
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Towards Foundational Models for Dynamical System Reconstruction:
Hierarchical Meta-Learning via Mixture of Experts

Anonymous Authors1

Abstract
As foundational models reshape scientific discov-
ery, a bottleneck persists in dynamical system re-
construction (DSR): the ability to learn across sys-
tem hierarchies. Many meta-learning approaches
have been applied successfully to single systems,
but falter when confronted with sparse, loosely
related datasets requiring multiple hierarchies to
be learned. Mixture of Experts (MoE) offers a
natural paradigm to address these challenges. De-
spite their potential, we demonstrate that naive
MoEs are inadequate for the nuanced demands
of hierarchical DSR, largely due to their gradient
descent-based gating update mechanism which
leads to slow updates and conflicted routing dur-
ing training. To overcome this limitation, we intro-
duce MixER: Mixture of Expert Reconstructors,
a novel sparse top-1 MoE layer employing a cus-
tom gating update algorithm based on K-means
and least squares. Extensive experiments val-
idate MixER’s capabilities, demonstrating effi-
cient training and scalability to systems of up
to ten parametric ordinary differential equations.
However, our layer underperforms state-of-the-art
meta-learners in high-data regimes, particularly
when each expert is constrained to process only a
fraction of a dataset composed of highly related
data points. Further analysis with synthetic and
neuroscientific time series suggests that the qual-
ity of the contextual representations generated by
MixER is closely linked to the presence of hierar-
chical structure in the data.

1. Introduction
The emergence of foundational models in language and
vision has catalyzed an accelerated pursuit of analogous

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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models for scientific discovery (Subramanian et al., 2024;
Herde et al., 2024). Unlike traditional data modalities, sci-
entific data presents unique challenges due to its inherent
complexity and scarcity. This challenge has motivated the
development of sophisticated dynamical system reconstruc-
tion (DSR) models capable of robust generalization across
varying domains—with each variation constituting an en-
vironment. However, the effectiveness of these systems in
low-data scenarios hinges on substantial relatedness among
environments, raising fundamental questions about learn-
ing across families of loosely connected environments (see
Figure 1).

Training Samples Adaptation Sample

Task-Specific
Meta-Learning

Task-Specific 
Meta-Learning

Hierarchical
Meta-Learning

Figure 1. Task-specific and hierarchical meta-learning. Each fam-
ily comprises a set of environments defined by the same ordinary
differential equation (ODE). Within a family, parameters of the un-
derlying ODE are varied, producing dynamics that are similar but
unique. Task-specific meta-training focuses on adaptation within
a family, while hierarchical meta-learning enables simultaneous
training across families, followed by adaptation to any of them.

Usual approaches to data-driven generalizable DSR (Göring
et al., 2024) predominantly rely on Expected Risk Minimiza-
tion (ERM) (Sagawa et al., 2020; Brandstetter et al., 2022),
assuming abundant environment-specific samples to capture
the full spectrum of observable dynamics. This assumption
proves problematic in data-scarce domains like clinical or
neuroscience applications (Brenner et al., 2024). While mul-
titask learning (Yin et al., 2021) has emerged as a popular
alternative, it lacks robust adaptation mechanisms for novel
scenarios. Recent advances in meta-learning (Wang et al.,
2021; Finn et al., 2017) have demonstrated remarkable suc-
cess by explicitly incorporating adaptation capabilities into
the training process. Contextual meta-learning (Nzoyem
et al., 2024) achieves this through a strategic separation
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Mixture of Expert Reconstructors

of parameters into environment-agnostic components and
compact context vectors amenable to environment-specific
fine-tuning via gradient descent. Current state-of-the-art ap-
proaches are categorized in two primary paradigms: hyper-
network-based methods (Kirchmeyer et al., 2022; Brenner
et al., 2024; Roeder et al., 2019; Koupaı̈ et al., 2024) that
condition environment-specific weights on context, and con-
catenation-based alternatives (Nzoyem et al., 2025; Zintgraf
et al., 2019) that directly feed the context to the dynamics-
generating model. Despite their strong potential, meta-
learning approaches exhibit limitations when confronted
with environments that have minimal or no similarities,
which is the case when the time series are not governed
nor driven by the same underlying differential equations.

Drawing inspiration from recent breakthroughs in large lan-
guage modeling (Liang et al., 2024; Jiang et al., 2024; Dai
et al., 2024; Abnar et al., 2025), we investigate the poten-
tial of augmenting existing meta-learners with sparse mix-
ture of experts (MoEs) (Jacobs et al., 1991; Shazeer et al.,
2017b) for generalizable DSR. Despite inherent routing
challenges that constrain their applications to DSR, MoEs
offer a natural framework for learning across families of
arbitrarily related environments. We claim that strategic
combination of contextual meta-learners enables simulta-
neous reconstruction across all families while preserving
rapid adaptation capabilities, obviating the need for manual
dataset partitioning prior to meta-learning on each subset.

Specifically, we introduce a novel routing mechanism for
MoEs that facilitates learning across dynamical systems and
potentially unrelated families thereof, while maintaining
adaptability within individual environments. Our approach
achieves this through two key innovations: (i) grounding
the routing mechanism in contextual information rather than
state input vectors, and (ii) implementing an explicit routing
protocol combining K-means clustering with least squares
optimization for precise expert-cluster pairing.

After establishing the formal problem structure and high-
lighting the imperative for hierarchical meta-learning in
Section 2, we present our MixER methodology and its core
optimization components in Section 3. Section 4 demon-
strates our main findings in few-shot learning and time series
classification, benchmarked against current state-of-the-art
approaches. We summarize our contributions as follows:

1. We identify a fundamental limitation of gradient-
descent when routing contextual information to DSR
models, which slows down expert specialization when
training MoEs.

2. We propose an effective unsupervised routing mecha-
nism for MoEs to collectively learn dynamical systems
with various degrees of relatedness.

3. We provide experimental evidence of the breadth of

applicability of our method on two and ten families of
ordinary differential equations, several classical DSR
benchmarks, and synthetic time-series data.

4. We demonstrate the limited contextual representations
resulting from MixER when the data is ambiguous
and closely related, as is the case with neuroscientific
epileptic data.

2. Problem Description & Motivation
This work addresses the fundamental challenge of learn-
ing collections of dynamical systems from data with lim-
ited knowledge of their interrelationships. We demonstrate
the limitations of conventional meta-learning approaches
through two ordinary differential equations (ODEs), and we
propose MixER as a solution to these limitations.

2.1. Hierarchical Dynamical System Reconstruction

In this section, we present the setting of hierarchical DSR.
For notational clarity, we employ consistent shorthand
throughout the paper. The notation [T ] denotes the discrete
set {1, . . . , T} for any positive integer T . Environment-
related indices (e.g., e, i, and f as seen below) are denoted
by superscripts, while other indices such as time t and ex-
pert count m use subscripts.

The reconstruction of families of dynamical systems re-
quires a novel framework for handling multi-level temporal
data. In our framework, each datum consists of a (multi-
variate) time series {xt}t∈[T ] ∈ RT×d of length T > 0 and
dimension d ≥ 1, representing either simulated trajectories
or observed process measurements. These data points may
present shared knowledge, such as repeated clinical mea-
surements from a patient (Brenner et al., 2024) or varying
initial conditions of the same physical system, referred to as
“environments”. The complete dataset comprises E ≥ 1 en-
vironments {xe,i

t }
e∈[E]
i∈[I] , where I ≥ 1 represents the distinct

time series count in environment e. When environments
exhibit higher-order relationships, the dataset extends to
F ≥ 1 families, denoted as {xf,e,i

t }f∈[F ] (see Figure 1).

Importantly, we make no assumptions about inter-family
relationships, which may range from loose to intricate con-
nections. For this reason, the training data is presented as
Dtr ≜ {xe,i

t }e∈[E], with unsupervised environment cluster-
ing into families occurring during learning. In cases without
repeated measurements, each time series i constitutes its
own environment. This framework enables the development
of foundational models capable of processing heterogeneous
data while generalizing conventional dynamical system re-
construction approaches.

Learning on our datasets can be viewed in two levels: con-
ventional (or flat), and hierarchical DSR models.
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Flat DSR Models The base level formulates dynamical
system reconstruction as a supervised learning problem
(Göring et al., 2024; Kramer et al., 2021; Yin et al., 2021).
The primary objective is learning a flow mapping Gθ that
transforms latent representation zt across time steps:

zt = Gθ(zt−1, xt−1), (1)

where xt−1 represents an optional ground truth teacher-
forcing signal and θ denotes learnable parameters. We note,
however, that xt−1 is not used during inference as the sys-
tem is rolled out auto-regressively. This formulation de-
scribes a sequence-to-sequence learning problem (Brenner
et al., 2024; Kidger et al., 2020; Gu & Dao, 2023).

In scenarios without teacher forcing (Yin et al., 2021; Kirch-
meyer et al., 2022), the problem transforms into a state-to-
sequence or initial value problem (IVP):

dzt
dt

= Gθ(zt), ∀t ∈ [0, T ] , (2)

or equivalently:

zt = z0 +

∫ t

0

Gθ(zτ ) dτ, ∀t ∈ [0, T ] . (3)

This approach underlies Neural ODEs (Chen et al., 2018;
Rackauckas et al., 2020; Haber & Ruthotto, 2017; Weinan,
2017), which have become invaluable in generative model-
ing (Lipman et al., 2022; Liu et al., 2023) and engineering
applications (Kochkov et al., 2024; Shen et al., 2023).

Hierarchical DSR Models Environment-aware models
introduce a context vector ξ that modulates model behav-
ior. We consider two conditioning approaches: hypernet-
work-based conditioning (Kirchmeyer et al., 2022; Bren-
ner et al., 2024), where a secondary network Hθ generates
environment-specific weights:

zt = Gθe(zt−1, x
e
t−1), with θe = Hθ(ξ

e), (4)

and concatenation-based conditioning (Nzoyem et al., 2025;
Zintgraf et al., 2019), where the context is directly fed to
the flow map:

zt = Gθ(zt−1, x
e
t−1, ξ

e). (5)

For convenience, both approaches can be denoted as

zt = Gθ,ξe(zt−1, x
e
t−1). (6)

Current hierarchical DSR models, such as Equation (6),
struggle with complex data relationships (e.g. families of
unrelated environments), raising the critical question:

What is the optimal way to cluster environments
so that existing contextual meta-learning ap-
proaches can utilize them effectively?

Before presenting our solution to this question, we under-
line the central limitation of contextual meta-learning with
a simple example. We show that without appropriate clus-
tering, these methods become ineffective when confronted
with datasets of loosely related families.

2.2. Motivating Example

The limitations of task-specific meta-learners and naive
MoE become evident in the initial value problem (IVP)
setting of Figure 1. Our test case involves simultaneous
learning of two 2-dimensional ODEs proposed by d’Ascoli
et al. (2024). The dataset comprises two families, with
the goal of reconstructing I = 32 test-time trajectories
across E = 10 total environments from both families (see
ODEBench-2 in Table 1). We evaluate three state-of-the-art
meta-learners—Neural Context Flow (NCF) (Nzoyem et al.,
2025), CoDA (Kirchmeyer et al., 2022), and GEPS (Koupaı̈
et al., 2024)—within a top-1 MoE framework.

NCF CoDA GEPS
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
R

el
at

iv
e 

L
2

0.987

1.906

1.176

1.004

1.273 1.259

0.186

0.045
0.142

Task-Specific Naive MoE MixER

0 50 100 150 200 250
Train Step

10 5

10 4

10 3

10 2

10 1

M
SE

Task-Specific NCF
Task-Specific CoDA
Task-Specific GEPS

Naive MoE NCF
Naive MoE CoDA
Naive MoE GEPS

MixER NCF
MixER CoDA
MixER GEPS

Figure 2. Limitation of task-specific meta-learning and vanilla
MoE on the two families of ODEs from Figure 1. Strategically
increasing the capacity of the network with MixER and its special
routing algorithm results in a successful model. (Top) Relative L2

error on test set; (Bottom) Validation MSE losses during training.

Figure 2 demonstrates that single task-specific meta-learners
cannot capture the inherent data complexity. Furthermore,
a naive MoE implementation with gradient-based gating
updates (Shazeer et al., 2017a) routes all contexts to a single
expert (Figure 8), yielding suboptimal performance. The
validation losses reveal that once suitable gating weights are
found and family-expert pairings established, our proposed
solution (in green) dramatically improves performance start-
ing around training step 40 for CoDA or 150 for NCF.
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Mixture of Expert Reconstructors

Figure 3. Illustration of vanilla MoE and our proposed MixER layer. (Left) Vanilla MoE setting where a single input x is passed through
a gating network whose outputs enable the router to assign computation to a specific expert (Chen et al., 2022). (Right) Our sparse
MixER layer requires a context vector ξ alongside the input x. The gating network computes expert affinities based on this context vector.
Contrary to MoE, the MixER layer disregards the softmax-weighted output aggregation.

Top-1 MoE’s fundamental advantage lies in its reduced
active parameter count which saves computation during
inference (Jiang et al., 2024; Fedus et al., 2022). The follow-
ing section details our improved routing mechanism which
leverages this top-1 sparsity structure.

3. Mixture of Expert Reconstructors
We present a novel MoE layer that leverages K-means clus-
tering and least squares to minimize routing conflicts across
DSR models in its layer.

The MixER layer, depicted in Figure 3, fundamentally dif-
fers from vanilla MoE layers in two aspects. First, MixER
incorporates an environment-specific context vector ξ as
additional input for computing gating weights, addressing
the limitation that pointwise state input xt alone cannot fully
characterize temporal behavior. Second, MixER employs a
top-1 MoE architecture and eliminates the need for softmax
weighting of expert outputs. This design choice enables ex-
perts to function independently outside the layer, a critical
feature for our gating network update methodology.

3.1. Optimization Procedure

Our training pipeline optimizes both environment-specific
parameters Ξ ≜ {ξe}e∈[E] and shared parameters Θ ≜
{θm}m∈[M ], where M denotes the number of experts. The
optimization minimizes the aggregate MSE loss:

L(Θ,Ξ,Dtr) ≜
1

E × I × T

E∑
e=1

I∑
i=1

T∑
t=1

∥x̂e,i
t − xe,i

t ∥22, (7)

where x̂ represents the reconstructed trajectory. We imple-
ment proximal alternating minimization (Li et al., 2019),
chosen for its proven convergence to second-order optimal
solutions (Li et al., 2019; Nzoyem et al., 2025). Notably,

our framework eliminates the need for importance or load-
balancing terms in the loss function (Shazeer et al., 2017b).

The gating network W updates occur independently of Θ, as
motivated in Section 2.2. Our implementation applies gating
updates after each (or several) gradient update of either Θ or
Ξ. During adaptation to novel environments, only context
vectors undergo optimization via gradient descent, while W
and Θ remain fixed.

To address scale variations across trajectory families, we
employ small batches of closely related environments (deter-
mined by L1 norm between context vectors) for stochastic
updates of Θ and Ξ. For validation and model selection in
these scenarios, we utilize the relative L2 loss defined in
Equation (9).

3.2. Gating Network Update

The gating network transforms a context ξe into M logits
ge ≜ {gem}m∈[M ], where the maximum value identifies the
optimal expert for environment e. We implement a linear
mapping1:

ge = ξeW, ∀ e ∈ {1, . . . , E} (8)

optimized through least squares (see Algorithm 1), with
labels Y (proxies for ge) derived from K-means clustering
using Lloyd’s algorithm (Lloyd, 1982) (see Algorithm 2).

The update procedure in Algorithm 1 comprises four key
stages: (1) K-means clustering (line 6); (2) per-expert per-
environment loss computation (lines 7 and 8); (3) expert-
cluster pairings (lines 9 to 18); and (4) least-squares opti-
mization (lines 19 to 24). These stages are visualized in
Figure 4.

1In practice, we note that W contains a bias term omitted here
for conciseness.
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Algorithm 1 Gating Network Update

1: Require: Θ := {θm}m∈[M ] mixture of M experts
2: Ξ := {ξe}e∈[E×F ] context vectors
3: Ξ̄ := {ξ̄m}m∈[M ] centroid initialization
4: Dtr ≜ {De

tr}e∈[E] training data
5: σ > 0 noise standard deviation
6: C, Ξ̄←K-Means(Ξ, Ξ̄) ▷ see Algorithm 2

7: ℓm,e = L(θm, ξe,De
tr) ∀m ∈ [M ],∀e ∈ [E]

8: ℓ̄·,c = Median{ℓ·,e : e ∈ Cc} ∀c ∈ [M ]

9: Initialize S ← ∅ ▷ Selected experts
10: for c ∈ [M ] do
11: SortedList← argsort(ℓ̄·,c)
12: m← SortedList1
13: while m ∈ S do
14: SortedList← SortedList2:length(SortedList)
15: m← SortedList1
16: end while
17: S ← S ∪ {m}
18: end for

19: Y ← 0E×M ▷ Least squares proxy labels
20: for c ∈ [M ] do
21: YCc

← OneHotEncode(Sc,M)
22: end for
23: X ← Ξ +N (0, σ) ▷ Add noise to context
24: W ← LeastSquares(X,Y )

25: Return W, Ξ̄

0 1

1 0

1 0

0 1

1 0

0 1

0 1

0 1

Least squares solve for gating network

Contexts LabelsLosses per expert per environment

-Means Clusters

Figure 4. Illustration of the main stages of our context-based gating
update algorithm, with all tensors in compatible shapes.

Our implementation incorporates two crucial optimizations.
First, we mitigate K-means sensitivity to initial conditions
by reusing centroids from previous gating updates (line 6),
achieving convergence typically within two iterations. Sec-
ond, we introduce controlled noise to Ξ before least squares
computation, enhancing robustness against suboptimal con-
figurations and preventing instability during early training
when context values cluster near their zero initialization.

4. Experiments
We evaluate our approach through comprehensive experi-
ments on both loosely and closely related dynamical sys-
tems, synthetic and real-world datasets. Our analysis encom-
passes datasets of varying complexity, baseline comparisons,
and detailed performance assessments.

4.1. One-Shot Learning on Loosely Related Families

Meta-learning across families of dynamical systems demon-
strates the potential of our approach. Using the ODEBench
dataset (d’Ascoli et al., 2024), we analyze 10 distinct ODE
families, each containing multiple environments generated
by parameter variations (Table 1). The experimental setup
consists of 4 meta-training trajectories per environment,
with 32 additional trajectories reserved for evaluation. One-
shot adaptation is evaluated by fine-tuning context vectors
on a single trajectory, repeated across 4 adaptation envi-
ronments per family. Further data generation details are
available in Appendix B.

Table 1. Number of training families and environments extracted
from the ODEBench dataset (d’Ascoli et al., 2024).

# Families # Env. Per Fam. # Total Envs.

ODEBench-2 2 5 10
ODEBench-10A 10 5 50
ODEBench-10B 10 16 160

As in Section 2.2, we consider three leading adaptation
rules: NCF (Nzoyem et al., 2025), CoDA (Kirchmeyer et al.,
2022), and GEPS (Koupaı̈ et al., 2024). We wish to know
whether our approach boosts the performance of these base-
lines on such loosely connected data. All adaptation rules
utilize the same MLP (Haykin, 1994) as the root (or main)
network. Our MixER implementations employ context vec-
tors of dimension dξ = 40, evenly distributed among expert
meta-learners (implementation details in Appendix A).

Table 2. Training and adaptation relative MSEs (↓) on the
ODEBench-10A dataset, across 3 runs with different seeds.
MixER-M means M experts are present in the layer. The † indi-
cates the naive MoE with the gate updated via gradient descent.
The best along the columns is reported in bold.

NCF CODA GEPS

TRAIN ADAPT TRAIN ADAPT TRAIN ADAPT

MIXER-1 2.05±0.12 1.80±0.28 0.98±0.08 6.91±1.25 2.61±0.1 2.20±0.21
MIXER-10† 1.53±0.34 5.28±1.04 0.76±0.07 4.25±0.15 0.58±0.04 1.16±0.09
MIXER-10 1.05±0.09 2.38±0.23 0.47±0.06 15.9±4.2 1.01±0.05 1.29±0.08

Results on ODEBench-10A (Table 2) reveal that MixER
enhances performance across all contextual meta-learning
backbones on the training evaluation sets. However, adap-
tation performance varies significantly, with GEPS main-
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taining consistency while NCF and CoDA’s performance de-
grades. The limited environment count in ODEBench-10A
constrains overall performance, motivating our evaluation
on the more comprehensive ODEBench-10B dataset.

Table 3. Training and adaptation metrics on ODEBench-10B. (Top)
Relative MSE (↓); (Bottom) Proportion of environments (%) with
relative MSE below the threshold of ε = 0.1 (↑) .

NCF CODA GEPS

TRAIN ADAPT TRAIN ADAPT TRAIN ADAPT

MIXER-1 0.12±0.01 3.20±0.28 0.07±0.01 0.34±0.05 0.21±0.1 1.24±0.07
MIXER-10† 0.29±0.02 2.53±0.20 0.15±0.03 0.72±0.08 0.13±0.4 0.49±0.02
MIXER-10 0.22±0.60 1.43±0.23 0.10±0.02 14.8±4.2 0.06±0.01 1.43±0.02
MIXER-20 0.38±0.02 0.54±0.02 0.12±0.04 0.38±0.02 0.17±0.03 0.92±0.10

NCF CODA GEPS

TRAIN ADAPT TRAIN ADAPT TRAIN ADAPT

MIXER-1 66.9±2.1 40.0±2.3 85.6±2.7 50.0±2.5 64.4±3.9 37.5±3.5
MIXER-10† 36.9±6.4 30.0±3.5 71.9±1.6 42.5±0.8 71.2±5.4 50.0±1.4
MIXER-10 55.6±4.6 2.5±2.8 80.0±2.5 25.0±2.8 85.6±5.4 32.5±3.0
MIXER-20 37.5±2.4 20.0±4.2 60.6±8.0 27.5±1.0 55.6±3.2 35.0±2.5

NCF CoDA GEPS

Figure 5. Gating weights on ODEBench-10B, at the end of training
with MixER-10. (Top) Gating heatmap. (Bottom) Histogram
across all 160 environments.

Analysis of ODEBench-10B (Table 3) shows that MixER-
10 underperforms compared to MixER-10† (naive MoE)
and MixER-1 (a single meta-learner). Performance analysis
using relative L2 thresholds (defined in Equation (10)) glob-
ally indicates diminished benefits from using MixER-10.
However, GEPS exhibits remarkable robustness, showing
consistent improvement with increased expert count in both
training and adaptation scenarios, even with gradient-based
gating updates. As expected, visualization of gating val-
ues (Figure 5) reveals that enhanced performance correlates
with improved environment-to-expert routing in groupings
of 16 across all 160 environments.

4.2. Generalization on Classical DSR Datasets

Classical DSR benchmarks reveal the breadth of appli-
cability of our approach. We evaluate three datasets of

closely related environments: (i) Lotka-Volterra (LV), a
2-dimensional ODE modeling species evolution in closed
ecosystems (Yin et al., 2021); (ii) Glycolytic Oscillator
(GO), a model of yeast glycolysis (Kirchmeyer et al.,
2022); and (iii) Sel’kov Model (SM), a more complex 2-
dimensional ODE for glycolysis that exhibits a Hopf bifur-
cation (Nzoyem et al., 2025).

We consider the same NCF, CoDA, and GEPS backbones as
above. Additionally, we consider CAVIA2 (Zintgraf et al.,
2019). MixER employs three experts across all experiments,
with parameter counts matched to baselines for fair compar-
ison. Context vector dimensions vary by backbone: NCF
uses dξ = 512, while CoDA and GEPS use dξ = 2, reflect-
ing underlying physical parameter variations. Additional
hyperparameters are documented in Appendix C.

Results presented in Table 4 demonstrate that while all meth-
ods successfully approximate the IVP vector fields, MixER
underperforms relative to its baseline meta-learners. Clus-
tering and routing analysis (Figure 9) shows that MixER
logically partitions datasets into three subsets, but this parti-
tioning limits each expert meta-learner’s exposure to the full
dataset, potentially explaining the performance degradation
despite clear cross-environment commonalities.

4.3. Feature Interpretability and Downstream
Clustering

A major benefit of contextual meta-learning is in its by-
product context features, which can be used for downstream
tasks. To test the interpretability of these features, we con-
sider two time series classification datasets. First, the Syn-
thetic Control Chart Time Series (SCCTS) (Alcock, 1999)
is a collection of 600 time series5 across six classes: A.
Normal, B. Cyclic, C. Increasing trend, D. Decreasing trend,
E. Upward shift, and F. Downward shift. The traditional
K-means typically struggles to separate these classes due
to the similarities among the pairs A/B, C/D, and E/F. We
expect the grouping (600 environments→ 6 classes→ 3
families) to be suitable for hierarchical models. As such, we
train a MixER with 3 expert meta-learners in a completely
unsupervised manner.

Second, the Epilepsy2 dataset (Andrzejak et al., 2001) is
a large collection of real-world neuroscientific EEG data
with noisy labels indicating whether a subject is healthy (0)
or experiencing a seizure (1). The 80 unshuffled training
samples are labeled as follows [0-30): 1, [30-60): 0, [60-
70): 1, and [70-80): 0. For this dataset, our families are
the two underlying classes. We emphasize that SoTA meth-

2We did not augment CAVIA within our MixER layer due to
its second-order optimization algorithm.

4For integration within the MixER layer, we performed custom
reimplementation of the backbones as explained in Appendix C.2.

5Each time series constitutes its own environment, i.e., I = 1.
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Table 4. In-Domain (InD) and Out-of-Distribution (OoD) test MSEs (↓) for the LV, GO, and SM problems. The star indicates runs using
the reference implementations4. Results for CAVIA, CoDA* and NCF* are reported from (Nzoyem et al., 2025). The best is reported in
bold. The best of the three MixERs is shaded in grey . The #PARAMS columns indicate the active parameter counts.

LV (×10−5) GO (×10−4) SM (×10−3)

#PARAMS IND OOD #PARAMS IND OOD #PARAMS IND OOD

CAVIA 305246 91.0±63.6 120.1±28.3 130711 64.0±14.1 463.4±84.9 50486 979.1±141.2 859.1±70.7
CODA* 305793 1.40±0.13 2.19±0.78 135390 5.06±0.81 4.22±4.21 50547 156.0±40.52 8.28±0.29
NCF* 308240 1.68±0.32 1.99±0.31 131149 3.33±0.14 2.83±0.23 50000 6.42±0.41 2.03±0.12
MIXER-NCF 307245 3.70±0.4 4.45±0.3 130535 73.5±21.1 141.5±82.8 50387 32.3±4.2 64.2±1.5
MIXER-CODA 307995 4.00±0.01 53.5±0.4 132137 42.0±18.9 49.3±25.1 51995 32.8±3.9 317.2±6.0
MIXER-GEPS 305112 14.8±0.7 82.4±0.9 131747 22.3±23.2 259.7±45.0 51312 27.6±5.8 46.3±2.7

ods do not face difficulties classifying this data, whereas
naive K-means consistently struggles. For both SCCTS
and Epilepsy2 datasets, the backbone meta-learner we use
is the hier-shPLRNN (Brenner et al., 2024) based on the
generalized teacher forcing approach (Hess et al., 2023).
We fix its mixing coefficient α = 0.5, the hidden layer’s
width to 16, and we use a linear hypernetwork to generate
weights based on context vectors of size dξ = 10.

Vanilla K-Means MixER - 1Expert MixER - 3 Experts

Figure 6. PCA clusters formed when training a MixER on the
SCCTS dataset. (Top) Coloring using the ground truth labels;
(Bottom) Coloring using labels from a K-means algorithm, with
its means initialized at the ground truth means.

SCCTS results (Figure 6) demonstrate improved class sep-
aration with three experts, effectively grouping similar
classes (A/B, C/D, E/F) and routing them to the same expert.
This configuration unambiguously outperforms both single-
expert and vanilla K-means approaches in qualitative and
quantitative metrics.

Figure 7. PCA clusters on the Epilepsy2 datasets, using the hier-
shPLRNN meta-learning backbone. Accuracy scores are obtained
on the testing contexts upon training a logistic regression classifier.

Conversely, Epilepsy2 results (Figure 7) show degraded
performance with MixER. While context routing roughly
aligns with class boundaries, the clusters lack clear sepa-
ration, with epileptic subjects split between experts while
healthy subjects route exclusively to the second expert. This
routing pattern persists in test data, challenging downstream
classification via logistic regression (Cox, 1958). The clas-
sification performance degradation likely stems from the
dataset’s inherent noise, as noted by Brenner et al. (2024).
Indeed, such close proximity of time series prevents clean
discrimination and routing during training. These results
highlight MixER’s limitations with ambiguous, highly re-
lated environments.

5. Related Work
We review the emerging field of dynamical system recon-
struction (DSR) and its intersection with meta-learning for
multi-environment generalization. We cover learning gener-
alizable DSRs and their extension to foundational models.

Multi-Environment Learning The challenge of multi-
environment learning has received substantial attention in
the machine learning community. Contemporary multi-
domain training approaches extend the traditional Empirical
Risk Minimization (ERM) framework through Invariant
Risk Minimization (IRM) (Arjovsky et al., 2019) and Dis-
tributionally Robust Optimization (DRO) (Ben-Tal et al.,
2013; Sagawa et al., 2020; Krueger et al., 2021), which op-
timize models to minimize worst-case performance across
potential test distributions. For optimal reconstruction of
ODEs, PDEs, and differential equation-driven time series,
several models incorporate physical parameters as model
inputs (Brandstetter et al., 2022; Takamoto et al., 2023).
This approach assumes that exposure to training physi-
cal parameters enables models to learn the underlying pa-
rameter distribution and its relationship to system dynam-
ics. However, these physical parameters are often sparse
or unobservable, necessitating the learning of data-driven
proxies through multitask learning (MTL) (Caruana, 1997)
and meta-learning (Hospedales et al., 2021) approaches for

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Mixture of Expert Reconstructors

DSRs. While MTL methods typically adapt components
of a generalist model across training environments (Yin
et al., 2021), they often lack the rapid adaptation capabil-
ities of their meta-learning counterparts when confronted
with out-of-distribution scenarios.

Generalization to New Environments Meta-learning,
embodied by adaptive conditioning (Serrano et al., 2024)
in the DSR community, represents the primary framework
for generalization. Rather than conducting complete model
fine-tuning for each new environment (Subramanian et al.,
2024; Herde et al., 2024), this approach implements training
with rapid adaptation in mind. Contextual meta-learning par-
titions learnable parameters into environment-agnostic and
environment-specific components. These contexts serve di-
verse purposes: (1) Encoder-based methods (Garnelo et al.,
2018; Wang et al., 2022) employ dedicated networks for
context prediction, though they tend to overfit on training
environments (Kirchmeyer et al., 2022). (2) Hypernetwork-
based approaches (Kirchmeyer et al., 2022; Brenner et al.,
2024; Blanke & Lelarge, 2024) learn transformations from
context to model parameters. GEPS (Koupaı̈ et al., 2024),
through its LoRA-inspired adaptation rule (Hu et al., 2021),
enhances these methods for large-scale applications. (3)
Concatenation-based conditioning strategies (Zintgraf et al.,
2019; Nzoyem et al., 2025) incorporate context as direct in-
put to the model. While these frameworks demonstrate con-
siderable efficacy, none directly addresses learning across
families of arbitrarily related environments.

Learning in Families of Environments Clustering before
training, followed by task-specific meta-learning (Nzoyem
et al., 2025; Kirchmeyer et al., 2022; Koupaı̈ et al., 2024;
Brenner et al., 2024) would constrain the adaptability of
our models. The challenge of simultaneous learning across
arbitrarily related families remains largely unexplored, par-
ticularly in the context of Mixture of Experts (MoE) (Ja-
cobs et al., 1991). MoE is a powerful paradigm, as Chen
et al. (2022) demonstrate that certain tasks fundamentally
require expert mixtures rather than single experts. Most
relevant to our context is the variational inference approach
of (Roeder et al., 2019; Davidian & Giltinan, 2003) which
infers Neural ODE (Chen et al., 2018) parameters across
well-defined hierarchies. The language modeling commu-
nity provides compelling demonstrations of MoE efficacy
(Shazeer et al., 2017b). Sparse MoEs enable expert MLPs to
encode domain-specific knowledge (Dai et al., 2024; Jiang
et al., 2024; Guo et al., 2025), while some MoE variants
address catastrophic forgetting (He, 2024). Drawing in-
spiration from “switch routing” (Fedus et al., 2022), our
work dedicates single experts to individual families during
training.

Foundational Scientific Models Current foundational sci-
entific models remain domain-specific, as exemplified in
climate modeling (Nguyen et al., 2023; Bodnar et al., 2024)
where abundant data sources maintain relative homogene-
ity. Kochkov et al. (2024) achieves generalization through
the hybridization of principled atmospheric models with
neural networks. While PINNs (Cuomo et al., 2022) under-
pin numerous powerful systems, they demand substantial
data and domain expertise (Nzoyem et al., 2023). Our ap-
proach diverges by discovering physics from data without
prior physical knowledge while maintaining adaptability.
Although domain-agnostic models are emerging (Subrama-
nian et al., 2024; Herde et al., 2024), they typically require
resource-intensive pre-training and fine-tuning. To the best
of our knowledge, our work represents the first DSR ap-
proach targeting such broad generalization through rapid
adaptation of only a fraction of the training parameters.

6. Limitations & Conclusion
Limitations Our experiments demonstrate that our frame-
work successfully learns families of environments that share
either minimal or extensive structure. However, several lim-
itations warrant consideration: (1) MixER’s interpretability
performance on closely related datasets is inferior to single
meta-learners, particularly in scenarios with abundant data
availability; (2) the computational demands typically exceed
those of individually trained meta-learners, as all experts
must remain simultaneously loaded in memory.

Future Work Our work establishes foundations for
promising research directions beyond the aforementioned
limitations. The cluster-expert associations which were
observed to dynamically shift during training suggest in-
teresting potential for continual learning. Also, exploring
the combination of meta-learners with different nature or
architecture could significantly broaden the usable datasets.

Conclusion We integrated traditional ML techniques
within deep learning to address the open problem of re-
constructing families of dynamical systems with arbitrary
relatedness. Through our analysis, we identified the inherent
limitations of task-specific meta-learning and proposed as a
solution MixER—a Mixture of Experts approach featuring
a specialized routing mechanism. Our results demonstrated
that while MixER excels when processing highly heteroge-
neous data with limited amounts of training examples, it
conversely underperforms classical meta-learning baselines
on datasets exhibiting high degrees of relatedness, with indi-
vidual experts being exposed to only a fraction of the dataset.
Nevertheless, by successfully extending meta-learning from
multi-environment DSRs to hierarchies thereof, our find-
ings establish a promising pathway toward domain-agnostic
foundational models for scientific applications.
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Impact Statement
This work advances scientific modeling by enabling AI sys-
tems to learn from diverse datasets simultaneously. The
high computational requirements and complexity of the
system could exacerbate research inequity between well-
resourced and under-resourced institutions. To address this
concern, we open-source our implementation at https://
anonymous.4open.science/r/MixER, with pre-
trained weights optimized for resource-constrained envi-
ronments to follow.
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A. Algorithms & Definitions
A.1. Llyod’s K-Means

Algorithm 2 Lloyd’s K-Means

1: Require: Ξ := {ξe}e∈[E×F ] context vectors
2: Ξ̄ := {ξ̄m}m∈[M ] centroid initialization
3: if Ξ̄ = Null then
4: Ξ̄← RandomUniformSample(M,dξ)
5: end if
6: repeat
7: Cm ← {ξ ∈ Ξ : m = argmin

j
∥ξ − ξ̄j∥1}, ∀m ∈ [M ]

8: if |Cm| = 0 then
9: Return {Cm}m∈[M ],Null

10: else
11: ξ̄m ←

1

|Cm|
∑

ξ∈Cm

ξ, ∀m ∈ [M ]

12: end if
13: until Ξ̄ converges
14: Return {Cm}m∈[M ], Ξ̄

A.2. Metric Definitions

We define the relative MSE or relative L2 loss used to perform model selection in several experiments.

Rel. MSE ≜
1

E × I × T

E∑
e=1

I∑
i=1

T∑
t=1

∥xe,i
t − x̂e,i

t ∥22
∥xe,i

t ∥22
. (9)

To avoid numerical instability in the metric computation, we only consider states xe,1
t with L2 norm grater than 10−6.

Additionally, we consider the TPRMSE (Thresholded Percentage Relative MSE) defined as the proportion of environments
in which the Rel. MSE is below a specified threshold ε:

TPRMSE ≜
100

E

E∑
e=1

1{RelMSEe<ε}, (10)

where:

• 1{·} is the indicator function,

• E is the total number of environments available,

• RelMSEi is the aggregate relative MSE across trajectories in the e-th environment.
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B. Datasets
We describe the datasets used in this paper. We begin with the synthetic ODEBench datasets used both to illustrate the
limitations of classical meta-learning and those of our MixER in high-data regimes. We follow with the classical synthetic
DSR datasets, and finish with real-world EEG data.

B.1. ODEBench

ODEBench (d’Ascoli et al., 2024) features a selection of ordinary differential equations primarily from (Strogatz, 2018), to
which other iconic systems have been added. In total, it boasts 63 definitions of ODE families spanning various regimes:
chaotic, periodic, etc., and dimensionality: 1D, 2D, 3D, and 4D. We study 10 of these families, all two-dimensional. First, we
describe the data generation process for generating ODEBench-10A (introduced in Table 1), whose training and adaptation
trajectories is obtained by adapting the default ODEBench initial conditions and parameters as described below.

The initial conditions for each ODE are generated by interpolating between two reference initial conditions. For each
dimension of the ODE, the initial conditions are sampled uniformly between the minimum and maximum values of the two
reference conditions. This ensures a diverse set of starting points for the trajectories while maintaining consistency with the
ODE’s physical or mathematical constraints.

The parameters of the ODEs (e.g., c0, c1) are selected based on predefined reference values. For training and testing, these
parameters are varied within a range of 90% to 110% of their reference values. This variation is achieved by creating a grid
of parameter values, ensuring a systematic exploration of the parameter space. For adaptation tasks, the parameters are
scaled linearly between 80% and 120% of their reference values to simulate environments outside the training domain.

The ODEs are solved using the solve ivp function from the scipy.integrate module, which the Runge-Kutta
method of order 4(5) (RK45). This method is a widely used numerical integrator for solving initial value problems due
to its balance between accuracy and computational efficiency. The evaluation time step for reporting ∆t is determined by
dividing the time horizon T by the number of steps (fixed to 100 across all families), ensuring a consistent resolution across
all simulations. We focus on ODEs that display a periodic behavior, and the time horizon is chosen so as to observe at least
one full oscillation.

The dataset is divided into four distinct splits: train, test, adaptation train, and adaptation test. The number of environments
and initial conditions for each split is summarized in the table below.

Table 5. Data splits and their characteristics for ODEBench-10A. Similar attributes apply to ODEBench-10B as per Table 1.

Split Environments Initial Conditions Description

Train 5 4 Used for training models.
Test 5 32 Used for evaluating model performance.
Adaptation Train 1 1 Used for fine-tuning context vectors.
Adaptation Test 1 32 Used for evaluating fine-tuned contexts.

The following table provides a detailed description of the ODE families used in the dataset. Each ODE is identified by an
ID, and its analytical definition, time horizon, initial conditions, and parameters are listed.

Table 6. ODE identifiers and definitions from (d’Ascoli et al., 2024), along with custom parameters, initial conditions, and
time horizon values. The custom values are used to generate ODEBench-10A and ODEBench-10B.

ID Family Name Equation Parameters Initial Values Time Horizon

24
Harmonic oscillator

without damping

{
ẋ0 = x1

ẋ1 = −c0x0

c0 = 2.1
[0.4,−0.03]
[0.0, 0.2]

10

25
Harmonic oscillator

with damping

{
ẋ0 = x1

ẋ1 = −c0x0 − c1x1

c0 = 4.5
c1 = 0.43

[0.12, 0.043]
[0.0,−0.3] 8
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28 Pendulum without friction

{
ẋ0 = x1

ẋ1 = −c0 sin(x0)
c0 = 0.9

[−1.9, 0.0]
[0.3, 0.8]

15

32
Damped double
well oscillator

{
ẋ0 = x1

ẋ1 = −c0x1 − x3
0 + x0

c0 = 0.18
[−1.8,−1.8]
[−2.8, 1.0] 5

34
Frictionless bead

on a rotating hoop

{
ẋ0 = x1

ẋ1 = (−c0 + cos(x0)) sin(x0)
c0 = 0.93

[2.1, 0.0]
[−1.2,−0.2] 20

35
Rotational dynamics of
an object in a shear flow

{
ẋ0 = cos(x0)

tan(x1)

ẋ1 = sin(x0)(c0 sin
2(x1) + cos2(x1))

c0 = 4.2
[1.13,−0.3]
[0.7,−1.7] 5

37
Van der Pol oscillator

(standard form)

{
ẋ0 = x1

ẋ1 = −c0x1(x
2
0 − 1)− x0

c0 = 0.43
[2.2, 0.0]
[0.1, 3.2]

15

38
Van der Pol oscillator

(simplified form)

{
ẋ0 = c0

(
−x3

0

3 + x0 + x1

)
ẋ1 = −x0

c0

c0 = 3.37
[0.7, 0.0]

[−1.1,−0.7] 15

39 Glycolytic oscillator

{
ẋ0 = c0x1 + x2

0x1 − x0

ẋ1 = −c0x0 + c1 − x2
0x1

c0 = 2.4
c1 = 0.07

[0.4, 0.31]
[0.2,−0.7] 4

40 Duffing equation

{
ẋ0 = x1

ẋ1 = c0x1(1− x2
0)− x0

c0 = 0.886
[0.63,−0.03]
[0.2, 0.2]

10

The ODEBench-2 dataset is a subset of the original ODEBench-10 datasets, focusing on two specific systems: the Harmonic
Oscillator with Damping (ID 25) and the Rotational Dynamics of an Object in a Shear Flow (ID 35) from Table 6. A few
changes where made to emphasize the differences in dynamics behaviour between the two families. Those changes are
summarized in Table 7.

Table 7. Parameter, initial condition, and time horizon values for ODEBench-2.

ID Parameters Initial Values Time Horizon

25 c0 = 0.4
[0.1, 0.1]
[0.0,−0.3] 5

35 c0 = 6.0
[1.13,−0.3]
[0.7,−1.7] 5

B.2. LV, GO, and SM

The Lotka-Volterra (LV), Glycolytic Oscillator (GO), and Sel’kov Model (SM) have been the subject of extensive studies
these past years. A complete description of each dataset along with the generation processes is provided in (Yin et al.,
2021; Kirchmeyer et al., 2022; Nzoyem et al., 2025). For our use case, we download the data from the Gen-Dynamics
repository (Nzoyem et al., 2025).

B.3. Synthetic Control

The Synthetic Control Chart Time Series (SCCTS) dataset is a collection of synthetically generated control charts, designed
for time series clustering and classification tasks. The dataset contains 600 time series instances, each comprising 60 time
steps, and is divided into six distinct classes: Normal, Cyclic, Increasing Trend, Decreasing Trend, Upward Shift, and
Downward Shift. The dataset has been used in prior research to explore time series similarity queries and control chart
pattern recognition. Key references include works by (Alcock, 1999) on feature-based time series similarity, and (Pham &
Chan, 1998) on neural network-based control chart recognition.
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The primary task associated with this dataset is clustering, with a focus on evaluating the performance of time series clustering
algorithms. The dataset is particularly useful for testing algorithms that go beyond the Euclidean distance, as certain class
pairs are often misclassified using traditional distance measures. For instance, Derivative Dynamic Time Warping (DDTW)
(Keogh & Pazzani, 2001) has been shown to achieve better clustering results compared to Euclidean distance. The
raw dataset was downloaded from https://www.timeseriesclassification.com/description.php?
Dataset=SyntheticControl.

B.4. Epilepsy2

The Epilepsy2 dataset comprises single-channel electroencephalogram (EEG) measurements collected from 500 subjects
(Andrzejak et al., 2001; Zhang et al., 2022). For each subject, brain activity is recorded over a duration of 23.6 seconds, then
partitioned and shuffled, resulting in 11,500 examples (80 for training, and 11,420 for testing), each spanning 1 second and
sampled at 178 Hz.

The raw dataset downloaded from https://www.timeseriesclassification.com/description.php?
Dataset=Epilepsy2 includes five classification labels corresponding to different subject states or measurement loca-
tions: eyes open, eyes closed, EEG from a healthy brain region, EEG from a tumor-affected region, and seizure episodes.
For binary classification as performed in Section 4.3, the first four classes were merged into a single ”no seizure” class,
while the seizure episodes were retained as the ”seizure” class. The training set is balanced, containing 40 seizure and 40
non-seizure samples, whereas the test set is imbalanced, with 19.79% seizure and 80.21% non-seizure samples.
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C. Implementation Details
We describe the implementation of our MixER framework through the lens of its routing and its hyperparameters. We also
present the baselines and the changes we made to fit them within our framework.

C.1. Context-Based Routing

In our framework, the only way the gating network influences the output is via the logits it produces for routing (see
Figure 3). We effectively eliminate the final aggregations so that the expert can be used on its own outside the MoE layer.
This has adverse consequences however, in that the gating doesn’t impact the output enough to receive high gradients. While
this is generally solved with our clustering mechanism, we find that two mechanisms improve the clustering when the
relatedness of families is minimal:

1. Context Splitting. The router splits the contexts ξ into m equal-length pieces {ξm}m∈[M ] before feeding them to the
experts. This means each experts only ever sees a specific portion of the contexts. We apply this only on the IVPs
tested in this paper.

2. Context Shifting. Each expert is augmented with a single floating point offset, by which the inputted contexts are
shifted before usage. Again, with shifts the overall mean of the contexts received by the experts, further facilitating
clustering. We apply this to all experiments conducted in this paper.

C.2. Core Baseline Methods

With the exception of CAVIA, we perform a custom implementation of several baselines and incorporate them within our
MixER layer.

• CAVIA (Zintgraf et al., 2019) is a concatenation-based meta-learning approach that improves on the seminal (Finn
et al., 2017) by optimizing parameter-specific context vectors in its inner loop. Within the model Gθ, pre-processing of ξe,
zt−1, and xe

t−1 may be performed before concatenation and processing within a main network.

• Neural Context Flows (Nzoyem et al., 2025) use a first-order optimization procedure coupled with contextual self-
modulation to share information between environments, thus encouraging the formation of clusters and improving general-
ization. We use 2nd order Taylor expansion resulting in NCF-t2. Its model Gθ processes inputs like in CAVIA.

• CoDA (Kirchmeyer et al., 2022) is aimed at initial value problems and leverages a linear hypernetwork to generate
environment-scpefic weights of the root (main) network based on context vectors.

• GEPS (Koupaı̈ et al., 2024) improves on CoDA’s scalability by performing low-rank adaptation on MLP and CNN
weights, conditioned on context vectors. In our implementation, we use Xavier initialization (Glorot & Bengio, 2010) for
the A and B matrices, and we initialize the contexts at 0.

• hier-shPLRNN (Brenner et al., 2024) is a fast sequence-to-sequence shallow Recurrent Neural Network meta-learner.
Similar to CoDA, subject-specific weights are generated with a linear hypernetwork. We set the width of its single hidden
layer to 16. Our setting does not require any encoders to map x to z, which live in the same space. We set the initial z0 = 0.

C.3. Main Hyperparameters

Training All the experts in the MixER are initialized with the same seed. Across our experiments, the batch size is
the expected number of environments per expert, i.e. E/M . We use the AdaBelief optimizer (Zhuang et al., 2020) for
both contexts and weights. Adaptation to new environments is performed on a sequential one by one basis, except on the
Epilpesy2 dataset which considers batches of size 571.

Gating Update In our proximal alternating minimization, we performed up to 500 outer iterations, and 12 inner iterations
of both weights Θ and contexts Ξ, with the gate updated every time either are updated. We upper bound the number
of iterations in K-means to 20 (see Algorithm 2), and we set the convergence tolerance to 10−3 and the noise standard
deviation to 10−4 (see Algorithm 1).
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Architectures On problems using ODEBench, we use a 3-layer MLP of width 64 as the main network. For NCF, we use
shallow context and data networks or depth 1, each with outputs of size 32. We use the Swish activation (Ramachandran
et al., 2017) throughout, except with the hier-shPLRNN where we use ReLU activations. On other IVP problems, we adjust
the width of the main layer so that the active parameter count (equal to the number of parameters in one expert (Jiang et al.,
2024)) matches the baselines.

Software We use JAX (Bradbury et al., 2018) and its differentiable programming ecosystem (Nzoyem et al., 2023).
Specifically, we use diffrax and its Tsit5 solver to integrate differential equations (Kidger, 2022), with all neural
networks implemented with Equinox (Kidger & Garcia, 2021).

Hardware Depending on the experiment, our model was trained on a workstation fitted with a NVIDIA 4080 GPU with
16GB VRAM memory, and a supercomputer containing four NVIDIA GH200 GPUs with 480GB total memory. We aimed
for quick training times, with hier-shPLRNN being by far the faster to train in less than 5 minutes on both Epilepsy and
SCCTS datasets. It took CoDA around 20 minutes, GEPS 30 minutes, and finally NCF 25 minutes to complete 500 outer
steps on the largest ODEBench-10B dataset.
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D. Qualitative Results

Figure 8. Visualisation of the clustering heatmap as the training progresses on ODEBench-2. The four columns correspond to outer
training steps 0, 25, 125, and 250 respectively (from left to right). (Top) Naive mixture of two GEPS models with gating updates via
vanilla gradient descent. (Bottom) MixER and least-squares-based gating update.
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NCF CoDA GEPS

LV

GO

SM

Figure 9. Heatmaps of the gating values of MixER with 3 experts on three classical meta-learning datasets: LV, GO, and SM.

20



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Mixture of Expert Reconstructors

Figure 10. Visualization of a single testing trajectory and the phase space within the first 5 families with 10 expert GEPS meta-learners on
the large ODEBench-10B dataset.
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Figure 11. Visualization of a single testing trajectory and the phase space within the last 5 families with 10 expert GEPS meta-learners on
the large ODEBench-10B dataset.
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