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ABSTRACT

Reinforcement Learning’s high sensitivity to hyperparameters is a source of in-
stability and inefficiency, creating significant challenges for practitioners. Hyper-
parameter Optimization (HPO) algorithms have been developed to address this
issue, among them Population-Based Training (PBT) stands out for its ability to
generate hyperparameters schedules instead of fixed configurations. PBT trains
a population of agents, each with its own hyperparameters, frequently ranking
them and replacing the worst performers with mutations of the best agents. These
intermediate selection steps can cause PBT to focus on short-term improvements,
leading it to get stuck in local optima and eventually fall behind vanilla Random
Search over longer timescales. This paper studies how this greediness issue is
connected to the choice of evolution frequency, the rate at which the selection is
done. We propose Multiple-Frequencies Population-Based Training (MF-PBT),
a novel HPO algorithm that addresses greediness by employing sub-populations,
each evolving at distinct frequencies. MF-PBT introduces a migration process
to transfer information between sub-populations, with an asymmetric design to
balance short and long-term optimization. Extensive experiments on the Brax suite
demonstrate that MF-PBT improves sample efficiency and long-term performance,
even without tuning hyperparameters. Code will be released.

1 INTRODUCTION

The performance of neural networks depends on selecting a well-suited configuration of hyperparam-
eters, a task that is time-consuming and often reduced to trial-and-error when done manually. This
concern has driven the development of Hyperparameter Optimization (HPO, Bergstra et al. (2011);
Feurer & Hutter (2019)), field focused on modeling and automating the hyperparameter selection
process. The need for HPO algorithms is particularly strong in Reinforcement Learning (RL, Sutton
& Barto (2018)), as RL algorithms are often highly sensitive to hyperparameter choices (Eimer et al.,
2023; Zhang et al., 2021).

Given these challenges, Population-Based Training (PBT, Jaderberg et al. (2017)) has become a
popular HPO method among RL practitioners (Badia et al., 2020; Liu et al., 2022). PBT trains a
population of agents in parallel, using an evolutionary process to propagate successful hyperparameter
configurations while exploring new ones. This frequent evolution enables PBT to generate dynamic
hyperparameter schedules, unlike earlier methods like random search (Bergstra & Bengio, 2012) and
classic sequential optimization (Li et al., 2018; Falkner et al., 2018), which typically produced fixed
configurations. This dynamic adaptation of hyperparameters is particularly desirable in RL, where
the learning problem is non-stationary (Parker-Holder et al., 2022).

However, to achieve this dynamic adaptation, PBT selects hyperparameter configurations based on
intermediate performance. As a result, it often favors configurations that show early improvements
but fail to deliver better long-term results. Dalibard & Jaderberg (2021) identified this greediness
and proposed Faster Improvement Rate PBT (FIRE PBT), which uses learning curves to predict the
long-term potential of hyperparameters based on their improvement rates. In this paper, we address
PBT’s inherent greediness by introducing a novel focus on evolution frequencies.

Evolution frequency, which controls the number of training steps between evolutionary updates, has
not been explicitly addressed in prior research on PBT. Yet, our study shows that it lies at the core of a
key trade-off in PBT’s behavior. Evolving too frequently can lead to greedy collapse in two ways: (1)
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aggressive hyperparameter tuning traps PBT in local optima, and (2) population diversity decreases as
similar agents are reproduced repeatedly. Conversely, reducing the evolution frequency limits PBT’s
adaptability, resulting in less fine-grained schedules and, ultimately, deteriorating sample efficiency.

To address this trade-off, we propose Multiple-Frequencies Population-Based Training (MF-PBT),
a novel HPO algorithm that employs multiple sub-populations, each evolving at distinct frequen-
cies. By incorporating an asymmetric migration process, MF-PBT allows these sub-populations to
share information while preventing greediness. This design aims to balance short and long-term
optimization, leading to mixed-frequency schedules that enhance anytime performance.

We validate MF-PBT through a series of reinforcement learning experiments using the Brax frame-
work (Freeman et al., 2021). Our results demonstrate that MF-PBT effectively mitigates the two
forms of greedy collapse, achieving significantly higher long-term rewards and improved anytime
performance compared to PBT baselines. Additionally, we conduct an empirical study on the potential
of population-based methods for variance-exploitation, showing that even without hyperparameter
tuning, populations can greatly improve performance by exploiting the inherent stochasticity of RL
training. To ensure reproducibility, we make our code publicly available.

To summarize, our contributions are as follows:

1. We investigate the impact of evolution frequency on PBT and its connection to greediness.

2. We introduce MF-PBT, a novel HPO algorithm that uses multiple evolution frequencies and
an asymmetric migration process across sub-populations to overcome PBT’s greediness

3. We evaluate MF-PBT using the Brax suite, isolating the impact of PBT’s greediness and
demonstrating how MF-PBT mitigates this issue to achieve better final performance and
sample efficiency across various environments.

4. We empirically show how population-based methods can leverage stochasticity in rein-
forcement learning training to significantly improve performance, even without explicit
hyperparameter tuning.

2 PRELIMINARIES

Hyperparameter Optimization (HPO,Bergstra et al. (2011); Feurer & Hutter (2019)) encompasses
various approaches aimed at efficiently tuning hyperparameters to enhance performance and robust-
ness of learning algorithms. Random Search (Bergstra & Bengio, 2012) is the baseline approach
to HPO; the field then progressed towards more sophisticated techniques, notably meta-gradient
methods (Finn et al., 2017; Xu et al., 2018), sequential optimization (Li et al., 2018; Falkner et al.,
2018; Awad et al., 2021), and population-based approaches.

In this section, we focus on Population-Based Training (PBT, Jaderberg et al. (2017)), beginning with
its mechanisms and relevance to RL applications. Next, we briefly review notable extensions to PBT
and provide insights into the greediness issue that we aim to tackle, highlighting its connection to
evolution frequency.

2.1 POPULATION-BASED TRAINING

Population-Based Training (PBT) is an HPO technique that combines evolutionary strategies with
gradient-based optimization. In PBT, a population of N agents, P “ taiu

N
i“1, is trained iteratively

in parallel, with each agent maintaining its own set of hyperparameters, hi, and neural network
parameters, θi.

After every tready training steps, an evolution step occurs where all agents are evaluated and assigned
a fitness score. The parameter tready controls the evolution frequency, with smaller values resulting
in more frequent evolution. The agents are then ranked and divided into three brackets: winners,
survivors, and losers. The evolution step consists of two phases: an exploitation phase, where the
losers are replaced with clones of the winners, followed by an exploration phase, where the cloned
agents’ hyperparameters are slightly perturbed to encourage exploration around the best solutions.
In our experiments, we use the truncation method introduced in PBT: the top 25% are winners, the
bottom 25% are losers, and the remaining agents are survivors.
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While PBT can be applied to any deep learning task, is is particularly effective in RL, due to the
non-stationarity of the training process (Parker-Holder et al., 2022; Zhang et al., 2021). Unlike
supervised learning, where the data distribution remains fixed, RL experiences significant shifts in
the data distribution as training progresses, and the hyperparameters should take it into account.
PBT’s frequent evolution steps allow hyperparameters to adapt to the current learning state, naturally
generating schedules that accommodate this non-stationarity.

Another strength of PBT is its ability to harness RL’s intrinsic variance. The stochastic nature of
both the environment and learning algorithms leads to significant performance fluctuations across
different random seeds (Henderson et al., 2018; Agarwal et al., 2021). By maintaining a population
and periodically reproducing the top performers, PBT propagates favorable outcomes, ensuring
that unfortunate agents are replaced by luckier ones. This ability of PBT to propagate exploration
luck is noted in Jaderberg et al. (2017), but our experiments in section 4.3 further demonstrate that
population-based approaches can significantly improve performance, even without hyperparameter
tuning.

Numerous extensions to PBT have been proposed, focusing on improving exploration and efficiency.
Methods like PB2 (Parker-Holder et al., 2020; 2021) use bandit theory to explore hyperparameter
spaces, offering performance guarantees, particularly in small population settings. SEARL (Franke
et al., 2021) enhances sample efficiency in off-policy RL by employing a shared replay buffer across
the population. BG-PBT (Wan et al., 2022) integrates policy distillation (Rusu et al., 2016) to jointly
optimize neural architectures and hyperparameters.

However, these works do not address a key weakness of PBT: the inherent greediness of its interme-
diate selection mechanism. This issue was first identified in the original PBT work (Jaderberg et al.,
2017), leading its authors to propose FIRE PBT (Dalibard & Jaderberg, 2021) to mitigate it through
learning curve modeling. While FIRE PBT introduces an intricate mechanism (described in section
3.1), we aim to introduce a more practical approach of the greediness phenomenon.

All the aforementioned approaches rely on a fixed evolution frequency, and do not discuss the choice
of the tready parameter. To our knowledge, we are the first to investigate its impact on PBT, and its
connection to greediness.

2.2 GREEDINESS AND EVOLUTION FREQUENCY

While PBT’s dynamic adaptation of hyperparameters is a key strength, it also introduces a form of
greediness in the optimization process. This greediness arises from selecting agents based on their
short-term performance, often resulting in an overemphasis on immediate gains at the expense of
long-term success. Evolution frequency lies at the core of this problem, as it controls the optimization
horizon. Increasing tready allows PBT to select agents based on longer-term performance, mitigating
the short-sighted decisions issue. However, this comes at the cost of sacrificing PBT’s main principle:
its dynamic adaptation throughout the training run. We identify two collapse modes that can be
caused by too frequent evolution: diversity collapse and hyperparameter collapse.

Hyperparameter collapse. Certain hyperparameters, such as the learning rate or exploration
factors in RL, are inherently susceptible to greediness. Decaying these hyperparameters often yields
immediate performance gains, making them more favorable during short-term selection. However,
lower values restrict the exploration of the solution space, reducing the likelihood of finding better
optima within tready steps. This initiates a self-reinforcing cycle: agents with higher learning rates
are outperformed and thus replaced by agents with lower learning-rates that fine-tune the found local
optimum. After a few evolution steps, this hyperparameter collapse can combine with diversity loss,
leading the overall optimization process to a convergence trap.

Diversity collapse. Diversity loss is a well-known weakness in evolutionary algorithms (EAs,
Spears (1995)) that has not been directly addressed in PBT. When optimizing problems with multiple
local optima, EAs often lose population diversity and converge to a single basin of attraction.
Typically, this issue is corrected using niching techniques (Shir, 2012), which penalize reductions in
diversity. In PBT, the repeated cloning of the highest-performing agents at each evolution step leads
to a similar problem. Our variance-exploitation experiment in section 4.3 further highlights that this
diversity collapse can cause PBT to fail, independently from hyperparameter optimization.
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A solution to PBT’s greediness should account for both of these collapses. One straightforward
approach is to reduce the evolution frequency, giving agents more time to escape local optima and
slowing the loss of diversity. However, this can’t be a satisfactory solution, as it would directly harm
PBT’s sample efficiency by allowing poorly performing agents to persist longer. This ultimately
pushed PBT closer to a Random Search, where evolution is entirely absent.

3 MULTIPLE-FREQUENCIES POPULATION-BASED TRAINING

To build upon our insights on evolution frequency, we propose MF-PBT, which employs multiple
frequencies. By incorporating low-frequency agents that are less susceptible to hyperparameter
and diversity collapse, alongside higher-frequency agents that enable quick adaptation and stronger
anytime performance, MF-PBT mitigates the greediness of traditional PBT without sacrificing its
core strengths.

3.1 SUB-POPULATIONS

A key challenge in PBT is the misalignment between short-term and long-term optimization. As the
algorithm selects agents solely based on their performance over tready training steps, and is blind to
their long-term potential, it greedily favors hyperparameters that yield immediate gains, eliminating
those that could lead to superior performance in the long term. Nevertheless, this short-term feedback
is valuable to achieve strong anytime performance.

FIRE PBT (Dalibard & Jaderberg, 2021) introduced the concept of using sub-populations to address
the trade-off between short-term and long-term optimization. In their approach, one sub-population
is allowed to adopt a greedy strategy by directly optimizing the fitness signal, while the others aim
to optimize a proxy for long-term performance: the improvement rate. To evaluate the long-term
potential of hyperparameters, FIRE PBT uses an evaluator agent that simulates training with those
hyperparameters. The core assumption is that faster improvement in the evaluator’s performance
indicates better long-term potential, which is a quite strong assumption on HPO.

In contrast, we argue that the best proxy for long-term performance is long-term performance itself.
Rather than crafting an estimation, we let some agents train over longer timescales before evolu-
tion. In MF-PBT, each sub-population runs PBT at its own distinct evolution frequency. Dynamic
sub-populations (i.e., higher frequency) focus on local optimization and short-term improvements,
which can be greedy but offer gains in sample efficiency. Conversely, steady (low-frequency) sub-
populations assess long-term performance, avoiding the pitfalls of greediness at the expense of sample
efficiency.

Our main intuition comes from the phenomenon of greediness itself. When an algorithm shows strong
early performance but eventually falls behind a simpler baseline, it is a clear sign of over-optimization
and entrapment in a poor local solution. Based on this comparison principle, we expect dynamic
agents to over-optimize local optima, and use the steady agents to regularly check if the dynamic
agents have been greedy. Once greediness is identified, we correct it by restarting the optimization of
dynamic agents around a better optimum found by steadier agents, a process managed through our
asymmetric migration mechanism, details in next subsection.

3.2 ASYMMETRIC MIGRATION PROCESS

To effectively leverage the sub-populations, instead of running multiple PBT instances independently,
an inter-population information transfer mechanism is needed. Alongside the winners, losers, and
survivors brackets, MF-PBT introduces a migration bracket, allowing poorly performing agents
within a sub-population to be replaced by better-performing agents from other sub-populations. The
migration process operates asymmetrically based on the frequencies of the concerned sub-populations.

If a dynamic agent is outperformed by an agent from a steadier sub-population, this signals greediness.
In response, we replace the dynamic agent with a clone of the steady one, to restore diversity in the
dynamic sub-population and avoid convergence traps.

Conversely, if a steady agent is outperformed by a more dynamic agent, the dynamic agent’s solution
may result from a valuable high-frequency optimization pattern. However, since it might have been
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achieved through over-optimization, we protect the steady sub-population from hyperparameter
collapse by importing only the dynamic agent’s weights, not its hyperparameters.

3.3 ALGORITHM

Algorithm 1 Multiple-Frequencies Population Based Training (MF-PBT)

1: procedure TRAINING(P)
2: for δ “ 1, . . . , T{tready do
3: STEP(a,@a P P, tready) Ź Parallel Training for tready steps
4: P Ð RANKING(ta P Pu) Ź Evaluate fitness and sort agents
5: for i “ 1, . . . ,M do
6: if δ mod δi “ 0 then Ź Population Update
7: Bi Ð BRACKETS(Pi)
8: Pi Ð EVOLUTION(Pi, B1

i , B4
i )

9: Pi Ð MIGRATION(Pi, P´i, B1
i , B3

i )
10: end if
11: end for
12: end for
13: end procedure

Similar to PBT, MF-PBT operates with a population of N agents that train concurrently, evaluated
every tready steps and assigned a fitness score. The agents are divided into M sub-populations
P1,P2, . . . ,PM , each containing n “ N{M agents.

Each sub-population Pi evolves at its own frequency, parameterized by the factor δi, meaning it
undergoes an evolution step every δi ˆ tready training steps. We set P1 to be the reference population,
and the δi to be integers with 1 “ δ1 ă δ2 ă ¨ ¨ ¨ ă δM .

Brackets. When a sub-population Pi evolves, its agents are ranked and divided in four brackets:
he top quarter, B1

i (winners); the second quarter, B2
i (survivors); the third quarter, B3

i (open for
migration); and the last quarter, B4

i (losers). For simplicity, we assume n is a multiple of 4.

Evolution. Regarding the winners, survivors and losers, MF-PBT behaves identically as PBT. The
agents in B4

i (losers) are replaced with perturbed clones of agents from B1
i (winners). The survivors

(B2
i ) continue training unchanged.

Algorithm 2 Asymmetric migration in MF-PBT

1: function MIGRATION(Pi, P´i, B1
i , B3

i )
2: k “ 1
3: for j “ 1, . . . , n{4 do
4: if FITNESS(B3

i pjq) ě FITNESS(P´ipkq) then
5: continue Ź Agents in B3

i better than contenders in P´i are kept as is
6: end if
7: i1 Ð INDEX(P´ipkq) Ź Sub-population Index Retrieval
8: if δi1 ă δi then
9: B3

i pjqθ Ð P´ipkqθ Ź Weights Assignment
10: B3

i pjqh Ð B1
i p1qh Ź Hyperparameter Assignment

11: else if δi1 ą δi then
12: B3

i pjqθ,h Ð P´ipkqθ,h Ź Full Transfer
13: end if
14: k Ð k ` 1
15: end for
16: end function

Migration. The agents in B3
i are compared against agents in P´i “ PzPi, to determine if they

should be replaced by a copy of an external agent. First, both the agents in B3
i and P´i are sorted in

descending order of fitness. Then, we sequentially perform pairwise comparisons of agents in B3
i and
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P´i. For each agent in B3
i , if it is outperformed by the current top external agent, we replace it using

the asymmetric logic described in section 3.2. The procedure is detailed in Algorithm 2.

4 EXPERIMENTS

While MF-PBT can be applied to any HPO problem, we focus on reinforcement learning, where
its impact is likely most significant. Following Wan et al. (2022), we use the parallelizable Brax
framework (Freeman et al., 2021) to train a Proximal Policy Optimization (PPO) (Schulman et al.,
2017) agent on multiple control tasks.

We use jax-based (Bradbury et al., 2018) implementations of MF-PBT and PPO, designed to
parallelize agents on GPUs, thereby leveraging the capabilities of the Brax framework. This imple-
mentation achieves approximately 106 steps per second on two Nvidia A100 40 GB GPUs, allowing
us to train over extended timescales and clearly demonstrate PBT’s limitations in the long term. For
robust and fair evaluations, we conduct experiments on seven random seeds and report the interquar-
tile means (IQM) (Agarwal et al., 2021) and interquartile ranges (IQR). To ensure reproducibility, we
will make our code publicly available.1

We use a reference value of tready “ 106 environment interactions, consistent with BG-PBT’s
experiments (Wan et al., 2022). This choice allow us to demonstrate how a conventional value can
lead PBT to collapse over extended timescales. For the computation of the fitness score, we evaluate
agents on 512 episodes and use the mean evaluation reward. Based on preliminary experiments, we
selected N “ 32 agents split into M “ 4 sub-populations of n “ 8 agents each, as moving from 16
to 32 agents significantly improved performance, while gains diminished beyond 32. In this setting,
our longest experiments (3 billion steps in the Humanoid environment) require approximately 30
hours using two Nvidia A100 40 GB GPUs.

Our computational budget allowed us to train for approximately 1 billion steps per experiment,
guiding our choice of δ4 “ 50 for the steadiest sub-population. Indeed, higher values would get it
closer to a random search, as the total number of evolution steps for this specific sub-population
equals 1000{δ4. To facilitate smoother transfers between the fastest and slowest sub-populations,
we selected two intermediary values: δ2 “ 10 and δ3 “ 25. This configuration of the δ-values
demonstrated slightly superior performance compared to a less spread geometric progression, as
detailed in Appendix B.1. Given that the results already showed MF-PBT’s ability to overcome
PBT’s greediness, we did not further tune the δ-values.

We optimize the learning rate and the entropy cost of PPO’s loss (Schulman et al., 2017), as these
hyperparameters are particularly susceptible to causing hyperparameter collapse. For all experiments,
we initially log-uniformly sample the learning rate between 10´5 and 10´3, and the entropy cost
between 10´3 and 10´1. For the remaining hyperparameters, we use the tuned values proposed by
Brax when available.2 Notably, the same network architectures are used across all environments.

4.1 COMPARATIVE STUDY OF MF-PBT

We first compare MF-PBT to both PBT and Random Search (RS) (Bergstra & Bengio, 2012), using
the same number of agents and the same value of tready. Since RS does not involve evolution, it can
be viewed as a version of PBT with δ set to `8 (see Appendix A.1 for additional implementation
details). This allows us to isolate the effect of evolution in PBT; if RS performs better than PBT, it is
a clear sign of greediness.

For the perturbation of hyperparameters in both PBT and MF-PBT, we use the naive perturb strategy
introduced in the original PBT (Jaderberg et al., 2017), which involves multiplying the hyperpa-
rameters by a factor λ randomly sampled from t0.8, 1.25u. We do not include PB2 (Parker-Holder
et al., 2020) and BG-PBT (Wan et al., 2022) as baselines, as these methods build on top of PBT to
enhance exploration. Our focus is to identify and mitigate the inherent greediness in PBT’s evolution
mechanism. The improvements introduced in MF-PBT could potentially benefit PB2 and BG-PBT as
well.

1The code will be published on GitHub after the double-blind review process. A minimal version of the
project is included in the supplementary materials for reviewers.

2See Brax’s GitHub. For Hopper and Walker2D we used the same values as in Humanoid.
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FIRE PBT (Dalibard & Jaderberg, 2021) is also not included due to reproducibility challenges. It
lacks a public implementation, and key aspects, such as the curve smoothing process, are not detailed
in the paper. Additionally, their RL experiments use V-MPO (Song et al., 2019), an algorithm without
a public implementation, and their experiment on ImageNet requires 200 TPU-v3 days, making direct
comparison prohibitive.

(a) Humanoid (b) Hopper (c) Ant (d) HalfCheetah (e) Walker2D

Figure 1: Performance of MF-PBT, PBT, and RS on Brax environments. IQM across seven seeds,
with IQR shaded. The performance of each algorithm is determined by the highest fitness score
(mean evaluation reward over 512 episodes) among the 32 agents, evaluated every tready training
steps.

This experiments highlight the limitations of regular PBT for long-term performance. In Table 1, we
report the performance of each algorithm after 50 million training steps, the default horizon proposed
by Brax for most environments. At this stage, PBT demonstrates relatively strong performance,
achieving results that are superior or comparable to RS in most environments. However, after one
billion steps, the same PBT falls significantly behind RS, demonstrating its greediness. Evolving
every tready “ 106 steps made it collapse in a poor optimum, while RS, which does not evolve, found
better solutions.

In contrast, MF-PBT consistently outperforms both PBT and RS at both training horizons, showcasing
its adaptability across varying timescales. The training trajectories reported in Figure 1 further
illustrate that MF-PBT achieves stronger anytime performance, consistently outperforming RS and
PBT throughout the training run. This indicates that MF-PBT has a better sample efficiency, achieving
high rewards more rapidly.

Table 1: IQM of the performance achieved by the evaluated HPO algorithms at 50 million steps
and 1 billion steps across seven random seeds. Methods within the IQR of the best-performing
method are bolded. The PPO columns correspond to the training of a single agent with the default
hyperparameters.

Performance at 50M steps Performance at 1B steps

Method PPO RS PBT MF-PBT PPO RS PBT MF-PBT

Humanoid 7903 9021 8348 9266 14934 17713 16171 23793
Hopper 1782 2437 2542 2579 1822 2498 2519 2819
Ant 5482 6858 6820 7115 7102 9050 7900 9654
HalfCheetah 3786 4906 4914 5154 4262 5503 5143 5837
Walker2D 2881 3309 3822 3852 4261 7005 3870 9545

4.2 HYPERPARAMETERS SCHEDULES

To better illustrate MF-PBT’s optimization process, we reconstruct the history of the best agent to
visualize its hyperparameter schedule. In figure Figure 2a, we present three snapshots of MF-PBT
taken during training on the Humanoid environment, at 750 million, 1.5 billion and 3 billion steps.
For each snapshot, we trace back the history of the best-performing agent by recursively identifying
the agents it cloned. Each colored segment in the schedule indicates the sub-population that produced
the agent, showcasing how MF-PBT combines contributions from all sub-populations to produce its
final solution.
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A comparison of the three snapshots shows how MF-PBT is able to target for strong anytime
performance. At every stage of the training, there are greedy agents diving into local optima, in order
to maximize the immediate reward. Steady agents on their side, focus on long-term performance and
protect the overall optimization process from collapse.

In the final schedule, we observe three phases. First, MF-PBT identifies an interesting high-frequency
optimization pattern, where the learning rate increases briefly before decreasing, resembling the
warm-up strategy proposed in Smith (2017). Next, the steady agents, slowly decrease their learning
rate, avoiding collapse and aiming for better long-term rewards. Finally, dynamic agents take the
lead, by fine-tuning the found local optimum through more aggressive learning rate decrease. This
final schedules shows how MF-PBT effectively makes use of its multiple frequencies to produce the
best long-term performance.

(a) (b)

Figure 2: Example of learning rate schedules for MF-PBT and PBT on the Humanoid environment.
(a) MF-PBT snapshots at 750 million, 1.5 billion, and 3 billion training steps. Colors represent the
sub-populations contribution to the schedule, showing how MF-PBT integrates input from various
frequencies. (b) Comparison of the two final schedules, illustrating a case of hyperparameter collapse
in PBT.

Figure 2b compares the final schedule produced by MF-PBT, to a schedule from a PBT experiment
that encountered a strong hyperparameter collapse, ceasing to improve its reward after only 340
million steps. This collapse results from the presence of strong, peaked local optima in the Humanoid
environment, such as running on one leg. Escaping such optima requires extensive exploration, as
deviating from them is highly punitive, leading short-sighted PBT to enter a collapse cycle without
finding better solutions. This difficulty with the Humanoid environment has also been noted in
BG-PBT (Wan et al., 2022).

4.3 MF-PBT AS A VARIANCE-EXPLOITER

(a) Hopper (b) HalfCheetah (c) Walker2D

Figure 3: Comparative performance of MF-PBT, PBT and a non-evolutive baseline for variance-
exploitation. IQM across seven seeds, with IQR shaded.

Building on our discussion on variance-exploitation in section 2.1, we designed experiments to
evaluate MF-PBT’s ability to leverage stochasticity in training outcomes to improve performance,
even without hyperparameter tuning. In these experiments, all agents are fixed to use the default
hyperparameters for the entire duration of training, with only weight cloning performed during the
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evolution steps. To provide a baseline for comparison, we included a non-evolutive approach: running
32 agents independently without any weight replication or hyperparameter tuning, evaluating their
fitness every tready steps.

The resulting trajectories in Figure 3 reveal three key insights. (1) variance-exploitation can enhance
the performance of a fixed hyperparameter configuration, as demonstrated in the HalfCheetah
environment; (2) PBT, even when no hyperparameter collapse is possible, can still fall behind its
non-evolutive counterpart, evidencing diversity collapse- the inherent greediness of the cloning
mechanism; (3) MF-PBT significantly improves performance without modifying hyperparameters,
illustrating the power of a more sophisticated cloning mechanism.

Interestingly, while PBT outperformed the non-evolutive baseline in the variance-exploitation regime
for HalfCheetah and Walker2D, its performance dropped when hyperparameter tuning was introduced,
indicating hyperparameter collapse. In contrast, MF-PBT performed in both regimes, highlighting its
ability to overcome both diversity and hyperparameter collapse.

5 ABLATIVE STUDIES

5.1 EVOLUTION FREQUENCY

Our intuition is that evolving less frequently (increasing δ) mitigates greediness and ensures better
long-term performance, but using multiple frequencies is necessary to achieve stronger anytime
performance. To test this, we conducted an experiment comparing MF-PBT with four separate
PBT runs, each using 32 agents and evolving at one of the frequencies used within MF-PBT:
δ P t1, 10, 25, 50u.

(a) Humanoid (b) Hopper (c) Ant (d) HalfCheetah (e) Walker2D

Figure 4: Impact of the evolution frequency in PBT. IQM across seven seeds, with IQR shaded.

The resulting trajectories plotted in Figure 4 confirm our first intuition about the critical role of
evolution frequency, demonstrating its significant impact on PBT’s performance. The curves also
reveal that the best frequencies vary by task; for example, on Humanoid, δ “ 50 is the most
effective, whereas on HalfCheetah, δ “ 25 yields better results. Additionally, most of the slower
PBT configurations outperform RS, indicating that δ “ `8 is sub-optimal. This underscores the
brittleness of population-based approaches to the choice of tready.

In contrast, MF-PBT achieves either superior or comparable final performance relative to each
single-frequency PBT experiment, while also offering significant sample efficiency gains in most
environments. This indicates that employing multiple frequencies within MF-PBT is superior to
relying on a single frequency. Moreover, MF-PBT’s ability to outperform each of its sub-components
simplifies the selection of δ-values, as MF-PBT will always perform at least as well as its best-
performing sub-population.

5.2 SYMMETRIC MIGRATION

We now assess the importance of the asymmetry in the migration process, which adds a protection
against hyperparameter collapse by preventing greedy agents from corrupting steadier sub-populations.
To test this, we compare MF-PBT with an alternative version where hyperparameters are always
transferred along with weights, regardless of the δ-values.
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(a) Humanoid (b) Hopper (c) Ant (d) HalfCheetah (e) Walker2D

Figure 5: Ablation on the asymmetric migration. IQM across seven seeds, with IQR shaded.

The training trajectories in Figure 5 show that while the asymmetry has little impact on Hopper, it
yields improvements in most environments, particularly in the challenging Humanoid task. This
indicates that the asymmetric design indeed enhances long-term performance.

6 CONCLUSION

We introduced MF-PBT, an extension of Population-Based Training, designed to address the inherent
greediness in traditional PBT. Our experiments on various reinforcement learning tasks identified
two key failure modes of PBT: diversity and hyperparameter collapse, both linked to the evolution
frequency. Building on these insights, we proposed MF-PBT, which incorporates multiple sub-
populations evolving at different frequencies and an asymmetric migration process to balance short
and long-term optimization. The results demonstrated that MF-PBT effectively overcomes both
collapses associated with PBT while maintaining strong anytime performance.

Through ablation studies, we highlighted the critical role of evolution frequency in PBT and showed
that using multiple frequencies increases robustness to this parameter. We believe this insight could
be broadly valuable for all population-based approaches. Combining MF-PBT’s mechanisms with
other extensions to PBT, such as PB2 (Parker-Holder et al., 2020), PB2-Mix (Parker-Holder et al.,
2021), or BG-PBT (Wan et al., 2022), could further enhance performance. Further work could also
include a study of MF-PBT’s performance on other tasks such as supervised learning.

Our experiments about variance-exploitation highlight that a non-negligible share of the performance
gains in population-based methods arises from leveraging exploration luck rather than tuning hyper-
parameters effectively. This underscores the need for a more comprehensive study on the origins of
improvements brought by population-based methods.
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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 RANDOM SEARCH BASELINE

In our experiments, Random Search (RS) serves as a simple baseline for hyperparameter optimization.
RS involves randomly sampling hyperparameter values at the start of training and keeping these
values fixed throughout the entire training process. Unlike PBT, RS does not involve any evolution
or adjustment of hyperparameters based on intermediate performance. Instead, the goal of RS
is to evaluate different fixed hyperparameter configurations by following their reward curves and
identifying which sampled configuration performs best.

For this comparison, hyperparameters in RS were sampled uniformly from the same search space as
PBT and MF-PBT. By comparing RS to PBT, we isolate the impact of PBT’s evolutionary process;
if RS outperforms PBT, it indicates that evolving too frequently can lead to suboptimal long-term
performance, which we refer to as the greediness issue.

A.2 PBT’S PARAMETERS

In subsection 2.2 we identified that the main source of the greediness issue is that agents do not
survive long enough to escape poor local optima and maintain diversity. Alongside the evolution
frequency, another parameter of PBT impact the lifespan of agents in the population: the selection
rate in the exploit phase.

Indeed, in PBT, at each evolution step, 25% of the population is discarded and replaced by copied of
the top-agents. One could play on this parameter to mitigate greediness, and create a method similar
to MF-PBT, where each sub-population would have its own selection rate. However, as we identify
the issue to be about the lifespan of agents, and optimizing for various horizons, we found more
natural to frame it explicitly in terms of evolution frequency.

We decided to use standard values for the exploit and explore process of PBT, and keep the same
values for MF-PBT in order to isolate the impact of evolution frequency.

B CHOICE OF PARAMETERS

B.1 FREQUENCIES

Figure 6 compares our chosen configuration (tready “ 106, δ1 “ 1, δ2 “ 10, δ3 “ 25, δ4 “ 50) with
an alternative setup using a geometric progression (tready “ 6ˆ106, δ1 “ 1, δ2 “ 2, δ3 “ 4, δ4 “ 8).
The goal of this comparison is to assess how the spread of δ-values impacts MF-PBT’s performance.

While the geometric progression shows a slight advantage on Hopper and Walker2D, it performs
significantly worse on Humanoid. Therefore, we opted to continue using the more spread-out
configuration.
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(a) Humanoid (b) Hopper (c) Walker2D

Figure 6: Comparative performance of two configurations for MF-PBT. IQM across seven seeds,
with IQR shaded.

B.2 POPULATION SIZE

To make a choice for N after fixing the δ-values, we conducted a preliminary experiment on
Humanoid, the most computationally demanding environment. As shown in Figure 7, the gain from
rising from N “ 16 to N “ 32 is quite large for both methods. While increasing from N “ 32 to
N “ 64 was still beneficial for MF-PBT, but the with a much smaller gap.

Interestingly, PBT’s performance decreases with 64 agents on the Humanoid task, likely due to the
abundance of local optima. With a large population, PBT may quickly converge on a high-performing
local optimum, which then limits further exploration.

(a) MF-PBT (b) PBT

Figure 7: Impact of the population size. IQM across five seeds, with IQR shaded. Experiments on
the Humanoid environment.

C ADDITIONNAL EXPERIMENTS

C.1 PUSHER ENVIRONNMENT

We made an experiment in the Pusher environment from Brax, keeping the same parameters for
MF-PBT, PBT and RS and report the training curves in Figure 8

C.2 INCREASING POPULATION SIZE

One solution to improve PBT’s performance can be to increase the population size. In Jaderberg et al.
(2017), a value of N “ 80 was used. To make sure we didn’t unfairly treat PBT by picking N “ 32,
we made an additional experiment to compare the gains of using MF-PBT to the gains of simply
increasing N in standard PBT.

The curves in Figure 9 show that while on Hopper raising to 80 agents greatly improves PBT’s
performance, it is not sufficient in a more complex locomotion environment like Walker2D.
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Figure 8: Performance of MF-PBT, PBT, and RS on Pusher. IQM across seven seeds, with IQR
shaded.

(a) Hopper (b) Walker2D

Figure 9: Increasing population size. IQM across seven seeds, with IQR shaded.

C.3 BACKTRACKING

Zhang et al. (2021) proposed to add a backtracking mechanism to PBT, to prevent it from catastrophic
forgetting. The method, dubbed PBT-BT (PBT with backtracking), keeps track of the Ne best agents
encountered during the training: the elites. And every δ evolution steps, the elites are reincorporated
into the population.

Since in the Hopper and Humanoid environments, we observed a substantial amount of runs where
PBT’s performance would dramatically drop, PBT-BT could be an interesting alternative baseline in
those environments.

The backtracking can be seen as a migration across times, where elites from the past are reincorporated
in the population, to enable it to resume training from a better checkpoint. However there is one
fundamental difference, in PBT-BT the elites come from the past and didn’t interact as much with the
environnement; whereas in MF-PBT the steady agents that migrate are "current" agents, meaning
they performed the exact same amount of training steps. In MF-PBT, the agents that migrate only
differ on their HPO-objective, e.g. performance on 50M steps instead of performance on 1M steps.
While backtracking enables recovering from collapses, there is no notion of increasing the lifespan of
some hyperparameters to assess their long-term performance.

We implemented PBT-BT with N “ 32, Ne “ 16 and δ “ 50. The training curves in Figure 10
shows that it improves PBT on Hopper by correcting the catastrophic forgetting behavior. However
on Humanoid, the elites tend to rapidly all belong to the same local optimum, and then PBT-BT is
stuck without being able to explore for better solution.

In both cases, MF-PBT outperforms PBT-BT, highlighting that backtracking is not sufficient to
overcome PBT’s greediness.
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(a) Hopper (b) Humanoid

Figure 10: Comparative performance of PBT-BT. IQM across seven seeds, with IQR shaded.
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