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Abstract
Machine learning relies heavily on data, yet the
continuous growth of real-world data poses chal-
lenges for efficient dataset construction and train-
ing. A fundamental yet unsolved question is:
given our current model and data, does a new data
(sample/batch) need annotation/learning? Con-
ventional approaches retain all available data,
leading to non-optimal data and training effi-
ciency. Active learning aims to reduce data re-
dundancy by selecting a subset of samples to an-
notate, while it increases pipeline complexity and
introduces bias. In this work, we propose Info-
Coevolution, a novel framework that efficiently
enables models and data to coevolve through on-
line selective annotation with no bias. Leverag-
ing task-specific models (and open-source mod-
els), it selectively annotates and integrates on-
line and web data to improve datasets efficiently.
For real-world datasets like ImageNet-1K, Info-
Coevolution reduces annotation and training costs
by 32% without performance loss. It is able to
automatically give the saving ratio without tun-
ing the ratio. It can further reduce the annota-
tion ratio to 50% with semi-supervised learning.
We also explore retrieval-based dataset enhance-
ment using unlabeled open-source data. Code
is available at https://github.com/NUS-HPC-AI-
Lab/Info-Coevolution/.

1. Introduction
Machine learning is inherently data-driven and has nu-
merous practical applications. Currently, the dominant
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paradigms for large-scale dataset construction fall into two
categories: (1) collecting and annotating data for fully super-
vised training, or (2) sourcing data from the web, followed
by automated cleaning and weakly-supervised/unsupervised
training, and subsequently fine-tuning models on down-
stream tasks with supervised data. However, both ap-
proaches incur significant costs for both annotation and
training, making them viable only for a few well-resourced
institutions. As a result, the construction of large-scale
datasets remains an insufficiently democratized and decen-
tralized process.

Before 2010, popular datasets such as MNIST (Deng, 2012)
and CIFAR-10/100 (Krizhevsky et al., a;b) each contained
60,000 hand-annotated low-resolution images, reflecting the
modest scale of early machine learning datasets. The lack
of data limited the development speed of machine learning
at that time. In 2010, ImageNet-1K (Deng et al., 2009) was
publicly released with more than 1M human annotated sam-
ples. It was the first large-scale supervised dataset, leading
to the development of many modern deep-learning algo-
rithms and architectures, boosting the development of AI
research today. An estimated cost of building ImageNet1-k
is at least 0.4 million USD for labeling the total 1.28m im-
ages, and 4 million for 14m ImageNet-12k, excluding other
costs. With cloud GPU today, training a deep learning neural
network on ImageNet-1K with A100 GPU takes about $240
to $1400, while labeling an ImageNet-scale (million-scale)
data still takes more than 100 times this cost, ranging from
$24,000 to more than $1m depending on annotators’ degree
of proficiency. Constructing supervised data is usually more
expensive compared to training with them.

Besides the supervised datasets, other types of datasets
emerge later with corresponding training schemes. Bert
(Devlin et al., 2019) and GPT (Brown et al., 2020) use large-
scale unsupervised text corpus, such as BooksCorpus (Zhu,
2015) and Common Crawl (Raffel et al., 2020), to train with
masked language modeling/next-token-prediction. CLIP
(Radford et al., 2021) scale the training on weakly super-
vised (web-sourced image-text pair) data with cross-modal
contrastive learning. Segment Anything (Kirillov et al.,
2023) utilizes models and manpower together to increase
the data scale and quality of segmentation data iteratively.
These different types of data have various quality and cost.
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Figure 1. The data scaling curve of different types of data. Supervised data has higher data efficiency than weak supervised data on
specific downstream tasks (e.g. ImageNet), while incurring a higher collection and annotation cost.

As shown in Fig.4, regarding the task-specific/downstream
data efficiency(performance against data amount) and data
construction cost, supervised data > weakly supervised data
> unsupervised/self-supervised data. The data scale and
training cost are in a reversed order, where supervised <<
weakly supervised < unsupervised/self-supervised. The
three paradigms provide different tradeoffs between data
collection/annotation and training costs. In general, a higher
degree of supervision provides better data efficiency for
downstream tasks with higher data cost per unit. Previously
works like BLIP(Li et al., 2022) and Segment Anything
(Kirillov et al., 2023) tried to boost the data quality with
human+model annotation, which is somehow equivalent to
improving the degree of supervision.

In online and downstream real-world scenarios, data con-
tinuously grows over time. The scale of unsupervised data
could be immense, but the marginal gains from training
diminish rapidly. Boosting its scale is not cost-efficient.
Weakly supervised data involves a smaller overall volume
with higher training efficiency per unit of data. In contrast,
supervised data generally has the smallest total volume but
incurs the highest annotation costs, leading to the most sig-
nificant performance improvements for the same amount
of data. As data grows in online scenarios, and usually the
annotation cost is higher than training, it would be beneficial
to improve the annotation efficiency and exlore the marginal
benefits of supervised data.

To boost the annotation/sample efficiency, active learning
was proposed, which aims to select samples that better bene-
fit training to annotate. However, many of the current active
learning methods(Li et al., 2024) involve frequent model
training with rounds of annotation, which makes the pipeline
too complex for real-world applications. What’s more, many
active learning methods rely solely on the model’s prediction
for the sample’s usefulness. It is prone to sample distribu-
tion problems on harder tasks. Their design of re-training +
re-inference limits its application to large-scale data. Due to
these limitations, active learning is not yet an efficient and
robust enough solution for real-world scenarios. Coreset
selection methods (Guo et al., 2022), on the other hand, skip
the model update and leverage the sample distribution to se-
lect samples used for training. Therefore, it fails to leverage
the model-specific information unless a model trained on
fully annotated data is obtained initially.

To address these challenges, we propose Info-Coevolution,
a novel and efficient online framework for selective data
collection/annotation that integrates model-specific estima-
tion with distribution awareness. Info-Coevolution enhances
data annotation efficiency with minimal computational over-
head. Leveraging Bayesian principles and our analysis of
data locality, we propose a data-based information gain es-
timation strategy and Bayesian Prediction Fusion. This ap-
proach improves the model-specific sample selection while
reducing the need for frequent model updates during the
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selection process. The framework begins with an unsuper-
vised pretrained backbone and a small, randomly initialized
dataset, mimicking real-world scenarios. By utilizing an on-
line Approximate Nearest Neighbor (ANN) structure, such
as HNSW (Malkov & Yashunin, 2018), Info-Coevolution
achieves logarithmic scaling for information gain estimation,
enabling it to efficiently handle growing data and increasing
selective annotation.

On ImageNet-1K, Info-Coevolution achieves lossless perfor-
mance with only 68% of the annotation cost, through just 4
rounds of continual supervised training (sum to <100% full
training cost; training from scratch gets the same lossless
result). The computational overhead primarily arises from
model inference after each training round, totaling approxi-
mately 10 A100 GPU hours for the entire process. Addition-
ally, we developed an efficient batch sampling mechanism,
allowing the selection process to be completed within 1
minute on datasets at a million-scale. Furthermore, Info-
Coevolution provides both qualitative and quantitative esti-
mates of a data sample’s information gain, conditioned on
the model and the previously collected data. This feature en-
ables automatic stopping when performance gains plateau,
eliminating the need for additional sample annotations to
verify saturation.

2. Related Works
Coreset Selection Methods Coreset selection methods fo-
cus on filtering out low-quality or redundant samples, while
reserving the most representative ones in the target dataset.
The core of these approaches lies in the elaborate selection
criteria, including geometry-based (Sener & Savarese, 2017;
Sinha et al., 2020) , error-based (Toneva et al., 2018; Paul
et al., 2021) , decision-boundary-based (Ducoffe & Precioso,
2018; Margatina et al., 2021) , uncertainty-based (Coleman
et al., 2019) , gradient-matching (Mirzasoleiman et al., 2020;
Killamsetty et al., 2021a), bilevel optimization (Killamsetty
et al., 2021b) and submodularity-based methods (Iyer et al.,
2021; Zhou et al., 2023). Some of the approaches (Sener
& Savarese, 2018) also combined the strength of active
learning to make further improvements.

Active Learning and Semi-Supervised Learning Active
learning (Hino, 2020; Smith et al., 2023; Li et al., 2024) and
semi-supervised learning (Sohn et al., 2020; Zhang et al.,
2022; Wang et al., 2023; Cai et al., 2022) are two comple-
mentary strategies for reducing the reliance on large-scale
supervised datasets in machine learning. Active learning
focuses on iteratively selecting the most informative sam-
ples for annotation, enabling models to achieve higher per-
formance with fewer labeled examples by optimizing the
data-labeling process. On the other hand, semi-supervised
learning leverages a large pool of unlabeled data alongside
a smaller labeled subset, using techniques such as pseudo-

labeling, consistency regularization, or generative models to
propagate label information and improve generalization. To-
gether, these paradigms aim to maximize model efficiency
and performance in data-scarce scenarios, often bridging
the gap between fully supervised learning and real-world
constraints. Segmenta anything, in a way similar to active
learning, conducts full annotation each round with differ-
ent quality and re-train the model for each round on in-
creased amount/portion of data. Different to these works,
our method targets an efficient online selective data collec-
tion/annotation process, with far less cost in the loop. An
illustration of the difference is shown in Fig.2.
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Figure 2. A comparison of our method’s difference to active learn-
ing. Generally, active learning loops over 1. selecting samples, 2.
annotating, 3. updating the model, and selecting samples again
(with the updated model). In contrast, our method doesn’t have to
update the model frequently. We can update the model optionally
with continual supervised learning at a much lower frequency (so
the training cost is also low). And our algorithm is automatically
class-balanced due to distribution awareness, therefore it doesn’t
suffer distribution shift as active learning.

3. From the Perspective of Information Gain
In this section, we first derive from the theoretical aspect
of how to estimate the information gain of a sample to a
dataset. Previously, an exact information gain was mainly
defined upon an attribute of a decision tree. Here we extend
it to a more generalized form and provide a way to estimate
it on broader tasks, e.g. a sample’s information gain with
respect to image classification (datasets). We analyze the
influence of locality in the space to improve both the estima-
tion quality and efficiency. Then we formulate the selective
data selection/annotation problem as a recursive online prob-
lem, each time adding one (batch of) sample/annotation to
an already collected dataset. Based on this problem setup
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and our theoretical analysis, we propose our algorithm Info-
Coevolution for efficient online selective annotation and
dataset construction.

Theorem 3.1. For neural networks that generate repre-
sentation and then make the prediction (for model M =
g ◦ f ), at certain distances ϵ from a sample point x in
the feature representation space, the similarity of sam-
ples in feature space also leads to similar model predic-
tions (∀δ, ∃ϵ s.t.∀x, x′, |f(x′)− f(x)| ≤ ϵ ⇒ |g(f(x′))−
g(f(x))| ≤ δ).

We show a proof of Theorem 3.1 with both L2 distance
and cosine distance in Appendix. This theorem implies a
kind of linearity among near-neighbor samples’ predictions,
and explains one of the reasons that KNN predictions work.
We will leverage this theorem to design a parametrized
estimation of a sample’s information gain with locality, ex-
tendability, and efficiency.

3.1. Information carried by sample to the dataset

In predictions with a decision tree T , information gain IG
with condition A is defined as:

IG(T,A) = H(T )−H(T |A), (1)

which is the reduced entropy given condition A. Here, we
extend this information gain to broader tasks. Assuming
the samples we are curious about (target distribution) is
from distribution ρ, which is either uniform in the whole
distribution space or IID to train data, then the information
gain of adding a sample z = {zx, zy} to a dataset D sampled
from ρ is:

IG(D, z) = H(D)−H(D + z)

=

∫
x,∥x−z∥≤ϵ

(
H(x)−H(x|z)

)
ρ(x) dx,

(2)

or IG(D, z) = H(D)−H(D + z)

(if IID) = E

 1

|D|
∑

x,sim(x,z)≥δ

(
H(x)−H(x|z)

) .

(3)

Where ϵ ∈ R is the distance threshold we decide to use, and
δ ∈ [0, 1] is a similarity threshold. This distance threshold is
inherited from Theorem3.1, where two sample’s prediction
has a low correlation beyond a certain distance. During
estimation, the H here is estimated on parameterized Mθ,
and the || · || is defined within space of f .

Then a question is how to estimate H(x|z) given x ̸= z.
As assumed, in certain distances the linearity dominates
so that we can do interpolation and linear combination on
logits/predictions. Within this space where linearity holds,

interpolation between z and x where yz = yx also gives
the same label prediction, but with an increased certainty.
Interpolation between z and x where zy ̸= xy will split
the prediction over the two, which needs careful calcula-
tion. However, the interpolation itself is an estimation based
on linearity assumption. As different samples’ predictions
could have different certainty/confidence, we should take
the confidence (probability of prediction being true) into
consideration of the interpolation.

3.2. Confidence of label

By defining a confidence α for the prediction of a sample,
we can integrate this value into the interpolation process as
a weighted NN prediction:

yestimation(z) =

∑
x,sim(x,z)≥δ αxSim(x, z)yx∑
x,sim(x,z)≥δ αxSim(x, z)

(4)

where yx is the probability prediction vector of x’s anno-
tation. Then the entropy of a point z from data’s view can
be calculated based on it. Moreover, the semi-supervised
learning’s label and unlabeled datasets can be transferred
into a continuous space defined on confidence α ∈ [0, 1],
and we can estimate the confidence of an annotator and
use models to perform annotation. An easy mapping in
probability space can directly map accuracy to confidence:
α = (acc − accrandom)/(1 − accrandom). One primary
goal of semi-supervised learning under this interpretation
could be making the α value converge while training the
model with corresponding confidence without collapse.

3.3. Bayesian prediction fusion

Therefore, one key question in semi-supervised learning is
interpreted as α value convergence. Suppose we have two
independent predictors with confidence α1 and α2, when
the two predictors have same prediction y for sample x, the
confidence value αy of sample x should be annotated with
y become

αy = P (
Predictions are true

Predictions match
)

=
α1 ∗ α2

α1 ∗ α2 + P (match with other label)
(5)

In classification tasks, P (match with other label) ∈
[0, (1−α1)(1−α2)] depending on distribution over classes.
In the binary classification case P (match with other) =
(1− α1)(1− α2), it requires smaller prediction confidence
is larger than 0.5 so that the sample confidence is increased:
min(α1, α2) > 0.5 ⇒ αxy > max(α1, α2); if assuming
the matching distribution is uniform over c classes, then
P (match with other) = (1 − α1)(1 − α2)/(c − 1) and
min(α1, α2) > 1/c is the condition. If no matching prob
distribution is in other classes, then its value is 0. To sum
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Figure 3. The overview of how we estimate a sample’s confidence with Bayesian Fused prediction from both model’s view and data’s
view. Generally, this estimation gives a better evaluation of a sample’s uncertainty/confidence than using model prediction only.

up, using (1− α1)(1− α2) gives a lower bound estimation
on αxy. These conditions can be utilized to make the al-
pha value converge, or re-estimate α value for samples in a
dataset.

When predictions from different views diverge, if one is con-
fident above the threshold and the other is not, use the max
one for the highest confidence. If both predictions are confi-
dent, then the sample’s confidence is reduced. Supposing
α1 > α2, then

P (p1) =
P (p1 is true)

P (predictions unmatch)

=
α1(1− α2)

α1(1− α2) + P (other)
(6)

where P (other) ∈ [0, (1 − α1)α2]. In the case p2
takes all the remaining confidences from the first predic-
tor, P (other) = (1 − α1)α2; if assuming the match-
ing distribution is uniform over c classes, P (other) =
(1 − α1)α2/(c − 1). If there are no prob distribution un-
matching classes on other classes, P (other) = 0. Similarly,
using P (other) = (1− α1)α2 gives a lower bound on the
updated confidence. The prediction divergence from confi-
dent predictions means max(p1) ̸= max(p2) ⇒ H(p′) >
max(H(p1), H(p2)). Reducing the corresponding confi-
dence can help with re-convergence.

3.4. Benefit of reannotating one sample

As the model is to absorb the data distribution, the dataset
itself also carries a prediction based on the near neighbor pre-
diction within the distance where linearity holds. And sam-
ple’s confidence changes during turns of iteration. There-
fore, taking the derivation from previous sections, when
re-annotating a sample, the expected gain is

E[IG(annotate z)] = max
(
min(H(αz),

H(knn predictions))−H(αann), 0
)

(7)

If using entropy, one can use H(α) = −αlog(α) −∑
c−1

1−α
c−1 log

1−α
c−1 ≃ −αlog(α) − (1 − α)log(1 − α) as

an estimation neglecting the constant term. In practice, we
found using H(α) = α is a feasible proxy to choose sam-
ples with less computation and higher compatibility. For
sample selection, we only need to know the positivity and
relative magnitude of the samples’ information gain, there-
fore the confidence itself is a good proxy.

3.5. The Algorithm

Selective Annotation When data to be annotated is greater
than the capacity, for a sample z = (xi), to estimate the
gain of annotating it given already collected data D, we have
model m and get the feature f(z), model prediction ym, con-
fidence cm = (pm − 1/num class)/(1 − 1/num class).
We then retrieve k nearest neighbors of z (with f and ANN
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search) and use Eq.4 to get a (knn) data-based prediction
yknn, cknn. Then we merge two predictions from model
and dataset with Eq.5 and Eq.6 and get ymerged, cmerged.
The annotation gain of sample z is then calculated as
cann − cmerged where cann is the average accuracy of the
annotator. For batched selection, one can sample with prob-
ability proportional to the gain and drop redundant samples.

(P,C↑,S)

ϵ distance

Predicted Class: P’→ P’
Confidence: 0.9 → 0.8↓
Similarity: 0.93

Predicted Class: P → P
Confidence: 0.9 → 0.93↑
Similarity: 0.91

(P,C,S)

(P,C,S)

(P,C,S)

(P,C,S)

New Annotation (P,Cann)

Sample Newly Annotated
Near Neighbor With Same Prediction
Near Neighbor With Different Prediction

Dynamic Rechecking

(P,C↑,S)

Figure 4. The idea of dynamic rechecking. When we get new
annotation(s), we can update the sample estimation within the
ϵ-distance to better reflect the gain. It will automatically balance
classes and sample density. This step is efficient with klog(n) time.

Dynamic Rechecking After getting a new annotation yi
for z = (xi) with confidence cann, we retrieve k nearest
neighbors of z. For neighbors within the distance threshold,
we recalculate their data’s view prediction and update their
(P,C) with our Bayesian Prediction Fusion Eq.5 and Eq.6
and update their gain. Each time we select the (batch) sam-
ple with the highest annotation gain to annotate. This design
is to avoid redundancy and ensure class balance during se-
lective annotation, as near samples with similar predictions
will be updated with a lower gain, while near samples with
different predictions will be updated with a higher gain. We
use online-ANN based near neighbour search so that this
process is efficient and extendable.

3.6. Using Public Data to Enhance Downstream Task

To further benefit downstream tasks and evaluate our method
in the data/annotation growth setting, we construct a super-
set from multiple open-sourced (and mostly web-sourced)
datasets (CC3M(Sharma et al., 2018), CC12M(Changpinyo
et al., 2021), SBU(Ordonez et al., 2011), COCO(Chen
et al., 2015), Visual Genome(Krishna et al., 2016), Laion-
400m(Schuhmann et al., 2021)) and retrieve related sam-
ples to enhance downstream tasks. To reduce the peak

GPU/RAM memory, we subsample 1% samples from all
the samples and retrieve their feature using BLIP(Li et al.,
2022). Then we use K-means to get 500 clusters. We then
follow (Qin et al., 2024) to do ANN-based de-redundancy
and filtering within each cluster and construct the corre-
sponding ANN index for later retrieval. This allows a higher
parallelism of the algorithms. For future data scale ex-
tension, either distributed HNSW or hierarchical recursive
clustering plus cluster-wise HNSW is a feasible solution.

On ImageNet-1K, we use image embedding from ImageNet-
1K samples to retrieve the k nearest neighbor in the superset,
and then de-redundant the samples while filtering retrieved
samples with cosine distance larger than 0.2.

4. Experiments
4.1. Datasets and Implementation Details

We evaluate our method on ImageNet-1K (Deng et al.,
2009), CIFAR10/100(Krizhevsky et al., a;b), StanfordCars,
Food-101(Bossard et al., 2014), SVHN(Netzer et al., 2011)
under different annotation ratios and settings. We further
extend the training data with data from CC3M, CC12M,
SBU, Visual Genome, COCO, and LAION-400m to study
the effect of scaling unlabeled data.

Implementation Details. The experiments on ImageNet-
1K follows Semi-ViT (Cai et al., 2022), using ViT (Doso-
vitskiy et al., 2021) model with MAE (He et al., 2021) pre-
trained backbone to conduct supervised and semi-supervised
training. All other details can be found in the Appendix.

4.2. Data/Annotation Scaling

ImageNet-1k Results We show our improvement in
data/annotation efficiency here in Fig.5 and Tab.1. On 10%
data setting of ImageNet, our selective annotation can in-
crease the accuracy by 1.3% compared to the random base-
line. With only 68% annotated samples from ImageNet-1k,
we can achieve lossless performance (85.6% Acc), surpass-
ing the 85.5% Acc of Semi-ViT with 80% labeled data
and 20% unlabeled data. What’s more, we have an auto-
matic stop criterion when the marginal gain of annotating
more samples is negligible. The 68% ratio is given by
the algorithm itself when it suggests to stop selecting sam-
ples, instead of a annotation ratio tuning. It can be seen
that Info-Coevolution is compatible with Semi-Supervised
learning, where Semi-ViT trained with 50% ImageNet-1K
annotations selected by Info-Coevolution can achieve an
almost lossless result (85.5%). Moreover, Info-Coevolution
is compatible with continual supervised training, without
introducing a distribution shift.

Comparison with Coreset Selection In Fig.6, we compare
with previous SOTA method Dataset Quantization(Zhou
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85.685.585.685.5

Figure 5. The scaling curve of different schemes. Info-Coevolution
improves data efficiency for both Supervised/Semi-supervised set-
tings, and gets lossless performance at 68% and 50% annotation
ratios respectively.

Table 1. Accuracy of training ViT-Large on ImageNet-1k with
continually increasing annotation and doing continual training.
Info-Coevolution gets a 1.3% accuracy improvement in 10% Im-
ageNet supervised setting with the proposed prioritized selective
annotation.

Method Setting 1% 3% 5% 7% 10%

Random Supervised 67.1 72.5 74.6 76.6 79.2
Ours Supervised - 73.1 75.8 78.0 80.5

et al., 2023). With selection-only (not adding the MAE
reconstruction), DQ achieves 85.5% Acc with 80% la-
beled data. It shows that beyond the extendability of Info-
Coevolution, it can also serves as a good coreset selection
method.

Table 2. Scaling the dataset with retrieved data from our con-
structed superset and training with Semi-ViT. Extending the un-
labeled data can improve performance while using our selection
would improve the data efficiency of unlabeled data.

Labeled Data Additional Data Acc

1.28M 0 85.6
1.28M Unlabeled 2M 86.0
1.28M Our selected unlabeled 1M 86.0

Tab.2 illustrates the effect of data scaling for further scaling
semi-supervised training with unlabeled data. With addi-
tional unlabeled data, the acc can be further increased by
0.4% with semi-supervised training. For unlabeled data
selection, we adjust the equation to better capture useful
unlabeled data. See Appendix for detail. It use half of
the unlabeled data to enhance the performance as using all

85.685.585.6

Figure 6. Compare with corset-selection SOTA method Dataset
Quantization on IN1K.

unlabeled data.

Generalization and Robustness Theoretically, the effec-
tiveness of Info-Coevolution is model-agnostic and dataset-
agnostic. We here verify its generalization and robust-
ness across different datasets, architectures and other semi-
supervised framework.

We present our experimental result on CIFAR10 semi-
supervised training with Fixmatch(Sohn et al., 2020) and
ResNet-50x4 in table 3. Info-Coevolution improves the
data efficiency and further reduces the annotation amount
to achieve lossless performance (95.85% acc) from 4000 to
1000.

Table 3. ResNet-50x4 with Fixmatch on CIFAR10
Data Selection 250 1000 4000 Full

Random 94.95 95.59 95.85 95.85
Info-Evolution 95.39 95.85 - -

To analyze the generalization of Info-Coevolution across
different datasets, we use Info-Coevolution with both su-
pervised training and semi-supervised training by adapting
pretrained ViT-L on CIFAR-10, CIFAR-100, Standfordcars,
fool101 and SVHN. As shown in Fig.7, Info-Coevolution
consistently improved both supervised and semi-supervised
training performance on all these datasets.

4.3. Ablation Experiments

Ablation of Components. As our algorithm involves fusing
the prediction of model and KNN predictions with dynamic
rechecking, we here ablate their corresponding influence on
performance in Tab.4. The experiment is to choose annota-
tion for 10% ImageNet data with 1% random data trained
model. It can be seen that using only model prediction
for sample gain estimation could fail to beat the random
baseline (78.5% compared to 79.2%). As analyzed, purely
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Figure 7. Info-Coevolution consistently improve the annotation efficiency across different datasets with both supervised/semi-supervised
setting.

Table 4. Ablation of proposed components in the framework (1%
model to select 10% annotation).

Component ImageNet Acc.
Model Data Dynamic 10% label

✓ 78.5↓0.7
✓ 79.8↑0.6

✓ ✓ 77.1↓2.1
✓ ✓ 79.7↑0.5

✓ ✓ 79.8↑0.6
✓ ✓ ✓ 80.2↑1.0

Random Select 79.2

model-uncertainty-based sample selection is unaware of
distribution, which could lead to distribution bias in hard
problems. Using our data’s view prediction gives a better
prediction of information gain and gets 0.6% performance
improvement; the dynamic rechecking which introduced
locality consideration effectively mitigate the problem of
model-based sample selection, improving performance by
+0.5% (compared to model-only -0.7%). Our proposed mul-
tiview prediction fusion combines both model and KNN
prediction to better decide the samples with higher entropy.
Using the fused prediction alone will get a severe distribu-
tion balance problem, which lower down the performance
by 2.1%. With dynamic rechecking involved to balance both
density and class balance, it gets a 1.0% ACC improvement
compared to the random baseline.

Ablation of Model Updating Frequency. We also study
the influence of model fine-tuning frequency on annotation-
efficiency. In Fig.8, we can see that, when we add additional
model updates during the loop, Info-Coevolution can select

80.280.5

79.2

Figure 8. Ablation of model update frequency. When updating the
model more frequently during selection, it shows improved data
efficiency.

a better annotation set at the annotation ratio. When directly
selecting 10% (0.128M) annotations for ImageNet-1k with
model trained on 1% data, the performance is 80.2%; after
adding two model updates in the middle, we get 80.5%.

5. Conclusion
In this work, we extend Information Gain estimation to
classification tasks with locality consideration. We pro-
posed a novel online efficient algorithm Info-Coevolution,
to increase the annotation efficiency of supervised/semi-
supervised training. Info-Coevolution is able to save the
annotation ratio by 32% on ImageNet with a lossless per-
formance and is compatible with Semi-Supervised learning

8
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to achieve almost lossless performance with 50% annota-
tion. We also demonstrate how to enhance the downstream
task dataset with open-source data. As an online method,
Info-Coevolution is efficient and extendable for real-world
applications.

Limitations and future works Our work mainly considers
the same training data distribution as the target distribu-
tion on the classification task. Using the large-scale weakly
supervised data may be using different training data distribu-
tion to target. For unlabeled data and wealy-supervised data,
it is possible to extend the framework further while we have
only done a preliminary study. Tasks beyond classification
are also worth further exploration.
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A. Proof
We show our proof of Theorem3.1 here as follows: For the model M = g ◦ f , assume g is Lg-Lipschitz, i.e. for all z1,z2 in
the feature space, we have

||g(z1)− g(z2)|| ≤ Lg||z1 − z2|| (8)

Then,
||g(z1)− g(z2)|| ≤ Lg||z1 − z2|| ≤ Lgϵ (9)

Softmax is known to be 1-Lipschitz which does not further change the bound of logits.

When using cosine distance, we know that

cosine dis(z1, z2) = 1− < z1, z2 >

||z1||||z2||
(10)

If features ||z1||,||z2|| are normalized (as in ViT networks), then

||z1 − z2|| =
√
2 ∗ cosine dist(z1, z2) (11)

And
cosine dist(z1, z2) < ϵ ⇒ ||g(z1)− g(z2)|| <= Lg

√
2ϵ (12)

B. Additional Experiment Details
We follow the experimental settings in Semi-ViT. Our results are trained on a single node of 8 NVIDIA A100-SXM4-80G.
For supervised finetuning, we train the model with batchsize 512, learning rate 0.001 for 50 epochs with all augmentations
same as in Semi-ViT.

C. Semi-supervised Data Selection
For selecting the semi-supervised data, we further add another term based on each sample’s average distance to nearest k
neighbours in high-confidence samples and already selected samples.

Semi−Gain(z) =
∑

x∈KNN,x∈Selected

cosine dist(z, x) (13)

This term is to encourage a more uniform distribution of unlabeled samples in the space between the labeled samples, so
that the semi-supervised training can progressively learn the pseudo target.
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