A Framework for the Evaluation of Clinical Time
Series Models

Michael Gao Jiayu Yao
Department of Biostatistics and Bioinformatics SEAS
Duke University Harvard University
Durham, NC Cambridge, MA
michael.gao@duke.edu jiy328Q@g.harvard.edu

Ricardo Henao
Department of Biostatistics and Bioinformatics
Duke University
Durham, NC
ricardo.henao@duke.edu

Abstract

Early detection of critical events is one of the mainstays of clinical time series
prediction tasks. As data from electronic health records become larger in volume
and availability increases, models that can predict critical events before they occur
and inform clinical decision making have the potential to transform aspects of
clinical care. There has been a recent surge in literature looking at early detection
in the context of clinical time series. However, methods used to evaluate clinical
time series models in which multiple predictions per time series are made often do
not adequately measure the utility of the models in the clinical setting. Classical
metrics such as the Area Under the Receiver Operating Characteristic (AUROC)
and the Area Under the Precision Recall Curve (AUPRC) fail to fully capture the
true, real-world performance of these models. In this work, we ¢) propose a method
to evaluate early prediction models in a way that is consistent with their application
in the clinical setting, and 7z) provide a fast, open-source, and native cross-platform
implementation.

1 Introduction

Models for early detection of several endpoints in the inpatient setting such as sepsis (Futoma et al.,
2017} Henry et al.l 2015), mortality (Kim et al., 2019)), and acute kidney injury (Tomasev et al.,
2019) have been developed using data from multivariate time series obtained from Electronic Health
Records. Methods for reporting metrics of these models vary with respect to the unit of analysis.
Though ROC and Precision-Recall analyses are reported in most cases, some authors report these in
which each episode (e.g., patient trajectory) is treated as a single unit (Kim et al.,|2019), whereas in
others metrics are also reported at the prediction (unit of time) level (Tomasev et al., 2019; Hyland
et al.l 2020). Some authors differentiate between episode-level and prediction-level metrics. In
particular, Tomasev et al.|(2019) reported per-step (prediction-level) precision-recall scores as well
as episode-level metrics. (Hyland et al., 2020) evaluated precision at the prediction-level and recall
(sensitivity) at the episode-level. In addition, due to the large number of predictions, Hyland et al.
(2020) also introduce snoozing in order to account for the frequency of predictions and adjust for
clinical workup time.

Workshop on Learning from Time Series for Health, 36th Conference on Neural Information Processing Systems
(NeurIPS 2022).

There are several approaches for reporting metrics specifically for time series. Besides traditional
metrics for binary classification such as AUROC and AUPRC, |Lavin and Ahmad| (2015) describe
scoring functions which weight different components of the confusion matrix and utilize windows
surrounding the event of interest to compute utility scores. |Handler et al.| (2022) also allow for
problems-specific assignment of utility to confusion matrix components and additionally incorporate
snoozing in order to reduce alert fatigue. Rather than looking at a single time point as the event
of interest, [Tatbul et al.| (2018)) extend Precision Recall analysis to working with event ranges. As
an explicit trade-off between prediction-level precision and episode-level sensitivity, |Garg et al.
(2022) introduce a variant of the F-score that accounts for these differences. In this work, we show
how specific choices of metrics to report translate to questions regarding the clinical utility of early
detection models, make recommendations on metrics to report, and provide a fast and open source
implementation of software to facilitate reporting of these metrics.

2 Early Detection for Clinical Time Series

In evaluating the classification performance of early detection models for clinical time series, we
argue that there are two main questions of interest to users of a tool developed to detect events early
in a clinical setting. These are:

* What proportion of events are detected sufficiently early by the model? Assuming “suffi-
ciently early” has been determined in advance.

* What is the ratio of true alerts to false alerts generated by the model?

These questions are not always addressed by a traditional evaluation of early detection models. In
particular, it is important to include both episode-level and prediction-level metrics in order to
evaluate models in alignment with their clinical utility. Here, episode-level metrics refer to metrics
that are computed over the entire time series for a given patient or event whereas prediction-level
metrics refer to metrics that treat each prediction-label pair as its own unit.

2.1 Problem Definition

This work considers the early prediction task in which multiple predictions are made for a single time
series, e.g., patient trajectory. In this context, we will refer to each time series as an episode, allowing
for flexibility in cases where they may be more than a single episode per patient trajectory. Let X;; be
a vector of patient covariates for patient ¢ at time ¢;;. For each patient indexed by i € {1,2,3,...,n},
we have a set of times ¢;; where j € {1,...,m;}. In addition, we let § be a fixed detection window in
which we are interested in predicting an outcome, and 7; be the time that patient ¢ has the outcome of
interest. If the patient does not have the outcome of interest, we set T; — oo (in practice this can
be any sufficiently large number such that no positive predictions for time series where the event
does not occur). Then, the corresponding labels y;; € {0,1} are given by the indicator function
1({ti; € [T; — 6,T;)}), i.e., the label is 1 if the prediction time for patient 7 at time ¢;; is within the
prediction window and O otherwise. In this context, it makes sense to restrict t;; < T; , Vi, j. The
goal of early detection is to learn a model hy(-) parameterized by 6 such that hg(X;;) predicts y;;,
often through minimization of some criterion function L(hg(X), y).

2.2 Confusion Matrix Metrics

A natural construction of the components of the confusion matrix for early detection problems is
to simply treat each prediction-label pair {hs(X;;),y:;} as independent units and categorize the
prediction as either a True Positive (TP), False Positive (FP), True Negative (TN), or False Negative
(FN) depending on some thresholded value (operational point) for hg(X;;). This is the standard
treatment of a binary classification problem. For a given threshold z, we call a prediction 1 (positive)
if ho(X ij) > z and 0 (negative) otherwise. Under this setup, we can see that the confusion matrix
values are given as follows: A True Positive (TP) refers to any time point within the detection
window at which a positive prediction is made. A False Positive (FP) refers to any time point outside
the detection window at which a positive prediction is made. A True Negative (TN) refers to any
time point outside the detection window at which a negative prediction is made. A False Negative
(FN) refers to any time point inside the detection window at which a negative prediction is made.

A) B)

Negative
Prediction

Positive
Prediction

|||||| Detection||||||||||

tr bty t ts Window tr b 3ttt 4 g g fy

Snoozed
I Prediction

Figure 1: A) Example of a patient episode. In this example, one positive prediction (£2) is made
out of 5 total predictions (vertical lines) within the detection window. If we treat sensitivity at the
prediction-level, the calculated sensitivity would be 20%. If we treat this at the episode level, then
this represents one true positive, since a positive prediction was raised during the specified detection
window. B) Illustration of snoozing. In this example, the gray shaded areas represent snoozed time
points, so positive predictions ¢, and t9 would be snoozed in the analysis.

These in turn lead to well-defined concepts such as the sensitivity or recall (%), precision or

positive predictive value (%), and false positive rate (%). Two primary methods
of evaluation are to examine the ROC curve (trade-off between sensitivity and false positive rate),
and the Precision-Recall curve (trade-off between precision and recall).

2.3 Sensitivity and Specificity in Clinical Medicine

The concept of sensitivity and specificity in medicine are often associated with diagnostic tests. Under
this definition, the sensitivity is defined as the number of “Diseased persons with positive test results”
divided by the “[Total Number of] All Diseased Persons” (Glaros and Klinel [1988)), which — in the
early prediction context — maps to the question “What proportion of patients who go on to experience
an event of interest are detected by the model?”. Under the specification of the confusion matrix
values in Section[2.2] we can see that sensitivity instead answers the question “Of all of the time
points (¢;;) which are within the detection window [T; — 6, T;), what proportion of them resulted
in positive predictions?”. As an illustration of the difference of these two questions, consider the
following example. Suppose that a given patient has k predictions within their detection window, one
of which had a positive prediction and the rest which were negative. Then according to the classical
setup, the sensitivity for this patient would be only 1/k, despite the fact that a positive prediction was
made in the detection window. This is further illustrated in Figure[TA.

2.4 Episode-based Sensitivity and Specificity

Instead of the confusion matrix specification outlined in which corresponds to a prediction-level
metric, we redefine the confusion matrix specification to focus on detection as an episode-level metric
in order to answer questions such as "what percentage of patients who experienced an event were
captured early?" We define the episode-level confusion matrix as follows:

» TP: Any episode (e.g., patient trajectory) which has at least one positive prediction within
the detection window.

* FP: Any episode in which the event does not occur, but does have at least one positive
prediction.

* TN: Any episode which has no positive predictions and the event does not occur.
* FN: Any episode in which the event does occur, but has no positive predictions.
Under this specification, the episode-level sensitivity or recall is defined as the proportion of episodes

in which the event of interest occurs that has at least one positive prediction within the specified
detection window.

A) B)

I NoAert

I I
> Detection Window >
T T T T T T T T 1§ semtreaen 1 0T 1 T8

Precision (PPV): 4/10 Precision (PPV): 2/4

Figure 2: A) Under the presence of snoozing, the precision of this alert system is 4 true positives out
of 10 total alerts. B) Under the presence of a fixed snoozing window size, the precision of the alert
system is 2 true positives out of 4 total alerts. A change in precision often occurs under the presence
of snoozing and is sensitive to the snoozing window size, the timing/frequency of alerts, and a variety
of other factors.

2.5 Balancing True Positives and False Positives

The second question of interest as stated in [2] is related to the ratio of true alerts to false alerts
generated by the model. This lends itself to the prediction-level confusion matrix definitions, where
each prediction is treated as the unit of analysis. This makes intuitive sense, as a model which is
trained to detect an event early may generate more than one alert and one may wish to assess the ratio
of true positive to false positives in the context of individual predictions rather than episodes. As an
addition consideration, it is common for too many positive alerts to be generated, especially when the
underlying frequency of predictions is high. For example, consider a model which makes predictions
every 5 minutes, warning a clinical team that a serious event may occur. Clinical evaluation and
intervention may require far more than 5 minutes to complete. In this case, it makes sense to
implement snoozing, or disabling of alerts for a certain period of time to allow for clinical workup.
We propose that this snoozing be taken into account during the evaluation phase of the model as well,
as this reflects the realized performance of an alert system, rather than a theoretical one. An example
of this difference is illustrated in Figure 2} Formally, we can describe snoozing in the following
way. Define s to be a nonnegative number which corresponds to the snoozing window. Let z be the
threshold of choice and fix 7 to be the index corresponding to a patient who experiences an event.
Then, assume ?;; is a valid positive prediction, i.e., such that hg(Xij) > z. Any other index pair ¢k
such that ¢;;, € (t;;,t;; + s] should be removed from any evaluation metric. Note that this should
be done in a temporally consistent way, where the first positive prediction is chosen as the index
prediction. Snoozing should be then silence any predictions which occur within the appropriate
snoozing window, and the next valid positive prediction should begin the process again. This is
illustrated in Figure[IB.

2.5.1 Consequences of Snoozing

By implementing snoozing as proposed, it is important to note that the precision is now no longer
monotonic, as described in|Fawcett| (2006). As a consequence, we can no longer make the assumption
that any instance that is classified positive with respect to a given threshold will be classified positive
for all lower thresholds as well (Fawcett, |2006) since it may be snoozed at a different threshold.
This leads to a significant increase in the computational complexity of computing metrics which
utilize snoozing. We address this by implementing a native, cross-platform and open-source tool to
compute metrics described in this work (https://github.com/dihi/clinical-ts-metrics).
Our implementation outperforms a straightforward implementation using Python and Numpy by at
least an order of magnitude in the worst case. Detailed benchmarks and implementation details can
be found in the Appendix.

3 Recommended Metrics for Clinical Time Series

ROC analysis Metrics derived from the ROC are concerned with the trade-off between sensitivity
and specificity. Since the clinical question of interest relating to sensitivity is about how often events
are detected early, we recommend that these metrics be reported at the episode level.

Precision Recall (PR) analysis In precision-recall analyses, we are concerned with the trade-off
between precision (positive predictive value) and recall. Here, we recommend that the precision be
measured using the prediction-level true positive and false positive values (with snoozing if necessary
from a clinical perspective) while the recall is measured at the episode level. This is a deviation from
traditional calculations, as generally the recall is also computed at the prediction level. However, we
argue that the clinically-relevant trade-off that PR curves can help examine should consider how many
patients are captured at varying thresholds of the model, rather than considering prediction-level
recall. A single point on the precision-recall curve now represents the explicit balance between how
many true alerts and false alerts are generated a particular threshold versus how many events are
captured sufficiently early.

4 Discussion

In this work, we discussed the early detection problem for clinical time series. Often, these problems
are treated as binary classification problems and are therefore evaluated accordingly. However, using
the ROC and Precision Recall curves often do not translate directly to the clinical utility of the models
being discussed. Namely, the clinical utility of a model is tied to its ability to detect episodes of
interest and the ratio of true alerts to false alerts that are introduced. Therefore, sensitivity and similar
metrics should be evaluated at the episode level, while precision should be evaluated at the prediction
level. Along with this, some models may generate far too many alerts for a clinical team to respond
to. We also describe snoozing and provide an implementation for evaluating models under the context
of snoozing. Our recommendations for how to present results for early detection models mirror
current work in the literature which attempt to deal with these problems. One particular limitation
of this work include how to deal with episodes where multiple events occur, which we hope will be
addressed in future work.

References

Joseph Futoma, Sanjay Hariharan, and Katherine Heller. Learning to detect sepsis with a multitask Gaussian
process RNN classifier. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, pages 1174-1182, Sydney, NSW, Australia, August 2017. JMLR.org.

Katharine E. Henry, David N. Hager, Peter J. Pronovost, and Suchi Saria. A targeted real-time early warning
score (TREWScore) for septic shock. Science Translational Medicine, 7(299):299ra122, August 2015. ISSN
1946-6242. doi: 10.1126/scitranslmed.aab3719.

Soo Yeon Kim, Saehoon Kim, Joongbum Cho, Young Suh Kim, In Suk Sol, Youngchul Sung, Inhyeok Cho,
Minseop Park, Haerin Jang, Yoon Hee Kim, Kyung Won Kim, and Myung Hyun Sohn. A deep learning
model for real-time mortality prediction in critically ill children. Critical Care, 23(1):279, August 2019. ISSN
1364-8535. doi: 10.1186/513054-019-2561-z. URL https://doi.org/10.1186/s13054-019-2561-z,

Nenad Tomasev, Xavier Glorot, Jack W. Rae, Michal Zielinski, Harry Askham, Andre Saraiva, Anne Mottram,
Clemens Meyer, Suman Ravuri, Ivan Protsyuk, Alistair Connell, Cian O. Hughes, Alan Karthikesalingam,
Julien Cornebise, Hugh Montgomery, Geraint Rees, Chris Laing, Clifton R. Baker, Kelly Peterson, Ruth
Reeves, Demis Hassabis, Dominic King, Mustafa Suleyman, Trevor Back, Christopher Nielson, Joseph R.
Ledsam, and Shakir Mohamed. A clinically applicable approach to continuous prediction of future acute
kidney injury. Nature, 572(7767):116-119, August 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1390-1.

Stephanie L. Hyland, Martin Faltys, Matthias Hiiser, Xinrui Lyu, Thomas Gumbsch, Cristébal Esteban, Christian
Bock, Max Horn, Michael Moor, Bastian Rieck, Marc Zimmermann, Dean Bodenham, Karsten Borgwardt,
Gunnar Ritsch, and Tobias M. Merz. Early prediction of circulatory failure in the intensive care unit
using machine learning. Nature Medicine, 26(3):364-373, March 2020. ISSN 1546-170X. doi: 10.1038/
s41591-020-0789-4. URL https://www.nature.com/articles/s41591-020-0789-4. Number: 3
Publisher: Nature Publishing Group.

https://doi.org/10.1186/s13054-019-2561-z
https://www.nature.com/articles/s41591-020-0789-4

Alexander Lavin and Subutai Ahmad. Evaluating Real-time Anomaly Detection Algorithms - the Numenta
Anomaly Benchmark. In 2015 IEEE 14th International Conference on Machine Learning and Applications
(ICMLA), pages 38—44, December 2015. doi: 10.1109/ICMLA.2015.141. URL http://arxiv.org/abs/
1510.03336l arXiv:1510.03336 [cs].

Jonathan A. Handler, Craig F. Feied, and Michael T. Gillam. Novel Techniques to Assess Predictive Systems
and Reduce Their Alarm Burden. Technical Report arXiv:2102.05691, arXiv, July 2022. URL http:
//arxiv.org/abs/2102.05691. arXiv:2102.05691 [cs] type: article.

Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, and Justin Gottschlich. Precision and
Recall for Time Series. In Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
8£468c873a32bb0619eaeb2050bad5d1-Abstract.html.

Astha Garg, Wenyu Zhang, Jules Samaran, Savitha Ramasamy, and Chuan-Sheng Foo. An Evaluation of Anomaly
Detection and Diagnosis in Multivariate Time Series. IEEE Transactions on Neural Networks and Learning
Systems, 33(6):2508-2517, June 2022. ISSN 2162-237X, 2162-2388. doi: 10.1109/TNNLS.2021.3105827.
URL http://arxiv.org/abs/2109.11428, arXiv:2109.11428 [cs, stat].

A. G. Glaros and R. B. Kline. Understanding the accuracy of tests with cutting scores: the sensitivity, specificity,
and predictive value model. Journal of Clinical Psychology, 44(6):1013-1023, November 1988. ISSN
0021-9762. doi: 10.1002/1097-4679(198811)44:6<1013::aid-jclp2270440627>3.0.c0;2-z.

Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861-874, June 2006.
ISSN 0167-8655. doi: 10.1016/j.patrec.2005.10.010. URL https://www.sciencedirect.com/science/
article/pii/S016786550500303X.

http://arxiv.org/abs/1510.03336
http://arxiv.org/abs/1510.03336
http://arxiv.org/abs/2102.05691
http://arxiv.org/abs/2102.05691
https://proceedings.neurips.cc/paper/2018/hash/8f468c873a32bb0619eaeb2050ba45d1-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/8f468c873a32bb0619eaeb2050ba45d1-Abstract.html
http://arxiv.org/abs/2109.11428
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.sciencedirect.com/science/article/pii/S016786550500303X

A Appendix

A.1 Benchmark of Snoozed Metrics Implementation

The introduction of snoozing increases the complexity or computing the metrics described in this work.
Practically speaking, implementations using traditional tools can be prohibitively slow, especially
when evaluating over large test sets. In order to ameliorate this process, we implement the algorithm in
Nim, which compiles code down to native binaries, which can be run on any major operating system
(Mac OS, Windows, Linux, efc.). In order to benchmark the speed of the various implementations, we
generated episode lengths uniformly from 1 time point to 3000 time points and evaluated the metrics
at a varying number of thresholds. At each threshold and for each group of episodes, we calculate the
confusion matrix summaries both at the encounter level and prediction level. The average number of
seconds over three runs for each setting to complete these tasks is listed below.

Episodes Thresholds Python Implementation (s) Our Implementation (s)

200 100 5.136 0.479
200 1000 51.177 2.890
200 10000 511.022 26.128
2000 100 55.655 4.963
2000 1000 558.562 30.362
2000 10000 5591.103 285.363

Our implementation is at least 10 times faster than the native python implementation and
also includes time to read in the data and write out the results, so this is conservative es-
timate. Details on the implementation, source code, and benchmarking can be found at
https://github.com/dihi/clinical-ts-metrics

Software Details All benchmarks were run on a Macbook Pro with M1 Pro chip. All versions of
requisite libraries relevant to the benchmark are listed below

Software Version
Python 3.8
Numpy 1.21.6
Nim 1.6.6

ArrayMancer 0.7.0

	Introduction
	Early Detection for Clinical Time Series
	Problem Definition
	Confusion Matrix Metrics
	Sensitivity and Specificity in Clinical Medicine
	Episode-based Sensitivity and Specificity
	Balancing True Positives and False Positives
	Consequences of Snoozing

	Recommended Metrics for Clinical Time Series
	Discussion
	Appendix
	Benchmark of Snoozed Metrics Implementation

