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Abstract

Compared to standard retrieval tasks, passage001
retrieval for conversational question answering002
(CQA) poses new challenges in understand-003
ing the current user question, as each ques-004
tion needs to be interpreted within the dia-005
logue context. Moreover, it can be expensive006
to re-train well-established retrievers such as007
search engines that are originally developed008
for non-conversational queries. To facilitate009
their use, we develop a query rewriting model010
CONQRR that rewrites a conversational ques-011
tion in the context into a standalone question.012
It is trained with a novel reward function to013
directly optimize towards retrieval using re-014
inforcement learning and can be adapted to015
any fixed retriever. We show that CONQRR016
achieves state-of-the-art results on a recent017
open-domain CQA dataset containing conver-018
sations from three different sources, and is ef-019
fective for two different fixed retrievers. Our020
extensive analysis also shows the robustness of021
CONQRR to out-of-domain dialogues as well022
as to limited query rewriting supervision.023

1 Introduction024

Conversational question answering (CQA) sys-025

tems (Reddy et al., 2019; Choi et al., 2018) al-026

low information-seeking users to ask a sequence027

of questions interactively. In an open-domain set-028

ting (Anantha et al., 2021), we often want the an-029

swer to be grounded in trustworthy, external evi-030

dence. How do we find this evidence? Compared to031

standard retrieval tasks (Voorhees and Tice, 2000;032

Nguyen et al., 2016), passage retrieval for CQA033

poses new challenges in understanding the current034

user question, as each question needs to be inter-035

preted within the dialogue context.036

The task of question-in-context rewriting or037

query rewriting (QR) in a conversation (Elgohary038

et al., 2019; Dalton et al., 2020) is to convert a039

context-dependent question into a self-contained040

question. It enables the use of a standard retriever041

Who was the last person 
eliminated from 
Masterchef season 10?

Sarah Faherty was the 
last person eliminated …

When did the season air?

MasterChef season 10 
aired May 29 to 
September 18, 2019.

Who won?

Rewrite: 
Who won MasterChef 

season 10?

    query … Retrieve

Figure 1: A CQA agent rewrites the current user ques-
tion into a more effective one (in orange) for the given
retriever to find the passage that answers the question.

like BM25 (Robertson and Zaragoza, 2009) or 042

a search engine (Komeili et al., 2021) without 043

fine-tuning it on conversation-specific labeled data, 044

which can be expensive in practice. Therefore, in 045

this paper, we focus on the task of query rewrit- 046

ing for conversational passage retrieval in a CQA 047

dialogue, with a fixed (i.e., not-to-be-fine-tuned) re- 048

triever. We seek to build a QR model that rewrites 049

a user query into the retriever’s input, in such a way 050

that optimizes for passage retrieval performance. 051

For example, in Figure 1, the agent rewrites the cur- 052

rent user query “Who won?” into “Who won Mas- 053

terChef season 10?”, in order to have the retriever 054

retrieve the best answer passage for the question. 055

Recent work that leverages QR for conversa- 056

tional passage retrieval (Anantha et al., 2021; Dal- 057

ton et al., 2020) collects human-rewritten queries 058

to train a supervised QR model. However, humans 059

usually rewrite conversational queries to be unam- 060

biguous to a human outside the dialogue context, 061

but not necessarily to optimize the retrieval perfor- 062

mance. We conduct comprehensive experiments 063

in Section 4.5 to confirm these human rewrites 064

indeed sometimes omit information from the dia- 065

logue context that is useful to the retrieval system. 066

This limitation of human query rewrites impacts 067

supervised training. In addition, prior supervised 068

QR models are agnostic to downstream retrievers 069
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as they are separately trained before their predicted070

rewrites being used for retrieval at inference.071

To overcome the shortcomings of prior work, We072

design a reinforcement learning (RL)-based model073

CONQRR (Conversational Query Rewriting for074

Retrieval) that directly optimizes the rewritten075

query towards retrieval performance, using only076

weak retrieval supervision. As performing retrieval077

to calculate the reward for every training step can078

be time-consuming, we adopt a novel reward func-079

tion that computes an approximate but effective080

retrieval performance metric on in-batch passages.081

Our reward function does not assume any specific082

retriever model design, and is generic enough for083

CONQRR to adapt to any fixed retriever.084

We show CONQRR outperforms supervised QR085

models on a recent and the first large-scale open-086

domain CQA dataset QReCC (Anantha et al., 2021)087

by over 12% and 14% for BM25 and a neural dual088

encoder retriever model (Ni et al., 2021) trained on089

the standard MSMARCO retrieval dataset (Nguyen090

et al., 2016) respectively, averaging over three re-091

trieval metrics. We observe the performance boost092

on all three QReCC subsets from different conver-093

sation sources, including one that only appears in094

the test set (i.e., out-of-domain). CONQRR also095

demonstrates robustness to limited QR labels, topic096

shifts and longer dialogue contexts, compared to097

the supervised model.098

To conclude, our contributions are as follows. 1)099

We conduct a novel quantitative study to analyze100

both the limitations and utility of human rewrites,101

as well as the importance of QR for conversational102

passage retrieval in a CQA dialogue, which are103

largely under-explored in prior work. 2) We in-104

troduce a RL-based model CONQRR for the task105

of QR for conversational retrieval, that can opti-106

mize towards and adapt to any fixed retriever us-107

ing a novel reward function. 3) We demonstrate108

that CONQRR achieves state-of-the-art results on109

the public dataset QReCC with conversations from110

three sources, and is effective for two retrievers111

including BM25 and a dual encoder model. 4)112

Our analysis shows CONQRR is robust to out-of-113

domain dialogues, topic shifts, longer dialogue con-114

texts and limited QR labels.115

2 Related Work116

Conversational Question Answering (CQA)117

Most existing CQA datasets (Choi et al., 2018;118

Reddy et al., 2019) are designed for the task of119

reading a document to answer questions in a con- 120

versation, which does not require the retrieval step. 121

In contrast, QReCC (Anantha et al., 2021) is a 122

recent open-domain CQA dataset where a conver- 123

sational agent retrieves the most relevant passage(s) 124

before generating an answer to the question. 125

Conversational Retrieval A few recent works 126

(Dalton et al., 2020; Qu et al., 2020) collect re- 127

trieval datasets for conversational search tasks 128

(Belkin et al., 1995; Solomon, 1997) which usually 129

do not have answer utterances in a conversation. 130

Dalton et al. (2020) annotate 80 conversations for 131

the TREC CAsT-19 task and Qu et al. (2020) derive 132

their dataset based on QuAC by removing all an- 133

swer turns and propose to fine-tune a dual encoder 134

retriever (Guu et al., 2020; Karpukhin et al., 2020). 135

For such conversational search tasks, Yu et al. 136

(2020) propose a supervised QR model trained with 137

a large number of weak QR supervisions from ad- 138

ditional non-conversational data resources. Kumar 139

and Callan (2020) develop a retrieval framework 140

that focuses on the passage re-ranker instead of the 141

first-step retrieval model. Yu et al. (2021) propose 142

a framework to adapt dual encoder retrievers to 143

conversational queries by training a separate query 144

encoder. In contrast, QReCC (Anantha et al., 2021) 145

is a large-scale open-domain CQA dataset, with 146

each conversation containing both user and agent 147

utterances, and also fits the focus of our work. The 148

authors use a supervised QR model based on GPT2 149

(Radford et al., 2019) followed by a BM25 retriever 150

for the retrieval task, while we show the limita- 151

tions of human rewrites used as QR supervision 152

and design a RL-based QR model. Conversational 153

retrieval is also leveraged as an intermediate com- 154

ponent in some social chat agents to address factual 155

hallucination and user engagement (Shuster et al., 156

2021; Komeili et al., 2021). 157

Query Rewriting (QR) Conversational QR is 158

initially proposed to help a model understand the 159

dialogue context (Elgohary et al., 2019), and gets 160

recently adopted for downstream tasks like conver- 161

sational retrieval and question answering (Anan- 162

tha et al., 2021; Dalton et al., 2020; Yu et al., 163

2020). There are also studies in IR research on 164

query reformulation or suggestion that consider 165

non-conversational queries only (Chen et al., 2018; 166

Ahmad et al., 2019; Das et al., 2019). 167

RL for Text Generation Prior work applies RL 168

approaches to address text generation tasks like ma- 169

chine translation (Ranzato et al., 2016; Wu et al., 170
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2016), text summarization (Paulus et al., 2018; Ce-171

likyilmaz et al., 2018) and image captioning (Ren-172

nie et al., 2017; Fisch et al., 2020) by training a173

model directly optimized towards generation qual-174

ity metrics like BLEU, ROUGE or CIDEr. Buck175

et al. (2018) use RL to train a QA model that refor-176

mulates a non-conversational query into multiple177

different inputs to a fixed QA system and aggregate178

returned results to be the final answer. Nogueira179

and Cho (2017) apply RL based on gold passage la-180

bels to reformulate non-conversational user queries181

in order to effectively improve the downstream re-182

trieval task. Adolphs et al. (2021) apply RL with183

a restricted action space using multiple rounds of184

query reformulation and retrieval to respond to a185

non-conversational query. In contrast, we focus on186

more challenging conversational queries, and only187

use weak supervision for the downstream task pas-188

sage retrieval and an approximate retrieval metric189

for computational efficiency.190

3 Approach191

Problem Definition In this work, we focus on192

the task of query rewriting (QR) for conversational193

passage retrieval in a CQA dialogue, with a fixed194

retriever. The inputs to this task include a dialogue195

context x consisting of a sequence of previous ut-196

terances (u1, u2, . . . , un−1) and the current user197

question un, a passage corpus P and a fixed re-198

triever R. R returns a ranked list of top-k passages199

when given a query string and a passage corpus.200

The task aims to rewrite x into a query q such that201

R can take q as the input query to retrieve passages202

relevant to x from P . Specifically, a passage p is203

relevant to x if p provides enough information to204

answer un in the context of (u1, u2, . . . , un−1).205

In this section, we first introduce a T5-based QR206

model (T5QR) that applies a generic Seq2Seq train-207

ing objective with QR labels (Section 3.1). Then208

we introduce our RL-based framework CONQRR209

(Conversational Query Rewriting for Retrieval)210

that trains a QR model to optimize towards retrieval211

and is adaptable to any given retriever, with weak212

retrieval supervision (Section 3.2).213

3.1 T5QR214

T5 is an encoder-decoder model that is pretrained215

on large textual corpora (Raffel et al., 2020). We216

fine-tune T5 to rewrite a conversational query with217

the input as the concatenation of utterances in the218

dialogue context x and the output as the human219

QR 
Model

Retriever 𝑹

Human Rewrite "𝒒

Dialogue 
Context 

𝒙

𝒒

𝒒𝒔

𝜶

In-Batch Passage 
Candidates 𝑷𝑿

Heuristic Gold 
Passage 𝒑

Reward
𝒓 𝒒𝒔, 𝒒

𝓛𝑪𝑬
𝓛𝑹𝑳

𝓛𝒎𝒊𝒙

Figure 2: Our CONQRR framework. Yellow and blue
arrows mark the flow of CE and RL loss calculation
respectively. During inference, only q (with the dashed
border) is generated as the final rewrite.

rewrite q̂. Note that we concatenate the utterances 220

in a reversed order such that un becomes the first 221

one in the input string and any truncation impacts 222

more distant context. Utterances are separated 223

with a seperator token “[SEP]” in the concatenated 224

string. The model is then trained with a standard 225

cross entropy (CE) loss to maximize the likelihood 226

of generating q̂, which is a self-contained version 227

of the query un that can be interpreted without 228

knowing previous turns (u1, u2, . . . , un−1) in x. 229

3.2 CONQRR 230

QR models trained with a standard CE loss are ag- 231

nostic to the retriever. In addition, human rewrites 232

are not necessarily the most effective ones for pas- 233

sage retrieval (See Section 4.5 for an exploration). 234

This motivates us to design our RL-based frame- 235

work CONQRR (Figure 2) that trains a QR model 236

directly optimized for the retrieval performance 237

and can be adapted to any given fixed retriever. 238

To be comparable with supervised QR models 239

that do not use gold passages in training, we first 240

describe how we obtain weak retrieval supervision 241

for RL reward calculation in CONQRR. Then we 242

introduce the RL training details of CONQRR. 243

Weak Retrieval Supervision In a CQA dia- 244

logue, each question naturally comes with an an- 245

swer in its following conversational utterance. For 246

each x, we mark its weak passage label p as the one 247

having a string span with the highest token overlap 248

F1-score with the following answer string un+1: 249

p = argmax
p′∈P

[
argmax

s∈p′
sim(s, un+1)

]
(1) 250

where s is a string span and sim() calculates the 251

token overlap score between two strings.1 Tokens 252

1If multiple passages have the highest score, we randomly
choose one.
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are lower-cased from the NLTK tokenizer.2 How-253

ever, as searching within all candidates in P is very254

time-consuming, we instead first use BM25 to re-255

trieve the top 100 passages from P with the BM25256

input being the human rewrite, and then locate the257

best passage p from these 100 candidates.258

RL Training CONQRR also has T5 as the base259

model architecture. Following prior work on RL260

for text generation (Paulus et al., 2018; Fisch et al.,261

2020), we first initialize it with a supervised model262

(T5QR) as a warm-up.3263

For each training example with the dialogue con-264

text x, we use the concatenated utterances in x265

as the model input. For each input, we gener-266

ate m sampled rewritten queries (qs1 , . . . , qsm) as267

well as a baseline generated rewrite q. To gener-268

ate each sampled rewrite qs, at time step t of the269

decoding process, a token qts is drawn from the270

decoder probability distribution Pr(w|x, q1:t−1s )271

The baseline rewrite q is the output of greedy de-272

coding, which is also applied for query rewriting273

during inference. We then apply a self-critical se-274

quence training algorithm (Rennie et al., 2017)275

to calculate the reward for each qs relative to q276

as r(qs, q) = score(qs) − score(q). Ideally, the277

score() function should be some retrieval evalu-278

ation metric like mean reciprocal rank (MRR) or279

Recall@K. However, as it is very costly to run ac-280

tual retrieval for each training step, we instead use281

an approximate scoring function described below.282

To compute score(q) for a rewrite q, we first283

use q to do retrieval from the in-batch passage284

candidates PX defined as follows, instead of from285

the full passage corpus P . We pre-compute one286

positive and one negative passage (p and pn) for287

each training example x where pn is a randomly288

selected passage that is different from p, 50% of289

the time from the top 100 BM25-retrieved can-290

didates (with the BM25 input being the human291

rewrite) and remaining 50% of the time from P .292

We define the set of all such positive and negative293

passages of input examples in a batch X as the294

in-batch passage candidates PX . Formally, we de-295

fine PX = {pi, pin|xi ∈ X} as the set of in-batch296

passage candidates for the batch X . Then for a297

generated rewritten query q of x ∈ X , we calcu-298

late score(q) as a binary indicator of whether the299

retriever R ranks the assigned positive passage p300

2https://www.nltk.org
3In Section 4.5, we show that although initializing with

T5QR works better than T5, both setups generally work well.

highest from PX . We denote R(q, PX , k) as the 301

k-th most relevant passage retrieved by R from the 302

candidate pool PX , and define: 303

score(q) = 1
[
R(q, PX , 1) = p

]
(2) 304

Then the RL training loss for x becomes: 305

LRL = − 1

m

m∑
i=1

r(qsi , q) logPr(qsi |x) 306

Pr(qsi |x) =
|qsi |∏
t=1

Pr(qtsi |x, q
1:t−1
si ) 307

Following prior work (Paulus et al., 2018; Celikyil- 308

maz et al., 2018), we experiment with both a pure 309

RL loss (LRL) and a mixed RL and CE training 310

loss: 311

Lmix = αLRL + (1− α)LCE (3) 312

where α ∈ [0, 1] is a tunable parameter. 313

3.3 Retriever Models 314

We evaluate the effectiveness of CONQRR in ex- 315

periments with two retrieval systems. 316

BM25 We follow Anantha et al. (2021) using 317

Pyserini (Yang et al., 2017) with the default pa- 318

rameters k1 = 0.82 and b = 0.68. These values 319

were chosen based on retrieval performance on MS 320

MARCO (Nguyen et al., 2016), which contains 321

non-conversational queries only. During the RL 322

training of CONQRR, due to the complexity of ap- 323

plying Pyserini to calculate rewards on-the-fly, we 324

instead use a Pyserini approximate called BM25- 325

light. The only differences between them are that 326

BM25-light (1) uses T5’s subword tokenization in- 327

stead of whole word tokenization and (2) does not 328

use special operations (e.g., stemming) as applied 329

in Pyserini. After training, we still run inference 330

and report retrieval performance on BM25. 331

Dual Encoder (DE) We use a shared T5-base 332

query and passage encoder. For each query and 333

passage pair, their relevance is decided by the dot 334

product similarity between their encodings. The 335

architecture is the same as the recent DE model (Ni 336

et al., 2021). We use a model fine-tuned on MS 337

MARCO, and keep it fixed for our experiments. 338

3.4 Inference 339

At inference time, both T5QR and CONQRR work 340

in the same way. The trained QR model is used 341

to greedily generate the rewritten query given a 342

dialogue context. Then, the predicted rewrite is 343

given to the provided retriever to perform retrieval. 344
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4 Experiment345

4.1 Dataset and Evaluation Metrics346

Dataset QReCC (Anantha et al., 2021) is a347

dataset of 14k open-domain English conversations348

in the format of alternating user questions and349

agent-provided answers with 80k question and an-350

swer pairs in total. The conversations are collected351

from different sources: QuAC (Choi et al., 2018),352

Natural Questions (Kwiatkowski et al., 2019) and353

TREC CAsT-19 (Dalton et al., 2020) with addi-354

tional annotations by crowd workers. See more355

details and statistics in Appendix A.1. Therefore,356

QReCC can be divided into three subsets for evalua-357

tion. We name them as QuAC-Conv, NQ-Conv and358

TREC-Conv respectively to differentiate them from359

the original datasets from which they are derived.360

TREC-Conv only appears in the test set. Each user361

question comes with a human-rewritten query. For362

each agent turn, gold passage labels are provided363

if any. The entire text corpus for retrieval contains364

54M passages, segmented in the released data.4365

Evaluation Metrics Following (Anantha et al.,366

2021), we use mean reciprocal rank (MRR), Re-367

call@10 and Recall@100 to evaluate the retrieval368

performance by reusing the provided evaluation369

scripts.5 Some agent turns in QReCC do not have370

valid gold passage labels,6 and the original evalu-371

ation script assigns a score of 0 to all such exam-372

ples. Their updated evaluation script calculates the373

scores by removing those examples from the eval-374

uation set (roughly 50%), which results in 6396,375

1442 and 371 test instances for QuAC-Conv, NQ-376

Conv and TREC-Conv, respectively. We use the377

updated evaluation script for most of our experi-378

ments, except that we also use the original version379

for calculating scores in Table 1 to compare with380

their reported QReCC baseline results . We note381

that these two evaluation scripts only differ by a382

scaling factor so they should lead to the same con-383

clusions regarding model comparisons.384

4.2 Implementation Details385

Our models are implemented using JAX.7 T5QR386

models are all initialized with T5-base (Raffel et al.,387

4Original QReCC data: https://zenodo.org/
record/5115890#.YZ8kab3MI-Q.

5Both original and updated evaluation scripts: https:
//github.com/scai-conf/SCAI-QReCC-21.

6Missing gold labels for certain examples in the dataset
has no effect on the training of CONQRR as we induce weak
labels without using the provided labels.

7https://github.com/google/jax

QR Model
Original Eval Updated Eval

MRR R10 R100 MRR R10 R100

Transformer++ 0.155 24.8 40.6 0.311 49.8 81.4
T5QR 0.164 26.2 42.3 0.328 52.5 84.7
CONQRR (mix) 0.186 29.2 45.0 0.373 58.5 90.2
CONQRR (RL) 0.191 30.0 44.4 0.383 60.1 88.9

Human 0.199 32.8 49.4 0.398 62.6 98.5

Table 1: Passage retrieval performance of QR models,
comparable to scores in Anantha et al. (2021) by using
the same BM25 retriever for QReCC test set. CON-
QRR achieves state-of-the-art results. Recall@10 and
Recall@100 are abbreviated as R10 and R100.

2020). For training, we set 64, 1k and 10k as the 388

batch size, warm-up steps and total training steps 389

respectively. We use e−3 and e−4 as the learning 390

rate for supervised and RL training respectively. 391

We use Adafactor (Shazeer and Stern, 2018) as 392

our optimizer with the default parameters. Linear 393

decay is applied after 10% of the total number of 394

training steps, reducing the learning rate to 0 by the 395

end of training. For supervised training, models 396

are selected based on the best dev set Rouge-1 F1 397

score with the human rewrites, following Anantha 398

et al. (2021). CONQRR is initialized with T5QR. 399

For RL-based training of CONQRR, models are se- 400

lected based on the average in-batch gold passage 401

prediction accuracy as in Eq. (2) on dev set with 402

greedily decoded rewrites. We experiment with 403

CONQRR trained with either a mixed (Lmix) or 404

pure RL (LRL) loss. For the mixed loss, we ob- 405

serve that CONQRR works well when the RL loss 406

weight α is large.8 We tune its values in 0.9, 0.95, 407

0.97, 0.99, and use 0.99 as the final value. For the 408

experiment with the pure RL loss and the retriever 409

BM25, our results are obtained with the initialized 410

model being fine-tuned with only 10% QR labels, 411

as we find initializing with a model using 100% 412

QR labels is unstable for BM25. Previous work 413

(Wu et al., 2021) also had a similar observation 414

that initializing with a less trained model leads to 415

more stable RL training. More implementation and 416

hyper-parameter details including input and output 417

length limits are reported in Appendix A.2. 418

4.3 Compared Systems 419

For QR models, we compare our supervised model 420

T5QR and CONQRR (mix/RL) with a mixed 421

(Lmix) or pure RL (LRL) loss. We also compare 422

to the original baseline Transformer++, which is 423

8We also conduct experiments with α = 0.0 for both
retrievers and get similar results as T5QR.
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QR Model IR System
QReCC (Overall) QuAC-Conv NQ-Conv TREC-Conv (OOD)∗

MRR R10 R100 MRR R10 R100 MRR R10 R100 MRR R10 R100

T5QR BM25 0.328 52.5 84.7 0.33 52.7 85.0 0.345 54.2 83.9 0.230 44.5 82.3
CONQRR (mix) BM25 0.373 58.5 90.2 0.379 59.2 90.9 0.385 58.8 88.9 0.229 44.7 82.7
CONQRR (RL) BM25 0.383 60.1 88.9 0.395 61.6 90.2 0.378 58.0 86.7 0.198 43.5 75.9

Human Rewrite BM25 0.398 62.6 98.5 0.403 62.9 98.4 0.408 63.8 99.0 0.273 53.8 98.9

T5QR DE 0.361 56.2 75.9 0.349 55.7 76.1 0.417 58.7 74.2 0.343 55.9 79.2
CONQRR (mix) DE 0.395 61.9 81.8 0.387 62.0 82.4 0.439 62.2 79.0 0.361 58.9 81.0
CONQRR (RL) DE 0.418 65.1 84.7 0.416 65.9 85.8 0.453 64.1 80.9 0.327 55.2 79.6

Human Rewrite DE 0.422 64.8 84.0 0.409 64.5 84.1 0.483 65.8 83.2 0.411 66.0 86.5

Table 2: Passage retrieval performance on QReCC test set and 3 subsets. CONQRR (mix) beats the supervised
T5QR model on all retriever system and test set combinations. ∗ OOD (out-of-domain): only appear in the test set.

based on GPT2-medium that achieves the best re-424

trieval performance in Anantha et al. (2021). Trans-425

former++ has two language modeling heads that426

produce separate vocabulary distributions, which427

are then combined via a weighted sum for rewrit-428

ten query generation. Similar to T5QR, it is a QR429

model trained in a standard supervised learning430

manner. For analysis purposes, we also report per-431

formance for directly using the concatenated di-432

alogue context as the retriever input without any433

query rewriting in Section 4.5. We experiment with434

two retrievers, BM25 and DE (Section 3.3).435

4.4 Quantitative Results436

The original baseline Transformer++ has numbers437

reported on the overall QReCC test set with BM25438

as the retriever. As mentioned in Section 4.1,439

to have a direct comparison with Anantha et al.440

(2021), we first compare all QR models’ down-441

stream retrieval performance in Table 1, including442

both the original and updated versions of the eval-443

uation script. T5QR and CONQRR outperform444

the baseline Transformer++ by 5% and 18% re-445

spectively, averaged on three metrics,9 although446

Transformer++ is based on a larger base model447

- GPT2-medium. Therefore, CONQRR (RL) be-448

comes the state-of-the-art QR model for conversa-449

tional passage retrieval on QReCC.450

Table 2 shows more comprehensive retrieval451

results comparing CONQRR and the supervised452

model T5QR, with the updated evaluation script.453

For the overall QReCC test set, CONQRR outper-454

forms T5QR for all three metrics and both retriev-455

ers. For MRR and Recall@10, gains are roughly456

15% with the RL loss and 9-14% with the mixed457

9We obtained prediction results from the authors and reran
their evaluation script. The numbers we got are slightly lower
than what they reported, but do not affect the conclusions.

loss for both retrievers. Gains in Recall@100 vary 458

more (4-12%). Breaking down the results by subset 459

shows that the mixed loss is more robust. CON- 460

QRR (RL) is less effective for the TREC-Conv 461

subset, which only appears in the test set. This sug- 462

gests that RL loss alone does not generalize well 463

to out-of-domain examples. Across all subsets, the 464

best MRR and Recall@10 results are consistently 465

from DE, whereas BM25 has better Recall@100 466

scores. See our explanation in Appendix A.3. 467

4.5 Analysis 468

Effects of Topic Shift & Human Rewrites We 469

hypothesize that a context involving a topic shift 470

will present the greatest challenges for conversa- 471

tional passage retrieval. To explore this factor, we 472

split the QReCC data into topic-concentrated and 473

topic-shifted subsets as follows. A test example is 474

considered topic-shifted if it has at least one previ- 475

ous turn besides the current user question and all 476

previous turns have gold passages from a different 477

document than the gold passage of the current ques- 478

tion. All other examples (with at least one previous 479

turn) are topic-concentrated. There are about 4.7k 480

and 1.1k examples in the topic-concentrated and 481

topic-shifted subsets respectively. We compare the 482

retrieval performance of different retriever inputs: 483

dialogue context (which uses the concatenated di- 484

alogue history without QR), the predicted rewrite 485

from T5QR and CONQRR with two loss alterna- 486

tives, and the human rewrite. Table 3 shows that 487

the dialogue context outperforms even the human 488

rewrite on the topic-concentrated set by 22% and 489

17%, averaging over three metrics, for BM25 and 490

DE respectively, which shows the limitation of hu- 491

man rewrites. We also see that CONQRR (RL) sur- 492

pass the human rewrite on the topic-concentrated 493

set on MRR for BM25 and all three metrics for DE. 494
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Input IR
Topic-Concentrated Topic-Shifted
MRR R10 R100 MRR R10 R100

Dial Context BM25 0.620 81.4 94.9 0.154 39.1 68.6
T5QR BM25 0.352 54.4 84.0 0.252 45.1 79.1
CONQRR (mix) BM25 0.419 63.1 91.2 0.252 45.9 82.1
CONQRR (RL) BM25 0.444 66.2 90.3 0.233 44.5 78.4

Human Rewrite BM25 0.440 66.7 98.8 0.318 56.7 98.4

Dial Context DE 0.551 78.1 93.2 0.179 35.7 61.4
T5QR DE 0.353 55.7 75.4 0.329 50.8 69.2
CONQRR (mix) DE 0.404 63.8 83.4 0.334 53.2 72.6
CONQRR (RL) DE 0.445 69.3 87.8 0.303 50.4 73.3

Human Rewrite DE 0.424 65.5 84.5 0.397 61.0 79.8

Table 3: Performance of using different retriever inputs
for Topic-Concentrated or Topic-Shifted examples.

Topic-Concentrated Topic-Shifted
0.6

0.5

0.4

0.1
1-2 3-4 > 4 > 43-41-2

0.3

0.2

Figure 3: MRR versus the number of questions in the
dialogue context, with DE as the retriever.

However, for the topic-shifted set, the human495

rewrite outperforms the dialogue context by 52%496

and 61%, averaging over three metrics, on BM25497

and DE respectively. The predicted rewrite by498

CONQRR (mix) outperforms the dialogue context499

by 30% and 44% on BM25 and DE respectively.500

Therefore, compared with dialogue context, QR501

has great value in the aspect of robustness to topic502

shifts. When comparing with human rewrites, we503

also see improvement room for QR models.504

These observations are largely unexplored in pre-505

vious work, and they are actually the motivations506

for us to work on the task of QR for conversa-507

tional passage retrieval, and to build CONQRR508

that optimizes directly towards retrieval and goes509

beyond the human rewrite limitations. In addition,510

although fine-tuning the retriever is not our focus,511

we discuss very different empirical observations512

in Appendix A.3 and show that QR may not be513

necessary if the retriever can be fine-tuned.514

Effect of Dialogue Context Length Figure 3515

shows the MRR score on topic-concentrated and516

topic-shifted subsets with DE as the retriever for517

various dialogue context lengths. Dialogue context518

QR Supervision

M
R

R

0.2

0.3

0.4

0.5

0% 1% 10% 100%

T5QR CONQRR (mix) CONQRR (RL)

Figure 4: MRR on QReCC versus the percentage of QR
supervision used for training, with DE as the retriever.

lengths are grouped into 1-2, 3-4 and ≥ 4 pre- 519

vious utterances (including the current question). 520

For topic-concentrated conversations, all compared 521

models have similar robustness to the dialogue con- 522

text length and CONQRR (mix) is slightly more 523

robust than T5QR. For topic-shifted conversations, 524

both QR models and human rewrites show little 525

drop or even an increase in performance as the 526

context length gets longer. In contrast, the robust- 527

ness of the dialogue context worsens with longer 528

contexts, which confirms the importance of QR 529

discussed above. We have similar observations for 530

other metrics as well as for the BM25 retriever. 531

Data Efficiency We investigate how sensitive 532

CONQRR and T5QR are to the availability of QR 533

labels. We experiment with training T5QR with 534

0%, 1%, 10% or 100% of QR labels in the QReCC 535

train set. For the case of 0% examples, we simply 536

use the original T5 checkpoint without fine-tuning. 537

When training CONQRR, we mask out the CE loss 538

in Eq. (3) for unused QR labels in training its ini- 539

tialized T5QR model, and we use dialogue context 540

to induce gold and hard negative passages for each 541

training example, instead of using human rewrites. 542

Figure 4 plots the curve of MRR on the overall 543

QReCC test data using DE as the retriever versus 544

the percentage of QR labels used for training. We 545

see that CONQRR can achieve good performance 546

with even 0% or 1% of QR supervision. The slight 547

difference in performance for the 100% QR label 548

case with respect to Table 2 is due to the different 549

mechanism (using human rewrite vs. the dialogue 550

context) for choosing the positive and hard neg- 551

ative passages for RL training. Performance of 552

the RL and mixed loss are similar when there is 553

little supervision, roughly tracking the trends of 554

the T5QR model that it is initialized with. The 555

finding that performance degrades for the mixed 556

7



Dialogue
Context

Q: What were John Stossel’s most popular publica-
tions?
A: Give Me a Break: How I Exposed Hucksters, Cheats,
and Scam Artists and Became . . .
. . .
Q: What was the response?

Q: What were some notable live performances at the
Buena Vista Social Club?
A: Ibrahim Ferrer and Rubén González . . .
. . .
Q: What other live performances are important?

Gold
Passage

Stossel has written three books. Give Me a Break: . . . It
was a New York Times bestseller for 11 weeks . . .

The first performances . . . Ibrahim Ferrer and
Rubén González performed together . . . a 1999 Mi-
ami performance . . .

CONQRR
(mix)

What was the response to John Stossel’s book, Give
Me a Break? (Rank=2)

What other live performances at the Buena Vista
Social Club are important besides Ibrahim Ferrer
and Rubén González? (Rank=2)

T5QR What was the response to the book Give Me a Break?
(Rank >100)

What other live performances are important at the
Buena Vista Social Club? (Rank=18)

Human What was the response to Give Me a Break: How I Ex-
posed Hucksters, Cheats, and Scam Artists and Became
the Scourge of the Liberal Media? (Rank >100)

What other live performances of the Buena Vista
Social Club are important? (Rank=17)

Table 4: Examples of predicted rewrites and the gold passage ranks by using them as the DE retriever input.

QR Model
QuAC-Conv NQ-Conv TREC-Conv

L OL L OL L OL

T5QR 10.9 3.9 8.9 3.6 8.2 3.1
Ours (mix) w/ BM25 12.1 4.5 9.5 4.0 8.5 3.3
Ours (RL) w/ BM25 11.2 4.5 10.1 4.5 9.4 3.7
Ours (mix) w/ DE 12.1 4.5 9.6 4.0 8.7 3.4
Ours (RL) w/ DE 28.2 14.4 21.7 12.1 18.3 8.1

Human 12.1 4.5 9.3 4.0 8.4 3.5

Table 5: Average number of tokens (L) and overlapping
tokens (OL) with the gold passage(s) in output rewrites.

loss with 100% supervision may be due to a mis-557

match in the CE and RL losses as minimizing the558

CE loss does not directly optimize the retrieval559

performance. T5QR is more sensitive to QR super-560

vision but also does not require many QR labels for561

training, as its curve becomes flattened after 1% su-562

pervision. We see similar trends with Recall@100563

(see Appendix A.3).564

Quantitative Attributes of Rewrites Table 5565

shows the average number of tokens per rewrit-566

ten query, and overlapping tokens (excluding stop-567

words) between the rewrite and the gold passage(s).568

CONQRR generally generates longer rewrites with569

more overlapping tokens with gold passage(s),570

compared with T5QR. When having DE as the re-571

triever, CONQRR (RL) generates more than double572

the length of T5QR, CONQRR (mix) and even hu-573

man rewrites. We show in Appendix A.3 that T5QR574

still underperforms CONQRR (mix) even when we575

make it generate rewrites of similar lengths by ap-576

plying a brevity penalty (Wu et al., 2016).577

Rewrite Examples Table 4 shows two examples578

of generated rewritten queries of T5 and CONQRR579

(mix) trained with DE in the loop, as well as the580

human rewrites. In the left example, the rewrite 581

of CONQRR is able to generate an entity “John 582

Stossel” that is mentioned in the gold passage but 583

not included by rewrites from T5QR or Human. 584

Thus, even if the human rewrite is longer by con- 585

taining the book’s full name, CONQRR enables 586

more efficient retrieval with a partial book name 587

along with its author name. In the right example, 588

CONQRR generates a longer rewritten query that 589

contains much richer contextual information. See 590

more examples in Appendix A.3 591

5 Conclusion and Discussion 592

To summarize, we introduce CONQRR to address 593

query rewriting for conversational passage retrieval 594

with a fixed retriever. Motivated by our analysis 595

showing both the limitations and utility of human 596

rewrites, which are under-explored by prior work, 597

we adopt a RL approach with a novel reward func- 598

tion to train CONQRR directly towards retrieval. 599

We show that CONQRR can be trained adaptively 600

to any fixed retriever. The model achieves state- 601

of-the-art retrieval performance on QReCC with 602

conversations from 3 different sources. 603

A direction for future work includes leveraging 604

QR to facilitate other tasks. For example, it can also 605

be used for question answering and response gener- 606

ation in a full CQA system. Sentence rewriting can 607

be used to understand context-dependent sentences 608

in a document (Choi et al., 2021). As current CQA 609

datasets have a restricted dialogue format of alter- 610

nating questions and answers, future investigation 611

is needed to explore conversations with discourse 612

relations like asking for clarifications. We put more 613

discussion in Appendix A.4. 614
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Ethical Considerations615

Our work is primarily intended to leverage query616

rewriting (QR) models to facilitate the task of con-617

versational passage retrieval in an open-domain618

CQA system. Retrieving the most relevant pas-619

sage(s) to the current user query in a conversation620

would help to generate a more appropriate agent621

response. Predicted rewrites from our QR model622

are mainly intended to be used as intermediate re-623

sults (e.g., the inputs to the downstream retrieval624

system). They may also be useful for interpretabil-625

ity purposes when a final response does not make626

sense to the user in a full CQA system, but that627

introduces a potential risk of offensive text gen-628

eration. In addition, to prevent the retriever from629

retrieving passages from unreliable resources, fil-630

tering of such passages in the corpus should be631

performed before any practical use.632
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A Appendix 857

A.1 Additional Data Details 858

QReCC reuses questions in QuAC and TREC con- 859

versations and re-annotates answers. For each NQ- 860

based conversation, they only use one randomly 861

chosen question from NQ to be the starting ques- 862

tion and then annotate the remaining conversa- 863

tion. In total, there are 63k, 16k and 748 question 864

and answer pairs in the three subsets QuAC-Conv, 865

NQ-Conv, TREC-Conv respectively, where TREC- 866

Conv only appears in the test set. The original data 867

is only divided into train and test sets. We ran- 868

domly choose 5% examples from the train set to be 869

our validation set. 870

In some conversations from QuAC-Conv, the 871

first user query is ambiguous as it depends on some 872

topical information from the original QuAC dataset. 873

Therefore, in order to fix this issue, we follow 874

Anantha et al. (2021) to replace all first user queries 875

in QReCC conversations with the their correspond- 876

ing human rewrites. 877

QReCC is a publicly available dataset that was 878

released under the Apache License 2.0 and we use 879

the same task set-up proposed by the original qrecc 880

authors. 881

A.2 Additional Implementation Details 882

The maximum length of the dialogue context fed 883

into the QR model is 384 (longer than 97.9% dia- 884

logue contexts in QReCC) and the maximum out- 885

put rewrite length is 64 (longer than 99.9% human 886

rewrites). To generate each sampled rewrite qs 887

(see Section 3.2), we apply top-k sampling where 888

k = 20. For each training example, we sample 5 889

rewrites in total (i.e., m = 5 for the RL training 890

explained in Section 3.2). Each training process is 891

run on 8 TPU nodes. It takes about 2 and 9 hours 892

for the supervised and RL-based training respec- 893

tively. For each experiment, we observe similar 894

performance or training curves for 2-3 runs and 895

report numbers on a random run. Both T5QR and 896

CONQRR are based on T5-base and have about 897

220M parameters. In contrast, the baseline Trans- 898

former++ is based on GPT2-medium and has about 899

345M parameters. 900

For retriever models, BM25 Pyserini simply en- 901

codes the whole query input and each passage with- 902

out truncating. We set maximum query and passage 903

length as 128 and 2000 for BM25-light, but only 904

less than 0.1% cases require truncation with these 905

thresholds. For the dual encoder, the maximum 906
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query or passage length is 384. The average pas-907

sage length is 378, but we observe performance908

drop by further increasing the maximum length for909

the dual encoder.910

A.3 Additional Analysis911

Lower Recall@100 with DE Previous work912

(Karpukhin et al., 2020) shows that DE retrievers913

generally lead to better recall scores than BM25.914

However, in Table 2, we observe that across all915

subsets, the best MRR and Recall@10 results are916

consistently from DE, whereas BM25 has better917

Recall@100 scores. One reason to explain the ob-918

servation difference is that we use a fixed retriever919

for our retrieval task while most previous work that920

compare BM25 and DE focuses on fine-tuning the921

DE model. Without being fine-tuned, a DE model922

may be more vulnerable to domain shift than BM25.923

On the other hand, prior work (Luan et al., 2021)924

proves that a DE model’s performance would drop925

as the passage length increases. In the QReCC926

dataset, the average passage length is 378, which927

is relatively long according to Luan et al. (2021).928

Analysis of Longer Rewrites We hypothesize929

that simply generating a longer rewritten query is930

not the only factor that contributes to better retrieval931

performance. We investigate this by applying a932

brevity penalty (Wu et al., 2016) during decod-933

ing for T5QR such that its average query length934

matches that of CONQRR (mix). Figure 5 shows935

that CONQRR (mix) still outperforms T5QR with936

the brevity penalty for all three evaluation metrics937

on QReCC.938
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Figure 5: Evaluation scores on QReCC for T5QR w/ or
w/o brevity penalty and CONQRR (mix), with DE as
the retriever. Recall scores (R@k) are divided by 100.

Fine-tuned Retriever Although our work fo-939

cuses on the fixed retriever setting, we also con-940

duct an experiment of fine-tuning the DE retriever941

Input
Topic-Concentrated Topic-Shifted
MRR R10 R100 MRR R10 R100

Dial Context 0.643 87.7 96.9 0.312 56.2 81.9
CONQRR (mix) 0.588 84.0 96.9 0.259 48.3 77.2

Human Rewrite 0.510 79.9 95.2 0.380 61.3 86.0

Table 6: Results of using the dialogue context, pre-
dicted rewrite or human rewrite as the retriever input
with the finetuned DE as the retriever.
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Figure 6: Recall@100 on QReCC versus the percent-
age of QR supervision used for training, with DE as
the retriever.

with the concatenated dialogue context, the pre- 942

dicted rewrite from CONQRR (mix) or the human 943

rewrite as the query input, with results in Table 6. 944

The numbers are comparable to those in Table 3. 945

Fine-tuning the DE retriever improves results for 946

all scenarios, but the dialogue context benefits sub- 947

stantially, to the extent that it outperforms Con- 948

QRR in topic-shifted cases. However, there is still 949

improvement room as we see benefits of human 950

query-rewrites for topic shifts. 951

Additional Data Efficiency Figure Figure 6 952

shows the curve of Recall@100 on the overall 953

QReCC test data using DE as the retriever versus 954

the percentage of QR labels used for training. 955

Additional Rewrite Examples In addition to Ta- 956

ble 4, we put more examples in Table 7. Different 957

from Table 4, we put predicted rewrites from CON- 958

QRR (mix) that is trained towards BM25 instead 959

of the DE retriever. We also put gold passage ranks 960

in the table, by using the predicted rewrites as the 961

BM25 retriever input. 962

A.4 Discussion 963

We first summarize the scenarios when leveraging 964

QR for conversational passage retrieval may bring 965

most benefits. As shown in Section 4.5 (Table 3), 966

compared to directly use dialogue context without 967
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Dialogue
Context

Q: What is Get ’Em Girls?
A: Jessica Mauboy’s second studio album, Get ’Em
Girls (2010).
. . .
Q: Did she receive any awards or honors during these
years?

Q: What is one actress who was a Bond girl?
A: Ursula Andress in Dr. No is widely regarded as the
first Bond girl. . . .
. . .
Q: Who was another Bond girl?

Gold
Passage

. . . Mauboy performed “Get ’Em Girls” at the 2010

. . . and won the award for . . . Get ’Em Girls was re-
released as a deluxe edition . . .

. . . Ursula Andress (as Honey Ryder) in Dr. No (1962)
is widely regarded as the first Bond girl, although she
was preceded by both Eunice Gayson as Sylvia Trench
and . . .

CONQRR
(mix)

Did Jessica Mauboy receive any awards or honors dur-
ing the years she released Get ’Em Girls? (Rank=7)

Who was another Bond girl besides Ursula Andress
in Dr. No? (Rank=7)

T5QR Did Jessica Mauboy receive any awards or honors
during these years? (Rank >100)

Who was another Bond girl? (Rank=68)

Human Did Jessica Mauboy receive any awards or honors
during the 2010s? (Rank=24)

Who was another Bond girl, besides Ursula Andress?
(Rank=12)

Table 7: Examples of predicted rewrites and the gold passage ranks by using them as the BM25 retriever input.

QR, a QR model has great values in robustness to968

topic shifts with a fixed retriever.969

On the other hand, if most conversations of inter-970

est are topic-concentrated, we show that using the971

dialogue context itself can already work well. From972

Table 6, we also see that if the downstream retriever973

is allowed to be fine-tuned, our best QR model974

CONQRR (mix) underperforms the dialogue con-975

text in both topic-concentrated and topic-shifted976

scenarios.977

Another downside of QR is that it requires ad-978

ditional labels. Although we show that CONQRR979

(RL) initialized with T5 does not require QR la-980

bels and can still work well on the overall QReCC981

test set, CONQRR (RL) does show worse robust-982

ness to out-of-domain and topic-shifted examples983

when compared with CONQRR (mix). Therefore,984

training a more robust CONQRR model may still985

require additional annotation efforts to collect hu-986

man rewrites.987

CONQRR has only been tested on the standard988

CQA dialogue format of alternating questions and989

answers. To facilitate more practical use cases with990

more diverse dialogue acts or discourse relations991

(e.g., the agent asks a clarification question to the992

user), further investigation is needed.993
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