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Abstract

In visual-input sim-to-real scenarios, to overcome the reality gap between images
rendered in simulators and those from the real world, domain adaptation, i.e.,
learning an aligned representation space between simulators and the real world,
then training and deploying policies in the aligned representation, is a promising
direction. Previous methods focus on same-modal domain adaptation. However,
those methods require building and running simulators that render high-quality
images, which can be difficult and costly. In this paper, we consider a more cost-
efficient setting of visual-input sim-to-real where only low-dimensional states are
simulated. We first point out that the objective of learning mapping functions in
previous methods that align the representation spaces is ill-posed, prone to yield an
incorrect mapping. When the mapping crosses modalities, previous methods are
easier to fail. Our algorithm, Cross-mOdal Domain Adaptation with Sequential
structure (CODAS), mitigates the ill-posedness by utilizing the sequential nature
of the data sampling process in RL tasks. Experiments on MuJoCo and Hand
Manipulation Suite tasks show that the agents deployed with our method achieve
similar performance as it has in the source domain, while those deployed with
previous methods designed for same-modal domain adaptation suffer a larger
performance gap.

1 Introduction

Reinforcement learning (RL) for vision-based robotic control tasks has achieved remarkable success
in recent years [1, 2]. However, current RL algorithms necessitate a substantial number of interactions
with the environment, which are costly both in time and money on real robots. An appealing
alternative is to train policies in simulators, then transfer these policies to real-world systems [3]. Due
to inevitable differences of representation between simulators and the real world, which is also known
as the “reality gap” [4], applying policies trained in one domain directly to another almost surely fail,
especially in visual-input tasks, which is due to the poor generalization of RL policies [5]. Domain
adaptation is a promising direction to handle the gap by mapping representation from two domains to
an aligned representation and then training and deploying policies in the aligned representation.

Many recent works, which learn a mapping function to align the data distributions of the two domains,
have adopted unsupervised visual domain adaptation [6, 7, 8]. We point out that, as illustrated in
Fig. 1(a), the objective is ill-posed for learning a correct mapping function. These adaptation methods
exploit structural constraints [9] in two domains of the same modality (e.g., learned on simulated
images and deployed on real images). These methods implicitly alleviate the intrinsic ill-posedness
of distribution matching.
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Figure 1: Illustration of the training objective of learning a mapping function in unsupervised domain adaptation.
Shaded regions denote data distributions, where the darker the color, the higher the probability. For each
figure, the left region is the target domain and the right is the source domain. In Fig. 1(a), both st and s′t are
“realistic” instances, but only st is correct. Since they are of similar probabilities, mapping an instance ot in the
target domain to somewhere of a similar probability in the source domain is “reasonable” if we only consider
distribution matching. In RL, the policy may output unreliable actions when taking these incorrectly mapped
states as inputs. In Fig. 1(b), a sequential structure can help rule out the wrong mapping via trajectory contexts.

However, such a kind of same-modal domain adaptation requires the simulator to render images when
training the model, which introduces unwanted costs and difficulties that are ignored in previous
works. First, building a rendering engine is a laborious task. Second, using RL methods to train a
policy with an image-based simulator is usually harder [10] and slower (can be up to 20× slower [11])
than with a state-based simulator. An ideal solution to these problems is to train policies with states in
the simulator and adapt the learned policies to real-world images. Current domain adaptation methods
generally fail in this setting since the structural constraints based on the modality consistency are no
longer available, which makes the representation alignment task harder.

To learn such a cross-modal mapping, we propose Cross-mOdal Domain Adaptation with Sequential
structure (CODAS) that learns a mapping function from images in the target domain to states in
the source domain, as illustrated in Fig. 1(b). With the help of the learned mapping function,
policies trained on states in the source domain can be deployed in the target domain of images
directly. Specifically, based on the sequential nature of RL problems, we formulate the cross-domain
adaptation problem as a variational inference problem and decompose it into a series of solvable
optimization objectives. We also design a special residual model structure in the recurrent neural
network (RNN) to enforce additional inductive bias and stabilize the training process.

We evaluate our method on six MuJoCo [12] tasks and four Robot Hand Manipulation tasks [13],
where we treat states as the source domain, and rendered images as the target domain. Results show
that the learned mapping function can help transfer the policy to the target domain with only a small
performance degradation in most of the tasks while existing methods [14, 15] suffer from a larger
performance gap.

2 Related Work

Unsupervised visual domain adaptation (UDA) aims to map the source domain and the target domain
to an aligned distribution without pairing the data. UDA is originally designed for image translation
in computer vision [14, 6, 16, 17]. In RL, UDA transfers policies from simulators to the real world,
to overcome the reality gap between rendered images and real-world images. Previous methods
fall into two major categories: feature-level adaptation, where domain-invariant representations are
learned [7], and image-to-image adaptation, where pixels from source images are used to generate
images that look like those from the target domain [18].

Feature-level adaptation usually adopts domain randomization techniques for domain-invariant
representation learning [19, 20, 21, 22, 23]. In domain randomization, a meta-simulator is required to
generate a mass of variants on rendered images. The learner aims to extract an invariant representation
from the variants of representations. Therefore, the training process is generally costly. Besides, these
methods implicitly assume that the variants can cover the target domain so that the target domain is
only an instance of the variants.
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Image-to-image adaptation is challenging when data from two domains are unpaired. Most previous
works attempt to solve this problem by using generative adversarial networks (GANs) [15, 24, 3, 17,
25, 26]. [24] transfers policies from Atari games to their modified variants by training a GAN to map
images from the target domain to the source domain. RL-CycleGAN [3] unifies the learning of a
CycleGAN [14] and an RL policy, claiming better performance by learning features that are most
crucial to the Q-function in RL.

Despite the success of the image-to-image domain adaptation methods in previous settings, we point
out that these methods can somewhat bypass the ill-posedness for distribution matching, which is
illustrated in the example in Fig. 1. Since images generally differ only locally in color, textile, and
lighting, but resemble globally between two domains, the effect of ill-posedness can be implicitly
handled by leveraging the consistency of modality [17, 25, 26]. However, since images and states
differ essentially, we can no longer utilize the consistency of modality. Thus, as shown in our
experiments, the effect of ill-posedness is revealed in RL tasks. Some works impose extra structural
constraints [9, 27] but fail in image-to-state domain adaptation either. In our work, we force the
mapped states to follow transition consistency by considering the inner relationship between the
sampled data from the decision-making process in RL tasks.

3 Cross-modal Domain Adaptation with Sequential Structure

Without loss of generality, the visual domain adaptation problem in RL can be formulated as learning
a mapping function to align the representation of the source and target domains, then training and
deploying policies in the aligned representation. To learn the mapping function and policies, a dataset
is pre-collected by some policies (e.g., human-expert policies or random policies) in the target domain,
and an agent can only interact with the environment in the source domain. Since our major concern
is the reality gap between the representation spaces, in this formulation, we follow the setting in
previous methods which omits the gap between the dynamics models in the two domains.

In our setting of cross-modal domain adaptation, the source domain is a low-dimensional state domain
and the target domain is a high-dimensional image domain. In this work, we regard the state space as
the aligned representation space. We first pre-train a policy π in the source domain. By learning a
mapping qφ, parameterized by φ, from image space O to state-space S, the agent can be deployed
with a new policy π̃(o) = (π ◦qφ)(o), where ◦ denotes function composition, i.e., image observations
are mapped to states, then the pre-trained policy directly acts on the states.

3.1 Domain Adaptation in RL as Variational Inference

In this section, we first define our objective of domain adaptation in RL based on the framework of
variational inference. Then we give a comparison between our objective and the objectives used in
previous methods.

The modeling of the generation and inference process of the decision process in the source and
target domains used in our method is illustrated in Fig. 2. In the source domain, an initial state
follows the distribution p(s1). A transition function st ∼ p(s | st−1, at−1) outputs the current state
st from the previous state st−1 and the previous action at−1. In the target domain, the generation
process also follows the transition of states, but the states are not available to the agent, and the
agent only observes the images corresponding to the states. Ideally, an image observation ot is
generated by the corresponding state st. In other words, there exists a decoder p(ot | st) that can
construct observations from states. It is because that the state contains full of information for a
transition function to compute the next state, while image observations are rendered based on the
states. However, there would have some irrelevant patterns in images in real-world applications. In
practice, our decoder is defined as p(ot | st, ot−1). We allow pθ(ot | ·) to be dependent on ot−1 so
that some irrelevant patterns in images can be decoded easily in an auto-regressive manner. The
inference process can be regarded as the mapping process in domain adaptation in RL. The inference
function is defined as qφ(st | st−1, at−1, ot), which is similar to the transition function but with
additional ot as an input. A simple insight is that the inputs st−1 and at−1 give information to predict
the distribution of st, as the transition function p(s | st−1, at−1) does, and ot is used to determine
the state sample st from the distribution.
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Figure 2: Illustration of the generation and inference processes based on the decision processes of RL tasks. All
nodes are random variables. Shaded nodes are observable variables. Solid lines denote the generation process
and dashed lines denote the inference process. There is a correspondence between the two trajectories enclosed
by the rounded rectangles. Note that we include policy π in both generation processes, which correspond to the
edge from state st to action at.

The training process aims at learning an inference function (i.e., the mapping function) that approxi-
mates the ground-truth posterior distribution. The raw optimization objective of variational inference
in this setting can be formulated as:

min
φ

Eτo [DKL [qφ(τs | τo) || p(τs | τo)]] , (1)

where τ denotes a trajectory, the superscripts s and o of τ indicate the trajectories from the source and
target domains respectively, p(·) is the ground-truth distribution, qφ(·) is the mapping function that
we want to learn, and DKL computes the Kullback-Leibler divergence. τo contains a trajectory of
observation-action pairs {(o1, a1), (o2, a2), ..., (oT , aT )}, and τs contains a trajectory of state-action
pairs {(s1, a1), (s2, a2), ..., (sT , aT )}. Here we assume the trajectories of source and target domains
are collected by the same policy π, which is a mild assumption and has been implicitly or explicitly
introduced in previous works [24]. Since the policy is fixed, for the simplification of notations, we
omit the dependence of π and just use qφ and p to indicate the distribution. The Evidence Lower
BOund (ELBO) of this variational problem can be formulated as:

max
φ,θ

Eτo
[
Eτ̂s∼qφ(τs|τo) [log pθ (τo | τ̂s)]−DKL [qφ (τs | τo) || p (τs)]

]
, (2)

where τ̂s denotes the inference trajectories of qφ, and pθ(τ
o | τ̂s) is an approximation of the

generation process p(τo | τs), with parameter θ. The derivation of ELBO can be found in Appendix
A. The first term maximizes the reconstruction probability, in order to enforce that the mapped state ŝ
can recover observation o. The second term enforces the alignment of the distributions of the mapped
trajectories qφ (τs | τo) and the ground-truth trajectories distribution p (τs) in the source domain.

Compared with previous works which learn the mapping function by minimizing the divergence
between the distributions of qφ(s | o) and p(s), we model the optimization objective as a matching of
trajectory distributions via the Bayesian graphical model. As illustrated in Fig. 1, the trajectory-level
modeling is important since the data points are not i.i.d., since they are collected in the RL scenario.
Without considering the inner structure of the dataset, mismatching of mapping might occur easily.

3.2 Differentiable Optimization Objectives

The ELBO defined in Eq. (2) contains terms involving distributions over the entire trajectory, which
is impractical to solve. Given the previously defined generation process, we can decompose the joint
probability into the multiplication of single-step probabilities. The result of the decomposition is

max
φ,θ

Eτo∼Do
[ T∑
t=1

Eŝt∼qφ(st|ŝt−1,at−1,ot)

[
log pθ(ot | ŝt, ot−1, at−1)

]
−DKL [qφ(τs | τo) || p(τs)]

]
,

(3)

where Do denotes the pre-collected dataset in the target domain, t is the timestep and T denotes the
horizon. ŝ0, a0 and o0 are initialized with 0. qφ(st | ŝt−1, at−1, ot) is an RNN that outputs the mean
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and standard deviation of a Gaussian distribution. A direct computation of the second DKL term
in Eq. (3) is intractable. Following the idea that the optimization process of GAN is equivalent to
minimizing a certain distance measurement between two distributions [28], we use the optimization
objective of GAN as the alternative of minimizing DKL [qφ (τs | τo) || p (τs)]. For the simplicity of
implementation and stability of training, we use the original optimization objective of GAN, which is
equivalent to minimizing the Jensen-Shannon divergence. The optimization objective is

min
φ

max
ω

Eτs∼Ds
[

log (Dω(τs))
]

+ Eτo∼Do,τ̂s∼qφ(τs|τo)
[

log
(
1−Dω(τ̂s)

)]
. (4)

Similarly, we decompose Eq. (4) into single-step formulation:

min
φ

max
ω
LD(ω, φ) = min

φ
max
ω

Eτs∼Ds
[ T∑
t=1

logDω(st, at, ht−1)
]

+Eτo∼Do
[ T∑
t=1

Eŝt∼qφ(st|ŝt−1,at−1,ot) log
(
1−Dω(ŝt, at, ht−1)

)]
,

(5)

where Ds denotes the dataset collected by the pre-trained policy in the source domain. Here Dω is
also implemented as an RNN, in which h denotes the hidden state in the RNN rollout. In particular,
the discriminator outputs a tuple (yt, ht) = Dω(st, at, ht−1), where yt is the probability of prediction
and ht is the next hidden state. We omit the output of h for brevity. The latter term is the practical
objective of the KL-divergence in Eq. (3) of the mapping function qφ.

Combining both the aforementioned reconstruction loss and generation loss together, the optimization
objective of the mapping function is

max
φ,θ

Eτo∼Do
[ T∑
t=1

Eŝt∼qφ(st|ŝt−1,at−1,ot)

[
log pθ(ot | ŝt, ot−1, at−1)

−λD log
(
1−Dω∗(ŝt, at, ht−1)

)]]
,

s.t. ω∗ = arg max
ω

LD(ω, φ),

(6)

where λD is the hyper-parameter for the weight controlling. The decoder pθ and the discriminator
Dω are fixed during the training process of the mapping function qφ. The loss function of the decoder
pθ is the first term in Eq. (6). Similarly, the mapping function qφ is fixed during the training process
of the decoder pθ and discriminator Dω . The detailed derivation can be found in Appendix A.

3.3 Embedded Dynamics Model for Stable Training
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Figure 3: Model structure of the inference
function with embedded-DM.

Trajectories of practical RL problems often last hundreds
of time steps. Training RNN on such long-horizon trajecto-
ries can be difficult. The previous success of ResNet [29]
shows that a residual structure can simplify the learning
target to predict small residuals, resulting in a remark-
able performance increase in learning ultra-deep neural
networks.

Adopting a similar idea, we incorporate a residual structure
in the RNN to help stabilize the training process. A deter-
ministic Dynamics Model (DM) pϕ(s, a) with parameter
ϕ is trained independently using transition tuples collected
in the simulator. Its parameters are periodically updated to
embedded-DM. DM minimizes the mean-square error to
the transition tuples in the source domain. We regard the
embedded-DM as a part to provide an “average” estimation of the next states s̄t (see Fig. 3). The job
of the rest of the part, instead, is simplified to just output a correction. With this specially designed
model structure, the mapped states follow the transition dynamics in the source domain better. In
particular, we model the mapping function as:

ŝt = pϕ(st−1, at−1) + α∆st,∆st ∼ qφ(∆s | st−1, at−1, ot), (7)
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where α is a hyper-parameter to control the correction range of ∆s. ∆s takes tanh as the activation
function. Thus, the range of α∆s is constrained to [−α, α].

DM is first trained using batches of transition tuples collected in the simulator. However, these data are
insufficient for DM training since the DM predictions in unseen state-action pairs are unreliable, due
to the extrapolation error [30, 31]. Since the α∆s is constrained to [−α, α], too larger extrapolation
errors of pϕ(st−1, at−1) might obstruct ∆st to recover the correct ŝt. During the training process of
the mapping function, the dynamics model is trained online usingDŝ = {(ŝ, π(a | ŝ), p(ŝ, π(a | ŝ))}.
That is, we reset the simulator to the mapped states ŝt and then rollout with a single-step oracle
transition to get st+1. The optimization objective of the DM is to minimize the following mean-
squared-error loss:

min
ϕ

E(s,a,s′)∼Ds∪Dŝ [(pϕ (s, a)− s′)2]. (8)

When training the mapping function qφ, the parameter ϕ in the embedded-DM is fixed and gradients
are back-propagated from ŝ in Eq. (7) to φ via the reparameterization trick [32]. The detailed training
procedure of CODAS is shown in Alg. 1 in the Appendix.

4 Experiments

We evaluate our method in MuJoCo [12] from OpenAI Gym and Robot Hand Manipulation Tasks.
We define the rendered images as the target domain and the original states as the source domain. The
pre-collected dataset in the target domain contains 600 trajectories and is collected by policies trained
by PPO [33] and DAPG [34]. Please refer to Appendix E for the detailed experimental setting. The
quantitative performance of the data-collecting policies are given in Appendix F.1.

We compare our method with several state-of-the-art methods in same-modal domain adaptation
which are also compatible with the cross-modal setting, including:

1. GAN: Conditional GAN trains a mapping function pφ(s | o) to align the distributions of Do and
Ds. A discriminator tries to discriminate the mapped states from those from Ds, and is used to
guide the training of the mapping function.

2. CycleGAN: CycleGAN shares the same basic framework with GAN with an extra cycle-consistent
loss to constrain the mapping. In other words, CycleGAN generates ô from ô ∼ pφ′(o | pφ(s | o)))
and trains the mapping function via making the D(ô) output the real labels with high probability.

3. GAN with Stacked Input: Inspired by a common trick that uses stacked images as input in visual
RL tasks [35, 36], we modify GAN to take stacked images as input, and name it GAN STACK.
The stacked images provide additional local temporal information.

We also compare CODAS with behavior cloning (BC), which trains a policy in a supervised manner
using (ot, at) ∼ Do. All domain-adaptation baselines are trained with the same neural network
structure and tuned to converge (i.e., the output probabilities of discriminators are close to 0.5). The
tasks are trained for 10,000 to 40,000 epochs based on their difficulty. For each epoch, every method
is updated using a batch of 20 trajectories. Implementation details for all these methods can be found
in Appendix D and the source code is available at https://github.com/xionghuichen/codas.

To focus on the performance of the adaptation process, we use reward ratio as the metric: rratio = r
r∗ ,

where r and r∗ are the cumulative rewards of the adapted policy deployed on images the optimal
policy trained on states respectively. Each task is trained with three seeds. In the following plotted
curves, the solid lines indicate the mean value and the shaded regions indicate the range of ±1
standard deviation. All the details of training and evaluation are given in Appendix E and Appendix F.

4.1 Performance on MuJoCo Tasks

The training curves of all methods in MuJoCo tasks are given in Fig. 4. Firstly, BC performs well in
HalfCheetah, but poorly in the other environments. This indicates that the dataset is not large enough
to learn a correct mapping from images to actions directly. In Swimmer and HalfCheetah, the deployed
policies with mapping functions learned by GAN and CycleGAN achieve good performances. It is
because of the stability of the environments. The trajectory will not pre-terminate no matter how
badly the agent behaves. Therefore, the agent is allowed some incorrect actions, which come from
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Figure 4: Training curves of different methods on MuJoCo.

mismatched states. While in the rest tasks, the agent might reach unsafe states after performing
some undesired actions. Thus the agent is sensitive to the mismatching of mapping states. In these
tasks, GAN and CycleGAN perform even worse than BC. Although CycleGAN has been tuned to
converge (see Appendix), the performance of CycleGAN is similar to GAN in all of the tasks. We
believe although the cycle-consistent loss guarantees the mapping function is a bijective mapping,
the mismatching problem shown in Fig. 1(a) can not be handled, which is more critical in the RL
setting. Therefore the performance improvement is not significant. Finally, we found that the GAN
STACK algorithm reaches better performances than GAN in most of the tasks. The phenomenon
indicates that sequential information is important to learn a correct mapping. However, without other
constraints that CODAS has, the performance improvement is unstable.

In conclusion, the performance of CODAS is consistently better than the baseline algorithms. The
average performance of adapted policies in the target domain is about 85% of their original perfor-
mance in the source domain. A visual illustration of the mapped states’ accuracy is shown in Fig. 5.
Both reconstructed images and re-rendered images match the original ones well. Re-rendered images
can even match the original ones well in the last falling frames which are sparse in the dataset.

(a
)

(b
)

(c
)

Figure 5: A visual illustration of (a) original images, (b) reconstructed images, and (c) re-rendered images of the
mapped states.

4.2 Quantitative Results of State Mapping Error

In our experiments, since each image is rendered based on its corresponding state, we can store the
state as the ground-truth state for each image in our experiments. For each batch of trajectories τo in
an epoch, we can compute the root mean squared error (RMSE) between the ground-truth states and
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the mapped states. The curves of the RMSE between the ground-truth states and the mapped states
are shown in Fig. 6.

We regard the RMSE as the quantitative results of the mapped states for each algorithm. The results
show that CODAS is consistently better than all of the baseline algorithms among all of the tasks. In
HalfCheetah and Swimmer tasks, on which the baseline algorithms can also reach a good reward
ratio, the qualities of mapped states of CODAS are significantly better. The results verify our suppose
in the main body that the good reward ratios come from the robustness of environments to some
incorrect output actions, which are caused by mismatched mapped states.
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Figure 6: Root mean squared error between mapped states and ground-truth states. The solid lines denote the
mean value. The shadows denote the standard deviation.

4.3 Ablation Studies

By considering three mapping function modeling methods (i.e., Multilayer Perceptron (MLP), RNN
or RNN with embedded-DM (DM-RNN)) and two discriminator modeling methods (i.e., taking
trajectories as inputs or not), we construct six CODAS variants to do our Ablation studies. We
named them with the format of “mapping method-Y/N”. For example, DM-RNN-Y is the algorithm
that the mapping function is modeled with RNN and embedded-DM, and the discriminator taking
trajectories as inputs, which is the original CODAS. We conduct experiments in Hopper, Inverted
Double Pendulum, and Walker2d. We show the results in Fig. 7.
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Figure 7: Ablation studies of CODAS.
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Figure 8: The training curves of CODAS under two types of mismatches. Y-axis in Fig. 8(a) and Fig. 8(b) is the
mean of predicted probabilities of the discriminator given a set of trajectories with mapped states. The higher
probability means the data are more like to be real. In the dynamics mismatch setting (Fig. 8(a) and Fig. 8(c)),
we use “number-x” to denote the rescaling coefficient to the original friction coefficient. For example, “1.2x”
denotes the friction coefficient in the source domain is 1.2 times to the target domain. In the policy mismatch
setting (Fig. 8(b) and Fig. 8(d)), the percentage is to denote the performance ratio of the policy for data collection
compared with the data-collecting policy used in the previous experiments. For example, the legend “77%”
means the performance of the data-collecting policy in this experiment has 23% performance degradation.

The comparison of RNN-* methods and MLP-* methods in Fig. 7 shows that RNN structure is an
important component for mapping function training in Hopper and Inverted Double Pendulum tasks.
By taking sequential information into consideration, the actions taken in the target domain are more
accurate because the policy acts on the mapped states. Based on the RNN mapping function, feeding
the sequential information into the discriminator further improves the performance for InvertedDouble
and Walker2d. These results verify our argument that the inner structure of the collected dataset
is crucial for modeling the universal domain-adaptation objective in the RL setting. On the other
hand, in these tasks, embedded-DM helps improve the performance both from RNN-N to DM-RNN-Y
and from RNN-Y to DM-RNN-Y. Both embedded-DM and the sequential-input discriminator improve
the performance of CODAS. Embedded-DM standardizes the inference process which simplifies
the learning complexity. The sequential-input discriminator strengthens the gradient signals back-
propagated from the discriminator by taking more information into consideration to discriminate the
two datasets.
4.4 Robustness to Mismatches

Current UDA methods omit the gap between the dynamics models and the data-collecting policies of
the source and target domains [17, 25]. Although we follow these implicit consistency assumptions in
CODAS, in some real-world applications, the reality-gap of dynamics models is non-negligible [19,
37, 38, 39], and the policies in the two domains might not be the same. Unfortunately, whether
considering the reality-gap of dynamics models or the mismatching in the policies, the primitive
objective of CODAS and previous UDA methods are biased: Even with an oracle mapping function
p(s | o), the distribution of the dataset in source domain Ds and the mapped dataset Dŝ := {ŝ | ŝ ∼
p(s | o), o ∈ Do} are not aligned [40]. In this section, we analyze the effect of the violation on the
implicit consistency assumptions in the current UDA paradigm.

We first change the friction coefficient in the Hopper environment to analyze the effect of dynamics
mismatches on CODAS. As shown in Fig. 8(a), with a larger friction difference, the asymptotic
probability tends to be smaller. The phenomenon indicates that the gap between dynamics models can
lead to the gap between the state-action distributions, which can be distinguished by the discriminator.
When the friction is doubled, the gap between state distributions starts to affect the deployment
performance of policy (Fig. 8(c)). Then we add Gaussian noise with different variance to the original
data-collecting policy to collect datasets and train CODAS to analyze the effect of policy mismatch.
The policy mismatch is quantified by the performance degradation. We assume that with large
performance degradation, the policy behaviors will be more different. The details of the setting can be
seen in Appendix E.1.2. As shown in Fig. 8(b), the mismatch of collection policies also induces the
gap in the state-action distribution. The gap is larger compared with that of the dynamics mismatch.
Such a larger gap does cause a more significant performance drop of deployed policy.

However, in the experiments with 120% and 160% friction, the mapping function is relatively robust
to the mismatch. We think that such tolerance comes from the distributional modeling for each step
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of inference. The distribution modeling improves the robustness by considering the uncertainty of the
prediction. The performance drop in both experiments suggest us pay more attention to the implicit
assumptions not fully discussed in current UDA methods in RL tasks. In Appendix F.4, we further test
the tolerance to the mismatch of initial state distribution, which has a similar empirical conclusion.

4.5 Performance on Robot Hand Manipulation Tasks

Figure 9: An example of im-
age observation of the ham-
mer task.

We further test CODAS in four complex hand-manipulation tasks: door,
pen, hammer and relocate2. An example of image observation of the
hammer task is given in Fig. 9. In the hammer task, the robot arm should
hold the hammer and hit the nail into the wood. The policies trained
by DAPG [34] are used as the pre-trained source domain policy. The
performance of CODAS is given in Tab. 1. In three out of four tasks,
CODAS yields reasonable mapping functions for policy deployment.
CODAS fails to output a correct mapping in the relocate task. We think
that this failure can be attributed to the goal-conditional nature of the
task, where the robot arm needs to both grasp a ball from and take it to a
randomly initialized location in every episode. The goal-conditional nature increases the complexity
of data distribution. To learn a better mapping function, a larger dataset is necessary to capture
enough information of the distribution.

Table 1: The reward ratio in hand-manipulation tasks.

Tasks hammer pen door relocate

Reward Ratio 0.820 0.701 0.886 0.090

5 Discussion and Future Work

In this work, we investigate the cross-modal unsupervised domain adaptation problem in RL that
is more cost-efficient than image-to-image domain adaption. We first point out the intrinsic ill-
posedness of distribution matching in the current formulation of the UDA objective. To handle this
issue, we deduce the UDA objective based on the decision processes of RL tasks and the framework of
variational inference, then derive a differentiable objective. We also design a special model structure
to stabilize the training and enforce better dynamics consistency. These components constitute our
method, Cross-Modal Domain Adaptation with Sequential structure (CODAS).

The experiments in MuJoCo and Robot Hand Manipulation Tasks show the ability of CODAS to
find a correct mapping function between two completely different domains with unlabeled data. We
hope that CODAS and its reasonable performance could attract and enlighten more work in this
setting. Such results also corroborate that modeling the process of generation and inference more
precisely is a promising way to improve the performance on UDA, in parallel with previous methods
that focus on exploiting more efficient structural constraints. In the ablation studies, we analyze the
effectiveness of sequential mapping structure, trajectory-input discriminator, and embedded-DM in
CODAS. We also test the robustness of CODAS to two kinds of mismatches, namely dynamics and
policy mismatches. The results show that CODAS enjoys a reasonable degree of robustness to both
mismatches. However, if the mismatches exceed certain thresholds, the bias of the original objective
of CODAS will result in degradation of the deployment performance.

In essence, CODAS tries to formulate and solve the UDA problems in RL without relying on any
prior knowledge of the two domains. Image-to-image UDA can be regarded as a special case of
cross-modal UDA. Therefore, it is possible to extend CODAS to the image-to-image UDA problems,
and other proposed techniques focused on image-to-image UDA to pre-train/constrain a CNN encoder
can be adopted into CODAS too, which is valuable to investigate in future work. On the other hand,
gaps still exist between our experiments (simulation image to state) and the practical visual sim2real
problem (real image to state) in theory. By modeling the mismatching of dynamics models and
data-collected policies into the CODAS framework, we can build a more robust UDA algorithm when
the assumptions in this paper are not strictly fulfilled. We leave them as our future work.

2The environments are modified to support resetting to an arbitrary state, which are also open-sourced in
https://github.com/jiangsy/mj_envs
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