselines.

EvaluationMetrics: To evaluate the detection accuracy at the data-
point level, we primarily employ the point-wise 𝐹1 score [3]. In this

case, a predicted anomaly is valid if it falls within a small margin (i.e.,

ten timestamps) of the actual location of the anomaly. In contrast,

it is well-known that the widely-used point-adjusted (PA) metric

has overestimation issues [49, 54, 55], as a window is considered

correct if both a predicted anomaly and the true anomaly occur

just within the same window. Despite the fact that the PA metric

is inappropriate for our work, we report the results using the PA

metric in Appendix E so that they can be compared to the findings

of other studies. In addition, we report the best 𝐹1 score using the
anomaly threshold that produces the highest 𝐹1 score across all

methods in order to eliminate the effect of threshold selection. We

repeat every test three times with random seeds and report the

average as well as the standard deviation.

Furthermore, addressing recent concerns on evaluation met-

rics [31, 41], we adopt new evaluation metrics designed for TSAD.

The Range Area Under the Curve (R_AUC) and the Volume Under

the Surface (VUS) [41] are employed, where the receiver operating

characteristic (ROC) curve and precision-recall (PR) curves are con-

sidered. The VUS extends the mathematical model of the R_AUC

by allowing the buffer length to be varied. Thus, R_AUC_ROC and

R_AUC_PR are defined for the former, and VUC_ROC and VUC_PR

are defined for the latter. These metrics can accurately evaluate

the detection of pattern-wise (range) anomalies. Moreover, the VUS

reduces the influence of an anomaly threshold.
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Table 3: Performance comparison for Dual-TF in terms of VUS [41] and other new evaluation metrics with the highest scores
highlighted in bold. See [41] for the details of these evaluation metrics.

Evaluation Methods TODS (Point) TODS (Pattern) ASD ECG PSM CompanyAMetrics Gloabl Contextual Shapelet Seasonal Trend

R_AUC_ROC

Anomaly Transformer 0.9995 0.9859 0.8457 0.9272 0.6277 0.8498 0.6432 0.6158 0.8493

Dual-TF 0.9998 0.9995 0.9097 0.9611 0.7035 0.9013 0.7216 0.7735 0.8653

R_AUC_PR

Anomaly Transformer 0.9994 0.9862 0.6878 0.7736 0.3713 0.5263 0.2447 0.4789 0.4139

Dual-TF 0.9998 0.9996 0.7925 0.8719 0.4287 0.6058 0.3809 0.6304 0.4254

VUS_ROC

Anomaly Transformer 0.9354 0.9160 0.8065 0.9147 0.6222 0.7952 0.6343 0.6073 0.8335

Dual-TF 0.9373 0.9322 0.8843 0.9380 0.6992 0.8505 0.7067 0.7752 0.8568

VUS_PR

Anomaly Transformer 0.8985 0.8765 0.6000 0.6920 0.3560 0.4466 0.2424 0.4665 0.3590

Dual-TF 0.9053 0.9014 0.6950 0.7620 0.4016 0.5127 0.3754 0.6131 0.3694

Table 4: Ablation study for Dual-TF in terms of the best point-wise 𝐹1 score with the highest scores highlighted in bold.

Variations TODS (Point) TODS (Pattern) ASD ECG PSM CompanyA AverageGloabl Contextual Shapelet Seasonal Trend

(i) w/o Time Reconstructor 0.439 0.661 0.715 0.858 0.476 0.629 0.267 0.500 0.247 0.532

(ii) w/o Frequency Reconstructor 0.943 0.942 0.728 0.824 0.457 0.415 0.460 0.578 0.264 0.623

(iii) w/o NS-Windowing 0.388 0.600 0.691 0.798 0.213 0.313 0.263 0.397 0.229 0.433

(iv) w/o Exponential Average 0.953 0.905 0.620 0.780 0.465 0.577 0.507 0.677 0.322 0.645

Dual-TF 0.968 0.943 0.741 0.925 0.476 0.661 0.538 0.723 0.436 0.712

Implementations and Model Configurations: Dual-TF is im-

plemented using PyTorch 1.13.1. The only hyperparameter 𝜌 for

Dual-TF , which specifies the size of an outer window, is set to 2 for

all datasets. The Adam optimizer is used with an initial learning

rate of 10
−4
. The batch size is 4 considering the large size of each

training instance and the memory budget of a GPU. The training

process is early stopped within 10 epochs. Following the author

implementation of Anomaly Transformer [55], the weight 𝜆 in Eqs.

(4) and (6) is 3, the number of layers 𝑛𝑙𝑎𝑦𝑒𝑟 is 3, the number of

hidden channels 𝑑𝑚𝑜𝑑𝑒𝑙 is 512, and the number of attention heads

is 8. For all baseline methods, the authors’ source code is employed

without any modification, and the hyperparameters are set to be

the default values in the author implementation. All experiments

are conducted on a server equipped with an NVIDIA RTX 3090Ti.

See Appendix D for details.

4.2 Overall Performance Comparison
Table 2 shows the best point-wise 𝐹1 score of Dual-TF as well as all

baselines for six benchmark datasets. Dual-TF is shown to signifi-

cantly outperform the state-of-the-art TSAD methods; specifically,

it yields a detection accuracy of 12.0–147% higher on average than

the other methods. Anomaly Transformer and TFAD are ranked

second and third, respectively. Dual-TF effectively handles both

point-wise (in TODS (Point)) and pattern-wise (in TODS (Pattern),

ASD, ECG, PSM, and CompanyA) anomalies while showing greater

improvement in detecting the pattern-wise anomalies. Compared

with Anomaly Transformer, the improvement in the 𝐹1 score is 0.10–

2.63% for point-wise anomalies, and it is increased to 1.55–55.4%

for pattern-wise anomalies owing to the incorporation of the fre-

quency domain. Additionally shown in Table 3, the improvement

in the range-AUC measures (R_AUC_ROC or R_AUC_PR) is up

to 1.38% for point-wise anomalies, and up to 55.7% for pattern-

wise anomalies. Moreover, the enhancement in the VUS-based

measures (VUS_ROC or VUS_PR) is up to 2.84% for point-wise

anomalies, and up to 54.8% for pattern-wise anomalies with the

help of the frequency domain. Moreover, compared with TFAD,

which uses both the time and frequency domains, the 𝐹1 score im-

proves by 8.25–57.9% because of the higher resolution achieved

by the data-point granularity. Overall, these results indeed demon-

strate the value of combining both domains while breaking the

time-frequency granularity discrepancy.

4.3 Ablation Study
The contribution of each main component of Dual-TF to the anom-

aly detection accuracy is investigated through an ablation study

in Table 4. Specifically, when (i) time reconstructor is removed, (ii)

frequency reconstructor is removed in Figure 4, (iii) the window

granularity is enforced for the frequency domain without the NS-

windowing scheme, or (iv) the exponential average in Eq. (9) for

aggregating f-anomaly scores is replaced with the arithmetic aver-

age, the 𝐹1 score for each variation is measured. All of these main

components are shown to be important, with the NS-windowing
component having the most outstanding effect. Interestingly, the

use of f-anomaly scores at the window granularity in the third vari-

ation may actually contaminate t-anomaly scores by unnecessarily

increasing the final anomaly scores for a normality interval and

thus producing a large number of false positives. Overall, this com-

prehensive ablation study reaffirms the significance of breaking the

time-frequency granularity discrepancy.
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Figure 6: Visualization of dual-domain anomaly scores from Dual-TF for different categories of point- and pattern-wise
anomalies using the TODS dataset.
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Figure 7: Effect of the inner and outer window lengths in the
TODS dataset.

4.4 Qualitative Analysis through Visualization
Figure 6 visualizes the results of Dual-TF for the five anomaly cat-

egories [32] in terms of t-anomaly and f-anomaly scores (second

row) and then final anomaly scores (third row) in the TODS dataset.

For point-wise anomalies (first and second columns), t-anomaly

scores increase sharply at the actual locations. For pattern-wise

anomalies (third, fourth, and fifth columns), f-anomaly scores main-

tain high values throughout the entire anomaly interval, whereas
t-anomaly scores jump only at a few timestamps. As a result, each

domain plays a distinct role and both point-wise and pattern-wise

anomalies are precisely detected by the final scores.

4.5 Window Length Sensitivity
Because thewindow lengths,𝑤𝑜𝑢𝑡𝑒𝑟 = 𝜌 ·𝑤𝑖𝑛𝑛𝑒𝑟 and𝑤𝑖𝑛𝑛𝑒𝑟 , are the
most crucial hyperparameters in Dual-TF , we examine the effect of

varying these values on the detection accuracy in the TODS dataset.

Figure 7(a) demonstrates the change in the 𝐹1 score when𝑤
𝑖𝑛𝑛𝑒𝑟

varies by [0.2, 0.4, 1.0, 1.2, 1.6, 2.0] times the value determined in

Section 3.2 while 𝜌 remains constant at 2. The proposed value for

𝑤𝑖𝑛𝑛𝑒𝑟 clearly achieves the highest accuracy. Figure 7(b) shows

the change in the 𝐹1 score when 𝜌 varies within [1, 2, 3, 4, 5] while
maintaining the proposed value for𝑤𝑖𝑛𝑛𝑒𝑟 . The highest accuracy

is achieved when 𝜌 is 2 or 3, and we choose a smaller one to reduce

the number of inner windows for efficiency.

More Results in Supplementary Material: Appendix E reports

(i) the detection accuracy on the comprehensive UCR datasets, (ii)

the effect of different backbone networks (e.g., autoencoders and

conventional Transformers) on Dual-TF , (iii) the detection accuracy

of all methods in other evaluation metrics, and (iv) the training and

inference efficiency of Dual-TF . Furthermore, Appendix F shows

the additional visualizations similar to Figure 6.

5 Conclusion
We define the concept of the time-frequency granularity discrepancy
and formulate the problem in exploiting both the time and fre-

quency domains for TSAD. To resolve this discrepancy, we employ

the NS-windowing scheme to generate anomaly scores at the data-

point granularity for both domains. The proposed framework is

general and applicable to any sliding window-based TSAD method.

This framework is implemented with Dual-TF on top of parallel

Transformer architectures. Quantitative and qualitative evidence

demonstrates the superiority of Dual-TF , especially in identifying

pattern-wise anomalies with pinpoint accuracy. Overall, we believe

that our work paves the way for a new approach to combining the

time and frequency domains in time-series data analysis.
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Figure 8: Visualization for normal and abnormal windows in
the time and frequency domains.

Historically, point and collective anomalies were used as gen-

eral criteria for any type of data, including images, videos, and

time series [14, 40]. A point anomaly is an unanticipated occur-

rence at particular time points. A collective anomaly is defined

as a collection of relational data instances that are anomalous in

comparison to the entire data set. These anomalies can be further

categorized as either global or contextual. While global anomalies

are the points or groups that deviate significantly from the entirety

of the data, contextual anomalies are the points or groups that devi-

ate from their associated context, which is defined as the adjacent

time points within specific ranges. On the basis of the above exist-

ing general taxonomy of anomalies, time-series anomaly detection

algorithms have been developed to improve performance. Neverthe-

less, the collective anomaly of conventional taxonomy disregards

the time-series temporal structure, such as trend and seasonal data.

Even if two anomalous subsequences occurred for different reasons,

such as an unusual shapelet and an extremely high frequency, they

would be recognized as the same collective anomalies. In order to

resolve the ambiguity of the current collective anomaly criterion, a

new behavior-driven taxonomy [32] was proposed for time-series

anomaly detection.

The behavior-driven taxonomy for time-series anomalies cate-

gorizes the anomalies as point-wise or pattern-wise. Pattern-wise

anomalies are further divided based on the primary cause of anom-

aly occurrence into shapelet, seasonality, and trend anomalies. First,

shapelet anomalies are the subsequences that deviate from typical

shapelets. Dissimilarity measures, such as dynamic time warping,

are often used to determine the degree of shapelet dissimilarity.

Second, seasonal anomalies are the subsequences with a seasonality

that is distinct from the overall seasonality. It is possible to specify

the degree of seasonal variation in the frequency domain. Third,

trend anomalies are the instances in a time series that significantly

alter its trend, causing a long-term shift in its mean.

As shown in Figure 8, the anomalies that distinguish between

normal and abnormal windows exhibit more prominent dissimilar-

ities in the frequency domain compared to the time domain. Fur-

thermore, we observe that expansion of the pattern-wise anomaly

within the time window leads to a greater change in the frequency

distribution within the frequency domain. That is, the frequency

domain is more sensitive to changes in the underlying patterns

of the time-series data. This noteworthy finding has served as the

motivation for our proposed Dual-TF . We firmly believe that this

discovery holds significance as it suggests that analyzing the fre-

quency domain may offer a more effective approach for detecting

pattern-wise anomalies than analyzing the time domain alone.

B Details of the Window Length Selection
For a time series X ∈ R𝑛×𝑑 , the discrete Fourier transform (DFT)

for the 𝑑′-th dimension (𝑑′ ∈ [1, 𝑑]) of X is formulated as

𝑋𝑑
′

𝑘
=

𝑛−1∑︁
𝑡=0

𝑥𝑑
′
𝑡 𝑒−

𝑖2𝜋
𝑛
𝑘𝑡 , (12)

where

𝑥𝑑
′
𝑡 =

1

𝑛

𝑛−1∑︁
𝑘=0

𝑋𝑑
′

𝑘
· 𝑒−

𝑖2𝜋
𝑛
𝑘𝑡 , (13)

and 𝑘 is an integer ranging from 0 to 𝑛 − 1.
The radix-2 decimation rearranges the DFT of the function 𝑥𝑡

into two parts: a sum over the even-numbered indices 𝑡 = 2𝑚 and

a sum over the odd-number indices 𝑡 = 2𝑚 + 1,

𝑋𝑑
′

𝑘
=

𝑛/2−1∑︁
𝑚=0

𝑥𝑑
′

2𝑚 𝑒
− 𝑖2𝜋

𝑛
𝑘 (2𝑚) +

𝑛/2−1∑︁
𝑚=0

𝑥𝑑
′

2𝑚+1 𝑒
− 𝑖2𝜋

𝑛
𝑘 (2𝑚+1) . (14)

Denote the DFT of the even-indexed inputs 𝑥𝑑
′

2𝑚
by 𝐸𝑑

′

𝑘
and the

DFT of the odd-indexed inputs 𝑥𝑑
′

2𝑚+1 by 𝑂
𝑑 ′

𝑘
, and we obtain

𝑋𝑑
′

𝑘
=

𝑛/2−1∑︁
𝑚=0

𝑥𝑑
′

2𝑚 𝑒
− 𝑖2𝜋

𝑛/2𝑘𝑚 + 𝑒−
𝑖2𝜋
𝑛
𝑘
𝑛/2−1∑︁
𝑚=0

𝑥𝑑
′

2𝑚+1 𝑒
− 𝑖2𝜋

𝑛/2𝑘𝑚

= 𝐸𝑑
′

𝑘
+ 𝑒−

𝑖2𝜋
𝑛
𝑘 𝑂𝑑

′

𝑘
for 𝑘 = 0, . . . ,

𝑛

2

− 1.

(15)

Due to the periodicity of the complex exponential, 𝑋𝑑
′

𝑘+𝑛
2

can be

also represented as

𝑋𝑑
′

𝑘+𝑛
2

=

𝑛/2−1∑︁
𝑚=0

𝑥𝑑
′

2𝑚 𝑒
− 𝑖2𝜋

𝑛/2𝑚 (𝑘+
𝑛
2
)

+ 𝑒−
𝑖2𝜋
𝑛
(𝑘+𝑛

2
)
𝑛/2−1∑︁
𝑚=0

𝑥𝑑
′

2𝑚+1 𝑒
− 𝑖2𝜋

𝑛/2𝑚 (𝑘+
𝑛
2
)

=

𝑛/2−1∑︁
𝑚=0

𝑥𝑑
′

2𝑚 𝑒
− 𝑖2𝜋

𝑛/2𝑚𝑘 𝑒−𝑖2𝜋𝑚

+ 𝑒−
𝑖2𝜋
𝑛
𝑘 𝑒−𝑖𝜋

𝑛/2−1∑︁
𝑚=0

𝑥𝑑
′

2𝑚+1 𝑒
− 𝑖2𝜋

𝑛/2𝑚𝑘 𝑒−𝑖2𝜋𝑚

=

𝑛/2−1∑︁
𝑚=0

𝑥𝑑
′

2𝑚 𝑒
− 𝑖2𝜋

𝑛/2𝑚𝑘 − 𝑒−
𝑖2𝜋
𝑛
𝑘
𝑛/2−1∑︁
𝑚=0

𝑥𝑑
′

2𝑚+1 𝑒
− 𝑖2𝜋

𝑛/2𝑚𝑘

= 𝐸𝑑
′

𝑘
− 𝑒−

𝑖2𝜋
𝑛
𝑘 𝑂𝑑

′

𝑘
.

(16)
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Rewrite 𝑋𝑑
′

𝑘
and 𝑋𝑑

′

𝑘+𝑛
2

to

𝑋𝑑
′

𝑘
= 𝐸𝑑

′

𝑘
+ 𝑒−

𝑖2𝜋
𝑛
𝑘 𝑂𝑑

′

𝑘

𝑋𝑑
′

𝑘+𝑛
2

= 𝐸𝑑
′

𝑘
− 𝑒−

𝑖2𝜋
𝑛
𝑘 𝑂𝑑

′

𝑘
.

(17)

Note that the final outputs are obtained by a +/− combination

of 𝐸𝑑
′

𝑘
and 𝑂𝑑

′

𝑘
𝑒−

𝑖2𝜋
𝑛
𝑘
. Therefore, we can use only one of the two

parts to get information about the magnitude through the absolute

value (because both have the same magnitude if the absolute value

is taken). We can define the number of sampling rate (sampling

frequency) per time unit as 𝑓 obtained from a continuous signal.

The frequency range is expressed as 𝑓 = 𝑘
𝑛 for 𝑘 = 0, . . . , 𝑛

2
− 1,

where 𝑛 is the time period.

Among 𝑑 dimensions, the value with the smallest frequency is

set as the most dominant frequency. The reason for choosing the

minimum frequency is the allowance for the inclusion of other

dominant frequencies in other different dimensions within the

determined inner window. We define the maximum magnitude

index, which means the most dominant frequency, 𝜈major,

𝜈major = min(argmax( |𝑋𝑑
′

𝑓
|) : 𝑑′ ∈ [1, 𝑑])

for 𝑓 = 0, . . . ,
𝑛 − 2
2𝑛

.
(18)

Finally, the inner window length can be determined as

𝑤𝑖𝑛𝑛𝑒𝑟 = ⌈ 1

𝜈major

⌉ . (19)

C Proof of Theorem 3.1
The proof can be done using Parseval’s theorem [27]. By our defini-

tion of the uncertainty in each domain,U𝑡𝑖𝑚𝑒 (𝑤𝑖𝑛𝑛𝑒𝑟 ) monotoni-

cally decreases as𝑤𝑖𝑛𝑛𝑒𝑟 decreases;U 𝑓 𝑟𝑒𝑞 (𝑤𝑖𝑛𝑛𝑒𝑟 ) converges to
a zero when𝑤𝑖𝑛𝑛𝑒𝑟 ≥ ⌈ 1

𝜈𝑚𝑎𝑗𝑜𝑟
⌉, but it monotonically increases as

𝑤𝑖𝑛𝑛𝑒𝑟 decreases when𝑤𝑖𝑛𝑛𝑒𝑟 < ⌈ 1

𝜈𝑚𝑎𝑗𝑜𝑟
⌉.

Specifically, in the process of interpreting the results obtained

through the NS-windowing and the frequency reconstruction by

Θ𝑓 𝑟𝑒𝑞 , there is uncertainty between two different domains. From

the perspective of the time domain, the smaller𝑤𝑖𝑛𝑛𝑒𝑟 facilitates

the identification of abnormal time points. Conversely, as𝑤𝑖𝑛𝑛𝑒𝑟

increases, distinguishing time points within a window in the fre-

quency domain becomes more challenging. On the other hand, from

the perspective of the frequency domain, the longer𝑤𝑖𝑛𝑛𝑒𝑟 leads

to a decrease in frequency variance according to the uncertainty

principle, and thus, frequency becomes concentrated. However, a

decrease in 𝑤𝑖𝑛𝑛𝑒𝑟 makes it difficult to accurately determine the

precise frequency after the Fourier transform.

We formulate the inherent trade-off associated with dual-domain

information loss. Assume that every time series can be represented

as a single periodic function with a dominant frequency that affects

the pattern most. Then, the time series can be simply expressed as

𝑥𝑡 = cos(2𝜋𝜈𝑚𝑎𝑗𝑜𝑟 𝑡𝑤 ) +𝜖𝑡 , where 𝑡 = 0, . . . ,𝑤−1 with the dominant

frequency 𝜈𝑚𝑎𝑗𝑜𝑟 and a noise 𝜖𝑡 ∼ 𝑁 (0,𝑤).
Here,U(𝑤) in Eq. (1) is a function of 𝑤 , which represents the

dual-domain information loss.U𝑡𝑖𝑚𝑒 (𝑤) denotes the uncertainty
in the time domain, which monotonically decreases as𝑤 decreases

as a linear function of𝑤 (𝑤 ≥ 1,𝑤 ∈ N), so we define it as

U𝑡𝑖𝑚𝑒 (𝑤) = 𝑤 − 1. (20)

The choice of a linear relationship is specific to the Gaussian func-

tion and the Fourier transform. The Gaussian function has the

unique property that its Fourier transform is also a Gaussian func-

tion, and this symmetry leads to the linear relationship between the

standard deviations (or uncertainties) in time and frequency. While

other functions, such as square, cubic, or exponential functions,

can be used to model specific types of uncertainty, they would not

lead to the same fundamental relationship as the Gaussian function

does in the context of the Gabor limit. The Gaussian function is

crucial due to its role in signal processing and its mathematical

properties that align with both time and frequency domains. Related

works [8, 15] provide more detailed insights into the mathematical

reasoning behind the linear relationship in the Gabor uncertainty

principle.

U 𝑓 𝑟𝑒𝑞 (𝑤) denotes the uncertainty in the frequency domain. 𝐹𝜈
denotes a magnitude of frequency 𝜈 after the Fourier transform (or

DFT) of 𝑥𝑡 , where 𝜈 = 0, . . . ,𝑤 − 1 (𝜈 = 0, . . . , 𝑤
2
− 1 for DFT). 𝐹𝜈

is formulated as 𝐹𝜈 = 𝐹𝜈 + 𝐸𝜈 , where 𝐹𝜈 is the clean (unperturbed)
Fourier transform and 𝐸𝜈 is the Fourier transform of the noise 𝜖𝑡 .

U 𝑓 𝑟𝑒𝑞 (𝑤) can be defined as the sum of the standard deviation

of the Fourier transformed 𝐹𝜈 , i.e., 𝜎 (𝐸𝜈 ) and the function of 𝐹1
scores (inversely related to the anomaly scores) 𝑓 (𝑤) with varying

the length of𝑤 in Figure 7, where𝑤 = 1/𝜈 (by the definition of a

period in terms of frequency).

We approximate the anomaly score function 𝑓 by fitting the

function 𝑎𝑤 − log(𝑏𝑤) to Figure 7. To justify the fitting approach,

let us conduct a T-test on a custom fitting function 𝑓 with two

other possible functions, i.e., linear function −𝑎𝑥 + 𝑏 and rational

function
𝑎
𝑥 +𝑏. We can fit the custom function 𝑓 using spicy curve_fit

library and calculate the standard error of the parameters from the

covariance. The each null hypothesis of 𝑎 and 𝑏 values is

H0 : 𝜇 (Δ𝑐𝑢𝑠𝑡𝑜𝑚𝜙
) = 𝜇 (Δ𝑙𝑖𝑛𝑒𝑎𝑟

𝜙
),

H0 : 𝜇 (Δ𝑐𝑢𝑠𝑡𝑜𝑚𝜙
) = 𝜇 (Δ𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

𝜙
),

(21)

where Δ𝑐𝑢𝑠𝑡𝑜𝑚
𝜙

is the standard error of parameter 𝜙 ∈ {𝑎, 𝑏} in
the custom function (identical meaning in both linear and rational

functions). The maximum p-value is 0.029 among all pairs with a

significance level of 0.05. Therefore we reject the null hypothesis

for every pair with the custom fitting function, meaning that the

standard deviations of parameters are less than the other two com-

pared fitting functions. Additionally, by fitting the 𝑓 using the data

in Figure 7, the value of 𝑎 becomes 𝜈𝑚𝑎𝑗𝑜𝑟 − 1, and the value of

𝑏 becomes 1 after fitting with the R-square value of 0.695–0.972,

which is much higher than the other compared functions in TODS

benchmark datasets.

By Parseval’s theorem [27], the sum of the square of a func-

tion is equal to the sum of the square of its transform,

∑ |𝐸𝜈 |2 =
1

𝑤

∑ |𝜖𝑡 |2 = 𝜎 (𝜖𝑡 )2. Therefore,
𝜎 (𝐸𝜈 ) =

√︂
1

𝑤

∑︁
|𝐸𝜈 |2 =

√︂
𝜎 (𝜖𝑡 )2
𝑤

= 1. (22)

Finally,

U 𝑓 𝑟𝑒𝑞 (𝑤) = 𝑓 (𝜈) + 𝜎 (𝐸𝜈 )
= (𝜈𝑚𝑎𝑗𝑜𝑟 − 1)𝑤 − log𝑤 + 1.

(23)
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Algorithm 1 Algorithm of Dual-TF for Training and Inference Phases

Input: X ∈ R𝑛×𝑑 : training set, X′ ∈ R𝑛′×𝑑 : test set
Output: 𝑦 = {𝑦1, 𝑦2, . . . , 𝑦𝑛′ }
1: OW = Windowing(X) OW ∈ R(𝑛−𝑤𝑜𝑢𝑡𝑒𝑟+1)×𝑤𝑜𝑢𝑡𝑒𝑟 ×𝑑

2: IW = NS-Windowing(OW) IW ∈ R(𝑛−𝑤𝑜𝑢𝑡𝑒𝑟+1)×(𝑤𝑜𝑢𝑡𝑒𝑟 −𝑤𝑖𝑛𝑛𝑒𝑟+1)×𝑤𝑖𝑛𝑛𝑒𝑟 ×𝑑

3: Θ𝑡𝑖𝑚𝑒 ,Θ𝑓 𝑟𝑒𝑞 ← initialize weights

4: /* Training phase */

5: for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑒𝑝𝑜𝑐ℎ𝑠 do
6:

�OW = Θ𝑡𝑖𝑚𝑒 (OW) Eq. (2)

7: L𝑡𝑖𝑚𝑒 (OW) ← 𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝑡𝑖𝑚𝑒 − 𝜆 · 𝐴𝑠𝑠𝐷𝑖𝑠𝑡𝑖𝑚𝑒 Eq. (4), Eq. (5)

8:
�IW = Θ𝑓 𝑟𝑒𝑞 (IW) Eq. (2)

9: L 𝑓 𝑟𝑒𝑞 (IW) ← 𝑅𝑒𝑐𝐿𝑜𝑠𝑠 𝑓 𝑟𝑒𝑞 − 𝜆 · 𝐴𝑠𝑠𝐷𝑖𝑠 𝑓 𝑟𝑒𝑞 Eq. (6), Eq. (7)

10: Θ𝑡𝑖𝑚𝑒 ,Θ𝑓 𝑟𝑒𝑞 ← update weights using L𝑡𝑖𝑚𝑒 and L 𝑓 𝑟𝑒𝑞 , respectively
11: end for
12: /* Inference phase */

13:
�OW′ = Θ𝑡𝑖𝑚𝑒

∗ (OW′) OW′ ∈ R(𝑛′−𝑤𝑜𝑢𝑡𝑒𝑟+1)×𝑤𝑜𝑢𝑡𝑒𝑟 ×𝑑

14:
�IW′ = Θ𝑓 𝑟𝑒𝑞

∗ (IW′) IW′ ∈ R(𝑛′−𝑤𝑜𝑢𝑡𝑒𝑟+1)×(𝑤𝑜𝑢𝑡𝑒𝑟 −𝑤𝑖𝑛𝑛𝑒𝑟+1)×𝑤𝑖𝑛𝑛𝑒𝑟 ×𝑑

15: for 𝑡 = 1 to 𝑛′ do
16: A𝑡𝑖𝑚𝑒 (𝒙𝑡 ) ← Softmax(−𝐴𝑠𝑠𝐷𝑖𝑠𝑡𝑖𝑚𝑒 ) ⊙ 𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝑡𝑖𝑚𝑒 Eq. (8)

17: A 𝑓 𝑟𝑒𝑞 (𝒙𝑡 ) ← Softmax(−𝐴𝑠𝑠𝐷𝑖𝑠 𝑓 𝑟𝑒𝑞) ⊙ 𝑅𝑒𝑐𝐿𝑜𝑠𝑠 𝑓 𝑟𝑒𝑞 Eq. (9)

18: A𝑡𝑜𝑡𝑎𝑙 (𝒙𝑡 ) = A𝑡𝑖𝑚𝑒 (𝒙𝑡 ) + A 𝑓 𝑟𝑒𝑞 (𝒙𝑡 ) Eq. (11)

19: if A𝑡𝑜𝑡𝑎𝑙 > 𝛿 then
20: 𝑦𝑡 ← 1 /* identify as an anomalous value */

21: else
22: 𝑦𝑡 ← 0 /* identify as a normal value */

23: end if
24: end for
25: return 𝑦 : {𝑦1, 𝑦2, . . . , 𝑦𝑛′ }

The uncertainty in the two domains is

U(𝑤) = U𝑡𝑖𝑚𝑒 (𝑤) + U 𝑓 𝑟𝑒𝑞 (𝑤)
= 𝑤 − 1 + (𝜈𝑚𝑎𝑗𝑜𝑟 − 1)𝑤 − log𝑤 + 1.

(24)

The length that minimizes Eq. (24) (or Eq. (1)) can be obtained by

solving the differential equation forU(𝑤) with respect to𝑤 . Taking

the derivative ofU(𝑤) with respect to𝑤 ,

𝜕U(𝑤)
𝜕𝑤

=
𝜕(𝑤 − 1 + (𝜈𝑚𝑎𝑗𝑜𝑟 − 1)𝑤 − log𝑤 + 1)

𝜕𝑤

= 1 + 𝜈𝑚𝑎𝑗𝑜𝑟 − 1 −
1

𝑤

= 𝜈𝑚𝑎𝑗𝑜𝑟 −
1

𝑤
= 0.

(25)

We now find the solution with 𝑤 = 1

𝜈𝑚𝑎𝑗𝑜𝑟
, and the length of the

inner window is determined as𝑤𝑖𝑛𝑛𝑒𝑟 = ⌈ 1

𝜈major

⌉ that is consistent
with Eq. (19). This completes the proof. □

D Details of the Experiment Settings
D.1 Pseudo-code of Dual-TF
We adopt Anomaly Transformer [55] as the underlying backbone

network for the reconstructor. Both the time and frequency recon-

structors employed in theDual-TF operate on the same fundamental

mechanism as Anomaly Transformer, differing only in input and

output dimensions. We provide the pseudo-code implementation of

the training and inference phases for the Dual-TF in Algorithm 1. In

summary, the pseudo-code describes the entire flow of the Dual-TF
algorithm. Each step involving the calculation of the loss or anom-

aly score is computed using the equations defined in Section 3.

Upon inputting a time series, the Dual-TF generates a binary out-

come for each time point, indicating whether it is classified as an

anomaly or not.

D.2 Datasets
We evaluate anomaly detection performance on a total of 30 datasets

derived from five benchmarks. A detailed description of the four

publicly available datasets is provided as follows.

ASD [34] represents an application server benchmark consist-

ing of 45-day-long multivariate time series. The benchmark com-

prises 12 entities obtained from different servers, with each en-

tity characterized by 19 metrics that reflect the server’s status.

These metrics include CPU-related parameters, memory-related

parameters, network metrics, and virtual machine metrics. The

ASD benchmark is publicly available under the MIT license at

https://github.com/zhhlee/InterFusion/tree/main/data.

ECG [28] (Electrocardiogram) represents time series of the elec-

trical potential variation between two points on the body’s surface,

primarily originating from the rhythmic contractions of the heart.

The benchmark contains 9 sub-datasets. Detailed statistical infor-

mation regarding the ECG sub-datasets can be found in Table 6.
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Table 5: Experiment environments for all algorithms.

Env. OmniAnomaly LOF ISF OCSVM VAE MS-RNN RANSynCoders TranAD Anomaly
Transformer Dual-TF

Library Tensorflow 1.12.0 Scikit-Learn 1.2.1 Tensorflow 2.5.0 PyTorch 1.13.1

CPU

Intel(R) Xeon(R)

Silver 4116 CPU @ 2.10GHz
Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz

GPU

NVIDIA GeForce RTX 2080 Ti

11GB with CUDA Version 11
NVIDIA GeForce RTX 3090 24GB with CUDA Version 11

Table 6: Detailed statistics of ECG sub-datasets.

Sub-Datasets Dim. # Train # Test # Pattern Anomaly
Anomaly Percentage (%)

chfdb_chf01_275

2

1,833 1,841 269 14.61

chfdb_chf13_45590 2,439 1,287 159 12.35

chfdbchf15 10,863 3,348 149 4.45

lstdb_20221_43 2,610 1,121 129 11.51

lstdb_20321_240 2,011 1,447 139 9.61

mitdb_100_180 2,943 2,255 189 8.38

qtdbsel102 34,735 9,882 199 2.01

stdb_308_0 2,373 2,721 259 9.52

xmitdb_x108_0 3,152 1,756 379 21.58

The ECG benchmark is publicly accessible at https://www.cs.ucr.

edu/~eamonn/discords/ECG_data.zip.

PSM [2] represents a benchmark comprising a single entity de-

rived from multiple application server nodes at eBay. It encom-

passes 26 features, publicly accessible under the CC BY 4.0 license

at https://github.com/eBay/RANSynCoders/tree/main/data. Similar

to ASD, these features describe server machine metrics such as CPU

utilization and memory usage. In the PSM benchmark, the training

set spans 13 weeks, followed by 8 weeks for testing.

TODS [32] serves as a synthetic benchmark and data generator

designed for time-series anomaly detection. It is publicly available

at https://github.com/datamllab/tods/tree/benchmark/benchmark/

synthetic/Generator. The benchmark comprises five distinct anom-

aly scenarios for time-series data, which are classified based on a

behavior-driven taxonomy. These scenarios include point-global,

pattern-contextual, pattern-shapelet, pattern-seasonal, and pattern-

trend anomalies. The data generator provided by TODS allows the

generating of 5 individual univariate time series, with each series

corresponding to a distinct anomaly type. In order to ensure a fair

comparison, we employ the available source code without any al-

terations, except for adjusting the length parameter to generate

longer time series, as demonstrated below.

1 # Source : h t t p s : / / g i t hub . com / da t am l l a b / t od s

2 # DataGenera to r : " Un i v a r i a t eDa t aGene r a t o r " from

un i v a r i a t e _ g e n e r a t o r . py .

3 BEHAVIOR_CONFIG = { " f r e q " : 0 . 0 4 , " c o e f " : 1 . 5 , " o f f s e t " : 0 . 0 , "

noise_amp " : 0 . 0 5 }

4 BASE = [ 0 . 1 4 5 , 0 . 1 2 8 , 0 . 0 9 4 , 0 . 0 7 7 , 0 . 1 1 1 , 0 . 1 4 5 , 0 . 1 7 9 , 0 . 2 1 4 ,

0 . 2 1 4 ]

5

6 # T r a i n i ng s e t

7 normal = DataGenera to r ( s t r e am_ l eng th =20000 ,

8 behav i o r = s ine ,

9 b eh a v i o r _ c on f i g =BEHAVIOR_CONFIG )

10 normal . g e n e r a t e _ t im e s e r i e s ( )

11

12 # Tes t s e t

13 t e s t = DataGenera to r ( s t r e am_ l eng th =5000 ,

14 behav i o r = s ine ,

15 b eh a v i o r _ c on f i g =BEHAVIOR_CONFIG )

16

17 # Po in t − g l o b a l anomaly

18 i f anomaly_type== ' p o i n t _ g l o b a l ' :

19 t e s t . p o i n t _ g l o b a l _ o u t l i e r s ( r a t i o = 0 . 0 5 , f a c t o r = 3 . 5 , r a d i u s =5 )

20 e l i f anomaly_type== ' p o i n t _ c o n t e x t u a l ' :

21 t e s t . p o i n t _ c o n t e x t u a l _ o u t l i e r s ( r a t i o = 0 . 0 5 , f a c t o r = 2 . 5 , r a d i u s

=5 )

22 e l i f anomaly_type== ' p a t t e r n _ s h a p l e t ' :

23 t e s t . c o l l e c t i v e _ g l o b a l _ o u t l i e r s ( r a t i o = 0 . 0 5 , r a d i u s =5 , op t i on = '

squa re ' , c o e f = 1 . 5 , noise_amp =0 . 0 3 , l e v e l =20 , f r e q = 0 . 0 4 , base =

BASE , o f f s e t = 0 . 0 )

24 e l i f anomaly_type== ' p a t t e r n _ s e a s o n a l ' :

25 t e s t . c o l l e c t i v e _ s e a s o n a l _ o u t l i e r s ( r a t i o = 0 . 0 5 , f a c t o r =3 , r a d i u s

=5 )

26 e l i f anomaly_type== ' p a t t e r n _ t r e n d ' :

27 t e s t . c o l l e c t i v e _ t r e n d _ o u t l i e r s ( r a t i o = 0 . 0 5 , f a c t o r = 0 . 5 , r a d i u s

=5 )

Listing 1: The command used for generating the TODS
benchmark datasets.

D.3 Baselines
LOF is an unsupervised outlier detector that measures the local

deviation of the density of a given sample to its neighbors. ISF is a

well-known anomaly detection algorithm that works on the prin-

ciple of isolating anomalies using tree-based structures. OCSVM
is an unsupervised outlier detection algorithm based on the SVM

that maximizes the margin between the origin and the normality

and defines the decision boundary as the hyper-plane that deter-

mines the margin. VAE is a simple neural architecture that uses

the symmetrical encoder and decoder network for anomaly detec-

tion. Anomaly scores are the differences between the inputs and

reconstructed outputs.

The experiments are conducted also using the following state-

of-the-art methods: Modified-RNN (MS-RNN), a modified version

of an anomaly detector that exploits sparsely-connected recurrent

neural networks (RNNs) and an ensemble of sequence-to-sequence

autoencoders (AEs) for multi-resolution learning; OmniAnomaly,
a LSTM-based variational autoencoder (VAE) that captures complex

temporal dependency between multivariate time series and maps

observations to stochastic variables; RANSynCoders, a model that

utilizes pre-trained AEs to extract primary frequencies across the

signals on the latent representation for synchronizing time series;

TranAD, a Transformer-based model that uses attention-based se-

quence encoders to perform inference with broader temporal trends

in time series, with the focus on score-based self-conditioning for

robust multi-modal feature extraction and adversarial training for

stability; Anomaly Transformer, a reconstructive approach that
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Table 7: Creator-suggested binary accuracy for 250 UCR datasets. “C” is an abbreviation for a correct detection, and “I” for an
incorrect detection.

idx 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 C I I C C C C C C C C I C I I C C C C I C C C C C

2 C C C C C C C C C C C C I C C I C C C I C C C C C

3 C C C C I I I I C C I I I C C C C C C C C C C I I

4 C C I I I I I C C C I C I I C I I C C I C I C C C

5 C C C I C I C I C I C C C C C C C C C C C C C C C

6 C C I C C C I C C C C C C C C C C C C C C C C C C

7 C C I C C C C C C C C C C I I I C C C I I C I C C

8 C C C C I C I I C C I I I I I C C C I C C I I I C

9 I I I C I I I C C I I I C C I C I C C I C C I C I

10 C I I I C I I C I C I C C I I I I I I I I I C C I

Table 8: Comparison with previous methods for 250 UCR
datasets. The accuracy of the existing methods is taken from
Table 7 of Lu et al. [37]; the number of correct predictions is
simply derived by multiplying the accuracy by 250.

Method # Correct Accuracy

USAD [5] 69.0 0.276

LSTM-VAE [43] 49.5 0.198

AE [4] 59.0 0.236

NORMA [9] 118.5 0.474

SCRIMP [65] 104.0 0.416

DAMP (out-of-the-box) [36, 37] 128.0 0.512

DAMP (sharpened data) [36, 37] 158.0 0.632

Dual-TF 164.0 0.656

combines series and prior association to make anomalies distinc-

tive; andTFAD, a time-frequency analysis-based anomaly detection

model that utilizes both time and frequency domains, with time se-

ries decomposition and data augmentation mechanisms to enhance

performance and interpretability.

D.4 Experiment Environments
Table 5 shows the experiment hardware environments for all algo-

rithms. Only OmniAnomaly was run on a different environment

due to its incompatibility between the NVIDIA cuDNN and Ten-

sorflow libraries. Despite the presence of multiple GPUs within

the server infrastructure, we adopt a singular GPU for conducting

experiments on each benchmark and algorithm. All experiments

are conducted on a server equipped with an NVIDIA RTX 3090Ti.

D.5 Model Hyperparameter Settings
The ISF, LOF, and OCSVM algorithms are implemented using the

Scikit-Learn library, while the remaining methods are configured

using open-source code obtained from each URL. The hyperparam-

eters for the baseline methods are set as follows.

• ISF: The number of tree is selected from {25, 100}.
• LOF: The number of neighbors is selected from {1, 3, 5, 12}.

• OCSVM: The RBF kernel is used. The inverse length parameter

𝛾 is selected from {10−4, 10−3, 10−2, 10−1, 0.5}.
• VAE2: The LSTM layers are used as both the encoder and decoder.

The number of hidden units in the encoder and decoder are set

to 64 and 32, respectively.

• MS-RNN3
: The GRU layers are employed as the encoder, and the

decoder consists of a skip-GRU structure with a reverse chrono-

logical order in the time series.

• OmniAnomaly4: The GRU and dense layers have 500 units. The

standard deviation layer has an 𝜖 value of 10−4. The dimension

of the latent variable 𝑧-space is fixed at 3.

• RANSynCoders5: The number of hidden layers in each corre-

sponding decoder is increased because the output dimension is

2
https://github.com/lin-shuyu/VAE-LSTM-for-anomaly-detection

3
https://github.com/tungk/OED

4
https://github.com/NetManAIOps/OmniAnomaly

5
https://github.com/eBay/RANSynCoders

at least 3 times larger than the encoder input size. The values of

𝑆 , 𝑁 , and the bootstrap sample size are selected as one-third of

the input dimension, rounded to the nearest multiple of 5. The

number of latent dimensions is selected as 0.5𝑁−1. The value of
𝛿 is set to 0.05 for system data with Gaussian outliers and 0.1 for

business data without Gaussian outliers.

• TranAD6
: The number of layers in the Transformer encoders

is set to 1. The number of layers in the feed-forward unit of the

encoders is 2. The number of the hidden units in the encoder

layers is set to 64, and the dropout in the encoders is set to 0.1.

• TFAD7
: The kernel size for the temporal convolutional net-

work (TCN) is set to 7. The number of TCN layers is 3. The

dimension of the embedding representation is set to 150. The

distance metric is the L2 norm. The classifier threshold is set to

0.5, and the mixup rate is set to 2.

• Anomaly Transformer8: The number of layers is 3, the channel

number of hidden states 𝑑𝑚𝑜𝑑𝑒𝑙 is 512, and the number of heads

ℎ is 8. The loss function hyperparameter 𝜆 for balancing two

parts is set as 3. These hyperparameter settings are shared with

Dual-TF .
6
https://github.com/imperial-qore/TranAD

7
https://github.com/DAMO-DI-ML/CIKM22-TFAD

8
https://github.com/thuml/Anomaly-Transformer
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Table 9: Accuracy comparison with different backbones in
the best point-wise 𝐹1 score.

Methods TODS (Point) TODS (Pattern)
Gloabl Contextual Shaplet Seasonal Trend

Vanilla AE 0.839 0.553 0.165 0.812 0.180

Dual-TF@AE 0.956 0.661 0.459 0.901 0.227

Dual-TF 0.968 0.943 0.741 0.925 0.476

E Additional Experiment Results
E.1 Performance on the UCR Benchmark
UCR Benchmark 9

[29] is created for KDD Cup 2021 and designed

to mitigate previous benchmark problems. All 250 datasets are

composed of univariate time series covering various real-world

scenarios. These datasets include a wide range of domains such

as cardiology, industry, medicine, zoology, weather, and human

behavior. The datasets in the benchmark have varying lengths,

ranging from 6,684 to 900,000 data points, and have been divided

into separate training and test sets.

We use the accuracy metric that was suggested by the dataset

creators. In summary, each of the 250 datasets contains a single

anomaly, and the task of an anomaly detector is to predict its loca-

tion. Let the length of the anomaly be 𝐿. If the prediction is within

plus or minus 𝐿 data points of the anomaly’s ground truth loca-

tion, it is considered a correct prediction. The results in Table 7

show the binary indices for each dataset, and the final accuracy
indicates the ratio of the number of correct predictions to the total

number of datasets 250. A table consisting of 10-row indices and 25-

column indices represents the dataset number in sequential order.

In detail, each cell corresponds to the dataset number within the

table, which stands for (25 × (idxrow − 1) + idxcolumn
)-th dataset.

Table 8 shows the number of correct predictions and the final accu-

racy for the 250 datasets with existing methods. The final accuracy

achieved by Dual-TF on the UCR benchmark is 0.656, surpassing
the previously-reported highest accuracy of 0.632 [37].

E.2 Effect of Different Backbone Networks
To show that Dual-TF can be built on top of any reconstruction-

based networks, we replace the Anomaly Transformer backbone

with a GRU autoencoder backbone.

Table 9 reports the best point-wise 𝐹1 score when the autoen-

coder backbone is employed in Dual-TF (denoted as Dual-TF@AE).

Following the performance of the backbone itself, the result indi-

cates that the original Dual-TF with Anomaly Transformer provides

a more precise detection. If a new backbone that surpasses Anomaly

Transformer is developed, it is expected that the performance of

Dual-TF can be enhanced simply by adopting the new backbone

due to its high adaptability.

E.3 Evaluation with the Point-Adjusted Metric
The widely-used point-adjusted (PA) metric has overestimation

issues [49, 54, 55], as a window is considered correct if both a pre-

dicted anomaly and the true anomaly occur just within the same

window. Despite the fact that the PA metric is inappropriate for

our work, we report the results using the PA metric so that they

can be compared to the findings of other studies.

Table 10 shows the performance comparison between TSAD

methods with another TSAD metric—the best point-adjusted (PA)
𝐹1 score. This table is useful for comparing existing literature em-

ploying the same metric. Overall, Dual-TF is shown to outperform

other TSAD methods also in the PA metric. Note that some errors

of the detected locations are accounted for in the PA metric, which

diminishes the advantages of Dual-TF over the other methods in

9
https://compete.hexagon-ml.com/practice/competition/39/

comparison to Table 2, which uses the point-wise metric. While the

Dual-TF did not achieve the highest score in the TODS (Pattern)

Trend dataset, it attained the second-highest score, exhibiting only

a marginal difference. The PA 𝐹1 score improves by 12.6–42.3% on

average compared with the other methods.

Table 11: Comparison of computation time with Anom-
aly Transformer in real-world datasets.

Phase Network ASD ECG PSM CompanyA

Train(sec/iter)

Anomaly Transformer 0.043 0.040 0.044 0.065

Dual-TF 0.115 0.091 0.117 0.106

Inference(sec)

Anomaly Transformer 17.370 85.684 279.058 41.777

Dual-TF 35.938 194.123 803.952 95.829

E.4 Computation Efficiency
As in Table 11, Dual-TF takes longer 1.4–2.7 times for tranining

and 1.9–2.9 times for inference than Anomaly Transformer. This

additional cost for the improved accuracy is reasonable, considering

the two reconstructors and the NS-windows. Because the inference

time per data point is only 6.18–9.15 ms, we believe that Dual-TF
can also be deployed in a real-time environment.

F Additional Visualization Results
Because time-series analysis is inherently a visual domain, we

would like to provide more visualization of the anomaly scores.

Figure 9 provides the visualization for other sequences, including

the anomaly scores of Anomaly Transformer and TFAD (the second

and the third best methods). Again, Figure 9 confirms that Dual-TF
recognizes the pattern-wise anomalies very precisely by virtue of

utilizing the two domains at the data-point granularity. On the

other hand, the boundaries of the pattern-wise anomalies in TFAD

are not very clearly identified due to the limitation of the window

granularity. Anomaly Transformer partially detects pattern-wise

anomalies. These visualizations (Figure 6 and Figure 9) along with

the previous quantitative experiment results (Table 2, Table 3, and

Table 10) demonstrate that t-anomaly and f-anomaly scores each

play a distinct role and that their collaboration at the data-point

granularity greatly improves the capability of precisely detecting

pattern-wise anomalies.
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Table 10: Accuracy comparison between TSAD methods in terms of the best point-adjusted (PA) 𝐹1 score with the highest scores
highlighted in bold.

Methods TODS (Point) TODS (Pattern) ASD ECG PSM CompanyA Avg. ↑ Rank ↓Gloabl Contextual Shapelet Seasonal Trend

ISF

0.973 0.553 0.165 0.162 0.293 0.339 0.262 0.498 0.198 0.383

11(±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000)

LOF

0.947 0.553 0.123 0.127 0.147 0.487 0.346 0.587 0.480 0.422

9(±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000)

OCSVM

0.990 0.553 0.165 0.162 0.188 0.374 0.277 0.474 0.342 0.392

10(±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000)

VAE

0.959 0.855 0.721 0.912 0.409 0.413 0.282 0.477 0.296 0.592

5(±0.027) (±0.120) (±0.106) (±0.060) (±0.183) (±0.029) (±0.008) (±0.042) (±0.030) (±0.040)

MS-RNN

0.941 0.798 0.433 0.809 0.307 0.425 0.287 0.575 0.263 0.537

6(±0.077) (±0.034) (±0.264) (±0.025) (±0.024) (±0.007) (±0.002) (±0.002) (±0.003) (±0.013)

OmniAnomaly

0.964 0.856 0.388 0.279 0.377 0.238 0.284 0.552 0.383 0.480

8(±0.035) (±0.003) (±0.182) (±0.137) (±0.186) (±0.155) (±0.111) (±0.002) (±0.000) (±0.047)

RANSynCoders

0.934 0.921 0.507 0.459 0.512 0.384 0.305 0.601 0.200 0.536

7(±0.099) (±0.117) (±0.196) (±0.178) (±0.165) (±0.227) (±0.018) (±0.003) (±0.042) (±0.062)

TranAD

0.991 0.989 0.620 0.563 0.633 0.566 0.500 0.685 0.452 0.666

3(±0.000) (±0.000) (±0.000) (±0.000) (±0.054) (±0.010) (±0.030) (±0.003) (±0.042) (±0.062)

TFAD

0.960 0.937 0.736 0.859 0.561 0.517 0.453 0.672 0.416 0.679

2(±0.003) (±0.020) (±0.009) (±0.014) (±0.050) (±0.004) (±0.039) (±0.067) (±0.026) (±0.016)

Anomaly Transformer

0.942 0.944 0.420 0.603 0.485 0.585 0.547 0.957 0.391 0.653

4(±0.014) (±0.001) (±0.276) (±0.250) (±0.017) (±0.012) (±0.070) (±0.009) (±0.022) (±0.056)

Dual-TF 0.991 0.990 0.802 0.955 0.630 0.832 0.643 0.958 0.506 0.805
1(±0.000) (±0.002) (±0.007) (±0.026) (±0.023) (±0.006) (±0.083) (±0.036) (±0.033) (±0.023)
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Figure 9: Visualization of the anomaly scores from the top-3 methods for different categories of point- and pattern-wise
anomalies using the TODS dataset.
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