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Abstract
Large Language Models (LLMs) struggle with
long input sequences due to high memory and
runtime costs. Memory-augmented models offer
a promising solution to this problem, but exist-
ing methods have limited memory capacity and
require costly re-training to integrate with the
LLM. In this work, we introduce CAMELOT,
a Consolidated Associative Memory Enhanced
Long Transformer, which has an associative
memory (AM) module integrated with any pre-
trained attention-based LLM. The AM module in
CAMELOT consolidates token representations
into a non-parametric distribution model, balanc-
ing novelty and recency, therefore giving the LLM
the capability to process the long input sequences
without any re-training. By retrieving information
from AM, CAMELOT achieves a significant per-
plexity reduction in long-context modeling bench-
marks, e.g., 29.7% on Arxiv, even with a tiny
context window of 128 tokens.

1. Introduction
Humans’ memory systems can processed and consolidated
events overtime, forming groups of related events that guide
future actions by retaining essential information and discard-
ing inessential details (Sara, 2000). Associative Memory
(AM) is a key type of human-like memory system that links
(associates) a query with stored representations (Willshaw
et al., 1969; Hopfield, 1982). For any query, AM identi-
fies the memory slot with the best matching representation.
These representations summarize past experiences and guide
future actions. Recently, there has been growing interest
in designing modern associative memory networks (Krotov
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Figure 1. Consolidated Associative Memory Enhanced Long
Transformer (CAMELOT). Top: Consolidation of representations
in the associative memory (AM) – related concepts are grouped
together and averaged. Bottom: Recency-dependent incorporation
of novel concepts – when a new concept is introduced with no
close matches, the oldest slot (since its last update) is replaced.

& Hopfield, 2016; Ramsauer et al., 2021). Significant lit-
erature exists on memory consolidation in neural networks
(Dudai, 2004) and local learning rules, which are more
computationally efficient than end-to-end backpropagation
(Tyulmankov et al., 2021).

Concurrently, large language models (LLMs) have become
very important for many practical applications such as chat-
bots, text generation (Radford et al., 2019), and question
answering (Chung et al., 2022), etc. A key parameter for
LLMs is the input context length L that the models are
trained with. Supporting longer context makes it possible
to increase the performance by incorporating richer infor-
mation (Press et al., 2022). However, extending the context
length of state-of-the-art LLMs is challenging due to sub-
stantial resources requirements, e.g., the complexity of the
conventional attention mechanism in LLMs scales quadrati-
cally (L2) with the number of tokens.

These constraints raise a question: can we develop a plug-
and-play module for pre-trained (frozen) LLMs to handle
(unlimited) long contexts beyond L? Ideally, this module
should be computationally efficient and not require retrain-
ing or fine-tuning of the LLM.

Inspired by AM, we propose a module that consolidates
token representations into memory based on novelty and
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Figure 2. The general pipeline of CAMELoT. Every layer of the
backbone LLM is augmented with an AM module (we draw AM
in the first attention layer here, just as an example). Keys and
values are calculated for every token, keys are used to search for
relevant memorized tokens in the memory bank and return them
(Read). The retrieved memory keys and values are prepended to
the original token keys and values as prefixes. Finally, the attention
operation is applied on the concatenation of the retrieved and native
keys and values (Augment). After retrieval, the memory state is
modified according to the Write operation.

recency of input concepts. As shown in Figure 1, when
modeling a input sequence, similar information is consoli-
dated together, using a computationally cheap local writing
rule, whereas the outdated one is discarded. As shown
in Figure 2, the consolidated context is modeled as non-
parametric distributions, one per key-space of each LLM
layer. These distributions are dynamically updated as the
context window moves, with new modes created for novel
information and outdated ones replaced. Long-context at-
tention is approximated by retrieving modes closest to the
current context hidden states and adding them as a key-value
cache. This module can be integrated with any pre-trained
attention-based LLM, extending its context window beyond
L by approximating a full-context attention over all the past.

Our method requires no retraining, fine-tuning, or adaptors
between the LLM and the AM module. We conduct compre-
hensive experiments over the long-context language mod-
eling tasks, which demonstrates significant improvements
compared to the baselines. For example, when coupled
with a pre-trained LLaMA model, our memory-enhanced
network achieves up to 29.7% perplexity reduction in long-
context modeling on Arxiv compared to the base LLM.

2. Associative Memory Enabled LLM
For long document modeling, efficiently using past con-
text information is crucial. Our model is built on three
desiderata: (1) consolidation: redundant past information
should be compressed into a single memory slot; (2) nov-
elty: new concepts should be detected and stored in a new
memory slot upon first encounter; (3) recency: outdated
memory slots should be discarded when the topic shifts
to accommodate new concepts. To achieve these desider-

ata, we equiped the memory module in CAMELOT with
a Read and Write operations, supporting information re-
trieval from the memory bank and the update to the memory
bank. With the retrieved information, the current context
window of LLM is memory-enhanced via the Augment
operation. Our method is agnostic to the specific choice of
many popular transformer architectures, in the sense that
any attention-based LLM can be enhanced with the AM in
CAMELOT.

2.1. Read Operation

When a context window of length L is processed through
the LLM, keys and values from every layer (more generally
can be an arbitrary subset of layers) are passed to the corre-
sponding AM module (one per memory-augmented layer).
AM in each layer consists of M memory slots, enumerated
by the index µ = 1, ...,M . Each slot contains two vector
variables: memory keys Kmem

µ and memory values V mem
µ ,

and two integer scalar variables: counts cµ (number of con-
solidated instances), and age τµ (how old the current slot is
since its last update).

When a set of keys Ki and values Vi (index i = 1, ..., L enu-
merates individual tokens from the current context window)
is passed to the AM module to retrieve relevant informa-
tion, a search function identifies the memory slots with the
strongest association (highest similarity) between the input
token key Ki and AM’s memory slot keys {Kmem

µ }:

µ̂(i) = argmax
µ

[
sim(Kmem

µ ,Ki)
]

(1)

The keys and their corresponding values of these L strongest-
associated memories (Kr and V r) are returned for the cur-
rent L native tokens and passed back to the LLM in the form
of the key-value cache.

2.2. Augment Operation

The list of retrieved key-value caches (Kr and V r) are
passed back to the base LLM and used as the prefix con-
text in each respective memory-augmented layer. They are
prepended to the LLM keys and values of current input
tokens. Then causal attention is performed on the con-
catenated list, which after the augmentation contains 2L
keys and values (the length of current native context + the
length of retrieved memories) and L queries (current context
only), resulting in the augmented transformer attention out-
put [a1, · · · , aL]. The attention output results in augmented
hidden states [h1, · · · , hL] which are the input to the next
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layer, as shown in the following equations:

[a1, · · · , aL] = Attn(Q,K ′, V ′) (2)
Q = [Q1, Q2, · · · , QL] (3)
K ′ = Kr ⊕ [K1, ·,KL], (4)
V ′ = V r ⊕ [V1, · · · , VL] (5)

2.3. Write Operation

The state of AM is updated by the current context window
according to the Write operation which has two parts.

Consolidation. If the similarity between the current context
token key and the strongest-associated memorized key is
large (> R, R is a hyper-parameter), the concept described
by that token is declared familiar and, for this reason, its key
and value are consolidated with the key and value stored in
that memory slot. Specifically, memory slots are updated
according to:

Kmem
µ̂(i) ←

Ki + cµ̂(i)K
mem
µ̂(i)

cµ̂(i) + 1
(6)

V mem
µ̂(i) ←

Vi + cµ̂(i)V
mem
µ̂(i)

cµ̂(i) + 1
(7)

cµ̂(i) ← cµ̂(i) + 1 (8)

where cµ tracks the number of instances consolidated in slot
µ. Thus, the consolidated representations stored in each slot
µ are always arithmetic averages of individual instances that
went into that slot.

Novelty and Recency. If the similarity with the closest
memorized key is weak (< R), the concept is declared
novel. In this case, the oldest unused memory slot (the one
with maximal age τµ) is replaced with Ki, Vi, and its age
is set to 0. After each slot µ̂(i) update its age τµ̂(i) is set to
0, the ages of all slots that had no matching current context
hidden state are incremented by 1.

3. AM-augmented Long Language Modeling
Datasets We evaluate the long-context language modeling
capabilities of CAMELOT using three standard datasets.
The test perplexity is reported on each of the datasets: Wiki-
103 (Merity et al., 2016)1, which comprises articles from
Wikipedia covering various topics with good language qual-
ity; Arxiv (Gao et al., 2020)2, a collection of academic
papers in Mathematics, Computer Science, and Physics;
and PG-19 (Rae et al., 2019)3, which includes full-length
books (Wu et al., 2022; Wang et al., 2023; Tworkowski et al.,
2023).

1https://blog.salesforceairesearch.com/the-wikitext-long-
term-dependency-language-modeling-dataset/

2Taken from the Pile: https://pile.eleuther.ai/
3https://github.com/google-deepmind/pg19

Baselines. We compare CAMELOT against two notable
memory-augmented transformers in long language model-
ing tasks: Transformer-XL (Dai et al., 2019), a finetuning-
based approach which stores a fixed length of previous
input in a cache to enhance the current input without any
similarity-based retrieval; Memorizing Transformer (Wu
et al., 2022) a finetuning-based model saving past caches in
a circular manner, where older caches are replaced by newer
ones as the memory bank fills up (no consolidation occurs).

For a fair comparison, in CAMELOT and the baselines
experiments, we used the same LLaMa2-7B backbone (orig-
inal baselines used weaker backbones, such as GPT2), and
did not use fine-tuning. More implementation details are
shown in Appendix A.1. We also provide ablation study
results in Appendix A.2.

3.1. Results

Table 1 compares CAMELOT with the baseline models.
While memory-augmented methods generally improve upon
the base model on test perplexity, our analysis uncovers
the following observations. Transformer-XL shows the
least improvement, hindered by the lack of relevance as-
sessment during memory augmentation. The Memorizing
Transformer, with its capability to selectively retrieve rele-
vant information from the past, outperforms Transformer-
XL. However, it lacks memory consolidation, meaning it
can only hold a finite cache before older memories are over-
written, limiting its long-term utility. By not only select-
ing relevant past information but also employing a novel
memory consolidation process, CAMELOT significantly
enhances model performance (16.6% on PG-19, and 29.7%
on Arxiv, and 6.36% on wikitext-103, relative to the base
model on average), surpassing other memory-augmented
methods.

3.2. Discussion
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Figure 3. Test perplexity on PG19 with different input lengths.
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PG-19 and Arxiv wikitext-103

Input Length Retrieved Mem. PG-19 Arxiv Input Length Retrieved Mem. Wikitext-103

LLaMa2-7B

512 None 9.54 5.99 512 None 16.0
1024 None 8.33 4.98 1024 None 14.80
2048 None 7.88 4.35 2048 None 14.46
Avg - 8.58 5.12 Avg - 15.09

Transformer-XL

512 512 8.44 4.15 256 256 15.02
1024 1024 8.27 3.81 512 512 14.21
2048 2048 7.86 3.65 1024 1024 14.2
Avg - 8.19 3.87 Avg - 14.48

Memorizing
Transformers

512 512 8.12 3.82 256 256 14.18
1024 1024 7.4 3.63 512 512 14.07
2048 2048 7.34 3.62 1024 1024 14.39
Avg - 7.62 3.69 Avg - 14.21

CAMELoT

512 512 7.24 3.61 256 256 14.06
1024 1024 7.14 3.60 512 512 14.00
2048 2048 7.10 3.60 1024 1024 14.34
Avg - 7.16 3.60 Avg - 14.13

Table 1. Language Modeling Perplexity on wikitext-103, Arxiv, and Pg-19. For wikitext-103, we notice the maximum length of its
documents is smaller than 2k. Therefore, we report results of models whose effective input length ≤ 2048 (i.e., input length ≤ 2048 for
non-augmented model; and input length ≤ 1024 for memory-augmented models). Bold: Best perplexity on each dataset. Avg: Average.

Shorter Inputs, Better Performance Figure 3 shows
CAMELOT’s performance with different input lengths on
PG-19 test set, with 10k memory slots. Unlike models
without memory augmentation, CAMELOT demonstrates
a relatively consistent performance across different input
lengths. This stability can be attributed to the integration of
additional knowledge in the AM saved from previous inputs.
As CAMELOT accumulates past information, its visible
context range extends beyond the current input, allowing an
effective modeling of long-range dependencies irrespective
of the length of the current input. In contrast, the model
lacking memory augmentation relies solely on the local con-
text of the current input, leading to performance fluctuations
based on input length.

CAMELOT maintains its effectiveness even with tiny in-
put lengths (e.g., 128), reducing the demand on hardware
resources such as large GPUs. This enables transformers to
operate attention with shorter inputs but without compromis-
ing the quality of language modeling. Such an advantage
lowers the barriers for deploying large language models in
environments where computational budget is limited.

4. Related Works
Long-range self-attention is a line of work that tackles
long-context modeling. It includes low-rank factorization
(Wang et al., 2020), dilated attention (Ding et al., 2023),
sparsity (Beltagy et al., 2020; Zaheer et al., 2020; Kitaev

et al., 2020), and FlashAttention (Dao et al., 2022; Dao,
2023). These methods struggle to retrieve information in
the middle of the input (Liu et al., 2023). At the same time,
they can be used in tandem with our proposed approach for
long context modeling.

Memory-augmented LLMs is another stream of work aim-
ing at modelling the extended context window (Dai et al.,
2019; Wu et al., 2022; Tworkowski et al., 2023; Weston
et al., 2014). For example, Wu et al. (2022) save static past
(key, value) pairs of input into cache bank and use KNN
retrieval to improve language modeling. Tworkowski et al.
(2023) further improve this approach with contrastive learn-
ing. Wang et al. (2023) tackle the memory staleness of these
models by training a side network. Unlike these methods,
our approach uses dynamical consolidations of past tokens,
compressing redundant information from the past input into
a memory of fixed size.

5. Conclusion
We have introduced CAMELOT, Consolidated Associative
Memory Enhanced Long Transformer, for long dependency
modeling without the need for training. CAMELOT has a
model-agnostic design, allowing seamless integration into
different language models. Experimental results prove its
effectiveness, with the long-context language modeling per-
plexity significantly reduced (by up to 29.7%), and superior
performance is consistently obtained even with a tiny input
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window of 128 tokens. Future research directions connect-
ing AM and LLMs involve improving the AM design (e.g.,
automatically learning a Write function) or tackling other
long context modeling tasks (e.g., long document summa-
rization or advanced reasoning).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, which are common in studies of
LLMs, none which we feel must be specifically highlighted
here. Not contradictory, we recommend the language mod-
els to be audited properly when deployed in real-world
applications such as chatbots where real user information
can be the input of the language models.
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A. Appendix
A.1. Experiment Details

Environments All transformers-based languague models are implemented based on the HuggingFace4 libraries (version
4.34.0) or the officially released Github Repos. All codes are implemented with Python 3.10.12 and PyTorch 2.2.0 with
CUDA 12.1.0. We run experiments with 2 NVIDIA A100 GPUs, one for language model inference and one for hosting the
memory banks. Each has memory of 80GB.

Hyper-parameters In long-context language modeling tasks, we set batch size to be 4. For the similarity hyper-parameter
R, we conduct a hyper-parameter study on wikitext-103 and use R = 0.93 for all experiments.

We show the study of R in the following: We conduct hyper-parameter study for similarity threshold R on a subset of
wikitext-103 validation set, in which the examples are randomly sampled. We take LLaMa2 models with input length to be
128. The results are shown in Table 2.

From the results, we notice the best R is within [0.9, 0.95). Therefore we use 0.93 in our experiments.

R Perplexity

R=0.1 PPL=18.72
R=0.2 PPL=18.71
R=0.3 PPL=18.71
R=0.4 PPL=18.69
R=0.5 PPL=18.67
R=0.6 PPL=18.46
R=0.7 PPL=17.35
R=0.8 PPL=15.30
R=0.9 PPL=14.38

R=0.95 PPL=14.90

Table 2. Hyper-parameter study for R on the validation subset of wikitext-103

A.2. More Ablation Studies

A.2.1. ABLATION: EFFECTIVENESS OF EACH COMPONENT IN CAMELOT

To assess the impact of each component within CAMELOT, we define the following ablation variants:

CAMELOT w/o Retrieval: Instead of retrieving the closest matching memory concept for each token in the current input,
a random memory concept is returned.
CAMELOT w/o Recency: If a token’s mode has no close match in memory, it randomly replaces a memory slot rather
than the outdated one, ignoring recency.
CAMELOT w/o Novelty. Tokens are consolidated into their closet slot, regardless of if they are from novel modes. R=-1
in cosine similarity retrieval.
CAMELOT w/o Consolidating. Memory gets updated by token representations based on temporal recency, without
consolidating, setting R=+1.

We evaluate on PG-19 Sampled dataset, a subset of PG-19 comprising 20% of the books in test set. We report test perplexity
for each variant with a context length of 2048.

Results shown in Table 3 reveal that CAMELOT w/o Read performs significantly worse compared with full model,
emphasizing the crucial role of Read function in ensuring semantic relevance. When a random cache is returned in this
variant, it might provide limited or even harmful information for current modeling. CAMELOT w/o Recency also shows a
notable performance dip over the full CAMELOT model, confirming the essential role of maintaining the proper recency in
the memory. Variations in token consolidation and replacement also impact performance, resulting in different performance

4https://huggingface.co/models
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Models PPL

LLaMa2-7B 7.30

CAMELOT 6.85

CAMELOT w/o Read > 20
CAMELOT w/o Recency 9.25
CAMELOT w/o Novelty 7.23
CAMELOT w/o Consolidation 7.00

Table 3. Ablation Study on PG-19-sampled. We report the relative performance lost in perplexity over the full CAMELOT.

Perplexity

CAMELOT + Cosine Similarity 16.96
CAMELOT + Euclidean Similarity 17.45

Table 4. Analysis of similarity function on a subset of wikitext-103 validation set.

drops compared to the full approach. A larger decrement can be expected if the memory size gets smaller or the modeling
corpus gets longer. These findings suggest CAMELOT’s optimal performance relies on the combination of relevance,
recency, novelty, and effective consolidation.

A.2.2. ABLATION: DIFFERENT CHOICES OF SIMILARITY FUNCTION IN READ OPERATION

We conduct an ablation study on the similarity function in Read operation. Similarly, we randomly sampled a subset data
from the validation set of wikitext-103. We conduct evaluation experiments with cosine similarity and euclidean similarity.
We use input window with 128 tokens. Note in this experiment we use LLaMa2-7B. The results are shown in Table 4. We
notice cosine similarity gives the best performance and we use cosine similarity in our other experiments.

A.2.3. ABLATION: DIFFERENT MEMORY SIZES

Model Input Context Memory Size Perplexity

LLaMa2-7B 512 None 9.84
2048 None 7.88

CAMELoT

512 4096 7.42
2048 4096 7.22
512 10k 7.24

2048 10k 7.10

Table 5. Language Modeling performance on PG19 with different sizes of memory banks and different input lengths.

In this section, we analyze how the size of the memory affects CAMELOT. We compare its performance on the PG-19
dataset using two configurations: one with 4,096 memory slots and another with 10k slots. The findings are presented in
Table 5.

With each memory slot designed to hold a unique mode of information, increasing the number of slots allows CAMELOT
to capture a wider range of knowledge. As a result, the version with 10k slots outperforms, showing a notable improvement
in test perplexity – 26.4% for inputs of 512 length and 9.9% for 2048 length relative to the base model.

However, the 4,096-slot configuration also performs strongly, with only slightly lower improvements (24.6% and 8.4%, for
the same input lengths) than CAMELOT with 10k slots. This good performance demonstrates that the effectiveness of
CAMELOT does not solely rely on the quantity of data modes it can hold in its memory, but also on how it manages and
utilizes this data through mechanisms like consolidation and novelty. This balance ensures CAMELOT remains effective
across various memory sizes and input lengths, maintaining stability and efficiency.
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