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Abstract
Adversarial training methods, which minimizes
the loss of adversarially-perturbed training ex-
amples, have been extensively studied as a so-
lution to improve the robustness of the deep neu-
ral networks. However, most adversarial training
methods treat all training examples equally, while
each example may have a different impact on the
model’s robustness during the course of training.
Recent works have exploited such unequal impor-
tance of adversarial samples to model’s robust-
ness, which has been shown to obtain high robust-
ness against untargeted PGD attacks. However,
we empirically observe that they make the fea-
ture spaces of adversarial samples across different
classes overlap, and thus yield more high-entropy
samples whose labels could be easily flipped. This
makes them more vulnerable to targeted adver-
sarial perturbations. Moreover, to address such
limitations, we propose a simple yet effective
weighting scheme, Entropy-Weighted Adversar-
ial Training (EWAT), which weighs the loss for
each adversarial training example proportionally
to the entropy of its predicted distribution, to fo-
cus on examples whose labels are more uncertain.
We validate our method on multiple benchmark
datasets and show that it achieves an impressive
increase of robust accuracy.

1. Introduction
The deep neural networks (DNN) often output incorrect
predictions even with small perturbations to the input exam-
ples (Szegedy et al., 2013), despite their impressive perfor-
mances on a variety of real-world applications. This adver-
sarial vulnerability is a crucial problem in deploying them to
safety-critical real-world applications, such as autonomous
driving or medical diagnosis. To tackle the vulnerability,
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Figure 1. Overview of our approach. EWAT weighs more on the
uncertain examples which have large entropy (red) while adjust
relatively low weights on the low entropy examples (blue). For
standard AT, weighting is applied on the cross-entropy loss. For
TRADES, weighting is applied on the Kullback-Leibler loss.

various approaches have been proposed to ensure the robust-
ness against adversarial attacks (Madry et al., 2018; Zhang
et al., 2019; Kurakin et al., 2016; Wang et al., 2019).

The most promising approach to improve adversarial robust-
ness of DNN is adversarial training, which trains the model
to minimize the loss on the adversarially perturbed examples.
Goodfellow et al. (2015) propose to train the model with
samples attacked with Fast Gradient Sign Method (FGSM).
Following this work, various adversarial defense algorithms
have been suggested. For example, Adversarial Training
(standard AT) (Madry et al., 2018) uses a min-max for-
mulation where the examples are perturbed with the loss
maximization objective with the Projected Gradient De-
scent (PGD) attack. Further, TRADES (Zhang et al., 2019)
demonstrates the trade-off between the clean accuracy and
robustness, and proposes to minimize the Kullback-Leibler
divergence (KL) between the prediction on the clean exam-
ple and its adversarial counterpart, to achieve robustness
against adversarial perturbations.

In natural image classification training, some works have
shown that only a small portion of examples from the train-
ing set contribute to the generalization performance (Toneva
et al., 2019), where each sample has a different impact on
the model’s final performance. Similarly, it is also natural
to assume that some training examples are more important
than others, in enhancing the adversarial robustness of the
adversarially trained model.

Similar to this intuition, recent studies suggest to identify
such robustness-critical instances, to assign more weights
on them during adversarial training. To name a few, Wang
et al. (2019) argue that misclassified clean samples are
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more important in achieving robustness, and imposes larger
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Figure 2. Distribution of the en-
tropy for the adversarial sam-
ples obtained with different
weighting methods.

KL regularization on
them (MART). On the
other hand, Zhang et al.
(2020) suggest to assign
more weights on examples
that were close to the
decision boundary before
the adversarial attack
(GAIRAT). These meth-
ods have shown to achieve
impressive robustness
against untargeted PGD
attacks.

However, we discover that weighting scheme in MART and
GAIRAT create a false sense of robustness. In short, while
they appear more robust against untargeted PGD attacks,
they become more vulnerable to other types of adversarial
attacks, such as logit scaling attack (Hitaj et al., 2021) and
AutoAttack (Croce & Hein, 2020a), compared to standard
AT. We further show that these weighting schemes make the
feature spaces of adversarial samples belonging to different
classes overlap (Figure 3), and thus increase the entropy of
the adversarially-perturbed training examples (see Figure 2).

Such high-entropy samples are more vulnerable to targeted
adversarial attacks, since their predicted labels are uncer-
tain, and could be flipped with less efforts. Based on this
observation, we propose a simple yet effective weighted ad-
versarial training method that improves the model’s robust-
ness, which assigns a weight to each adversarially-perturbed
sample based on the entropy of its predicted distribution.
Specifically, our method assigns larger weights to training
examples with high entropies (see Figure 1).

The experimental validation of our weighted adversarial
training scheme, named Entropy-Weighted Adversarial
Training (EWAT), verifies that it improves the robustness
of the existing adversarially-trained models. Our weighting
scheme is simple to implement, compute, and use, while im-
proving the robustness without any additional computational
cost. In summary, the contributions are as follow:

• We empirically observe that the previous weighting
schemes make the feature spaces of adversarial sam-
ples across different classes overlap, and thus yield
more high-entropy samples whose labels could be eas-
ily flipped which induce vulnerability against the Au-
toAttack and logit scaling attack.

• Based on the observation, we propose a surprisingly
simple, yet effective entropy weighting scheme that
can enhance model’s robustness, which weighs the loss
of adversarial samples with respect to their entropy.
Our approach improves the robustness of the model
against AutoAttack and logit scaling attack, to which

(a) tSNE of GAIRAT (b) tSNE of MART

(c) tSNE of standard AT (d) tSNE of EW-AT
Figure 3. Visualization of the embeddings of adversarial examples
from each model. All models are trained with PreActResNet18.
We only visualize train examples from two classes (airplane and
automobile) in CIFAR10 dataset.

the existing weighting models are vulnerable.

2. Unequal Importance of Each Sample in
Adversarial Training

In this section, we elaborate on what should be considered
in instance-wise weighted adversarial training, in order to
consider the unequal importance of each sample to the ad-
versarial robustness of the model. Moreover, we also show
the adversarial vulnerability of the previous instance weight-
ing schemes for adversarial training. To be precise, this
vulnerability does not come from any types of the obfus-
cated gradients introduced in the Athalye et al. (2018), but
it also creates a false sense of robustness.

To design the weighting scheme in adversarial training, we
first have to define two conditions.

1) Which criteria should we use to evaluate the importance
of samples during adversarial training?

2) How can we assign attention/weight to differently
contributed samples?

The previous works answered both questions with their in-
tuitions, and verified their hypotheses with the empirical
results on the untargeted PGD attacks. MART (Wang et al.,
2019) argues that the predictions on the non-perturbed sam-
ples are important criteria to measure the sample-wise im-
portance in adversarial training. Thus, MART assigns more
adversarial attentions to KL loss that have low confidence
before perturbation (Eq (7)). GAIRAT (Zhang et al., 2020),
on the other hand, hypothesizes that the number of steps
to perturb the given sample is an important measure of its
importance in adversarial training. Thus, GAIRAT assigns
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Table 1. Vulnerability loophole in the previous weighted adversar-
ial training methods. We validate MART and GAIRAT against
logit scaling attack (LS) (Hitaj et al., 2021) with α=10 and the
AutoAttack (AA) (Croce & Hein, 2020a) with ε = 0.031. All
models are trained with PreActResNet18 architecture.

Method PGD LS AA

GAIRAT (Zhang et al., 2020) 55.16 31.78 22.37
MART (Wang et al., 2019) 57.08 48.70 46.79

standard AT (Madry et al., 2018) 53.96 51.26 48.16
+ Ours (EW-AT) 53.49 51.81 49.20
TRADES (Zhang et al., 2019) 53.95 50.10 49.30
+ Ours (EW-TRADES) 53.83 50.13 49.90

more attentions on the adversarial samples that violate the
margin more (Eq (8)). (Equations are in Appendix A)

However, we empirically find that the performance achieved
by weighting only improves untargeted PGD attacks. Yet,
both methods achieve lower performance compared to stan-
dard AT against logit scaling attack (Hitaj et al., 2021) and
AutoAttack (Croce & Hein, 2020a) (see Table 1). We further
examine why the previous weighting schemes are vulnerable
to non-PGD attacks, by visualizing the t-SNE embeddings
of the adversarially perturbed training samples in Figure 3.
As shown in Figure 3, adversarial examples generated by
GAIRAT and MART for two different classes have large
overlaps, while the t-SNE of the adversarial samples trained
with standard AT shows clear separation.

This is because the previous weighting schemes make the
model only focus on certain samples that they deem diffi-
cult, making the prediction on others more uncertain. This
will make the entropy of the predictive distribution of such
samples to be high. This is shown in Figure 4a, where
MART and GAIRAT have more than double the number
of ‘high-entropy’ samples (> 1.5). It is evident that such
high-entropy samples will be more prone to make wrong
predictions if they are perturbed only a little to a manifold
of another class that is predicted high, thus making them
more vulnerable to targeted attacks. This suggests that if we
can minimize the existence of such high-entropy samples,
the model’s robustness will be improved. We propose our
method which exploits this observation in the next section.

3. Entropy-Weighted Adversarial Training
We now describe our method, Entropy-Weighted Adver-
sarial Training, which weighs the loss of each adversarial
example based on its entropy of the predictive distribution.

In the previous section, we showed that GAIRAT and MART
make many of its adversarial samples to have relatively high
entropies compared to adversarial samples from standard
AT, as shown in Figure 2, and that this makes them vulnera-
ble against AutoAttack (Croce & Hein, 2020a) (Figure 4a).
They have created more vulnerable samples while trying
to focus on samples they deem as important, by assigning
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Figure 4. (a) Percentage of high entropy samples (>1.5) in test set
from standard AT, EW-AT, MART, and GAIRAT which shows
correlation to performance of AutoAttack. (b) Distribution of
adversarial entropy in test set from TRADES, TRADES-AWP, and
RST which utilize same TRADES loss during the training.

relatively smaller weights on other samples, making the
prediction confidence on them low.

Further, we also empirically observe that models that are
robust against AutoAttack (TRADES < TRADES-AWP <
RST) have relatively smaller ratio of high entropy examples
(Figure 4b). We further compare the model that utilizes
same form of LKL loss in Figure 4b. Notably, a model that
is more robust against AutoAttack can easily classify the
samples that are large entropy. All of these empirical ev-
idences suggest that the ratio of high entropy samples is
highly related to the model’s robustness. Also, the entropy
is a more direct measure of a sample’s robustness, unlike
its distance to the margin (GARIAT) or whether the sam-
ple is predicted incorrectly (MART), since a high entropy
sample’s predicted label could be altered more easily. Thus,
we propose to consider the entropy of each adversarially
perturbed sample as a criterion to measure its vulnerability,
and propose a loss weighting scheme based on the entropy.

Entropy. The entropy E is a measurement of state of the
uncertainty, and randomness. The entropy for an adversarial
sample xadv for classification tasks can be defined as follows:

E(θ, x) = −
C∑
j=1

pj(f(θ, x)/τ) log
(
pj(f(θ, x)/τ)

)
, (1)

where pj stands for the jth class softmax probability of f(·),
C is the number of classes and τ is temperature scaling
factor where we set as 1. We can control τ to affect the E by
making the predictive distribution to be sharper or smoother.

Entropy-based sample weighting. We now propose an ad-
ditional entropy-weighted loss term for adversarial training,
which weighs each adversarial example by its entropy.

The entropy value of each training example continuously
changes during the course of training. This is beneficial
since the weighting changes adaptively, such that it focuses
on the most uncertain samples at each iteration. However,
one caveat here is that entropies of all samples will go low
as the model trains on, which will simply have small or
no effects of weighting. Since this will be the same as
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Table 2. Results against `∞ attack in CIFAR10 with
WideResNet34-10. Clean denotes the accuracy on natural
images. Best and Last stand for the best robust accuracy, and
the accuracy at the last epoch, against PGD10, respectively. The
robust accuracy against PGD is calculated against ε = 8/255. For
the AutoAttack, we use the threat model with ε = 0.031. The bold
fonts indicate that cases where EWAT improves the performance
of the base adversarial training method.

Last Best

Method Clean PGD10 Clean PGD100 AutoAttack
(worst attack)

GAIRAT (Zhang et al., 2020) 85.24 52.97 86.16 57.37 42.28
MART (Wang et al., 2019) 83.72 55.73 82.85 59.30 51.39

standard AT (Madry et al., 2018) 87.38 54.21 85.84 56.17 52.07
+ Ours (EW-AT) 86.97 54.69 85.39 55.54 52.51 (+0.44)

TRADES (Zhang et al., 2019) 85.62 57.32 85.62 57.54 53.82
+ Ours (EW-TRADES) 83.11 57.84 82.54 58.27 54.58 (+0.76)

non-weighted training at the end, we normalize the entropy
weights with the batch-mean of the entropy at each iteration.
Formally, for a given batch of adversarial examples B :=
{(xadvi , yi)}mi=1, we define the entropy weighting (went

i ) for
a given instance xadvi as follow:

went
i =

1

η
· E(θ, xadvi ), (2)

where η :=
∑
xadv∈B E(θ, xadv)/B is the batch mean of

the predicted entropy. The final objective consisting of
the original adversarial training loss and entropy weighted
cross-entropy loss is as follows:

LEntropy = went · LCE
(
f(θ, xadv), y

)
,

LEW-AT = LAT + LEntropy
= (1 + went) · LCE

(
f(θ, xadv), y

)
.

(3)

(See Appendix C.1 for TRADES loss.)

4. Experiments
Against standard attacks. Our entropy weighted adver-
sarial training improves upon the baselines, outperforming
standard AT model by 0.44%, and TRADES by 0.76%,
with the WideResNet34-10 model (Table 2) against AutoAt-
tack. Considering that TRADES is considered as powerful
by making 1% improvement over the standard AT, this is a
meaningful improvement of the robust accuracy. On the con-
trary, GAIRAT and MART achieve lower robustness over
standard AT against AutoAttack, although they attempted
to improve upon the standard AT model by the proposed
weighing schemes.

In practice, we cannot assume that the attacker will only
use a single type of attack, and thus the most important
measures of robustness is the robust accuracy against the
strongest attack, which is the AutoAttack in this case. Our
EWAT shows high robustness against this worst-case at-
tack, although it also obtains comparable performance to
baselines’, against the PGD attacks.

Table 3. Results against `∞ attack in MNIST, and CIFAR100.
Clean denotes the accuracy of the natural images at the last epoch.
For the AutoAttack, we use the threat model with ε = 0.031.

MNIST CIFAR100

Method Clean AutoAttack Clean AutoAttack

standard AT (Madry et al., 2018) 98.74 88.51 55.72 24.09
+ Ours (EW-AT) 98.97 88.43 (-0.08) 57.71 24.57 (+0.48)

TRADES (Zhang et al., 2019) 98.37 89.30 57.78 25.06
+ Ours (EW-TRADES) 97.46 89.71 (+0.41) 55.42 25.66 (+0.60)

Against logit scaling attack and AutoAttack. Previous
weighting methods, MART and GAIRAT, suffer from the
low robustness against logit scaling attack (Hitaj et al., 2021)
and AutoAttack. However, our model demonstrates im-
proved robustness against both types of attacks (Table 1)
and does not suffer from the vulnerability loophole, unlike
the existing loss weighting schemes.
Results on multiple benchmarks datasets. We validate
our methods on multiple benchmarks datasets. In Ta-
ble 3, EWAT consistently improve upon standard AT and
TRADES against AutoAttack on MNIST (LeCun et al.,
1990), and CIFAR100 (Krizhevsky et al., 2009). Compared
to the margin-based methods, our model does not require
any warm-up epochs for weighting instances, even on larger
datasets such as CIFAR100. This is because it relies on
entropy, which can be computed easily and is well defined
regardless of the training stage, unlike other values, such as
distance to the (estimated) margins. Moreover, our methods
work better on a larger dataset (CIFAR100) with more num-
ber of classes, on which the model’s predictions could be
more uncertain, due to the increased confusion across the
classes, than on a smaller dataset (MNIST) with few classes.

5. Discussion
In this paper, we showed that existing weighting schemes
for adversarial training yield high-entropy examples with un-
certain predictions, thus making them vulnerable to targeted
attacks such as AutoAttack. Based on this observation, and
the direct association of the entropy to its vulnerability to
targeted attacks, we propose Entropy-Weighted Adversarial
Training (EWAT), which is a simple yet effective weighted
adversarial training scheme which to weigh each instance
by its entropy, EWAT is simple to implement and incurs no
additional cost, and can be used to weigh the instance-wise
adversarial loss of any conventional adversarial training al-
gorithms, such as standard AT and TRADES. Moreover,
while existing instance weighting scheme for adversarial
training suffer from vulnerability against logit scaling attack
and AutoAttack, our weighting scheme achieves better ro-
bustness against them over standard AT and TRADES with
even weights across the samples. Further, it also achieves
competitively robust accuracy against untargeted PGD at-
tack to standadrd AT and TRADES. The experimental re-
sults on multiple benchmarks datasets further demonstrates
the versatility and generalizability of our method.
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Appendix
Entropy Weighted Adversarial Training

A. Related Work
Adversarial robustness. Szegedy et al. (2013) firstly showed that deep neural networks for image classification are
vulnerable to imperceptible small perturbations applied to input images. To achieve robustness against such adversarial
attacks, Goodfellow et al. (2015) proposed Fast Gradient Sign Method (FGSM), which perturbs a target sample to its gradient
direction to increase its loss. Then, they proposed an adversarial training objective which aim to minimize the loss on the
perturbed samples as well as clean samples, which have shown to be effective against such adversarial attacks. Follow-up
works (Moosavi-Dezfooli et al., 2016; Kurakin et al., 2016; Carlini & Wagner, 2017) proposed a variety of gradient
attacks that are stronger than FGSM that can be used for adversarial training, and Madry et al. (2018) proposed a minimax
formulation to minimize the loss of adversarial examples, which are perturbed to maximize its loss with projected gradient
method. After a surge of interest in adversarial robustness of neural networks, various defense mechanisms (Song et al.,
2017; Buckman et al., 2018; Dhillon et al., 2018) have been proposed to defend against such adversarial attacks. However,
Athalye et al. (2018) showed that many of them except standard AT, rely on gradient masking, which results in obfuscated
gradient in the representation space, and are highly vulnerable to stronger attacks that circumvent it. TRADES (Zhang et al.,
2019) propose to minimize the Kullback-Leibler divergence (KL) between a clean example and its adversarial counterpart,
to enforce consistency between their predictions, and further showed that there is a theoretical trade-off between clean
accuracy of a model and its robustness. Recently, using additional unlabeled data (Carmon et al., 2019) or using additional
attack mechanism (Wu et al., 2020) have been proposed. To utilize the additional data, Carmon et al. (2019) propose to use
Tiny ImageNet (Le & Yang, 2015) as pseudo-label to learn more rich representation of CIFAR10 (Krizhevsky et al., 2009)
dataset that could lead to robust model (RST). Wu et al. (2020) propose a double-perturbation mechanism which conducts
additional adversarial weight perturbation (AWP) with conventional adversarial training.

Instance-wise weighting for adversarial training. While successful in general, none of aforementioned works consider
the varying impact of samples on adversarial robustness. A recent work, Misclassification Aware adveRsarial Training
(MART) (Wang et al., 2019), focuses on this problem and propose to put more weights on the misclassified clean samples
for the KL-divergence regularization, achieving state-of-the-art robustness against untargeted PGD attacks. Furthermore,
another recent work, Geometry-aware Instance-Reweighted Adversarial Training (GAIRAT) (Zhang et al., 2020) proposed a
method with a similar motivation, which weighs the adversarial loss of each sample based on the clean sample’s distance
to decision boundary. GAIRAT also achieves impressive performance against untargeted PGD attacks. However, these
methods make increase the entropies of the adversarially perturbed samples, and thus make the model to be more vulnerable
against targeted attacks, such as AutoAttack (Croce & Hein, 2020a) and the logit scaling attack (Hitaj et al., 2021). We
observe that both instance weighting methods for the adversarial training largely increase the entropies of the perturbed
examples, which make the samples more vulnerable as their predictions are easier to alter.

Adversarial attacks. Most of the adversarial defense mechanisms have been broken with stronger attacks which were not
aware of at the time they were first introduced. Athalye et al. (2018) is an important work that has helped many researcher
to explore means to achieve fundamental robustness rather than take advantage of false sense of security created with
the obfuscated gradients. Recently, Croce & Hein (2020a) proposed an ensemble attack that consists of four different
attacks (AutoAttack), namely untargeted APGD-CE, targeted APGD-DLR, FAB (Croce & Hein, 2020b) and square
attack (Andriushchenko et al., 2020). APGD-CE and APGD-DLR are step size-free variants of the PGD attack. AutoAttack
revealed that the most of defense methods are actually more vulnerable than TRADES, if the attacker carries out a targeted
attack, which is a more viable scenario in the real-world cases.

A.1. Preliminaries

In this section, we first recap the adversarial training (standard AT) (Madry et al., 2018), TRADES (Zhang et al., 2019) and
previous instance weighting methods for adversarial training (MART (Wang et al., 2019), GAIRAT (Zhang et al., 2020)).

Let us denote the dataset D = {X,Y }, where x ∈ X is a training example and y ∈ Y is its corresponding label, and a
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supervised learning model fθ : X → Y where θ is the set of the parameters of the model. Given such a dataset and a model,
adversarial attacks aim towards finding the worst-case examples, by searching for the perturbation for each example that
maximizes the loss within a certain radius from it (e.g., norm balls). We can define such adversarial `∞ attacks as follows:

δt+1 = ΠB(0,ε)

(
δt + αsign

(
∇δtLCE

(
f(θ, x+ δt), y

)))
, (4)

where B(0, ε) is the `∞ norm-ball with radius ε, Π is the projection function to the norm-ball, α is the step size of the
attacks and sign(·) is the sign of the vector. Further, the perturbation δ is the accumulated αsign(·) over multiple attack
iterations t, and LCE is the cross-entropy loss. In case of Projected Gradient Descent (PGD) (Madry et al., 2018), the attack
starts from a random point within the epsilon ball and performs t gradient steps, to obtain a perturbed sample xadv.

The most straightforward way to defend against such adversarial attacks is to minimize the loss of adversarial examples,
which is often called adversarial training. The standard AT framework proposed by Madry et al. (2018) solves the following
min-max problem where δ is the perturbation of the adversarial example of the given input x, and y is its target class label.
Then the loss is:

LAT = max
δ∈B(x,ε)

LCE
(
f(θ, x+ δ), y

)
. (5)

Another popular algorithm for adversarial training, TRADES (Zhang et al., 2019), suggests to minimize the Kullback-Leibler
(KL) divergence between a clean example and its adversarial perturbation, to enforce consistency between their predictions
while using cross-entropy loss on clean samples as follow:

LTRADES = LCE
(
f(θ, x), y

)
+ β max

δ∈B(x,ε)
LKL
(
f(θ, x)||f(θ, x+ δ)

)
, (6)

where LKL is KL divergence loss and β is a parameter to control the trade-off between clean accuracy and adversarial
performance.

Instance weighting schemes for adversarial training. Recently, MART (Wang et al., 2019) proposed a new weighted
adversarial training framework with the boosted cross entropy loss and the weighted KL divergence loss. The boosted cross
entropy loss maximizes the 1− the second highest class probability, to increase the margin of the classifier. The weighted
KL divergence loss assigns higher weights on the KL-divergence term, for the samples that are misclassified before applying
the adversarial perturbations. The loss of MART is defined as follows:

LMART = LAT − log
(
1−max

k 6=y
pk(f(θ, x+ δ))

)
+ λLKL

(
f(θ, x)||f(θ, x+ δ)

)(
1− py(f(θ, x))

)
, (7)

where pk is the probability of kth class.

A recent approach, GAIRAT (Zhang et al., 2020), suggests a loss weighting scheme based on the clean sample’s distance to
the decision boundary:

LGAIRAT =
γ∑B
i=0 γ

LAT,

γ =

(
1 + tanh

(
ψ + 5(1− 2κ(x, y)/K)

))
2

,

(8)

where B is batch size, and κ(x, y) is geometric distance of a data point (x, y). κ(x, y) is calculated as total number of
attack steps minus least number of necessary attacked-steps to change the label y of x during the PGD attack Eq. (4). ψ is a
constant hyperparameter and K is total attack steps. Therefore, if the sample is already far from the decision boundary,
those samples are not used during the training. This causes the highly underconfident model and induces vulnerability
against AutoAttack (Croce & Hein, 2020a) and logit scaling attack (Hitaj et al., 2021).

B. Detailed description of experimental setups
B.1. Resource description.

All experiments are conducted with a single GPU (NVIDIA RTX 2080 Ti), except for the TRADES experiments with
WideResNet in Table 2. For WideResNet TRADES, two GPUs (NVIDIA RTX 2080 Ti) are used. All experiments are
processed in Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz.



Entropy Weighted Adversarial Training

B.2. Dataset description.

For experiments, we use CIFAR 10, CIFAR 100, and MNIST. CIFAR 10 and CIFAR 1001 consist of 50,000 training images
and 10,000 test images with 10 and 100 classes, respectively. All CIFAR images are 32×32×3 resolution (width, height,
and channel). MNIST dataset contains hand-written digits, ranging from 0 to 9. MNIST contains a training set of 60,000
examples and a test set of 10,000 examples, where each image has 28×28×1 resolution (width, height, and channel).

B.3. Training detail.

MNIST. For all methods compared, we train the network with `∞ attacks with the attack strength of ε = 0.3 and the step
size of α = 0.01, with the number of inner maximization iteration set to K = 40. For optimization, we train every model
for 100 epochs using the SGD optimizer with the weight decay of 1e−4 and the momentum of 0.9. As for learning rate
scheduling, we use the decay of 0.1 at the 20th and 40th epoch with the initial learning rate of 0.01.

CIFAR. For all methods, we train the network with `∞ attacks with the attack strength of ε = 8/255 and the step size of
α = 2/255, with the number of inner maximization iteration set to K = 10. For the optimization, we train every model for
100 epochs using the SGD optimizer with the weight decay of 5e−4 and the momentum of 0.9. For learning rate scheduling,
we use the decay of 0.1 at the 100th and 105th epoch with the initial learning rate of 0.1.

Hyperparameters. When setting the hyperparameters for baselines, we follow their official settings in the original papers.
For TRADES (Zhang et al., 2019), we set β as 6.0, and for EW-TRADES we set β as 5.5. In MART (Wang et al., 2019), we
set λ as 6.0. In GAIRAT (Zhang et al., 2020), we set ψ as −1.0.

B.4. Evaluation detail.

`∞ attack. For all `∞ attacks used in the test phase, we use the attack strength of ε = 8/255 and the step size of α = 2/255
with the number of inner maximization iteration set to K = 10 for PGD10. For PGD20 We use the α = ε/10 with K = 20,
respectively.

Logit scaling attack and AutoAttack. We further test our EWAT against different type of attacks, e.g., Logit scaling
attack (Hitaj et al., 2021) and AutoAttack (AA) (Croce & Hein, 2020a). Logit scaling attack is multiplying constant in the
logit with α as follow:

δt+1 = ΠB(0,ε)

(
δt + psign

(
∇δtLCE

(
α× f(θ, x+ δt), y

)))
, (9)

where B(0, ε) is the `∞ norm-ball with radius ε, Π is the projection function to the norm-ball, p is the step size of the attacks
and sign(·) is the sign of the vector. We set α as 10 for testing in Table 1. When α is 1, logit scaling attack is the same as
PGD attack. AutoAttack is an ensemble attack that is consists of four different attacks (APGD-CE, APGD-T, FAB-T (Croce
& Hein, 2020b), and Square (Andriushchenko et al., 2020)). APGD-T and FAB-T are targeted attacks and Square is a black
box attack2.

C. Entropy weighted Adversarial Training
C.1. Entropy-based sample weighting for TRADES.

We now here describe an additional entropy-weighted loss term for TRADES, which weighs each adversarial example by its
entropy on the KL term.

We will recap the entropy weight in here. Formally, for a given batch of adversarial examples B := {(xadvi , yi)}mi=1, we
define the entropy weighting (went

i ) for a given instance xadvi as follow:

went
i =

1

η
· E(θ, xadvi ), (10)

where η :=
∑
xadv∈B E(θ, xadv)/B is the batch mean of the predicted entropy.

1The full dataset of CIFAR can be downloaded at http://www.cs.toronto.edu/ kriz/cifar.html.
2AutoAttack https://github.com/fra31/auto-attack

http://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/fra31/auto-attack
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For the TRADES loss, the overall weighted loss is as follows:

LEntropy = went · LKL
(
f(θ, x)||f(θ, xadv)

)
,

LEW-TRADES = LTRADES + LEntropy
= LCE

(
f(θ, x), y

)
+ (β + went) · LKL

(
f(θ, x)||f(θ, xadv)

)
.

(11)

C.2. Algorithm.

Algorithm 1 Entropy weighted adversarial training for (Madry et al., 2018)

Input: DatasetD, parameters of model θ, model f , number of epochs T, batch size m, number of batches M, Cross-entropy
loss LCE, number of classes C
for epoch = 1, · · · , T do

for mini-batch = 1, · · · , M do
Sample mini-batch from training set (D): {(xi, yi)}mi=1

Generate adversarial examples xadvi by Eq. 4
Calculate entropy E for weighting
E(θ, xadvi ) = −

∑C
j pj(f(θ, xadvi )) log(pj(f(θ, xadvi )))

η = 1
m

∑m
i=1 E(θ, xadvi )

wient = E(θ, xadvi )/η
Calculate total loss
LEW-AT = LAT + went · LCE(f(θ, xadv), y)

Take gradient descent with respect to the model parameters
end for

end for

D. More experimental results
D.1. Effect of temperature scaling.

Table 4. Temperature scaling. The reported
results are robust accuracies against the `∞-
AutoAttack on CIFAR10. τ is parameter for
temperature scaling.

Ours (EW-AT) AutoAttack

τ = 0.5 48.85 (+0.69)
τ = 1.0 49.20 (+1.04)
τ = 5.0 49.31 (+1.14)

We further examine the effects of simple temperature scaling, which is the
only hyperparameter EWAT has (and is set to 1 by default), as it affects the
entropy by making the predictive distribution sharper or smoother. We report
the effect of different temperature values on our method’s robust accuracy
(Table 4). We observe that increasing the temperature value, which increases
the overall entropy of all samples, improves the performance of EWAT.

D.2. Results of utilizing additional data.

Recently, adversarially training neural networks with generated images has shown to help with their robustness. Re-
buffi et al. (2021) use samples generated by a Denoising Diffusion Probabilistic Model (DDPM; (Song et al., 2021))
to improve robustness. We utilize a dataset of 1M generated samples for CIFAR10 3. We train the model with
WideResNet28-10 (Zagoruyko & Komodakis, 2016) with 55 epochs, learning rate decay at 45 and 50 epoch with 0.1.

Table 5. Results of using generated data
against AutoAttack in CIFAR10. The robust-
ness accuracy is calculated with ε = 0.031.

Method Clean AutoAttack

DDPM (standard AT) 84.99 53.89
+ Ours (EW-AT) 84.93 54.02 (+0.13)

Compare to RST, this method utilizes an in-distributed additional dataset
which is more suitable for entropy-weighted. The dataset that is used in
RST is from TinyImageNet which are out-of-distribution examples. Thus,
entropy-weighted RST may behave in an undesirable way during the entropy-
weighted training. For example, the model can have relatively high entropy
to out-of-distributed images even though examples are used to train the
in-distributed train set. However, DDPM is a generated model which generates additional images that have the same visual
feature as the training set. Therefore, generated examples from DDPM can be seen as in-distributed examples. We believe
that this is why our model can obtain improved robustness with DDPM generated images against AutoAttack differently
from entropy-weighted RST, as shown in Table 5.

3The generated dataset can be downloaded at https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness

https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness

