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ABSTRACT

We present a novel approach for image-animation of a source image by a driving
video, both depicting the same type of object. We do not assume the existence of
pose models and our method is able to animate arbitrary objects without knowl-
edge of the object’s structure. Furthermore, both the driving video and the source
image are only seen during test-time. Our method is based on a shared mask gen-
erator, which separates the foreground object from its background, and captures
the object’s general pose and shape. A mask-refinement module then replaces,
in the mask extracted from the driver image, the identity of the driver with the
identity of the source. Conditioned on the source image, the transformed mask is
then decoded by a multi-scale generator that renders a realistic image, in which
the content of the source frame is animated by the pose in the driving video. Our
method is shown to greatly outperform the state of the art methods on multiple
benchmarks. Our code and samples are attached as supplementary.

1 INTRODUCTION

The ability to reanimate a still image based on a driving video has been extensively studied in recent
years. The developed methods achieve an increased degree of accuracy in both maintaining the
source identity, as extracted from the source frame, and in replicating the motion pattern of the
driver’s frame. In addition, the recent methods also show good generalization to unseen identities
and are relatively robust and have fewer artifacts than the older methods. The relative ease in which
these methods can be applied out-of-the-box has led to their adoption in various visual effects.

Interestingly, some of the most striking results have been obtained with methods that are model-free,
i.e., that do not rely, for example, on post-extraction models. This indicates that such methods can
convincingly disentangle shape and identity from motion.

There are, however, a few aspects in which such methods are still wanting. First, the generated
videos are not without noticeable artifacts. Second, some of the identity from the source image is
lost and replaced by identity elements from the person in the driving video. For example, the body
shape mimics that of the person in the driving frames. Third, the animation of the generated video
does not always match the motion in the driver video.

Here, we propose a method that is preferable to the existing work in terms of motion accuracy,
identity and background preservation, and the quality of the generated video. Our method relies on a
mask-based representation of the driving pose and on explicit conditioning on the source foreground
mask. Both masks (source and driver) are extracted by the same network. The driver mask goes
through an additional refinement stage that acts to replace the identity information in the mask.

The reliance on masks has many advantages. First, it eliminates many of the identity cues from the
driving video. Second, it explicitly models the region that needs to be replaced in the source image.
Third, it is common to both source and target, thus allowing, with proper augmentation, to train only
on driving videos. Fourth, it captures a detailed description of the object’s pose and shape.

To summarize, our contributions are: (i) an image animation method that is based on applying a
masking process to both the source image and the driving video, (ii) the method generalizes to
unseen identities of the same type and is able to animate arbitrary objects, (iii) the mask generator
separates the foreground object from its background and captures, in a generic way, the fine details
of the object’s pose and shape, (iv) conditioning the mask of the driving frame on the source frame
and its mask, in order to remove the identity elements of the driving frames and introduce those of
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the source frame, and (v) a comprehensive evaluation of several different applications of our method,
which show a sizable improvement over the current state of the art in image animation.

2 RELATED WORK

Much of the work on image animation relies on prior information on the animated object, in the
form of explicit modeling of the the object’s structure. For example, Zakharov et al. (2019); Za-
kharov et al. (2020) animate a source image using facial landmarks and Ren et al. (2020) developed
a human-pose-guided image generator. However, in many applications, an explicit model is not
available. Our method is model-free and able to animate arbitrary objects.

There are many model-free contributions in the field of image to image translation, in which an input
image from one domain is mapped to an analog image from another domain. Isola et al. (2016) learn
a map between two domains using a conditional GAN. Wang et al. (2018b) developed a multi-scale
GAN that generates high-resolution images from semantic label maps. Huang et al. (2018) encodes
images of both domains into a shared content space and a domain-specific style space. Content code
of one domain is combined with the style code of the other domain, and then the image is generated
using a domain specific decoder. For this class of methods, the model is not able to generalize to
other unseen domains of the same category without retraining. In contrast, for a given type of model
(e.g. human faces), our method is trained once, and able to generalize to unseen domains of the
same type (e.g. the source and driving faces can be of any identity).

More related to our method, Wiles et al. (2018) assume a reference frame for each video, and learn
a dense motion field that maps pixels from a source frame to its reference frame, and another map-
ping from the reference frame to the driver’s frame. Siarohin et al. (2019a) extract landmarks for
driving and source images of arbitrary objects, and generate motion heatmaps from the key-points
displacements. The heatmaps and the source image are then processed in order to generate the final
prediction. A follow-up work by Siarohin et al. (2019b) extracts a first order motion-representation,
consisting of sparse key-points and local affine transformations, with respect to a reference frame.
The motion representation is then processed to generate a dense motion field, from the driver’s frame
to the source’s, and occlusion maps to mask out regions that should be impainted by the generator.
Our method does not assume a reference frame, and instead of key-points, we generate objects
masks, which are more informative regarding pose and shape.

Other methods, including Lorenz et al. (2019); Dundar et al. (2020) learn a part-based disentangled
representation of shape and appearance, and try to ensure that local changes in appearance and shape
remain local, and do not affect the overall representation.

When a source video is available, video to video translation methods may be used. (Chan et al.,
2018; Kim et al., 2018) address the task of motion transfer, by utilizing the rich appearance and pose
information available in the source video. Such methods learn a mapping between two domains and
are able to generate realistic results, where the source video is animated by the driver video. These
methods requires a large number of source frames at train time, and require a long training process
for every target subject. In contrast, our model is able to animate a single source image, which is
unseen during training, and employs a driving video with another novel person.

3 METHOD

The method consists of four autoencoders: the mask generator m, the mask refinement network r,
the low resolution frame generator `, and the high resolution frame generator h. The four networks
transform an input source frame s and a driving frame d into the generated high resolution frame f .
This is done for each driving frame separately through the following process, as depicted in figure 1:

ms = m(s) (1)
md = r(D(s),ms,Ptest(m(d))) (2)
c = `(D(s),ms,md) (3)
f = h(s,U(ms),U(md), c) , (4)

2



Under review as a conference paper at ICLR 2021

Figure 1: Overview of our method at test time. Source and driving masks ms and m(d) are gen-
erated using the mask generator m. The identity-perturbation operator Ptest is then applied to the
driver’s mask, and along with a scaled-down version of the source’s image D(s) and the source’s
mask ms, they are fed into the mask refinement network r, in order to generate the driver’s refined
mask md. Next, the refined mask md, the source’s mask ms and the scaled-down source’s image
D(s) are fed into the low-res generator `, which generate the initial prediction c. Finally, the scaled-
up refined mask U(md), the source image s, the initial prediction c and the scaled-up source’s mask
U(ms) are fed into the high-res generator h, in order to generate the final prediction f .

where ms and md are the source mask and the driving refined mask respectively, Ptest is an identity-
perturbation operator applied at test time, which sets to zero pixels that are smaller than a threshold
ρ, and scales-down the mask by 25%, c is the coarse (low resolution) generated frame, and D (U)
is a downscale (upscale) operator, implemented using a bi-linear interpolation, that transforms an
image of resolution 256 × 256 to an image of resolution 64 × 64 (or vice versa). For each driver’s
mask, we set the threshold ρ in Ptest to be the median pixel value.

The goal of this process is to generate a frame f that contains the foreground and background of
the source frame s, such that the pose of the foreground object in s is modified to match that of the
driver frame d.

The generated frame is being synthesized in a hierarchical process in which the coarse frame c is first
generated using ` and is then refined by the network h. Both generators (` and h) utilize the mask
ms to attend the foreground and background objects in the source frame and to infer the occluded
regions that need to be generated.

The driver’s mask md is the only conditioning on the frame generation process that stems from
the driver’s frame d. It, therefore, needs to encode the pose of the foreground object in the driving
frame. However, has to be done in a way that is invariant to the identity of the foreground object. For
example, when reanimating a person based on a driver video of another person, a pose of a person
should be given, while discarding the body shape information. Otherwise, the generated frame could
have the appearance of the foreground and a body shape that mixes that of the person in the source
frame and that of the person in the driving frame.

The roles of the identity perturbation operator Ptest, and of the refinement network r, is to remove
the foreground identity of the driver’s frame from the mask, and install the identity of the foreground
object of the source frame. At test time, the source and driving frames are of different identities and
the inputs to the network ` are the source frame, the source mask and the refined mask of the driver
frame. Finally, the coarse generated frame is enhanced by the network h. The exact architecture of
the networks is given in appendix A.

3.1 TRAINING

The training is being performed using source videos only, i.e., the driving- and source-frame are
taken from the same video. The underlying reason is that for the type of supervised loss terms we
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Figure 2: The method at train time. The driving image d is augmented using A. We generate the
driver’s refined mask md as in test time, except that the operator Ptrain is applied instead of Ptest.
Instead of getting the driver’s refined mask md as in test time, the low-res and high-res generators `
and h are using the driver’s mask m(A(d)) and its up-scaled version U(m(A(d))), respectively.

use, a ground-truth target frame is required. The main challenge is, therefore, to train networks that
are robust enough for accepting a driving frame d that is from another video.

As shown in Fig. 2, training involves a slightly modified pipeline, in which an augmentation A is
applied to the driving image d, and a much more elaborate perturbation Ptrain takes place. Addi-
tionally, the low-res and high-res generators ` and h are using the driver’s mask m(A(d)) and its
up-scaled version U(m(A(d))) respectively, instead of using the refined mask md:

md = r(D(s),ms,Ptrain(m(A(d)))) (5)
c = `(D(s),ms,m(A(d))) (6)
f = h(s,U(ms),U(m(A(d))), c) , (7)

The augmentation A is a color transformation that scales the input’s brightness, contrast and satu-
ration by a random value drawn from [0.9, 1.1], and shifts its hue by a random value drawn from
[−0.1, 0.1]. Ptrain performs the following steps sequentially: (i) breaks the image vertically (hori-
zontally) into six parts, and scales each part horizontally (vertically) by a random value drawn from
[0.75, 1.25]. Next, it scales the entire output vertically (horizontally), by a random value drawn from
[0.75, 1.25]. (ii) similarly to Ptest, setting to zero pixels that are lower than the threshold value ρ,
and, finally (iii) adds an element-wise noise sampled from the Poisson distributions with λ = 20.

Loss Terms We train our system end to end using only two loss terms: a mask refinement loss
and a perceptual reconstruction loss. At train time, the role of the mask refinement network r is to
recover the driver’s identity after it was reduced by the perturbation operator Ptrain, therefore, we
minimize the L1 loss of the driver’s mask m(A(d)) and its refined mask md:

Lmask(d) = L1(md,m(A(d))) . (8)

For the image reconstruction loss of the generators ` and h, following Siarohin et al. (2019b) and
based on the implementation of Wang et al. (2018), we minimize a perceptual loss using the pre-
trained weights of a VGG-19 model. For two images a and b, the reconstruction loss terms using
the jth layer of the pre-trained VGG model are written as:

LVGG(a, b)j = AVG(|Nj(a)− Nj(b)|) (9)

where AVG is the average operator and Nj(·) are the features extracted using the jth-layer of the
pre-trained VGG model. For the coarse and fine predictions c and f , and a driving frame d, we
compute the following reconstruction loss for multiple resolutions:
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Lreconstruct =
∑
s

∑
j

LVGG(cs,ds)j + LVGG(fs,ds)j (10)

where input image as, has a resolution s ∈ [2562, 1282, 642]. We use the first, the third and the fifth
ReLU layers of the VGG-19 model. Note that while the VGG network was designed for a specific
resolution (2242), the first layers are fully convolutional, and can be used for an arbitrary input scale.

The combined loss is given by L = λ1Lmask + λ2Lreconstruct, for weight parameters λ1 = 100 and
λ2 = 10. To avoid unwanted adaptation of the network m, the backpropagation of Lmask only
updates the weights of the mask refinement network r. When backpropagating the second part of
the reconstruction loss

∑
s

∑
j LVGG(fs,ds)j , only the top-scale generator h is updated. The Adam

optimizer is employed with a learning rate of 2× 10−4 and β values of 0.5 and 0.9. The batch size
is 16 and similar to Siarohin et al. (2019b), we decay the learning rate at epochs 60 and 90, running
for a total of 100 epochs. The mask refinement network r starts training after we complete the first
training epoch, which is about when the outputs of the mask generator m start to be meaningful.

4 EXPERIMENTS

The training and evaluation were done using three different datasets, containing short videos of
diverse objects. Tai-Chi-HD is a dataset containing short videos of people doing tai-chi exercises.
Following Siarohin et al. (2019b), 3,141 tai-chi videos were downloaded from YouTube. The videos
were cropped and resized to a resolution of 2562, while preserving the aspect ratio. There are 3,016
training videos and 125 test videos. VoxCeleb is an audio-visual dataset consisting of short videos
of talking faces, introduced by Nagrani et al. (2017). VoxCeleb1 is the collection used, and as pre-
processing, bounding boxes of the faces were extracted and resized to 2562, while preserving the
aspect ratio. It contains an overall number of 18,556 training videos and 485 test videos. RoboNet
contains short videos of robotic arms interacting with different objects (Dasari et al., 2019). The
subset used depicts the Sawyer robot. It contains 42,880 training videos and 128 test videos. Each
video consists of 30 frames and has a resolution of 2562. We were unable to obtain the UvA-NEMO
smile dataset of Dibeklioğlu et al. (2012), which was utilized in some of the earlier contributions.

We follow the evaluation process of Siarohin et al. (2019b). First, the method is quantitatively
evaluated for video reconstruction, and then qualitatively for the task of image animation, where
the source and driving videos are of different identities. Additionally, despite being model-free, we
compare to model-based methods in the few-shot-learning scenario. In this case, our method, unlike
the baseline methods, does not employ any few shot samples.

The metrics are borrowed from related work: L1 is the L1 distance between the generated and
ground-truth videos. Average Key-points Distance (AKD) measures the average distance between
the key-points of the generated and ground-truth videos. For the Tai-Chi-HD dataset, we use the
human-pose estimator of Cao et al. (2016), and for the VoxCeleb dataset we use the facial landmark
detector of Bulat & Tzimiropoulos (2017). Missing Key-points Rate (MKR) measures the per-
centage of key-points that were successfully detected in the ground-truth video, but were missing
in the generated video. The human-pose estimator of Cao et al. (2016) outputs for every keypoint
an indicator of whether it was successfully detected. Using this indicator, we measure MKR for the
Tai-Chi-HD dataset. Average Euclidean Distance (AED) measures the average Euclidean distance
in some embedding space between the representations of the ground-truth and generated videos.
Following Siarohin et al. (2019b), we employ the feature embedding of Siarohin et al. (2019a).
Structural Similarity (SSIM) (Wang et al., 2004): we compare the structural similarity of the
ground-truth and generated images. Cosine Similarity (CSIM) the identity similarity of the gener-
ated and ground-truth faces, by comparing the cosine similarity of embedding vectors generated by
a the ArcFace face recognition network (Deng et al., 2019).

4.1 VIDEO RECONSTRUCTION

The video reconstruction benchmarks follow the training procedure in that the source and target
frames are taken from the same video. For evaluation, the first frame of a test video is used as the
source frame and the remaining frames of the same video as the driving frames. The goal is to
reconstruct all frames of the test video, except the first.
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L1, AKD, MKR and AED are compared with the state of the art model-free methods, including
X2Face of Wiles et al. (2018), MonkeyNet of Siarohin et al. (2019a) and the method suggested by
Siarohin et al. (2019b), which we refer to as FOMM. The results are reported in Tab. 1. Evidently,
our method outperforms the baselines for each of the datasets and all metrics by a significant margin,
except for the AKD measure on the VoxCeleb dataset, where accuracy was decreased by 2.7%. The
most significant improvement is for the Tai-Chi-HD dataset, which is the most challenging dataset,
because it consists of diverse movements of a highly non-rigid type.

Next, we follow Zakharov et al. (2019) and compare SSIM and CSIM with X2Face, Pix2PixHD
(Wang et al., 2018a) and the method of Zakharov et al. (2019), which we refer to as FSAL. The
baselines are evaluated in the few-shot-learning setting, where models are fine-tuned on a set of size
#FT, consisting of frames of a person that was not seen during the initial meta-learning step. After
the fine-tuning step, the evaluation is done on a hold-out set, consisting of unseen frames of the same
person. The evaluation is done for VoxCeleb1 and the results are reported in Tab. 2. As can be seen,
our method generalizes better and outperforms the baselines in SSIM and even more so in CSIM.
This is especially indicative of the method’s capabilities, since (i) we skip the fine-tuning step for
our model (in our case #FT = 0), and (ii) X2Face and FSAL were designed specifically for faces,
while our method is model-free and generic.

4.2 IMAGE ANIMATION

The task of image animation is to animate a source image using a driving video. The object (and
its background) in the source and driving inputs may have different identities and appearances. To
this end, we use the first frame of a source video as the source frame for encoding the appearance,
and we use all frames of the driving video as the driving frames for encoding the object’s motion. A
video is generated where the content of the source frame is animated by the driving video.

Sample results for image animation compared to the baseline methods are shown in Fig. 4. For the
VoxCeleb dataset, our method better preserves the identity of the source, and the facial expressions
of the generated frames are more compatible with that of the driver’s. For the Tai-Chi-HD dataset,
the baseline methods tend to generate infeasible poses for the fourth generated frame, while we do
not. Unlike FOMM, we well maintain environment elements, such as the stick on the top-right of
the generated frame. For the RoboNet dataset, the images generated by our method are the sharpest,
while we are the only method that places the generated object in the right position. It is worth noting
that the samples were selected to match those of Siarohin et al. (2019a), and not by us.

Ablation The main challenge in reanimation is to replace the identity on the driver’s mask to
that of the source, while keeping on driver’s general pose and shape. We do that in two steps: (i)
the driver’s identity is reduced by applying Ptest, (ii) we inject the source’s identity using the mask
refinement network r. To evaluate the roles of Ptest and r, we evaluate three reduced methods:
no pert, no ref and no id, where the first, second, or both steps are removed, respectively.

Ablation and intermediate results generated by our pipeline are shown in Fig. 3. As can be seen, the
generated masks ms and m(d) capture very accurately the object’s pose and shape, and the mask
refinement network r successfully applies the source’s identity to the driver’s mask. Comparing
the generated frame f to that of FOMM, we notice that for the Tai-Chi-HD dataset, the pose of
the generated body using our method, is much more compatible with that of the driver’s, where
the model of FOMM generates a distorted body. For the VoxCeleb dataset, using our method, the
identity of the source is better preserved, as it also reveals a small portion of the teeth, as the driver
does. For the Robonet dataset, unlike FOMM, our method was able to inpaint the occluded surface,
including the white and blue items on the right of the generated frame.

Examining the generated frames of the ablation models shows that both steps, identity-perturbation
and mask refinement, are critical for our image-animation pipeline. The frames generated by no pert
and no id have significant traces of the driver’s identity. This is especially clear for VoxCeleb, on
the forehead area of no pert and the general appearance for no id. Similarly, for the Tai-Chi-HD
dataset, the frame generated by no ref contains traces from the driver’s environment, and for the
other datasets it generates distorted results.

User study To qualitatively evaluate our method and compare with existing work, we presented
volunteers with a source image, a driving video, and four randomly ordered generated videos, one for
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Table 1: Video reconstruction results (lower is better). Improvement is relative to FOMM.

Tai-Chi-HD VoxCeleb RoboNet

Method L1 AKD MKR AED L1 AKD AED L1

X2Face 0.080 17.654 0.109 0.272 0.078 7.687 0.405 0.065
Monkey-Net 0.077 10.798 0.059 0.228 0.049 1.878 0.199 0.034
FOMM 0.063 6.862 0.036 0.179 0.043 1.294 0.140 0.027
Ours 0.047 4.239 0.015 0.147 0.034 1.329 0.130 0.021
Improvement 25.4% 38.2% 58.3% 17.9% 20.9% -2.7% 7.1% 22.2%

Table 2: Results on VoxCeleb1 in the few-shot
learning scenario. Unlike the other methods, we
do not perform fine-tuning on the identity in the
source image. #FT=number of images used for
finetuning. P2PHD=Pix2PixHD.
Method #FT SSIM ↑ CSIM ↑
X2Face 1/8/32 0.68/0.73/0.75 0.16/0.17/0.18
P2PHD 1/8/32 0.56/0.64/0.70 0.09/0.12/0.16
FSAL 1/8/32 0.67/0.71/0.74 0.15/0.17/0.19

Ours 0 0.80 0.70

Table 3: Percent of selected best video samples
for each method based on quality or motion fi-
delity. X2=X2Face. MN=Monkey-Net.

Dataset X2 MN FOMM Ours

Q
ua

lit
y Tai-Chi-HD 0% 4% 16% 80%

VoxCeleb 0% 8% 16% 76%
RoboNet 0% 4% 24% 72%

M
ot

io
n Tai-Chi-HD 0% 4% 8% 88%

VoxCeleb 0% 0% 12% 88%
RoboNet 4% 4% 16% 76%
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s ms d m(d) Ptest(m(d)) md c f FOMM no pert no ref no id

Figure 3: Intermediate results generated by our method. The final generated frame f is compared
to FOMM and to ablation models. From left to right: source frame s, source mask ms, driving
frame d, driving mask m(d), perturbed driving mask Ptest(m(d)), refined driving mask md, low-
res prediction c, high-res prediction f , FOMM result, and the ablations: no pert, which drops Ptest,
no ref, which omits the mask refinement r, and no id, which omits both.

each baseline method. They were asked to (i) select the most realistic animation of the source image,
and (ii) select the video with the high fidelity to the driver video. For each of the n = 25 participants,
we repeated the experiment three times, each time using a different dataset and a random test sample.

The results are reported in Tab. 3 and are highly consistent with the video reconstruction results,
indicating that the quality and the animation of the videos generated by our method contain fe
artifacts and are better synchronized with the driver videos.

5 CONCLUSIONS

A novel method for conditionally reanimating a frame is presented. It utilizes a masking mechanism
as a means for encoding pose information. By properly augmenting and refining the masks, we
are able to effectively extract both the source and the driving masks, while accurately capturing the
shape and foreground/background separation of the first, and recovering an identity-free pose from
the latter. Our results outperform the state of the art by a sizable margin on the available benchmarks.

7



Under review as a conference paper at ICLR 2021

Source

Driving

Vo
xC

el
eb

X2Face

Monkey-Net

FOMM

Ours

Source

Driving

Ta
i-

C
hi

-H
D

X2Face

Monkey-Net

FOMM

Ours

Source

Driving

R
ob

oN
et

X2Face

Monkey-Net

FOMM

Ours

Figure 4: Sample results on the three benchmarks. We use the exact same samples as evaluated by
FOMM (Siarohin et al., 2019b).
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A ARCHITECTURE

Following Siarohin et al. (2019b), the mask generator m, the mask refinement network r and the
high-res generator h have the same encoder-decoder architecture, followed by a conv7×7 layer and
a sigmoid activation. The encoder (decoder) consists of five encoding (decoding) blocks, where
each encoding block is a sequence of conv3×3 − relu − batch norm − avg pool2×2, and each
decoding block is a sequence of up sample2×2 − conv3×3 − batch norm − relu. Only for the
high-res generator h we add skip connections from each of the encoding layers, to its corresponding
decoding layer, to form a U-Net architecture.

The encoder of the low-res generator ` consists of conv7×7 − batch norm− relu, followed by six
residual blocks, where each block consists of batch norm − relu − conv3×3 − batch norm −
relu − conv3×3. The decoder consists of two blocks, where each block is a sequence of
up sample2×2 − conv3×3 − batch norm − relu. The decoder is followed by a conv7×7 layer
and a sigmoid activation.
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