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Abstract

We demonstrate that a "think-first" phase via chain-of-thought (CoT) prompting
systematically strengthens internal query—key (QK) alignment, improving ability
to select and verify answers directly from model activations rather than decoded
tokens. Building on multiple-choice evaluation with MMLU-Pro and extending to
free-form reasoning on MATH-500, GSM8K, and our variant of Humanity’s Last
Exam, we evaluate three settings: (i) MCQA vs MCQA+CoT with QK-based selec-
tion; (ii) candidate generation with/without CoT followed by QK-based selection
among self-proposed answers; and (iii) QK-based verification of LLM solutions.
We analyze QK-score accuracy, permutation robustness, and diagnostics relating
alignment strength to correctness. This yields a white-box, computation-efficient
decision rule that turns CoT from a purely generative aid into a deliberation-then-
selection mechanism grounded in the model’s own representations. By leveraging
this internal signal, we surpass preference-optimized LLMs on fundamental rea-
soning tasks, achieving performance gains up to 22% across various benchmarks
and models.

1 Introduction

Large language models have achieved impressive performance across reasoning benchmarks, from
multiple-choice question answering [Hendrycks et al., 2021a, Wang et al., 2024b] to open-ended prob-
lem solving [Cobbe et al., 2021, Hendrycks et al., 2021b]. Chain-of-Thought (CoT) prompting [Wei
et al., 2022] and self-consistency [Wang et al., 2023] substantially improve reasoning reliability, yet
selecting correct answers from generated trajectories remains challenging, often requiring external
solvers [Shi and Jin, 2025, Wang et al., 2024a] or reranking heuristics [Jiang et al., 2025].

We explore Query—Key (QK) scores—raw dot-product alignment between transformer attention
vectors—as an internal signal for answer selection and verification. Prior work used QK-scores for
probing latent knowledge [Tulchinskii et al., 2024] and detecting logical consistency [Tulchinskii
et al., 2025], but their potential for guiding reasoning remains underexplored. We hypothesize that
QK-scores can serve as practical mechanisms for improving LLM reasoning across diverse tasks.
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Our contributions are threefold: we introduce extended MCQA with reasoning where QK-scores
effectively capture latent preferences after deliberation; explore correctness verification using QK-
scores to assess reasoning validity; and demonstrate candidate selection in open-ended generation
as an alternative to majority voting. Across benchmarks including MMLU-Pro, GSM8K, and
MATH-500, our methods achieve up to 22% improvement using only internal attention patterns.

We release all code and evaluation scripts in an anonymous repository.?

2 Related Work

Reasoning in MCQA Multiple-choice question answering (MCQA) is an important task for
evaluating the knowledge and reasoning abilities of large language models (LLMs). A wide range of
datasets provide broad domain coverage and standardized evaluation [Hendrycks et al., 2021a, Zellers
et al., 2019, Huang et al., 2019], while others target more challenging setups [Wang et al., 2024b].
Models are often scored using logits over option tokens, but this proxy is limited due to selection
biases and artifacts that models can exploit [Zheng et al., 2024, Balepur et al., 2024]. Recent work
shows that allowing free-form generation tends to improve robustness and accuracy, though at the
cost of more complex evaluation [Molfese et al., 2025]. In our work, we adopt MCQA with COT to
study how internal mechanisms of option selection can benefit from explicit reasoning.

Open-ended Question Answering Open-ended question answering tasks provide a complementary
perspective on model capabilities by requiring free-form solutions rather than selecting from prede-
fined options. Benchmarks such as MATH-500 [Hendrycks et al., 2021b] and GSM8K [Cobbe et al.,
2021] are designed to test advanced reasoning and problem-solving skills across mathematics, coding,
and general knowledge. These tasks are commonly addressed with COT, which improves reasoning
through step-by-step explanations, and with self-consistency, which samples multiple reasoning paths
and aggregates their answers [Wei et al., 2022, Wang et al., 2023]. Beyond majority voting, several
candidate evaluation strategies have been explored, including estimating model uncertainty [Ren
et al., 2023], verifying correctness with external solvers or execution checks [Shi and Jin, 2025, Wang
et al., 2024a], and applying reranking heuristics to identify higher-quality outputs [Jiang et al., 2025].
While most existing methods rely on such heuristics or external verification, we investigate whether
internal selection mechanisms can enhance open-ended problem solving. In particular, we study the
use of the QK-score for correctness verification and candidate selection.

Internal alignment signals, head-level selection, and decoding-time controls. Internal probes
offer white-box signals for selection and verification. Contrast-consistent search uncovers directions
in hidden states that correlate with truthfulness without supervision, with follow-up analyses noting
identification pitfalls and proposing sanity checks [Burns et al., 2022, Farquhar et al., 2023]. At the
head level, query—key (QK) alignment has been used to identify “select-and-copy” heads that separate
semantically relevant options and transfer across datasets and scales [Tulchinskii et al., 2024]; related
work documents negative-attention biases and mitigation strategies that can be evaluated alongside
internal-selection signals [Yu et al., 2024]. Complementary to these internal signals, decoding-time
controls leverage layerwise information without extensive sampling; for example, DoLa contrasts
early and late layer logits to improve factuality and faithfulness during inference [Chuang et al.,
2024].

3 Method

Background on QK-score In transformer architectures, the interaction between query and key
vectors affects how information flows across tokens. Beyond their normalized role in attention

weights, we can define the raw dot product of query vector of i-th token qfl’h) and key vector of j-th

token kzy’h) in the attention head (I, h) as SgKh)() = qgl’h)Tk:;l’h). Recent studies have employed
this measure to probe model behavior in diverse tasks, such as identifying latent preferences in

multiple-choice question answering or isolating heads that evaluate logical consistency [Tulchinskii
et al., 2024, 2025].
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QK-score and connection between reasoning parts. We use QK -score to quantify the strength
of the connection between two reasoning parts. Suppose that we have a text consisting of two parts
(¢, a), which we will call premise (c) and response (a). By ¢, and a, we denote tokens that represent
c and a; usually they are the punctuation or end-of-line signs at the very end of the respective
parts; we choose them because they ‘collect’ the meaning of the preceding text and at the same
time they don’t have their own meaning (unlike tokens that are part of actual words). Calculating

Sg’[};) (¢, a,.), we measure how strongly a particular attention head aligns the response to the premise.
We use (K -scores to compare multiple responses to the same premise (i.e., answer candidates to the
question) .

In this work we explore three different setups and particular application details of the QQ K-score in
them vary slightly.

THINK LOGICALLY AND SELECT THE CORRECT ANSWER TO THE FOLLOWING QUESTION.
QUESTION: Colors in a soap bubble result from light

OPTIONS:

A. dispersion

B. deflection

NOW THINK STEP BY STEP AND THEN GIVE THE FINAL ANSWER. / ANSWER:

Figure 1: Prompt example for the tasks of MCQA with reasoning / MCQA.

* For MCQA, the premise is a concatenation of an instruction, context (if given), question, and
a full list of choices one per line. We pass all options to the model in one go and only vary the
choice of the premise-representing token (c,.) for the calculation of the QKscore. We choose
the end-of-line tokens after each of the choices. For simple MCQA, responserepresenting
token is the last token of the prompt (i.e., colon in ‘ANSWER:’). For MCQA with reasoning,
we prompt the LLM is prompted with the premise, consider its output as the response, and
select the token right before the final answer option as the response-representing token a...
The prediction is the option is the one that achieves the highest QK-score.

An example of a prompt for MCQA-with-CoT-reasoning is given in Figure 1.

* For Logic Consistency Verification task, premise is a premise (in logic sense), while response
is a concatenation of candidate conclusion, instruction to check the consistency and LLM
generated answer (forced choice between ‘true’ and ‘false’). ¢, is selected as the last token
of the premise, and a,. is the last token of the prompt.

» For Hypothesis selection premise is the concatenation an instruction and problem. ¢, is
selected as the end-of-line token in the end of the problem. LLM prompted with the premise
and its generation is the response; a.. is chosen as the last token of the generation.

The selected hypothesis is the one that achieves highest QK-score.

Head Selection Procedure. When it is not stated otherwise, we do not aggregate predictions or
Q) K -scores from multiple attention heads. Instead, in each experiment we use a separate calibration
subset of the data from the same domain to select the single best performing head.

4 Experiments

We evaluate our QK-score approach on three real-world datasets from common LLM benchmarks for
MCQA and mathematical reasoning: MMLU-PRO [Wang et al., 2024b], HLE-V4 (our variant of
Humanity’s Last Exam [et.al., 2025]), and MATH-500 [Wang et al., 2024a]. Detailed descriptions of
datasets and experimental setup are provided in Appendices A and B.

4.1 QK-score with CoT for MCQA

First, we assess the efficiency of the QK score for simple MCQA and MCQA with integrated CoT
reasoning. In both setups, the model is prompted with context, a question, a list of options, and an
instruction to output only one letter — the correct option; in the second setup, the prompt also includes
an instruction to think step-by-step before giving the final answer.



In this experiment we use two datasets: MMLU-PRO and HLE-Y. For the calibration set we
randomly sample 500 questions; for both datasets we keep in it the equal proportion of question
with each correct option. For evaluation we sampled 4,000 for MMLU-PRO and 1,600 samples for
HLE-Y%; we ensured that there were no samples belonging to both calibration and evaluation subsets.

Table 1 provides the results. From them, we can see that in the simple MCQA setup the QK-score from
a single selected head allows for significant improvement over the baseline (up to 32.7% absolute
improvement on MMLU—-PRO); this effect is more pronounced for larger models. Permutation
accuracy results, which demonstrate robustness to answer order changes, are provided in Appendix C.

When the model is allowed to think before giving the final answer (MCQA with Chain-of-Thought
setup, right columns of the table), quality of its predictions rises to the level of QK-score predictions
and sometimes even surpasses it; however, to do so, it needs to generate rather long outputs (up to
3,000 tokens).

MMLU-PRO HLE-%4
MCQA +CoT MCQA +CoT
Model Base QK | Base QK | Base QK | Base QK
LLaMA-3.1-8B \ 28.8 334 \ 36.8 44.6 \ 28.8  33.6 \ 30.2 326

DeepSeek-R1-Distill-
Qwen-1.5B | 12.7 20.0 | 199 168 | 26.6 314 | 226 36.2
Qwen-7B | 13.5 273 | 260 255 | 283 333 | 30.0 29.6

Qwen-14B | 17.7 444 | 40.8 46.0 | 303 353 | 333 31.6
Qwen-32B | 16.6 493 | 352 49.7 | 348 34.1 | 33.6 33.6

Qwen3-8B 256 413 | 361 357 | 309 38.6 | 31.6 36.0
Qwen3-14B 154 450 | 440 423 | 30.1 336 | 331 29.1
Qwen3-32B 232 444 | 377 372 | 313 37.0 | 364 384

Table 1: MCQA performance (Accuracy %) on MMLU—-PRO and HLE-% benchmarks with and
without Chain-of-Thought reasoning. Bold indicates best performance per dataset-setting combina-
tion.

4.2 QK-score for verification

In order to assess the ability of the QK-Score to verify the correctness of LLM trajectories, we
sampled 100 problems from 2 datasets: MATH-500 and HLE-%. In case of HLE-% we do not
provide answer choices for the LLM in this setup.

Firstly, we generate solutions for the problems using LLM with CoT. Then, we determine the real
correctness of the generated solution via comparing LLM answer and real answer from the dataset
using separate judge: Qwen3-70B. Secondly, we turn the original LLM into a new judge and ask it to
verify its own solution without access to the correct answer. Finally, we take original trajectories,
calculate the QK-Score and compare it with pre-determined threshold in order to get a correctness
verdict for the specific trajectory.

On easier dataset: MATH-100 QK-Score shows either near-baseline results or outperforms baseline
completely. On the complicated HLE-Y4most of the models spends their token budget inefficiently
and are not able to get any correct verdict even after a long thinking process.

MATH-500 HLE-Y
Model Baseline QK-score A Baseline QK-score A
DeepSeek-R1-Distill-

LLaMA-8B 2% 30% 28% 0% 69% 69 %
Qwen-1.5B 44% 47% 3% 2% 26% 24 %
Qwen-7B 73% 70% -3% 1% 75% 74%
Qwen-14B 79% 78% -1% 0% 71% 1%
Qwen3-8B 25% 49% 16% 1% 77% 76 %
Qwen3-14B 17% 61% 44% 0% 90% 90%

Table 2: Results of reasoning chains correctness verification on MATH-500 and HLE-% datasets.
Reported metric is Accuracy.



4.3 Hypothesis Selection

A common practice to improve quality of solving challenging mathematical tasks with LLMs is the
consistency analysis. k open-end generations are sampled resulting in answers A = {a1,...ax}, and
the final answer is chosen as the most common among .A. In this chapter we investigate the QK-score
as an alternative to it.

For this task, we use data from MATH-500 and HLE-Y% datasets. For each open-end question in
them, we sampled 8 candidate reasoning chains with LLaMA-3.1 8B model. After filtering out those
questions on which either all or none of the 8 chains reached incorrect answers, we ended up with
182 and 259 questions for HLE-%4 and MATH-500 respectively, and each question has 8 different
answer chains.

As a baseline, we use a standard consistency approach, when the final answer is the one that is
the most common between 8 candidates. For our approach, we calculate the QK-scores from the
LLaMA-3.1 8B model for each of the hypotheses and select one that reaches the maximal value. Our
method requires a calibration set and we explore two options: in-domain calibration (on the same
dataset) and out-of-domain (on the other dataset).

Table 3 provides the results of this experiment. We can see that even when calibration is performed
on a different dataset, result accuracy is not worse than that of the baseline.

We can also observe the fact that the performance of heads QK-scores highly correlates between two
benchmarks (see Figure 2 in Appendix).

Method | MATH-500 HLE-Y |

Baseline (consistency) | 32.0 31.8 |
QK-score with calibration on
- MATH-500 53.8 31.6
- HLE 40.2 33.3

Table 3: Hypothesis Selection quality (accuracy) with LLaMA-3.1 8B model.

5 Limitations

Our approach requires white-box access to attention states and relies on post-hoc calibration from a
development split. While we adopt explicit delimiters and read-time controls, residual prompt-format
and tokenizer dependencies may remain.

6 Conclusion

We introduced a simple white-box decision rule that reads a model’s internal attention interactions
via the raw QK score, after (or without) a brief chain-of-thought phase. Across MCQA and open-
ended reasoning tasks, the QK-score selector/validator operates directly on activations, requires no
auxiliary training, and aligns with the model’s own attention preferences. Our analysis shows how
to define the read positions, choose candidate/premise tokens, and interpret the QK-score margin A
as a confidence indicator. These properties make QK-score a practical complement to token-level
selectors and external verifiers. Future work includes richer head ensembles, adaptive read-time
policies, and broader tests under alternative prompt formats.
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A Dataset Details

We experiment on 3 real-world datasets from common LLM benchmarks for MCQA and mathematical
reasoning.

MMLU-PRO (Wang et al. [2024b]) is a publicly available MCQA dataset intended to assess the
knowledge and the reasoning capabilities of modern language models. It contains 12,000 curated
challenging reasoning-focused questions extracted from textbooks and exams in 14 diverse domains.
For each question, 10 answer choices are provided (with only one being correct).

We created HLE-V4 based on Humanity Last Exam (et.al. [2025]); from the original benchmark we
selected questions that require only text processing (i.e., without images), then for MCQA questions
we randomly selected 3 incorrect options from those given, while for open-end questions we used
modern LLMs to generate three incorrect answer choices for each. We also ensured that the proportion
of questions with each correct answer is even. Thus, we obtained a dataset containing 2,100 questions,
each with 4 answer choices. Our setup is different from the original Humanity Last Exam Benchmark,
because it is quite challenging for the smaller models that we are working with in this research.

Finally we, use MATH-500 Wang et al. [2024a] to access the model’s capabilities at generation of
the open-end reasoning. This dataset contains curated challenging math problems, to solve which
multi-step reasoning and complex problem-solving abilities are necessary. In total, it contains 500
entries.


https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2408.00137
https://arxiv.org/abs/2408.00137
https://aclanthology.org/P19-1472

B Experimental Setup Details

We performed all our selection experiments according to the following scheme. First, we took a
frozen pre-trained transformer LLM (we did not perform any fine-tuning or any other modification
of weights), and one-by-one passed through it samples from a calibration set. We evaluated the
performance of QK-scoring of each of the models’ heads and selected.

In case of the verification, threshold calibration was required. It was done on 20 sampled solutions
for each dataset by grid searching for the optimal threshold for QK.

We report two primary performance metrics: Accuracy (Acc.) of the predicted answers and Permuta-
tional Accuracy (PA). PA is reported only for the selective setup. The latter was introduced in Gupta
et al. [2024] and is intended at efficiently mitigating the issue of the model guessing the right answer
in the MCQA setting. PA is calculated as

1 N
PA = — > LT, M
N =1

where I, is the indicator value equals to 1 if the model answers question ¢ correctly, while I equals
to 1 iff the model answers question ¢ correctly after answer options were permuted.

To calculate PA we repeat calibration and evaluation on the same data splits with randomly shuffled
answer options (head selection is needed because it can result in a different best head).

Correlation of QK-score performance
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Figure 2: Correlation between LLaMA-3.1 8B heads QK-scoring accuracy on two datasets for the
task of hypothesis selection.

C Permutation Accuracy Results

Tables 4 and 5 provide Permutation Accuracy (PA) results for our MCQA experiments. PA measures
robustness to answer order changes by evaluating the model on the same questions with randomly
permuted answer options.

D Evaluation Protocol

Calibration and head selection. For each dataset, we sample a calibration subset from the same
domain to (i) select a single attention head per model and (ii) set any thresholds used by verification.
No model weights are updated. All results are reported on disjoint evaluation subsets.

Metrics. We report Accuracy (Acc.) for selection/verdicts. For MCQA, we also report Permutation
Accuracy (PA) as in Gupta et al. [2024] by re-evaluating after a random permutation of answer
options on the same split; head selection is repeated on the permuted calibration split, following our
original procedure.



MCQA MCQA+CoT
Model Baseline QK-score | Baseline QK-score
LLaMA-3.1-8B | 10.6 214 | 109 28.4
DeepSeek-R1-Distill-Qwen-1.5B 1.6 8.8 54 5.0
DeepSeek-R1-Distill-Qwen-7B 2.1 14.9 10.6 14.2
DeepSeek-R1-Distill-Qwen-14B 3.9 32.7 25.4 33.0
DeepSeek-R1-Distill-Qwen-32B 3.0 37.5 20.2 36.2
Qwen3-8B 10.4 26.4 20.7 242
Qwen3-14B 2.6 31.6 252 29.2
Qwen3-32B 8.3 322 23.8 25.8

Table 4: Permutation Accuracy (PA %) on MMLU-PRO benchmark.

MCQA MCQA+CoT
Model Baseline QK-score | Baseline QK-score
LLaMA-3.1-8B | 107 138 | 128 13.2
DeepSeek-R1-Distill-Qwen-1.5B 8.3 12.6 6.4 15.4
DeepSeek-R1-Distill-Qwen-7B 10.8 14.6 17.0 13.8
DeepSeek-R1-Distill-Qwen-14B 14.7 15.1 13.0 19.6
DeepSeek-R1-Distill-Qwen-32B 19.8 18.1 16.2 22.6
Qwen3-8B 14.9 21.9 16.8 22.6
Qwen3-14B 12.4 15.2 14.4 21.6
Qwen3-32B 15.3 14.1 19.8 16.8

Table 5: Permutation Accuracy (PA %) on HLE-% benchmark.

Compute notes. Chain-of-thought (CoT) generations can be long on some items; we keep the same
prompts, budgets, and decoding settings used to obtain the reported results and do not alter them post
hoc.

Judging for open-ended tasks. When a judge model is used (e.g., for agreement with a reference
answer), we keep the same judge family and prompts as in the experiments summarized in Table 1
and Table 2.
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