
TANGENT TRANSFORMERS FOR COMPOSITION,
PRIVACY AND REMOVAL

Tian Yu Liu∗

University of California, Los Angeles
tianyu@cs.ucla.edu

Aditya Golatkar∗
University of California, Los Angeles
adityagolatkar@ucla.edu

Stefano Soatto
University of California, Los Angeles
soatto@cs.ucla.edu

ABSTRACT

We introduce Tangent Attention Fine-Tuning (TAFT), a method for fine-tuning
linearized transformers obtained by computing a First-order Taylor Expansion
around a pre-trained initialization. We show that the Jacobian-Vector Product
resulting from linearization can be computed efficiently in a single forward pass,
reducing training and inference cost to the same order of magnitude as its original
non-linear counterpart, while using the same number of parameters. Furthermore,
we show that, when applied to various downstream visual classification tasks, the
resulting Tangent Transformer fine-tuned with TAFT can perform comparably
with fine-tuning the original non-linear network. Since Tangent Transformers are
linear with respect to the new set of weights, and the resulting fine-tuning loss is
convex, we show that TAFT enjoys several advantages compared to non-linear fine-
tuning when it comes to model composition, parallel training, machine unlearning,
and differential privacy. Our code is available at: https://github.com/
tianyu139/tangent-model-composition

1 INTRODUCTION

Deep Networks are highly non-linear operators trained by optimizing highly non-convex functions,
yet some of the training dynamics near convergence approximate those of linear over-parameterized
systems (Saxe et al., 2013). Accordingly, linearization has been used as a tool for both the analysis
of deep networks (Jacot et al., 2018), and their design (Achille et al., 2021). Linearization around
an initial set of weights, however, is of limited practical relevance since the early learning dynamics
are highly non-linear and decisive of final performance (Golatkar et al., 2019). On the other hand,
linearization around a pre-trained point has been shown to be essentially equivalent to non-linear fine-
tuning, and better in the case of few-shot fine-tuning (Achille et al., 2021). A linearized model has the
same number of parameters as the original, but carries some distinct advantages: First, linearity allows
straightforward model composition, whereby ensemble models can be formed by scalar combinations
at essentially zero cost. Second, a monolithic training set can be partitioned into smaller “shards,” for
instance for privacy or attribution purposes, and the resulting models combined to yield performance
similar to a model trained on the monolith. This results in zero loss compartmentalization of separately
trained models, and enables seamless parallel training. Third, since the linearized model can be
trained by optimizing a convex loss, existing methods for private training via selective forgetting
(Abadi et al., 2016) are effective and enjoy strong theoretical guarantees.

Despite the benefits, model linearization is challenging at scale. To this date, only small-scale models
have been successfully shown to operate comparably to their non-linear counterparts, typically in the
ResNet family of architectures. To our knowledge, our work is the first to propose an efficient method
to linearize models in the Transformer family of architectures, leading to what we call “Tangent
Transformers.” Tangent Transformers can be used to adapt Transformer models, as an alternative to
prompt-tuning, fine-tuning, or adapter training, none of which are linear in weight space.

∗Denotes equal contribution

1

https://github.com/tianyu139/tangent-model-composition
https://github.com/tianyu139/tangent-model-composition


The key to enable practical linearization of Transformers is an efficient way to compute the Jacobian-
Vector product in a single forward pass, described in Sec. 3.2. As a result, training and inference costs
are on the same order of magnitude as the corresponding non-linear Transformer model. In Sec. 4.2
we show that a Tangent Vision Transformer (T-ViT) can achieve similar accuracy to non-linear fine-
tuning (NLFT) of the original ViT (Dosovitskiy et al., 2020) model. Given the comparable accuracy,
we focus on illustrating some of the benefits of Tangent Transformers in Sec. 4. Specifically:
Compositionality: Linearity yields equivalence between composition in weight space and composi-
tion in activations, i.e., ensembling. This allows seamlessly combining independently trained models,
with obvious benefits to parallel, incremental, and federated learning, while maintaining a constant
inference time compared to traditional ensembling.
Speedup: Specifically, we achieve up to 10× (50×) speed-up in parallel training, with only
3.7%(9.3%) drop in overall accuracy compared to non-linear fine-tuning on the full dataset, improv-
ing over the Model Soup (Wortsman et al., 2022b) approach by 9.1%(13.5%) respectively.
Compartmentalization: Since training on disjoint shards yields the same performance, data removal,
if it becomes necessary or desirable (Achille et al., 2023), can be performed deterministically in an
exact fashion, at essentially zero cost.
Privacy: Most theoretical results and practical methods concerning Differential Privacy (DP) (Abadi
et al., 2016; Bassily et al., 2014; Fang et al., 2023; Yang et al., 2022; Bassily et al., 2021; Wang et al.,
2019; 2022a) provide much better utility-privacy trade-offs when the optimization problem being
solved is convex. While in general deep networks are not, if pre-training is conducted on safe data,
linearized fine-tuning is convex and therefore strong results and effective methods for DP apply.

In Sec. 2 we briefly survey relevant related work, and in Sec. 3 we derive our method for Tangent
Attention Fine-Tuning (TAFT). We illustrate the benefits of TAFT in Sect. 3.2 for parallel training
and composition, in Sec. 3.3 for selective forgetting, or “unlearning”, and in Sec. 3.4 for privacy.
Finally, we empirically evaluate TAFT in Sec. 4.

2 RELATED WORK

Deep network linearization: Deep networks linearized using the first-order taylor approximation
have various interpretations in literature - viewing gradients as features (Mu et al., 2020), learning
along the tangent space of a neural network (Liu et al., 2022; Liu & Soatto, 2023), infinite-width
networks (Jacot et al., 2018). Mu et al. (2020) shows that the Jacobian-Vector product (JVP) of
linearized convolutional networks can be efficient computed in a single modified forward pass.
Achille et al. (2021) shows that by using Leaky-ReLU activations and training with the rescaled
square loss (Hui & Belkin, 2020) and gradient pre-conditioning, ResNets linearized around ImageNet
pre-trained weights can achieve comparable performances to the original non-linear networks on
downstream fine-tuning tasks. Most similar to our work, Liu & Soatto (2023) applies linearized
convolutional networks to ensembling and continual fine-tuning. To the best of our knowledge, we
are the first work to linearize transformer networks in a manner that is both computationally efficient
and achieves competitive results when fine-tuned on various downstream tasks.

Composition: We investigate compositionality of deep networks in weight space to yield a model
that generalizes better than each individual component model. Weight averaging has been used
to improve generalization of pre-trained weights (Choshen et al., 2022), and for distributed fine-
tuning (Liu & Soatto, 2023; Wortsman et al., 2022a). Wortsman et al. (2022b) averages the weights
of large pre-trained models fine-tuned with different hyperparameters to improve generalization.
Compositionality has also been explored through prompts in continual learning (Wang et al., 2022b;c).
However, these works do not develop any theoretically meaningful interpretations for composition,
and often scale in inference time as number of component models increase. We introduce TAFT
for linearly composing tangent transformer models trained, possibly in parallel, on multiple disjoint
shards of data. Under our method, composition of linear weights is theoretically equivalent to output
ensembling with constant inference cost.

Machine Unlearning: Machine unlearning, or forgetting, methods aim to remove the influence of
specific samples from a trained network (Achille et al., 2023; Bourtoule et al., 2021; Dukler et al.,
2023; Golatkar et al., 2021; 2020a;b). We focus on methods that are zero-shot and yields theoretically
guaranteed unlearning. These works (Bourtoule et al., 2021; Bowman et al., 2023; Koch & Soll)
operate by splitting datasets into multiple disjoint shards, hence compartmentalizing each sample
to only a single shard. Unlearning can then be done by simply removing the shard. However, such

2



methods either incur high inference costs as a result of running inference across multiple models,
and often incur significant trade-offs in generalization accuracy of the composed model. Instead, we
show that as a result of linearity, we can compose tangent transformer networks simply by averaging
network weights, to produce outputs that are equivalent to the ensemble of each network with an
inference cost that is constant with respect to number of shards/models in the ensemble.

Privacy: Differential privacy (Dwork et al., 2014) seeks to limit the amount of information a trained
model contains about the individual training samples. DP-SGD (Abadi et al., 2016) achieves this
through clipping of individual gradients followed by addition of Gaussian noise. Bassily et al. (2021;
2014); Fang et al. (2023); Wang et al. (2019; 2022a); Yang et al. (2022) provide rigorous theoretical
guarantees for the convergence and utility of DP algorithms, and show that convex (or strongly convex)
models offer better utility compared to their non-convex counterparts. Per dimension Gaussian noise
in DP-SGD reduces the utility of training large models in favour of fine-tuning parameter efficient
adapters (Bu et al., 2022b;a; Golatkar et al., 2022; Yu et al., 2021). In this paper, we show that TAFT
in the tangent space of these parameters provides better utility-privacy trade-off.

3 METHOD

We explore the most direct way to linearize a pre-trained transformer network fw - by replacing it
with its first-order taylor approximation f lin

w about its pre-trained weights w.

f lin
w (·) = fw(·) +∇wfw(·) ·∆w (1)

By construction, f lin
w is now linear with respect to ∆w, the new set of learnable parameters.

The new network can be trained easily using any loss function. For example, using the standard
mean-squared error loss yields a quadratic objective function, reducing the training of such models to
simple linear-quadratic optimization (Achille et al., 2021). We use the Rescaled Square Loss (RSL)
(Hui & Belkin, 2020) given by

L(x, y) =
1

K

(
α(̇[f lin

w (x)]y − κ)2 +

K∑
i=1,i̸=y

([f lin
w (x)]i)

2
)

(2)

where α, κ are hyper-parameters. We empirically found RSL performs better compared to cross-
entropy or regular MSE loss, corroborating the results of Achille et al. (2021); Liu & Soatto (2023).

We further note that how good a local approximation of the network is depends on the distance
that the fine-tuned weight moves from its initial point w. As such, we additionally regularize the
training objective by adding a penalty on ∥∆w∥22. The resulting training objective is simply ridge
regression, retaining the benefits of linear-quadratic optimization while obtaining better empirical
results (Sec. 4.6). Note that due to the high dimensionality of the training set and gradient-based
features, it is computationally prohibitive to obtain the closed form solution even though it exists.

This appears costly to compute for both inference and training, since evaluating the Jacobian-Vector
Product (JVP) ∇wfw(x) ·∆w requires computing the gradient with respect to the original weights,
for every input x. However, by computing the directional derivative, we can derive closed form
equations for the linearized versions of the key building blocks of transformer networks. We show
that they can be computed in a single modified forward pass through the original model where each
layer of the network outputs the computed JVP (JVPout) in addition to the original output values,
and takes as input the JVP from the previous layer (JVPin) in addition to the original input values.

3.1 LINEARIZING TRANSFORMERS

Here, we will derive the closed form linearization of a transformer network, and show that it can be
easily computed by the modified forward propagation without explicitly computing any gradients.
We break down transformer networks into attention, normalization, and fully-connected layers, and
separately derive their linearizations (note that while fully-connected layers are already linear, we
still need to handle the input JVP from the previous layer). These layers can be simply composed
together to form the final Tangent Transformer network.

3



We parameterize the attention function A : Rd×n 7→ Rd×n by the weights Wq,Wk,Wv ∈ Rd×d

corresponding to the key, query and value matrices respectively, and given by

A(x) = Φ(x)V (x), where Φ(x) = σ(Q(x)K(x)T ), (3)
Q(x) = ⟨Wq, x⟩,K(x) = ⟨Wk, x⟩, V (x) = ⟨Wv, x⟩ (4)

where σ is the soft-max activation function. We will write Q,K, V,Φ instead of
Q(x),K(x), V (x),Φ(x) for ease of notation. For simplicity, we only consider single-headed atten-
tion in our derivations, but note that our definitions and derivations can be extended to multi-headed
attention (which we use in the experiments section) with minimal modification. Now, we wish to
compute the first-order approximation of A, denoted Alin : Rd×n 7→ Rd×n, and parameterized by
the linearized weights ∆Wq,∆Wk,∆Wv for the key, query, and value matrices respectively. By
taking directional derivatives, we can derive the following closed form expression for Alin (details
can be found in Appendix B):

Alin(x) = A(x) + lim
r→0

∂

∂r
A(x,Wq + r∆Wq,Wk + r∆Wk,Wv + r∆Wv)︸ ︷︷ ︸

JVPout

(5)

= A(x) +
(
Φ⊙Ψ− (1⊙ (ΦTΨ))Φ

)T
V +ΦΓ (6)

where

Ψ := Ψ(x) :=
〈
∆Q+WT

q JVPin,K
〉
+

〈
Q,∆K +WT

k JVPin

〉
(7)

Γ := Γ(x) := ∆V +WT
v JVPin (8)

∆Q := ⟨∆Wq, x⟩, ∆K := ⟨∆Wk, x⟩, ∆V := ⟨∆Wv, x⟩ (9)

⊙ denote the Hadamard product, and JVPin = limr→0
∂x
∂r is the Jacobian-Vector Product computed

from the previous layer, obtained from the modified forward pass. The terms Φ, Q,K, V can be
obtained for free as intermediate variables from computing A(x). Thus, computing the JVP term
is done through simple matrix multiplication operations of similar computational complexity as the
original attention mechanism.

Transformer blocks also include several normalization layers. Similarly we can compute a closed
form expression for their linearized versions that can be obtained in the modified forward propagation
step. We show the derivation for Layer Norm, which we denote LN(γ,β)(·) and parameterize by the
affine transformation parameters (γ, β), but note that the results can be easily generalized to other
forms such as Batch Norm (Achille et al., 2021). In particular, the linearized Layer Norm LNlin,
which is parameterized by (∆γ,∆β), evaluated at x can be computed as

LNlin(x) = LN(γ,β)(x) + LN(∆γ,∆β)(x)︸ ︷︷ ︸+ (10)

1√
V ar[x]

(
(JVPin −E[JVPin])−

E[(x− E[x])(JVPin −E[JVPin])] · (x− E[x])
V ar[x]

)
∗ γ︸ ︷︷ ︸

JVPout

(11)

where ∗ is the element-wise scaling operation.

Fully-connected (FC) layers parameterized by weight W and bias b can be easily modified to handle
JVPin from the previous layer and has already been derived and used in prior works (Achille et al.,
2021; Mu et al., 2020). We include it below for completeness.

FClin(x) = FC(x) + ∆WTx+∆b+WT JVPin (12)

Non-linearities are also conveniently handled by the same technique. We illustrate the derivation for
the GeLU activation commonly used in transformer-based networks:

GeLUlin(x) = GeLU(x) +

(
GeLU(x)

x
+ x · CDF (x)

)
· JVPin (13)

where CDF (x) evaluates the Standard Normal CDF at x. As before, all terms can be easily computed
without any backpropagation steps.

4



Table 1: Comparison of non-linear fine-tuning (NLFT) vs TAFT on various downstream datasets
sorted by distance to ImageNet (Achille et al., 2021). We compare fine-tuning the last attention block
(NLFT-1, TAFT-1), the last 7 attention blocks (NLFT-7, TAFT-7), and only the classification head
(FC). On most datasets sufficiently close to the ImageNet pre-training task, we show that TAFT can
yield comparable or better performance compared to NLFT and FC, while benefiting from linearity.

Dataset NLFT-7 TAFT-7 NLFT-1 TAFT-1 FC

Caltech-256 93.7 95.7 95.8 95.9 95.7
MIT-67 86.7 88.4 88.1 89.3 87.8
Oxford Pets 93.0 94.7 94.2 94.5 94.0
Stanford Dogs 84.8 91.6 91.2 91.9 90.7
CUB-200 87.3 89.3 88.8 89.0 87.7
FGVC-Aircrafts 77.7 60.5 69.9 62.2 58.2
Stanford Cars 75.6 71.3 67.3 67.2 57.4

Average 85.5 84.5 85.0 84.3 81.6

The final linearized transformer, which we term Tangent Transformer, is simply the composition of
such layers, chained together using the modified forward pass. Since Tangent Transformers are linear
only in the weights ∆w, and highly non-linear in the original weights w, we only update ∆w during
fine-tuning, a process we term Tangent Attention Fine-Tuning (TAFT).

3.2 PARALLEL TRAINING AND COMPOSITION

Given N models linearized about pre-trained weights w and a query x, the ensemble of these models,
defined by the linear combination of their outputs, is equivalent to evaluating a single tangent model
composed by taking the same affine combination of component models in weight space:

N∑
i=1

λif
lin
w

i
(x) = fw(x) +∇wfw(x) ·

N∑
i=1

λi∆wi (14)

This gives rise to a natural interpretation of weight space composition via output ensembling, while
reducing the cost of ensembling N models from O(N) to O(1). In other words, we can train multiple
Tangent Transformers on multiple different datasets in a completely parallel manner, and simply
combine their output weights to yield a single model that performs as well as their ensemble but
in constant inference time. Such compositions in weight space of transformer networks have also
been previously explored by Wortsman et al. (2022b) combining multiple models trained on the
same dataset with different configurations using weight averaging. However, as we show in Sec. 4.3,
the lack of any theoretical relationship between combinations of models in weight space and their
resulting output causes the resulting model to perform poorly when component models are trained
on disjoint sets of data. On the other hand, we will show that the equivalence of weight averaging
and ensembling allow the composition of up to 50 T-ViTs trained on different shards of data with
relatively much smaller accuracy trade-offs compared to naively composing non-linear models.

3.3 ZERO-/LOW-COST FORGETTING WITH TANGENT TRANSFORMERS

“Learning” a model by combining the weights of component tangent models, each trained on disjoint
shards of data, also allows for the subtraction of each component from the final model. Clearly, this
subtraction operation completely removes the influence of samples contained within the shard used to
train the component model from the final model. This is highly advantageous for machine unlearning.

Given a request to forget a training sample, the paragon unlearning method that guarantees forgetting
of the target sample requires training the entire model from scratch on the remaining dataset samples.
This is clearly impractical especially for large real-world transformer-based models like GPT-3
(Brown et al., 2020). With a Tangent Transformer composed from individual component models,
we can simply remove the shard containing the sample to be forgotten by subtracting the weights of
the associated component model. This theoretically guarantees forgetting while preserving accuracy
when number of forgetting requests is small (Fig. 1(a)), all at essentially zero computational cost.

We note that this method of unlearning through shard removal is not scalable, since performance
of the composed model degrades as number of forgetting requests increases. Instead, one can also

5



Table 2: We compose multiple T-ViTs, each trained with TAFT-1 on a disjoint shard of a dataset.
The equivalence between linearly combining weights and output ensembling enables the composed
T-ViT to outperform Model Soup (Wortsman et al., 2022b) across all datasets and sharding factors.

Dataset / Shards 10 Shards 25 Shards 50 Shards

Soup TAFT Soup TAFT Soup TAFT

Caltech-256 94.5 95.0 93.2 94.3 90.8 93.3
MIT-67 86.4 86.9 84.3 85.7 80.3 84.2
Oxford Pets 93.3 93.6 92.0 92.2 89.5 91.3
Stanford Dogs 90.9 91.4 90.4 90.9 88.8 90.4
CUB-200 82.0 86.5 69.7 84.2 63.0 81.4
FGVC-Aircrafts 38.2 57.6 18.6 53.0 14.7 47.7
Stanford Cars 19.8 58.4 10.6 49.2 8.4 41.5

Average 72.2 81.3 65.5 78.5 62.2 75.7

optionally retrain the component model on the remaining samples in the shard, after removing the
sample to be unlearned. Since shards are much smaller than the full dataset, this enables orders of
magnitude speedup compared to the paragon of re-training from scratch, yet guarantees forgetting of
the requested samples and maintains generalization performance of the resulting model (Fig. 1(c)).

3.4 TAFT WITH DIFFERENTIAL PRIVACY

Differential privacy (Dwork et al., 2014) is a mathematical framework to design algorithms which
protect the privacy of individual training samples. Given a training dataset D, and an algorithm M ,
we say that M is (ϵ, δ)-differentially private (DP) only if

P (M(D) ∈ E) ≤ eϵP (M(D−i) ∈ E) + δ

for all E, D−i, where D−i is obtained by removing the ith sample from D. In simple words, DP
enforces an algorithm to produce similar outputs when the dataset differs by a single sample. One
of the most popular ways of enforcing DP in deep learning is to use DP-SGD (Abadi et al., 2016)
during training. DP-SGD introduces two modifications over the standard stochastic gradient descent
(Robbins & Monro, 1951), first it clips the gradient norm of every sample, and then it adds gaussian
noise to the sum of the clipped gradients across a training batch. Thus the information pertaining
to individual samples is contained with clipping with noise perturbation. It is well known (Bassily
et al., 2021; 2014; Fang et al., 2023; Yang et al., 2022) that convex models have better convergence
and utility guarantees with trained differentially private convex optimization algorithms (in our case
DP-SGD). We show in Tab. 1 that TAFT on Tangent Transformers provide comparable results to
(in some cases better than) non-linear fine-tuning. As such, our experiments in Sec. 4.5 seek to
understand if such models can remain effective in DP settings to reap the benefits of theoretical
guarantees provided by private convex optimization.

3.5 CHOOSING A GOOD INITIALIZATION POINT

Strong pre-training objectives provide a natural initialization point at which we can compute the
tangent model. However, linearizing transformer models around the full pre-training weights might
exhibit strong feature biases towards the source pre-training dataset that might not transfer well to
downstream tasks, especially in the later layers. As such, we propose a simple method to overcome
this, by linearizing about a randomized re-initialization for the later attention layers, while keeping
the pre-training weights constant for earlier layers in the network. We show that this significantly
improves results in Fig. 2(b). For Vision Transformer-based classifiers, we further show in Fig. 2(c)
that the CLS token itself can also be linearized in the same manner. We will empirically show that
this can be beneficial for certain downstream tasks which are “far” from the pre-training initialization.

4 EXPERIMENTS

In Sec. 4.2, we show that TAFT on Tangent Transformers can attain similar performances on
downstream tasks compared to non-linear fine-tuning. We show the advantages that arise from
linearity for composition and parallel training in Sec. 4.3, machine unlearning in Sec. 4.4, and privacy

6



0 10 20 30 40 50
Number of Shards Removed

0

20

40

60

80

100

Ac
cu

ra
cy

 / 
%

Caltech-256
MIT-67
Oxford Pets
Stanford Dogs
CUB-200
FGVC Aircrafts
Stanford Cars

(a) Free forgetting via subtraction

0 10 20 30 40 50
Number of Shards Removed

0

20

40

60

80

100

Ac
cu

ra
cy

 / 
%

SISA
TAFT

(b) Comparison to SISA

0 10 20 30 40 50
Percentage of Dataset to Forget / %

0

20

40

60

80

100

Ac
cu

ra
cy

 / 
%

Caltech-256
MIT-67
Oxford Pets
Stanford Dogs
CUB-200
FGVC Aircrafts
Stanford Cars

(c) Shard retraining

Figure 1: (a) We show that when number of samples to forget is small, we can simply remove shards
by subtracting the weights of their respective component model with minimal drop in final model
accuracy (computed as an expectation over a uniform distribution of sample forgetting requests). (b)
We compare against SISA (Bourtoule et al., 2021) which also uses a sharding technique for zero-cost
unlearning. Our method is uniformly better across all number of shards removed on all datasets. (c)
Retraining on the remaining samples in a shard after a forgetting request can further improve accuracy
of the “unlearned” model, while enjoying up to 50× faster training time compared to full re-training.

in Sec. 4.5. We describe our implementation details in Sec. 4.1, and carry out ablation studies on our
implementation choices in Sec. 4.6. In Appendix C.4 and C.1, we also present ablations on different
pre-training schemes, and comparisons against Linearized ResNets.

4.1 IMPLEMENTATION DETAILS

We run all our experiments on Vision Transformers on image classification tasks. In particular, we use
ViT-L/16 (Dosovitskiy et al., 2020) as the base model in all our experiments, and linearize around its
ImageNet pre-trained weights, the result of which we call T-ViT-L/16. We evaluate on the following
datasets in increasing order of distance from the ImageNet pretraining task based on Li et al. (2020) -
Caltech-256 (Griffin et al., 2007), MIT-67 (Quattoni & Torralba, 2009), Oxford Pets (Parkhi et al.,
2012), Stanford Dogs (Khosla et al., 2011), CUB-200 (Wah et al., 2011), FGVC-Aircrafts (Maji et al.,
2013), and Stanford Cars (Krause et al., 2013). Further details can be found in the Appendix.

4.2 HOW WELL DOES THE TANGENT TRANSFORMER COMPARE TO THE ORIGINAL MODEL?

While linearity yields many benefits in terms of composition, privacy, forgetting, and even inter-
pretability, there is one main drawback - Tangent Transformers are strictly less expressive compared
to the original non-linear model. Hence, for such linear models to be practical, we wish to preserve as
much performance as possible on downstream tasks. We show in Tab. 1 that in fact, due to the strong
inductive priors from the ImageNet pre-trained initialization, the average downstream performance
is highly comparable with that of non-linear fine-tuning of the original model, differing on average
only by 1.0% and 0.7% respectively when fine-tuning multiple attention blocks and just the last
attention block. In fact, for several tasks that are close to the pre-training dataset (ImageNet) such
as MIT-67, Stanford Dogs, Oxford Pets, and CUB-200, we show that TAFT actually outperforms
non-linear fine-tuning. We hypothesize that this results from the implicit regularization imposed by
the linearity constraints. We further note that for tasks that are far from the pre-training dataset, such
as Stanford Cars and FGVC-Aircrafts, the local approximation becomes less accurate. As expected,
the divergence between non-linear fine-tuning and TAFT increases. However, compared to transfer
learning that simply fine-tunes the classification head, TAFT is strictly more expressive and hence
improves by up to 2.9% on average while maintaining linearity in weights.

Since most of the accuracy gains can be made from just fine-tuning the last attention block (NLFT-1,
TAFT-1), this also allows for parameter-efficient fine-tuning where the number of parameters are
< 5% of that needed for full fine-tuning. As such, we adopt NLFT-1/TAFT-1 in the following sections
for non-linear/linear fine-tuning respectively, where we explore several benefits that linearity yields.

7



Table 3: DP fine-tuning of Tangent Transformers compared to regular non-linear fine-tuning. “Full”
fine-tunes the entire (last) attention block, “BitFit” (Zaken et al., 2021) fine-tunes the bias parameters
of the attention block, “Layer Norm” fine-tunes the affine parameters of layer normalization modules,
and “FC” fine-tunes the classification head. “Ours” refer to fine-tuning the linearized parameters,
and “NLFT” refers to fine-tuning the original parameters. Training tangent models outperforms its
non-linear counterparts in all training regimes (italics: best for each regime, and bold: best overall)

Dataset Privacy Full BitFit Layer Norm FC
Ours NLFT Ours NLFT Ours NLFT

CUB-200
ϵ = 1 46.3 11.0 44.5 41.9 46.7 45.9 44.9
ϵ = 3 72.2 57.4 72.6 71.9 72.7 71.3 72.1
ϵ = 8 82.2 77.2 82.0 81.7 82.4 82.1 82.1

Stanford Cars
ϵ = 1 4.3 1.4 4.9 4.8 4.6 4.8 5
ϵ = 3 13.6 5.7 15.0 13.7 14.1 13.6 13.9
ϵ = 8 26.8 16.6 27.5 26.3 27.2 27.0 26.2

4.3 COMPOSITIONALITY AND PARALLEL TRAINING

We evaluate our proposed method for parallel training and composition described in Sec. 3.2. We
first shard a dataset into N disjoint subsets, and train individual models on each subset. Note that
training can be done in parallel, yielding a N× speed-up in training time. In Tab. 2, we show that
across various sharding factors (N = 10, 25, 50) of each dataset, linearly combining weights of
models fine-tuned with TAFT significantly outperforms composing separately trained non-linear
models via Model Soup (Wortsman et al., 2022b), which to the best of our knowledge, is the only
method that yields a composed model with O(1) inference cost (with respect to number of component
models). Indeed, naively composing non-linear models through weight averaging yields no theoretical
guarantees regarding how the output space of the resulting model changes. However, composing
the linear weights of Tangent Transformers trained via TAFT is theoretically equivalent to output
ensembling, hence outperforms Model Soup by 9.1%, 13.0%, and 13.5% on 10, 25, and 50 shards
respectively, while maintaining an O(1) inference cost.

4.4 MACHINE UNLEARNING

Tangent Transformers composed from component tangent models trained on disjoint shards of data
enables forgetting “for free”, since unlearning can be done by simply subtracting models without
needing any further training. We show in Fig. 1(a) that for a model composed from 50 shards, one
can drop up to half of the shards (25) with only 4.0% drop in accuracy. We also compare against
SISA (Bourtoule et al., 2021), which also drops shards upon forgetting requests, and show that we
perform uniformly better across all datasets and number of shards dropped, and on average by 11.0%.

Optionally, one can retrain the shard containing the sample to be forgotten on the remaining samples
in the shard. Even then, this still yields significant advantages compared to the baseline of re-training
a model from scratch, since only the relevant shard needs to be retrained. In Fig. 1(c), we show
that this yields a 50× speed-up in our experiments, achieving close to the paragon performance
(Appendix C.3) with only a 6.2% drop in accuracy after unlearning 50% of the entire dataset.

4.5 PRIVACY

We hypothesize that combining TAFT with differential privacy results in a better utility privacy
trade-off resulting from convexity of the loss landscape. To illustrate this, we fine-tune various
parameters of T-ViT-16 on two different fine-grained datasets (CUB200-easy and Stanford Cars-hard)
for different privacy range. In Tab. 3, we observe that under almost all settings, privately fine-tuning
the linearized parameters performs much better than privately fine-tuning the non-linear parameters.
While fine-tuning the entire last attention block (column ”Full” in Tab. 3) we observe that the gradient
noise significantly degrades the model utility compared only fine-tuning the last fully-connected layer
(and biases/normalization layers) of the network. The linear nature of tangent transformers along
with the results in Tab. 3 also inspires a simple private composition/continual learning algorithm i.e.
train private models on shards of data, and linearly combine their weights.

8



MSE CE RSL
Loss

20

40

60

Er
ro

r /
 %

(a) Ablation of RSL

caltech mit pets dogs cub carsaircrafts
Dataset

0
5

10
15
20
25
30
35
40

Er
ro

r /
 %

Reset to Random
Pretrained

(b) Choice of initialization

caltech mit pets dogs cub carsaircrafts
Dataset

0
5

10
15
20
25
30
35
40

Er
ro

r /
 %

Linearized CLS Token
Frozen CLS Token

(c) Linearizing CLS token

Figure 2: (a) RSL can improve fine-tuning performance, beating CE and MSE by 1.5% and 9.0%
respectively across 7 datasets. (b) While computing the tangent model about the full pre-training
initialization is already effective on its own, re-initializing the weights of the last attention block
before linearization can yield further performance gains. (c) Linearizing the CLS token improves
accuracy on downstream datasets which are far from the pre-training tasks.

4.6 ABLATION STUDIES

We also conduct ablation studies to show key implementation details needed to train tangent models
to perform comparable to non-linear models in downstream tasks. In particular, Fig. 2(a) shows that
using the rescaled square loss significantly improves average-case results across all datasets by an
average of 9.0% and 1.5%, and on the hardest dataset by 23.8% and 2.7% compared to the MSE and
CE loss respectively. In Fig. 2(b), we show that by resetting the weights of the final attention layer
prior to linearization, average performance across datasets improves by 1.5%. We hypothesize that
this is due to the negative transfer (Zhang et al., 2022) of later features learnt from the pre-training
task to new downstream tasks. Indeed, we note that for datasets which are very close to ImageNet (i.e.
Caltech-256, MIT-67), linearizing about the original pre-trained weights perform marginally better
since they are highly transferrable to these downstream tasks. Similarly, we show in Fig. 2(c) that
resetting and linearizing the CLS token in the last attention block of a vision transformer network
can significantly improve performance on datasets which are far from the ImageNet pretraining task,
improving results on FGVC-Aircrafts and Stanford Cars by 0.8% and 3.1% respectively.

5 DISCUSSION

Tangent Transformers linearized about a strong pre-trained point can serve to facilitate a number of
processes related to fine-tuning and ensembling. Independently trained linear components can be
easily composed, thus realizing full parallelism, and disgorged if need be, thus realizing deterministic
removal of data.

However, linearization is not panacea: For the linearized models to work as advertised, the point
around which the model is linearized is important, which can only be ascertained empirically. Once
that is done, linear components can be trained with convex losses, which leads to overall models
that enjoy strong guarantees for convergence, privacy, and composition. This limitation be further
mitigated via techniques such as resetting certain pre-trained weights and linearization of the CLS
token, as shown in our experiments. Another limitation of our method is that the inference cost of a
Tangent Transformer can potentially be double that of the original model, since the modified forward
pass requires an additional set of computations in addition to the original forward pass. However, we
show that linearizing the last attention block of a ViT-L/16 model is often sufficient to yield strong
performances on several downstream tasks. Under this regime, training and inference is parameter
efficient, and linearization only incurs a slight increase in inference cost. Note that during training
where the dataset is fixed, inference costs can actually be reduced to that of the original non-linear
model by simply caching the activations from the static pre-trained weights for each training example
and for each layer. Lastly, as observed by Koch & Soll, sharding naturally incurs significant trade-offs
in performance on minority classes when training on highly imbalanced datasets.

The tasks on which we demonstrated how the linearity of transformers can be exploited through
TAFT are certainly not exhaustive. Yet the encouraging empirical results of TAFT make it a candidate
replacement for any applications of transfer learning or fine-tuning, while benefiting from the
simplicity, composability, and interpretability of linear models.

9



REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Alessandro Achille, Aditya Golatkar, Avinash Ravichandran, Marzia Polito, and Stefano Soatto. Lqf:
Linear quadratic fine-tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 15729–15739, 2021.

Alessandro Achille, Michael Kearns, Carson Klingenberg, and Stefano Soatto. Ai model disgorge-
ment: Methods and choices. arXiv preprint arXiv:2304.03545, 2023.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In 2014 IEEE 55th annual symposium on foundations of
computer science, pp. 464–473. IEEE, 2014.

Raef Bassily, Cristóbal Guzmán, and Michael Menart. Differentially private stochastic optimization:
New results in convex and non-convex settings. Advances in Neural Information Processing
Systems, 34:9317–9329, 2021.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium
on Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Benjamin Bowman, Alessandro Achille, Luca Zancato, Matthew Trager, Pramuditha Perera, Gio-
vanni Paolini, and Stefano Soatto. \a-la-carte prompt tuning (apt): Combining distinct data via
composable prompting. arXiv preprint arXiv:2302.07994, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private optimization on
large model at small cost. arXiv preprint arXiv:2210.00038, 2022a.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private bias-term only
fine-tuning of foundation models. arXiv preprint arXiv:2210.00036, 2022b.

Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for better
pretraining. arXiv preprint arXiv:2204.03044, 2022.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3606–3613, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Yonatan Dukler, Benjamin Bowman, Alessandro Achille, Aditya Golatkar, Ashwin Swaminathan,
and Stefano Soatto. Safe: Machine unlearning with shard graphs. arXiv preprint arXiv:2304.13169,
2023.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Huang Fang, Xiaoyun Li, Chenglin Fan, and Ping Li. Improved convergence of differential private
sgd with gradient clipping. In The Eleventh International Conference on Learning Representations,
2023.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020a.

10



Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing deep
networks of information accessible from input-output observations. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16,
pp. 383–398. Springer, 2020b.

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
Mixed-privacy forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 792–801, 2021.

Aditya Golatkar, Alessandro Achille, Yu-Xiang Wang, Aaron Roth, Michael Kearns, and Stefano
Soatto. Mixed differential privacy in computer vision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8376–8386, 2022.

Aditya Sharad Golatkar, Alessandro Achille, and Stefano Soatto. Time matters in regularizing deep
networks: Weight decay and data augmentation affect early learning dynamics, matter little near
convergence. Advances in Neural Information Processing Systems, 32, 2019.

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss vs cross-
entropy in classification tasks. arXiv preprint arXiv:2006.07322, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for
fine-grained image categorization: Stanford dogs. In Proc. CVPR workshop on fine-grained visual
categorization (FGVC), volume 2. Citeseer, 2011.

Korbinian Koch and Marcus Soll. No matter how you slice it: Machine unlearning with sisa comes at
the expense of minority classes. In First IEEE Conference on Secure and Trustworthy Machine
Learning.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops,
pp. 554–561, 2013.

Hao Li, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran, Rahul Bhotika, and
Stefano Soatto. Rethinking the hyperparameters for fine-tuning. arXiv preprint arXiv:2002.11770,
2020.

Tian Yu Liu and Stefano Soatto. Tangent model composition for ensembling and continual fine-tuning.
arXiv preprint arXiv:2307.08114, 2023.

Tian Yu Liu, Aditya Golatkar, Stefano Soatto, and Alessandro Achille. Integral continual learning
along the tangent vector field of tasks. arXiv preprint arXiv:2211.13108, 2022.

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of
aircraft. Technical report, 2013.

Fangzhou Mu, Yingyu Liang, and Yin Li. Gradients as features for deep representation learning.
arXiv preprint arXiv:2004.05529, 2020.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

11



Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In 2009 IEEE conference on
computer vision and pattern recognition, pp. 413–420. IEEE, 2009.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. Caltech ucsd birds-200-2011. Technical
Report CNS-TR-2011-001, California Institute of Technology, 2011.

Di Wang, Changyou Chen, and Jinhui Xu. Differentially private empirical risk minimization with
non-convex loss functions. In International Conference on Machine Learning, pp. 6526–6535.
PMLR, 2019.

Puyu Wang, Yunwen Lei, Yiming Ying, and Hai Zhang. Differentially private sgd with non-smooth
losses. Applied and Computational Harmonic Analysis, 56:306–336, 2022a.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVI, pp. 631–648. Springer, 2022b.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022c.

Mitchell Wortsman, Suchin Gururangan, Shen Li, Ali Farhadi, Ludwig Schmidt, Michael Rab-
bat, and Ari S Morcos. lo-fi: distributed fine-tuning without communication. arXiv preprint
arXiv:2210.11948, 2022a.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022b.

Xiaodong Yang, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Normalized/clipped sgd with per-
turbation for differentially private non-convex optimization. arXiv preprint arXiv:2206.13033,
2022.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning of
language models. arXiv preprint arXiv:2110.06500, 2021.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Wen Zhang, Lingfei Deng, Lei Zhang, and Dongrui Wu. A survey on negative transfer. IEEE/CAA
Journal of Automatica Sinica, 2022.

12



Supplementary Material

A IMPLEMENTATION DETAILS

We run all our experiments with ViT-L/16, and its tangent model termed T-ViT-L/16. Unless indicated
otherwise, we adopt parameter-efficient fine-tuning by training only the last attention block of the
vision transformer, along with the last normalization and fully connected layer. For experiments
using TAFT in Table 1 and 2, and Figures 1(a)-(c), we train with the RSL loss using κ = 15. We also
adopt a 30 epoch learning schedule for each dataset/task, with learning rate decay by a factor of 10 at
epochs 15 and 25. We use a batch size of 32 for all our experiments, and train using Adam optimizer.
We search over learning rates (LR) of {0.001, 0.0001} for both non-linear fine-tuning and TAFT.
We also select the best base model to linearize by performing TAFT on both the default pre-trained
model, and resetting the last attention block and classification layer before linearization (PT=T and
PT=F respectively), and ablating over resetting and linearizing the CLS token (CLS=T/F). We list
the best configurations for non-linear fine-tuning (NLFT) and TAFT in Tab. 4, Tab. 5 (Table 1, main
paper) and Tab. 6 (Table 2, main paper). We do not use any data augmentation for our experiments.

For experiments on composition and machine unlearning, datasets are split into muliple shards
with respect to a fixed random seed by uniform sampling without replacement. For experiments on
differential privacy, we use the standard cross entropy loss. For each ϵ = 1, 3, 8, we use a 50 epoch
training schedule with no learning rate decay and search over PT ∈ {T, F}. We predict only using
the JVP output of the network. Gradients at each epoch are also aggregated over the entire dataset.

Table 4: Best Hyperparameters - Full Data, Single Attention Block
Dataset FC NLFT-1 LFT-1

Caltech-256 LR=1e-4 LR=1e-4, CLS=F LR=1e-3, κ=15, PT=F, CLS=F
MIT-67 LR=1e-3 LR=1e-4, CLS=F LR=1e-3, κ=15, PT=F, CLS=F
Oxford Pets LR=1e-3 LR=1e-4, CLS=F LR=1e-3, κ=15, PT=F, CLS=F
Stanford Dogs LR=1e-4 LR=1e-4, CLS=F LR=1e-4, κ=15, PT=T, CLS=F
CUB200 LR=1e-3 LR=1e-4, CLS=T LR=1e-3, κ=15, PT=F, CLS=F
Stanford Cars LR=1e-3 LR=1e-4, CLS=T LR=1e-3, κ=15, PT=F, CLS=T
FGVC-Aircrafts LR=1e-3 LR=1e-4, CLS=T LR=1e-3, κ=15, PT=F, CLS=T

Table 5: Best Hyperparameters - Full Data, Last 7 Attention Blocks
Dataset NLFT-7 LFT-7

Caltech-256 LR=1e-4 LR=1e-4,CLS=F,PT=T
MIT-67 LR=1e-4 LR=1e-4,CLS=F,PT=T
Oxford Pets LR=1e-4 LR=1e-4,CLS=F,PT=T
Stanford Dogs LR=1e-4 LR=1e-4,CLS=F,PT=T
CUB200 LR=1e-4 LR=1e-4,CLS=F,PT=T
Stanford Cars LR=1e-4 LR=1e-4,CLS=F,PT=T
FGVC-Aircrafts LR=1e-4 LR=1e-4,CLS=T,PT=T

B DERIVATION OF LINEAR ATTENTION

We note that when taking the Taylor approximation for any (multivariable) function f , f(w+∆w) =
f(w)+∇wf(w)

T∆w+∆wT∇2
wf(w)∆w+O(∥∆w∥2) where O(·) notation hides the higher order

terms, the first order term can be efficiently computed via its directional derivative

∇wf(w)
T∆w = lim

r→0

∂f

∂r
f(w + r∆w)

where r is a scalar variable. We will use this technique to derive the linearized closed form for the
attention layer.

13



Table 6: Best Hyperparameters - Shards
Dataset NLFT-1 LFT-1

Caltech-256 LR=1e-3 LR=1e-3,PT=F,CLS=F
MIT-67 LR=1e-3 LR=1e-3,PT=F,CLS=F
Oxford Pets LR=1e-3 LR=1e-3,PT=F,CLS=F
Stanford Dogs LR=1e-3 LR=1e-3,PT=F,CLS=F
CUB200 LR=1e-3 LR=1e-3,PT=F,CLS=F
Stanford Cars LR=1e-3 LR=1e-3,PT=F,CLS=T
FGVC-Aircrafts LR=1e-3 LR=1e-3,PT=F,CLS=T

Let A denote the attention function parameterized by weights Wq,Wk,Wv. We wish to derive
a closed form expression for the linear attention Alin, which is defined as the first-order Taylor
approximation of A parameterized by the new linearized weights ∆Wq,∆Wk,∆Wv .

A(x) = Φ(x)V (x), where Φ(x) = σ(Q(x)K(x)T ), (15)
Q(x) = ⟨Wq, x⟩,K(x) = ⟨Wk, x⟩, V (x) = ⟨Wv, x⟩ (16)

where σ is the soft-max activation function. As in the main paper, we will write Q,K, V instead
of Q(x),K(x), V (x) for ease of notation. We will derive the closed form for the single-headed
attention, which can then be extended to multi-headed attention with minimal modification. Similarly,
we will use n = 1 in the below proof (so x is a vector in Rd) for simplicity, but note that the final
result extends to any n > 1.

Alin(x) = A(x) + lim
r→0

∂

∂r
A(x,Wq + r∆Wq,Wk + r∆Wk,Wv + r∆Wv) (17)

= A(x) + lim
r→0

σ(⟨Wq + r∆Wq, x⟩T ⟨Wk + r∆Wk, x⟩)⟨Wv + r∆Wv, x⟩︸ ︷︷ ︸
:=s

(18)

Denote for ease of notation ∆Q = ⟨∆Wq, x⟩, ∆K = ⟨∆Wk, x⟩, ∆V = ⟨∆Wv, x⟩. Then for each
component i of vector s, we can write

si = σ ((Q+ r∆Q)i(K + r∆K))
T
(V + r∆V ) (19)

Applying chain rule, we get

lim
r→0

∂

∂r
si

= lim
r→0

[
σ′ ((Q+ r∆Q)i (K + r∆K))

((
∆Q+WT

q

∂x

∂r

)
i

K +Qi

(
∆K +WT

k

∂x

∂r

))]T
V

+ lim
r→0

σ ((Q+ r∆Q)i(K + r∆K))
T

(
∆V +WT

v lim
r→0

∂x

∂r

)

=

σ′ (QiK)

((
∆Q+WT

q lim
r→0

∂x

∂r

)
i

K +Qi

(
∆K +WT

k lim
r→0

∂x

∂r

))
︸ ︷︷ ︸

:=Ψi


T

V

+ σ (QiK)
T

(
∆V +WT

v lim
r→0

∂x

∂r

)
︸ ︷︷ ︸

:=Γ

=
[
(diag(σ(QiK))− σ(QiK)σ(QiK)T )Ψi

]T
V + σ (QiK)

T
Γ

=
[
diag(Φi)Ψi − ΦiΦ

T
i Ψi

]T
V +ΦT

i Γ

=
[
Φi ⊙Ψi − (ΦT

i Ψi)Φi

]T
V +ΦT

i Γ

14



where ⊙ denote the Hadamard product. Hence, denoting Ψ as the matrix with rows Ψi and 1 the
identity matrix, we obtain the desired result

Alin(x) = A(x) + lim
r→0

∂

∂r
s (20)

= A(x) +
(
Φ⊙Ψ− (1⊙ (ΦTΨ))Φ

)T
V +ΦΓ (21)

C ADDITIONAL COMPARISONS

We discuss additional comparisons to Linearized ResNets in Sec. C.1, and detail training and inference
times in Sec. C.2. We also compare our unlearning method with the paragon of re-training from
scratch in Sec. C.3, and ablate on the pre-training schemes for initializing the tangent transformer in
Sec. C.4.

C.1 COMPARISON TO LINEARIZED RESNET ARCHITECTURES

The benefits of linearization rely on the strength of the inductive prior obtained from pre-training.
Since vision transformers are shown to learn better inductive priors than convolutional architectures
as the scale of training data increases, we believe that linearized transformers yield a clear advantage
over linearized ResNets by being able to leverage the better inductive priors learnt from pre-training.
We compare with linearized ResNet-50 in Tab. 7, where we show that TAFT outperforms Linearized
ResNet-50 by 7.3% on the standard fine-tuning task, and by 9.0% for the parallel training and
composition task (10 shards) averaged across 3 datasets.

Table 7: Comparing linearized ResNet-50 (L-RN50) and linearized ViT-L/16 (TAFT) on downstream
classification tasks for both standard fine-tuning and parallel training/composition across 10 shards.

Dataset Shards L-RN50 TAFT

Caltech-256 - 85.5 95.9
MIT-67 - 79.3 89.3
Oxford Pets - 93.1 94.5

Caltech-256 10 83.6 95.0
MIT-67 10 72.4 86.9
Oxford Pets 10 92.5 93.6

C.2 TRAINING AND INFERENCE TIME COMPARISONS

We compare the per-example training and inference wall-clock timings for NLFT and TAFT in Tab. 8.
The inference and training cost for the linearized transformer is potentially twice of the original
model as discussed in Sec. 5. We note that the train timings reported would be much faster in practice
due to large batch sizes and caching of intermediate features when limiting training to later layers.

Table 8: Comparison of per-example training and inference wall-clock timing (seconds) for NLFT
and TAFT using a batch size of 1. These would be much faster in practice due to large batch sizes
and caching of intermediate features when limiting training to later layers. Timing is computed using
the MIT-67 dataset.

NLFT (Train) TAFT (Train) NLFT (Inference) TAFT (Inference)

0.147s 0.204s 0.021s 0.065s

C.3 COMPARISON WITH FORGETTING PARAGON

In Fig. 3, we compare the shard re-training forgetting method using TAFT to the paragon of re-
training from scratch. Both methods guarantee complete unlearning, but TAFT is able to achieve
close-to-paragon performance while speeding up unlearning by up to 50x.

15



10 20 30 40 50
% of Dataset to Forget

60

70

80

90

100

Ac
cu

ra
cy

 / 
%

MIT-67

TAFT Shard Retrain
Paragon

10 20 30 40 50
% of Dataset to Forget

60

70

80

90

100

Ac
cu

ra
cy

 / 
%

Oxford Pets

TAFT Shard Retrain
Paragon

10 20 30 40 50
% of Dataset to Forget

60

70

80

90

100

Ac
cu

ra
cy

 / 
%

Stanford Dogs

TAFT Shard Retrain
Paragon

Figure 3: Shard re-training with TAFT (using sharding factor of 50) compared to the Paragon method
of re-training the non-linear model from scratch. While both method guarantee complete unlearning,
TAFT achieves close-to-paragon performance while speeding up unlearning by up to 50x.

C.4 ABLATION ON PRE-TRAINING SCHEME

In practice, the choice of a model to fine-tune for downstream tasks presupposes some relation between
the latter tasks and those used in the pre-trained initialization. Since we focus on classification, we
choose ImageNet classification pre-training as our initialization for all the experiments.

Here, we compare TAFT with different pre-training schemes: (1) Self supervised learning via MAE
(Masked Autoencoder Training), (2) Supervised/Classification pre-training, and (3) Contrastive
Language-Image Pre-training (CLIP) followed by supervised pre-training.

We detail our results in Tab. 9. Indeed, the performance from fine-tuning depends on the discrepancy
between the pre-training objective and the target task. (1) being the farthest to classification performs
worse than a classification pre-training. However, by augmenting supervised classification pre-
training using a contrastive language-image pre-training objective, (3) further boosts the performance
of classification-only pre-training.

Table 9: We compare fine-tuning from three different pre-training schemes. (1) MAE does self-
supervised pre-training via mask image modelling, (2) CLS uses ImageNet classification pre-training,
and (3) CLIP uses contrastive language-image pre-training followed by fine-tuning on ImageNet
classification. Since all MAE models are pre-trained on ImageNet 1K, we use the T-ViT-B architecture
to fairly compare MAE and CLS where ImageNet 1K pre-trained models are available for both
methods. The CLS T-ViT-L model is pre-trained on ImageNet 21K + 1K, while the CLIP model is
pre-trained on WIT400M, ImageNet 12K + 1K. The inductive priors learnt from MAE transfer less
effectively to the downstream classification tasks considered, where CLS on the smaller T-ViT-B
model is able to outperform MAE on both T-ViT-B and T-ViT-L. The inductive priors learnt with
CLIP, which combines both unsupervised contrastive learning and supervised fine-tuning, transfer
best to the downstream tasks.
Method MAE / T-ViT-B MAE / T-ViT-L CLS / T-ViT-B CLS / T-ViT-L CLIP / T-ViT-L

MIT-67 67.5 75.4 77.7 89.3 91.8
Oxford Pets 78.8 90.0 91.7 94.5 95.1
Stanford Dogs 62.3 74.7 90.8 91.9 95.2

C.5 INFLUENCE OF INDIVIDUAL COMPONENT MODELS

Since models are composed via linear combinations of their weights, the influence of a single
component model can be quantified in at least two ways: (A) based on the difference in performance
on a validation dataset when the component model is added, and (B) based on the magnitude of the
difference in weights with and without the component model. We explored (A) in Fig. 1(a), where we
show that subtracting models have lower impact on the performance on downstream tasks when the
number of remaining component models is large. However when there remain only few component
models in the composition, the impact of each model becomes larger.

16



In Fig. 4, we show that as a result of linearity, this effect is also reflected in the weight space via
measuring the L2 difference in weights before and after adding the component model.

0 10 20 30 40 50
Number of models in composition

0

2

4

6

8

10

12

14

16

L2
 d

iff
er

en
ce

 in
 w

ei
gh

ts
 a

fte
r a

dd
in

g 
ne

w 
m

od
el

MIT-67 (50 shards)
Stanford Cars (50 shards)
CUB-200 (50 shards)

Figure 4: We plot the L2 change in weight space as a result of adding a new component model against
number of existing models in the composition. The impact of adding a new model is significantly
larger when number of existing component models is small. Note that while plotted on the same
graph, the difference in scale between different datasets are not meant to be directly comparable due
to difference in number of output classes, amongst other factors.

C.6 TEXTURE CLASSIFICATION

In the main paper, we primarily evaluated our method on object classification tasks. In Tab. 10, we
evaluate our method on the Describable Textures Dataset (DTD) (Cimpoi et al., 2014), where we
show that even on texture classification tasks, composing models trained with TAFT consistently
outperforms non-linear models across all sharding factors.

Table 10: We compare TAFT and Model Soup Wortsman et al. (2022b) in the same manner as Tab. 2
on the Describable Textures Dataset (DTD), and show that as a result of linearity, composing models
trained with TAFT outperforms composing non-linear models across all sharding factors.

Method 10 Shards 25 Shards 50 Shards

Soup 68.2 59.8 47.6
TAFT 75.3 71.6 65.3

C.7 COMPARISON WITH PARAMETER-EFFICIENT FINE-TUNING

In this section, we compare against parameter-efficient fine-tuning methods. In particular, we compare
against Adapters (Houlsby et al., 2019) and Low-Rank Adaptation (LoRA) (Hu et al., 2021) when
applied to the same last attention block as non-linear fine-tuning and TAFT. Since the main use cases
of such methods lie in parameter efficiency and training speed, we show in Tab. 11 that they typically
exhibit lower performance on downstream tasks compared to full non-linear fine-tuning, and also
lack the linearity of TAFT required to yield effective composition.

D TAFT WITH PROJECTED GRADIENT DESCENT

In the main paper, we constrain the distance that the f lin
w moves from its pretrained weights w

by using the L2 weight decay penalty as an regularizer during training, since the first-order taylor
expansion is only valid around some local neighborhood of w. However, we note that it is also
possible to impose a hard constraint rather than soft constraint using projected gradient descent,
where weights are projected onto a ball of radius R.

In Tab. 12, we disable weight decay and instead train with projected gradient descent. We compare
using the RSL loss (with κ = 5) and CE loss, since both losses differ in their effect on the final
weight magnitude. We show that while RSL loss is more effective for the smaller radius R = 1,

17



Table 11: We compare TAFT with parameter-efficient fine-tuning methods – Adapter (Houlsby et al.,
2019) and LoRA (Hu et al., 2021) – in the same manner as Tab. 2 on MIT-67, CUB-200, and Stanford
Cars. We show that as a result of linearity, composing models trained with TAFT outperforms
composing models fine-tuned with other methods across all sharding factors.

Shards Dataset Adapter LoRA Soup TAFT

10
MIT-67 86.7 85.5 86.4 86.9
CUB-200 79.0 78.1 82.0 86.5
Stanford Cars 20.3 21.4 19.8 58.4

25
MIT-67 84.0 80.1 84.3 85.7
CUB-200 69.0 60.0 69.7 84.2
Stanford Cars 14.7 9.6 10.6 49.2

50
MIT-67 82.6 72.1 80.3 84.2
CUB-200 66.2 47.1 63.0 81.4
Stanford Cars 12.0 5.2 8.4 41.5

Table 12: Projected Gradient Descent (PGD) onto ball of radius R. While imposing soft constraints
through weight decay is more effective than PGD, the hard constraints on weight magnitude provide
several benefits for bridging theoretical analysis and empirical results of deep neural networks.

Dataset R CE Loss RSL Loss

Stanford cars 1 37.6 52.1
10 57.5 52.1

CUB 1 85.4 86.3
10 88.4 86.4

Aircrafts 1 40.4 55.1
10 58.5 55.4

CE loss becomes more effective as the radius increases to R = 10. While imposing such hard
constraints generally yield worse results compared to TAFT, we note that this can be useful in several
applications, such as for estimating the smoothness constant of the Tangent Transformer. This can
help to better bridge the gap between theoretical analysis - which generally require L-smoothness
assumptions or convex loss objectives - and empirical applications.

18


	Introduction
	Related Work
	Method
	Linearizing Transformers
	Parallel Training and Composition
	Zero-/Low-Cost Forgetting with Tangent Transformers
	TAFT with Differential Privacy
	Choosing a good initialization point

	Experiments
	Implementation Details
	How well does the tangent transformer compare to the original model?
	Compositionality and Parallel Training
	Machine Unlearning
	Privacy
	Ablation studies

	Discussion
	Implementation Details
	Derivation of Linear Attention
	Additional Comparisons
	Comparison to Linearized ResNet Architectures
	Training and Inference Time Comparisons
	Comparison with forgetting paragon
	Ablation on Pre-training Scheme
	Influence of individual component models
	Texture Classification
	Comparison with parameter-efficient fine-tuning

	TAFT with Projected Gradient Descent

