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ABSTRACT

In federated learning, the support of partial client participation offers a flexible
training strategy, but it deteriorates the model training efficiency. In this paper, we
propose a framework FedAMD to improve the convergence property and maintain
flexibility. The core idea is anchor sampling, which disjoints the partial participants
into anchor and miner groups. Each client in the anchor group aims at the local
bullseye with the gradient computation using a large batch. Guided by the bullseyes,
clients in the miner group steer multiple near-optimal local updates using small
batches and update the global model. With the joint efforts from both groups,
FedAMD is able to accelerate the training process as well as improve the model
performance. Measured by ϵ-approximation and compared to the state-of-the-art
first-order methods, FedAMD achieves the convergence by up to O(1/ϵ) fewer
communication rounds under non-convex objectives. In specific, we achieve a
linear convergence rate under PL conditions. Empirical studies on real-world
datasets validate the effectiveness of FedAMD and demonstrate the superiority
of our proposed algorithm: Not only does it considerably save computation and
communication costs, but also the test accuracy significantly improves.

1 INTRODUCTION

Federated learning (FL) (Konečnỳ et al., 2015; 2016; McMahan et al., 2017) has attained an increasing
interest over the past few years. As a distributed training paradigm, it enables a group of clients
to collaboratively train a global model from decentralized data under the orchestration of a central
server. By this means, sensitive privacy is basically protected because the raw data are not shared
across the clients. Due to the unreliable network connection and the rapid proliferation of FL clients,
it is infeasible to require all clients to be simultaneously involved in the training. To address the issue,
recent works (Li et al., 2019b; Philippenko & Dieuleveut, 2020; Gorbunov et al., 2021a; Karimireddy
et al., 2020b; Yang et al., 2020; Li et al., 2020; Eichner et al., 2019; Yan et al., 2020; Ruan et al.,
2021; Gu et al., 2021; Lai et al., 2021) introduce a practical setting where merely a portion of clients
participates in the training. The partial-client scenario effectively avoids the network congestion at
the FL server and significantly shortens the idle time as compared to traditional large-scale machine
learning (Zinkevich et al., 2010; Bottou, 2010; Dean et al., 2012; Bottou et al., 2018).

However, a model trained with partial client participation is much worse than the one trained with full
client participation (Yang et al., 2020). This phenomenon is account for two reasons, namely, data
heterogeneity (a.k.a. non-i.i.d. data) and the lack of inactive clients’ updates. With data heterogeneity,
the optimal model is subject to the local data distribution, and therefore, the local updates on the
clients’ models greatly deviate from the update towards optimal global parameters (Karimireddy
et al., 2020b; Malinovskiy et al., 2020; Pathak & Wainwright, 2020; Wang et al., 2020; 2021; Mitra
et al., 2021; Rothchild et al., 2020; Zhao et al., 2018; Wu et al., 2021). FedAvg (McMahan et al.,
2017; Li et al., 2019b; Yu et al., 2019a;b; Stich, 2018), for example, is less likely to follow a correct
update towards the global minimizer because the model aggregation on the active clients critically
deviates from the aggregation on the full clients, an expected direction towards global minimizer
(Yang et al., 2020).

As a family of practical solutions to data heterogeneity, variance reduced techniques (Karimireddy
et al., 2020b; Gorbunov et al., 2021a; Wu et al., 2021; Gorbunov et al., 2021b; Liang et al., 2019;
Shamir et al., 2014; Li et al., 2019a; 2021b; Karimireddy et al., 2020a; Murata & Suzuki, 2021)
achieve an improved convergence rate when compared to FedAvg. With multiple local updates, each
client corrects the SGD steps with reference to an estimated global target, which is synchronized at
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Convexity Method Partial
Clients Communication Rounds

Non-convex

Minibatch SGD (Wang & Srebro, 2019) ✗ 1
MKϵ2 + 1

ϵ

FedAvg (Yang et al., 2020) ✓ K
Aϵ2 + 1

ϵ

SCAFFOLD (Karimireddy et al., 2020b) ✓ σ2

AKϵ2 +
(
M
A

)2/3 1
ϵ

BVR-L-SGD (Murata & Suzuki, 2021) ✗ 1
MKϵ3/2

+ 1
ϵ

VR-MARINA(Gorbunov et al., 2021a) ✗ σ
Mϵ3/2

+ σ2

Mϵ +
1
ϵ

FedAMD (Sequential) (Corollary 1) ✓ M
Aϵ

FedAMD (Constant) (Corollary 2) ✓ M
Aϵ

PL condition
(or *strongly-convex)

Minibatch SGD* (Woodworth et al., 2020b) ✗ σ2

µMKϵ +
1
µ log 1

µϵ

FedAvg (Karimireddy et al., 2020a) ✓ 1+σ2/K
µAϵ +

√
1+σ2/K

µ
√
ϵ

+ 1
µ log 1

ϵ

SCAFFOLD* (Karimireddy et al., 2020b) ✓ σ2

µAKϵ +
(

M
A + 1

µ

)
log Mµ

Aϵ

VR-MARINA (Gorbunov et al., 2021a) ✗
(

σ2

µMϵ +
σ

µ3/2M
√
ϵ
+ 1

µ

)
log 1

ϵ

FedAMD (Constant) (Corollary 3) ✓
(

1
µ + M

µ2A + M
A

)
log 1

ϵ

Table 1: Number of communication rounds that achieve E ∥∇F (x̃out)∥22 ≤ ϵ for non-convex
objectives (or EF (x̃out)− F∗ ≤ ϵ for PL condition or strongly-convex with the parameter of µ). We
optimize an online scenario and set the small batch size to 1. The symbol ✓ or ✗ for "Partial Clients"
is determined by the following footnote 1.

the beginning of every round. Although, in each transmission round, variance-reduced algorithms
require the communication overhead twice as more as FedAvg, their improved performances are
likely to eliminate the cost increments. Recent studies (Gorbunov et al., 2021a; Murata & Suzuki,
2021; Tyurin & Richtárik, 2022; Zhao et al., 2021) have demonstrated great potential using large
batches under full client participation1. Measured by ϵ-approximation, MARINA (Gorbunov et al.,
2021a), for instance, realizes O(1/Mϵ1/2) faster while using large batches, where M indicates the
number of clients.

However, none of the prior studies address the drawbacks of using large batches. Typically, a large
batch update involves several gradient computations compared to a small batch update. This increases
the burden of FL clients, especially on IoT devices like smartphones, because their hardware hardly
accommodates all samples in a large batch simultaneously. Instead, they must partition the large batch
into several small batches to obtain the final gradient. Furthermore, regarding the critical convergent
differences between various participation modes, the effect of using large batches under partial client
participation cannot be affirmative. BVR-L-SGD (Murata & Suzuki, 2021) and FedPAGE (Zhao
et al., 2021) claim that they can work under partial client participation, but they require all clients’
participation when the algorithms come to the synchronization using a large batch.

Motivated by the observation above, we propose a framework named FedAMD under federated
learning with anchor sampling that disjoints the partial participants into two groups, i.e., anchor and
miner group. In the anchor group, clients (a.k.a. anchors) compute the gradient using a large batch
cached in the server to estimate the global orientation. In the miner group, clients (a.k.a. miners)
perform multiple updates corrected according to the previous and the current local parameters and the
last local update volume. The objective for the latter group is twofold. First, multiple local updates
without serious deviation can effectively accelerate the training process. Second, we update the global
model using the local models from the latter group only. Since anchor sampling disjoints the clients
with time-varying probability, we separately consider constant and sequential probability settings.

Contributions. We summarize our contributions as follows:

• Algorithmically, we propose a unified federated learning framework FedAMD that identifies a
participant as an anchor or a miner. Clients in the anchor group aim to obtain the bullseyes of their
local data with a large batch, while the miners target to accelerate the training with multiple local
updates using small batches.

• Theoretically, we establish the convergence rate for FedAMD under non-convex objectives under
both constant and sequential probability settings. To the best of our knowledge, this is the first
work to analyze the effectiveness of large batches under partial client participation. Our theoretical

1In this paper, partial client participation refers to the case where only a portion of clients take part at every
round during the entire training.
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results indicate that, with the proper setting for the probability, FedAMD can achieve a convergence
rate of O( M

AT ) under non-convex objective, and linear convergence under Polyak-Łojasiewicz (PL)
condition (Polyak, 1963; Lojasiewicz, 1963). Comprehensive comparisons with previous works are
presented in Table 1.

• Empirically, we conduct extensive experiments to compare FedAMD with the most representative
approaches. The numerical results provide evidence of the superiority of our proposed algorithm.
Achieving the same test accuracy, FedAMD utilizes less computational power metered by the
cumulative gradient complexity.

2 RELATED WORK

In this section, we discuss the state-of-the-art works that are strongly relevant to our research. A more
comprehensive review is provided in Appendix A.

Mini-batch SGD vs. Local SGD. Distributed optimization is required to train large-scale deep
learning systems. Local SGD (also known as FedAvg) (Stich, 2018; Dieuleveut & Patel, 2019;
Haddadpour et al., 2019; Haddadpour & Mahdavi, 2019) performs multiple (i.e., K ≥ 1) local
updates with K small batches, while mini-batch SGD computes the gradients averaged by K small
batches (Woodworth et al., 2020b;a) (or a large batches (Shallue et al., 2019; You et al., 2018; Goyal
et al., 2017)) on a given model. There has been a long discussion on which one is better (Lin et al.,
2019; Woodworth et al., 2020a;b; Yun et al., 2021), but no existing work considers how to disjoint
the nodes such that both can be trained at the same time.

Variance Reduction in FL. The variance-reduced techniques have critically driven the advent of FL
algorithms (Karimireddy et al., 2020b; Wu et al., 2021; Liang et al., 2019; Karimireddy et al., 2020a;
Murata & Suzuki, 2021; Mitra et al., 2021) by correcting each local computed gradient with respect
to the estimated global orientation. However, a concern is addressed on how to attain an accurate
global orientation to mitigate the update drift from the global model. Roughly, the estimation lies in
two types, namely, precalculated and cached. The former methods (Murata & Suzuki, 2021; Mitra
et al., 2021) required precalculation typically require full worker participation, which is infeasible for
federated learning settings. As for the global orientation estimated by cached information, existing
approaches (Karimireddy et al., 2020b; Wu et al., 2021; Liang et al., 2019; Karimireddy et al., 2020a)
utilize small batches, which derives a biased estimation and misleads the training. This work explores
the effectiveness of large-batch estimation for the global orientation under partial client participation.

3 FEDAMD
In this section, we comprehensively describe the technical details of FedAMD, a federated learning
framework with anchor sampling. In specific, it disjoints the active participants into the anchor group
and the miner group with time-varying probabilities. The pseudo-code is illustrated in Algorithm 1.

Problem Formulation. In an FL system with a total of M clients, the objective function is
formalized as

min
x∈Rd

F (x) =
1

M

∑
m∈[M ]

Fm(x) (1)

where we define [M ] for a set of M clients. Fm(·) indicates the local expected loss function for
client m, which is unbiased estimated by empirical loss fm(·) using a random realization Bm from
the local training data Dm, i.e., EBm∼Dm

fm(x,Bm) = Fm(x). We denote n by the size of a client’s
local dataset, i.e., |Dm| = n for all m ∈ [M ], and n can be infinite large in the streaming/online
cases. F∗ represents the minimum loss for Equation (1).

Algorithm Description. In FedAMD, a global model is initialized with arbitrary parameters
x̃0 ∈ Rd. By distributing the model to all clients (Line 1), clients m ∈ [M ] are required to generate a
b-sample batch Bm,0 and compute the gradient v(m)

0 (Line 3). Then, clients send v
(m)
0 to the server

(Line 4), and server caches these gradients and span them as a matrix v0 =
{
v
(m)
0

}
m∈[M ]

(Line 6).

After the initialization steps above, the algorithm comes to the model training (Line 7–27). At the
beginning of each round t, the server randomly picks an A-client subset A from M clients (Line
8). Since each client is independently selected without replacement, under the setting of Equation
(1), clients have an equal chance to be selected with the probability of A

M . Subsequently, the server
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Algorithm 1 FedAMD
Input: local learning rate ηl, global learning rate ηs, minibatch size b, b′ < b, local updates K,
probability {pt ∈ [0, 1]}t≥0, initial model x̃0.

1: Communicate the initial model x̃0 with all clients m ∈ [M ]
2: for m ∈ [M ] in parallel do
3: v

(m)
0 = ∇fm (x̃0,Bm,0) using Bm,0 ∼ Dm with the size of b

4: Communicate v
(m)
0 with the server

5: end for
6: Initialize caching gradient v0 =

{
v
(m)
0

}
m∈[M ]

7: for t = 0, 1, 2, . . . do
8: Sample clients A ⊆ [M ]
9: Communicate the model x̃t and the caching gradient g̃t = avg(vt) with clients i ∈ A

10: Initialize subsequent caching gradient vt+1 = vt
11: for i ∈ A in parallel do
12: if Bernoulli(pt) == 1 then
13: v

(i)
t+1 = ∇fi (x̃t,Bi,t) using Bi,t ∼ Di with the size of b

14: Communicate v
(i)
t+1 with the server and indicate the update of caching gradient

15: else
16: Initialize x

(i)
t,−1 = x

(i)
t,0 = x̃t, g

(i)
t,0 = g̃t

17: for k = 0, . . . ,K − 1 do
18: Generate random realization B′

i,k ∼ Di with the size of b′

19: g
(i)
t,k+1 = g

(i)
t,k −∇fi

(
x
(i)
t,k−1,B

′

i,k

)
+∇fi

(
x
(i)
t,k,B

′

i,k

)
20: x

(i)
t,k+1 = x

(i)
t,k − ηl · g(i)t,k+1

21: end for
22: ∆x

(i)
t = x̃t − x

(i)
t,K

23: Communicate ∆x
(i)
t with the server and indicate the update of the model

24: end if
25: end for
26: x̃t+1 = x̃t − ηs · avg(∆xt) where ∆xt aggregates ∆x

(i)
t where client i updates model

27: end for

distributes the global model x̃t to the clients in the set A, accompanying the global bullseye (i.e., the
averaged caching gradient) g̃t = 1

M

∑
m∈[M ] v

(m)
0 (Line 9). With the probability of pt, client i ∈ A

is classified for the anchor group (Line 13–14) or the miner group (Line 16–23), and different groups
have different objectives and focus on different tasks.

Anchor group (Line 13–14). Clients in this group target to discover the bullseyes based on their
local data distribution. According to Line 12, client i ∈ A has the probability of pt to become a
member of this group. Then, the client utilizes a large batch Bi,t with b samples to obtain the gradient
v
(i)
t+1 (Line 13). Therefore, following the gradient v(i)t+1 can find an optimal or near-optimal solution

for client i. Next, the client pushes the gradient to the server and updates the caching gradient (Line
14). In view that some clients do not participate in the anchor group for obtaining the bullseyes at
round t, the server spontaneously inherits their previous calculation from vt (Line 10). As a result,
g̃t in Line 9 indicates an approximate orientation towards global optimal parameters, which directs
the local update in the miner group and affects the final global update. Besides, v(i)t+1 influences the
training from round t+ 1 up to the next time when client i is a member of anchor group.

Miner group (Line 16–23). Guided by the global bullseye, clients in the miner group perform
multiple local updates and finally drive the update of the global model. First, client i initializes the
model with x̃t and the target direction with g̃t (Line 16). Ideally, in the subsequent K updates (Line
17), client i update the model with the gradient ∇F (x

(i)
t,k) for k ∈ {0, . . . ,K−1}. This is impractical

because clients cannot access all others’ training sets to compute the noise-free gradients. Instead,
the client at k-th iteration generates a b′-sample realization B′

i,k (Line 18) and calculates the update

g
(i)
t,k+1 via a variance-reduced technique, i.e., g(i)t,k+1 = g

(i)
t,k−∇fi

(
x
(i)
t,k−1,B

′

i,k

)
+∇fi

(
x
(i)
t,k,B

′

i,k

)
4
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(Line 19). The update g
(i)
t,k+1 is approximate to ∇F (x

(i)
t,k) for two reasons: (i) the first term is used

to estimate the global update because g
(i)
t,0 stores the global bullseye; and (ii) the rest terms remove

the perturbation of data heterogeneity and reflect the true update at x(i)
t,k. Therefore, the local model

update follows x
(i)
t,k+1 = x

(i)
t,k − ηl · g(i)t,k+1 (Line 20). After K local updates, the model changes

on client i is ∆x
(i)
t = x̃t − x

(i)
t,K . Then, the client transmits ∆x

(i)
t to the server for the purpose of

global model update.

The proposed approach possesses threefold advantages when compared to SCAFFOLD (Karimireddy
et al., 2020b) and FedLin (Mitra et al., 2021) using a consistent correction term, i.e., g̃t − v

(i)
t . Firstly,

it is a memory-efficient approach that is unnecessary to maintain the obsolete gradient. Secondly, it
dynamically calibrates the local updates subject to the local model. Although BVR-L-SGD (Murata
& Suzuki, 2021) also achieves such a functionality, it requires all clients to jointly obtain the global
direction at the beginning of each round, leading to considerable training time. As for FedAMD,
here comes the third advantage that avoids the precalculation on a global bullseye under partial-client
scenarios. To the best of our knowledge, this is the first work to achieve dynamic calibration under
partial-client scenarios.

Server (Line 14 and Line 26). Therefore, after the separate local training on the participants,
the server merges the model changes from the miner group into ∆xt (Line 26) and updates the
caching gradients from the anchor group (Line 14). It is noted that the size of ∆xt (a.k.a. |∆xt|)
can be within the range between 0 and A. When the size is 0, x̃t+1 = x̃t, or otherwise, x̃t+1 =
x̃t − ηs

∑
∆xt/|∆xt| (Line 26). The reason why we solely use the changes from the miner group is

that clients perform multiple local updates regulated by the global target such that the model changes
walk towards the global optimal solution. While directly incorporating the new gradients from the
anchor group, the global model has a degraded performance because they perform a single update
that aims to find out the local bullseye deviated from the global target. Implicitly, clients in the miner
group take in the update of caching gradients at iteration k = 0 to update the local model, which will
affect the next global parameters.

Previous Algorithms as Special Cases. The probabilities can vary among the rounds that disjoint
the participants into the anchor group and the miner group. By setting A = M , and the probability
{pt} following the sequence of {1, 0, 1, 0, . . . }, FedAMD reduces to distributed minibatch SGD
(K = 1) or BVR-L-SGD (K > 1). Therefore, FedAMD subsumes the existing algorithms and takes
partial client participation into consideration. To obtain the best performance, we should tune the
settings of {pt} and K. However, accounting for the generality of FedAMD, it faces substantial
additional hurdles in its convergence analysis, which is one of our main contributions, as detailed in
the following section.

Discussion on Communication Overhead. As the anchors are not necessary to obtain the averaged
caching gradient (i.e., g̃t) at t-th round, the centralized server solely distributes g̃t to the miners.
Compared to FedAvg, the proposed algorithm requires (1− pt)/2 more communication costs, but it
achieves convergence with at least O( 1ϵ ) less communication rounds (see Table 1). Therefore, from
the perspective of model training progress, FedAMD is more communication efficient than FedAvg.

Discussion on Massive-Client Settings. A typical example of this scenario is cross-device FL
(Kairouz et al., 2019). In this setting, it is not a wise option for the server to preserve all the caching
gradients for clients. Therefore, the clients retain their caching gradients while the server keeps their
average. Firstly, at t-th round, client i ∈ [M ] copies their caching gradient to (t+ 1)-th round, i.e.,
v
(i)
t+1 = v

(i)
t . For the client i in the anchor group, they will follow Line 13 in Algorithm 1 to update

v
(i)
t+1 and push ∧(i)

t = v
(i)
t+1 − v

(i)
t to the server. After the server receives the updates of all local

caching gradients, it performs vt+1 = vt +
1
M

∑
∧t, where ∧t aggregates ∧(i)

t where client i is in
anchor group.

4 THEORETICAL ANALYSIS

In this section, we analyze the convergence rate of FedAMD under non-convex objectives with respect
to ϵ-approximation, i.e., mint∈[T ] ∥∇F (x̃t)∥22 ≤ ϵ. Specifically, when it comes to PL condition,
ϵ-approximation refers to F (x̃T )−F (x∗) ≤ ϵ. In the following discussion, we particularly highlight
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the setting of {pt} to obtain the best performance. Before showing the convergence result, we
make the following assumptions, where the first two assumptions have been widely used in machine
learning studies (Karimireddy et al., 2020b; Li et al., 2020), while the last one has been adopted in
some recent works (Gorbunov et al., 2021a; Tyurin & Richtárik, 2022; Murata & Suzuki, 2021).

Assumption 1 (L-smooth). The local objective functions are Lipschitz smooth: For all v, v̄ ∈ Rd,

∥∇Fi(v)−∇Fi(v̄)∥2 ≤ L∥v − v̄∥2, ∀i ∈ [M ].

Assumption 2 (Bounded Noise). For all v ∈ Rd, there exists a scalar σ ≥ 0 such that

EB∼Di∥∇fi(v,B)−∇Fi(v)∥22 ≤ σ2

|B|
, ∀i ∈ [M ].

Assumption 3 (Average L-smooth). For all v, v̄ ∈ Rd, there exists a scalar Lσ ≥ 0 such that

EB∼Di
∥(∇fi(v,B)−∇fi(v̄,B))− (∇Fi(v)−∇Fi(v̄))∥22 ≤ L2

σ

|B|
∥v − v̄∥22 , ∀i ∈ [M ].

Remark. Assumption 3 definitely provides a tighter bound for the patterns of variance reduction. In
fact, solely with Assumption 2, the term EB∼Di

∥(∇fi(v,B)−∇fi(v̄,B))− (∇Fi(v)−∇Fi(v̄))∥22
can be bounded by a constant. Therefore, we can easily obtain the coefficient for ∥v − v̄∥22, which
could be with the same structure as the constant in RHS of Assumption 2. Furthermore, if the loss
function is Lipschitz smooth, e.g., cross-entropy loss (Tewari & Chaudhuri, 2015), we can derive a
similar structure as presented in Assumption 3.

4.1 SEQUENTIAL PROBABILITY SETTINGS

As mentioned in Section 3, a recursive pattern appeared in the probability sequence {pt ∈ {0, 1}}t≥0

can reduce FedAMD to the existing works. We assume that the caching gradient updates every
τ(≥ 2) rounds, such that

pt =

{
1, t mod τ == 0

0, Otherwise
We derive the following results under sequential probability settings. The corresponding proof is
provided in Appendix D.

Theorem 1. Suppose that Assumption 1, 2 and 3 hold. Let the local updates K ≥ 1, the minibatch
size b = min

(
σ2

Mϵ , n
)

and b′ < b. Additionally, the settings for the local learning rate ηl and the

global learning rate ηs satisfy the following two constraints: (1) ηsηl = 1
KL

(
1 + 2Mτ

A

)−1
; and

(2) ηl ≤ min

(
1

2
√
6KL

,

√
b′/K

4
√
3Lσ

)
. Then, to find an ϵ-approximation of non-convex objectives, i.e.,

mint∈[T ] ∥∇F (x̃t)∥22 ≤ ϵ, the number of communication rounds T performed by FedAMD is

T = O

((
1 +

2Mτ

A

)
· τ

τ − 1
· 1
ϵ

)
where we treat ∇F (x̃0)− F∗ and L as constants.

Discussion on the selection of τ . According to Theorem 1, we notice that τ = 2 achieves
mint∈[T ] ∥∇F (x̃t)∥22 ≤ ϵ with the fewest communication rounds. The following corollary discloses
the relation between computation overhead and the value of τ .

Corollary 1. Under the setting of Theorem 1, FedAMD computes O
(

Mb
ϵ + τMKb′

ϵ

)
gradients and

consumes a communication overhead of O
(
Mτ
Aϵ

)
during the model training.

Remark. FedAMD requires an increasing computation and communication cost as τ gets larger.
Therefore, τ = 2 possesses the most outstanding performance in the sequential probability settings.
In this case, FedAMD requires the communication rounds of O

(
M
Aϵ

)
, the communication overhead

of O
(
M
Aϵ

)
, and the computation cost of O

(
σ2

ϵ2 + MK
ϵ

)
while optimizing an online scenario where

the size of local dataset is infinity large.
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Comparison with BVR-L-SGD. As discussed in Section 3, FedAMD reduces to BVR-L-SGD
(Murata & Suzuki, 2021) when τ = 2 and all clients participate in the training. In this case, Theorem
1 shows a total of T = O(1/ϵ) communication rounds is needed. This result coincides with the
complexity of BVR-L-SGD in Table 1 by the setting that (1) nM ≤ 1

ϵ , and (2) K ≥
√
n/M . In

other words, we theoretically prove that BVR-L-SGD still achieves mint∈[T ] ∥∇F (x̃t)∥22 ≤ ϵ with
T = O(1/ϵ) in a looser constraint. As for computation overhead, our proposed method requires
O
(

σ2

ϵ2 + MK
ϵ

)
, which is less than BVR-L-SGD (i.e., O

(
σ2

ϵ2 + σ2+MK
ϵ +MK

)
).

4.2 CONSTANT PROBABILITY SETTINGS

Apparently, when we set the constant probability as 1, all participants are in the anchor group such
that the model cannot be updated. Likewise, when the constant probability is 0, all participants are
in the miner group such that the global target cannot be updated, leading to degraded performance.
Therefore, we manually define a constant p ∈ (0, 1) such that {pt = p}t≥0. In this section, we
derive the following results with partial client participation. Detailed proof is provided in Appendix
E. Specifically, Appendix E.2 and Appendix E.3 proves the convergence rate for Theorem 2 and
Theorem 3, respectively.

Theorem 2. Suppose that Assumption 1, 2 and 3 hold. Let the local updates K ≥ max
(
1,

2L2
σ

b′L2

)
,

the minibatch size b = min
(

σ2

Mϵ , n
)

and b′ < b, the local learning rate ηl = 1
2
√
6KL

, and the global

learning rate ηs = 2
√
6

1+ 2M
Ap

√
1−pA

. Then, to find an ϵ-approximation of non-convex objectives, i.e.,

mint∈[T ] ∥∇F (x̃t)∥22 ≤ ϵ, the number of communication rounds T performed by FedAMD is

T = O

(
1

ϵ

(
1

1− pA
+

M

Ap
√
1− pA

))
where we treat ∇F (x̃0)− F∗ and L as constants.

With the constant probability p approaching 0 or 1, Theorem 2 shows that FedAMD requires a
significant number of communication rounds. Hence, there is an optimal p such that FedAMD
achieves convergence with the fewest communication rounds. In view that M ≥ A, the number of

communication rounds is dominated by O

(
M

Ap
√

1−pA
· 1
ϵ

)
. Based on this observation, the following

corollary provides the settings for the constant probability p that leads to the optimal convergence
result. Based on the value of p, we further refine the settings for other parameters. The following
corollary takes b′ = 1 into consideration, i.e., the small batch size is 1.

Corollary 2. Suppose that Assumption 1, 2 and 3 hold. Let the constant probability p = 1
c

(
2

A+2

)1/A
,

where c is a constant greater than or equal to 1, the local updates K ≥ max
(
1,

2L2
σ

L2

)
, the mini-

batch size b = min
(

σ2

Mϵ , n
)

and b′ = 1, the local learning rate ηl = 1
2
√
6KL

, and the global

learning rate ηs = 2
√
6A

A+3Mc . Then, after the communication rounds of T = O
(
M
Aϵ

)
, we have

mint∈[T ] ∥∇F (x̃t)∥22 ≤ ϵ. Therefore, the number of total samples called by all clients (i.e., cumula-

tive gradient complexity) is O
(

σ2

ϵ2 + MK
ϵ

)
when it optimizes an online scenario.

Discussion on the effectiveness of c. When c = 1, we can obtain the minimum value for the term(
p
√

1− pA
)−1

with the constant p devised in Corollary 2. As the number of participants (i.e., A)
gets larger, the optimal p increases as well and tends to be 1, indicating that most participants are in
the anchor group. When we optimize an online scenario, the anchors compute a gradient with massive
samples. As a result, the computation overhead of a single round is not acceptable. By deducting
the anchor sampling probability to its 1/c, FedAMD consumes up to (c − 1)/c less computation
overhead, while its convergence performance remains.

Comparison with FedAvg. As a classical algorithm, FedAvg (Yang et al., 2020) requires
O
(

K
Aϵ2 + 1

ϵ

)
communication rounds to achieve mint∈[T ] ∥∇F (x̃t)∥22 ≤ ϵ with the total computation

7



Under review as a conference paper at ICLR 2023

consumption of O
(

K2

ϵ2 + AK
ϵ

)
. Apparently, FedAMD needs O( 1ϵ ) fewer communication rounds.

As mentioned in Section 3, FedAMD consumes (1 − p)/2 more communication overhead than
FedAvg. As ϵ is close to 0, the total communication overhead for FedAMD is far less than the cost of
FedAvg. As for computation overhead, (Yang et al., 2020) implicitly assumes that K ≥ σ2, FedAMD
is more communication friendly than FedAvg.

In addition to the generalized non-convex objectives, we investigate the convergence rate of the PL
condition, a special case under non-convex objectives. The following assumption describes this case:

Assumption 4 (PL Condition (Karimi et al., 2016)). The objective function F satisfies the PL
condition when there exists a scalar µ > 0 such that

∥∇F (v)∥22 ≥ 2µ (F (v)− F∗) , ∀v ∈ Rd.

Under PL condition, the rest of the section draws the convergence performance of FedAMD with
partial client participation.

Theorem 3. Suppose that Assumption 1, 2, 3 and 4 hold. Let the local updates K ≥ max
(
1,

2L2
σ

b′L2

)
,

the minibatch size b = min
(

σ2

Mµϵ , n
)

and b′ < b, the local learning rate ηl =
1

2
√
6KL

, and the

global learning rate ηs = min

(
2
√
6LAp

Mµ(1−pA)
, 2

√
6

1+ 16ML
µAp

)
. Then, to find an ϵ-approximation of PL

condition, i.e., F (x̃T )− F (x∗) ≤ ϵ, the number of communication rounds T performed by FedAMD
is

T = O

(
1

µ(1− pA)

(
1 +

M

µAp
+

Mµ(1− pA)

Ap

)
log

1

ϵ

)
where we treat ∇F (x̃0)− F∗ and L as constants.

Similar to Theorem 2, the number of communication rounds of FedAMD is mainly occupied by
O
(

M
µ2Ap(1−pA)

+ M
Ap

)
. According to such an approximation, we provide a mathematical expression

for the setting of p in Corollary 3. Subsequently, we adjust the value of the hyper-parameters such
that we can obtain the best result for Theorem 3.

Corollary 3. Suppose that Assumption 1, 2, 3 and 4 hold. Let the constant probability p =

1
c

((
1 + A+1

2µ2

)
−
√(

A+1
2µ2

)2
+ A

µ2

)1/A

, where c is a constant greater than or equal to 1, the local

updates K ≥ max
(
1,

2L2
σ

L2

)
, the minibatch size b = min

(
σ2

Mµϵ , n
)

and b′ = 1, the local learning

rate ηl =
1

2
√
6KL

, and the global learning rate ηs = min

(√
6AL

Mµc , 2
√
6
(
1 + 32Mc

µA

)−1
)

. Then,

after the communication rounds of T = O
((

1
µ + M

µ2A + M
A

)
log 1

ϵ

)
, we have F (x̃T )−F (x∗) ≤ ϵ.

Therefore, the number of total samples called by all clients (i.e., cumulative gradient complexity) is
O
((

A
µ + M

µ2 +M
)(

σ2

Mµϵ +K
)
log 1

ϵ

)
when it optimizes an online scenario.

Remark. When c = 1, the probability p for anchor sampling approaches 100% as the number
of participants is increasing. Likewise, it is necessary to use c ≥ 1 to reduce the computation
consumption of each round. Besides, FedAMD achieves a linear convergence under PL conditions.
In view that strongly-convex objectives possess a looser setting than PL conditions, FedAMD can
also achieve linear convergence under strongly-convex objectives.

5 EXPERIMENTS

This section presents the experiments of our proposed approach and other existing baselines that are
most relative to this work. We also investigate the effectiveness of probability {pt}t≥0. Account for
the limited space, numerical analysis on other factors like the number of local updates are presented
in the supplementary materials.
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Figure 1: Comparison of different probability settings using test accuracy against the communication
rounds for FedAMD.

Method
20 clients 40 clients 100 clients

Grad. Comm. Round Acc. Grad. Comm. Round Acc. Grad. Comm. Round Acc.
BVR-L-SGD 101.9 853.9 310 77.0 177.4 1492.3 275 78.6 463.8 3908.7 291 78.0
FedAvg 40.8 566.9 318 76.4 78.3 1087.5 305 76.7 186.9 2594.5 291 77.0
FedPAGE 148.6 1670.4 271 79.2 164.3 1622.4 203 80.6 525.5 4540.3 339 77.1
SCAFFOLD 47.5 1318.6 370 75.9 91.4 2537.8 356 76.0 250.9 6966.0 391 75.1
FedAMD (constant) 35.5 489.8 259 80.6 55.0 776.3 209 82.3 153.9 2147.8 229 83.4
FedAMD (sequential) 40.2 475.3 213 79.5 80.4 904.5 190 80.8 253.8 2998.8 269 78.7

Table 2: Comparison among baselines in terms of cumulative gradient complexity (×105 samples),
communication costs (×32 Mbits), and rounds reaching the accuracy of 75%, and the final accuracy
(%) after 400 rounds. Bold: The best result in each column; underline: The best result of the baselines
in each column; Italy: The results that FedAMD outperforms all baselines in each column.
Experimental setup. We train a convolutional neural network LeNet-5 (LeCun et al., 2015; 1989)
(non-convex) using Fashion MNIST (Xiao et al., 2017) which consists of 10 classes that equally
disjoint the training set of 60K samples and the test set of 10K samples. We conduct the experiments
with a total of 100 clients. To simulate the non-i.i.d. features, each client holds the data from 2
classes with a total of 600 samples, and each label is held by 20 clients. Let the number of local
updates K be 10, the mini-batch size b′ be 64 and b be 600. For different experiments, unless some
hyper-parameters have been defined, we leverage the best setting (e.g., learning rate) to obtain the
best results. All the numerical results in this section represent the average performance of three
experiments using different random seeds. More empirical results are put in Appendix F.
Effectiveness of probability {pt}t≥0. Figure 1 demonstrates the performance of various probability
settings under the scenarios of different participants. In Figure 1a with 20 clients, both sequential
probability setting and constant probability setting achieve the best performance. In Figure 1b and
1c, where 40 and 100 clients are selected in each round, constant probability setting outperforms
sequential probability setting. In all three scenarios, with sequential probability settings, the pattern
of {0, 0, 1} has a much worse performance than the pattern of {0, 1}. This empirically validates
Theorem 1 for the best setting τ = 2 in terms of communication complexity. Similarly, with constant
probability settings, the best performance is achieved when p approximates or equals optimal, which
validates the statement in Corollary 2.
Comparison with the state-of-the-art works. Table 2 compares FedAMD with the existing works
under partial/full client participation. At first glance, FedAMD outperforms other baselines because
the texts in bold are all appeared in FedAMD. With 20-client participation, our proposed method
surpasses four baselines all aroundness. As for 40-client participation, FedAMD with constant
probability saves at least 30% computation and communication cost, and the final accuracy realizes
up to 6% improvement. In terms of the training with full client participation, FedAMD requires
10%–20% fewer communication rounds, and its final accuracy has significant improvement, i.e.,
within the range of 0.7%–8.3%. Also, it is well noted that BVR-L-SGD has a similar performance
as FedAMD using sequential probability in terms of communication rounds and test accuracy, but
the former needs more computation and communication overhead. This is because BVR-L-SGD
computes the bullseye using multiple b′-size batches rather than a large batch.

6 CONCLUSION
In this work, we investigate a federated learning framework FedAMD that disjoints the partial
participants into anchor and miner groups. We provide the convergence analysis of our proposed
algorithm for constant and sequential probability settings. Under the partial-client scenario, FedAMD
achieves sublinear speedup under non-convex objectives and linear speedup under the PL condition.
To the best of our knowledge, this is the first work to analyze the effectiveness of large batches
under partial client participation. Experimental results demonstrate that FedAMD is superior to
state-of-the-art works. It is interesting to explore anchor sampling in the other scenarios of FL, e.g.,
arbitrary device unavailability.
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A RELATED WORK

Mini-batch SGD vs. Local SGD. Distributed optimization is required to train large-scale deep
learning systems. Local SGD (also known as FedAvg) (Stich, 2018; Dieuleveut & Patel, 2019;
Haddadpour et al., 2019; Haddadpour & Mahdavi, 2019) performs multiple (i.e., K ≥ 1) local
updates with K small batches, while mini-batch SGD computes the gradients averaged by K small
batches (Woodworth et al., 2020b;a) (or a large batches (Shallue et al., 2019; You et al., 2018; Goyal
et al., 2017)) on a given model. There has been a long discussion on which one is better (Lin et al.,
2019; Woodworth et al., 2020a;b; Yun et al., 2021), but no existing work considers how to disjoint
the nodes such that both can be trained at the same time.

Federated Learning. FL was proposed to ensure data privacy and security (Kairouz et al., 2019),
and now it has become a hot field in the distributed system (Yuan & Ma, 2020; Shamsian et al., 2021;
Zhang et al., 2021; Avdiukhin & Kasiviswanathan, 2021; Yuan et al., 2021; Diao et al., 2020; Blum
et al., 2021). The FL training methods in the past few years usually require all trainers to participate in
each training session (Kairouz et al., 2019), but this is obviously impractical when facing the increase
in FL clients. To enhance the systems’ feasibility, this work assumes that a fixed number of clients
are sampled at each round, which is widely adopted in (Li et al., 2019b; Philippenko & Dieuleveut,
2020; Gorbunov et al., 2021a; Karimireddy et al., 2020b; Yang et al., 2020; Li et al., 2020; Eichner
et al., 2019; Ruan et al., 2021). Therefore, the server collects the data from this participation every
synchronization to update the model parameters (Li et al., 2019b; Philippenko & Dieuleveut, 2020;
Gorbunov et al., 2021a; Karimireddy et al., 2020b; Yang et al., 2020; Li et al., 2020; Eichner et al.,
2019; Yan et al., 2020; Ruan et al., 2021; Lai et al., 2021; Gu et al., 2021).

Variance Reduction in Finite-sum Problems. Variance reduction techniques (Johnson & Zhang,
2013; Defazio et al., 2014; Nguyen et al., 2017; Li et al., 2021a; Lan & Zhou, 2018a;b; Allen-Zhu
& Hazan, 2016; Reddi et al., 2016; Lei et al., 2017; Zhou et al., 2018; Horváth & Richtárik, 2019;
Horváth et al., 2020; Fang et al., 2018; Wang et al., 2018; Li, 2019; Roux et al., 2012; Lian et al.,
2017; Zhang et al., 2016) was once proposed for traditional centralized machine learning to optimize
finite-sum problems (Bietti & Mairal, 2017; Bottou & Cun, 2003; Robbins & Monro, 1951) by
mitigating the estimation gap between small-batch (Bottou, 2012; Ghadimi et al., 2016; Khaled &
Richtárik, 2020) and large-batch (Nesterov, 2003; Ruder, 2016; Mason et al., 1999). SGD randomly
samples a small-batch and computes the gradient in order to approach the optimal solution. Since
the data are generally noisy, an insufficiently large batch results in convergence rate degradation. By
utilizing all data in every update, GD can remove the noise affecting the training process. However, it
is time-consuming because the period for a single GD step can implement multiple SGD updates.
Based on the trade-off, variance-reduced methods periodically perform GD steps while correcting
SGD updates with reference to the most recent GD steps.

Variance Reduction in FL. The variance-reduced techniques have critically driven the advent of FL
algorithms (Karimireddy et al., 2020b; Wu et al., 2021; Liang et al., 2019; Karimireddy et al., 2020a;
Murata & Suzuki, 2021; Mitra et al., 2021) by correcting each local computed gradient with respect
to the estimated global orientation. However, a concern is addressed on how to attain an accurate
global orientation to mitigate the update drift from the global model. Roughly, the estimation lies in
two types, namely, precalculated and cached. The former methods (Murata & Suzuki, 2021; Mitra
et al., 2021) required precalculation typically require full worker participation, which is infeasible for
federated learning settings. As for the global orientation estimated by cached information, existing
approaches (Karimireddy et al., 2020b; Wu et al., 2021; Liang et al., 2019; Karimireddy et al., 2020a)
utilize small batches, which derives a biased estimation and misleads the training. This work explores
the effectiveness of large-batch estimation for the global orientation under partial client participation.
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B USEFUL LEMMAS

Prior to giving detailed proofs of the theorems, we cover some technical lemmas in this section, and
all of them are valid in general cases.

Lemma 1. Let ε = {ε1, . . . , εa} be the set of random variables in Ra×d. Every element in ε is
independent with others. For i ∈ {1, . . . , a}, the value for εi follows the setting below:

εi =

{
ei, probability = q

0, otherwise
(2)

where q is a constant real number between 0 and 1, i.e., q ∈ [0, 1]. Let | · | indicate the length of a set,
ε \ {0} represent a set in which an element is in ε but not 0. Then, there is a probability of (1− q)a

for |ε \ {0}| = 0, let avg(ε) be the averaged result with the exception of zero vectors, i.e.,

avg(ε) =

{
1

|ε\{0}|
∑a

i=1 εi, |ε \ {0}| ≠ 0

0, |ε \ {0}| = 0
(3)

Then, the following formulas hold for E (avg(ε)) and its second norm E ∥avg(ε)∥22:

E (avg(ε)) = (1− (1− q)a) · 1
a

a∑
i=1

ei; E ∥avg(ε)∥22 ≤ (1− (1− q)a) · 1
a

a∑
i=1

∥ei∥22 (4)

Proof. When q = 0, the formulas in Equation 4 obviously hold because E (avg(ε)) = 0 and
E ∥avg(ε)∥22 = 0. As for q = 1, since avg(ε) = 1

a

∑a
i=1 ei, we leverage Cauchy–Schwarz inequality

and get E ∥avg(ε)∥22 =
∥∥ 1
a

∑a
i=1 ei

∥∥2
2
≤ 1

a

∑a
i=1 ∥ei∥

2
2, which is consistent with the formulas in

Equation 4. In addition to the preceding cases, we consider some general cases for the probability q
within 0 and 1, i.e., q ∈ (0, 1).

Firstly, we show the proof details for E (avg(ε)). For all i in {1, . . . , a}, given that εi is not a zero
vector, the coefficient of ei is based on the binomial distribution on how many non-zero elements in
the set {ε1, . . . , εi−1} ∪ {εi+1, . . . , εa}. Therefore, with the probability q that εi is equal to ei, the
coefficient of ei in the expected form is

q

1

a
·
(
a− 1

a− 1

)
qa−1︸ ︷︷ ︸

(a−1) non-zero elements

+ · · ·+ 1

1
·
(
a− 1

0

)
(1− q)a−1︸ ︷︷ ︸

0 non-zero element


Then, the coefficient of 1

aei can be expressed and simplified for

q

(
a

a
·
(
a− 1

a− 1

)
qa−1 + · · ·+ a

1
·
(
a− 1

0

)
(1− q)a−1

)
(5)

= q

((
a

a

)
qa−1 + · · ·+

(
a

1

)
(1− q)a−1

)
(6)

=

(
a

a

)
qa + · · ·+

(
a

1

)
q(1− q)a−1 (7)

= 1− (1− q)a (8)

where Equation (7) follows(
α

β

)
=

α

β
· (α− 1)× · · · × (α− β + 1)

1× · · · × (β − 1)
=

α

β

(
α− 1

β − 1

)
, ∀α ≥ β > 0

and Equation (8) follows

(q + (1− q))a =

(
a

a

)
qa + · · ·+

(
a

0

)
(1− q)a.

Thus, the equation E (avg(ε)) = (1− (1− q)a) · 1
a

∑a
i=1 ei holds.
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Secondly, we provide the analysis for E ∥avg(ε)∥22. Based on the definition for avg(ε) in Equation
(3), we discuss the case |ε \ {0}| ≠ 0. By means of Cauchy-Schwarz inequality, we can obtain the
following inequality:∥∥∥∥∥ 1

|ε \ {0}|

a∑
i=1

εi

∥∥∥∥∥
2

2

=

∥∥∥∥∥∥ 1

|ε \ {0}|
∑

i,εi ̸=0

εi

∥∥∥∥∥∥
2

2

≤ 1

|ε \ {0}|
∑

i,εi ̸=0

∥εi∥22 =
1

|ε \ {0}|

a∑
i=1

∥εi∥22 (9)

Therefore,

∥avg(ε)∥22 ≤

{
1

|ε\{0}|
∑a

i=1 ∥εi∥
2
2 , |ε \ {0}| ≠ 0

0, |ε \ {0}| = 0
(10)

Apparently, Equation (10) is very similar to Equation (3) in terms of the expression. As a result, we
can adopt the same proof framework in the analysis of E (avg(ε)). Then, we can directly draw a
conclusion E ∥avg(ε)∥22 ≤ (1− (1− q)a) · 1

a

∑a
i=1 ∥ei∥

2
2.

Lemma 2. Let ε = {ε1, . . . , εa} be the set of random variables in Rd with the number of a. These
random variables are not necessarily independent. We can suppose that E [εi] = ei, and the variance

is bounded as E
[
∥εi − ei∥22

]
≤ σ2. After that we can get

E

∥∥∥∥∥
a∑

i=1

εi

∥∥∥∥∥
2

2

 ≤

∥∥∥∥∥
a∑

i=1

ei

∥∥∥∥∥
2

2

+ a2σ2 (11)

If we make another suppose that the conditional mean of these random variables is
E [εi|εi−1, . . . , ε1] = ei, and the variables {εi − ei} form a martingale difference sequence, and the

bound of the variance is E
[
∥εi − ei∥22

]
≤ σ2. So we can make a much tighter bound

E

∥∥∥∥∥
a∑

i=1

εi

∥∥∥∥∥
2

2

 ≤ 2

∥∥∥∥∥
a∑

i=1

ei

∥∥∥∥∥
2

2

+ 2aσ2 (12)

Proof. For any random variable X , E
[
X2
]
= (E [X − E [X]])

2
+ (E [X])

2 implying

E

∥∥∥∥∥
a∑

i=1

εi

∥∥∥∥∥
2

2

 =

∥∥∥∥∥
a∑

i=1

ei

∥∥∥∥∥
2

2

+ E

∥∥∥∥∥
a∑

i=1

εi − ei

∥∥∥∥∥
2

2

 (13)

Expanding above expression using relaxed triangle inequality:

E

∥∥∥∥∥
a∑

i=1

εi − ei

∥∥∥∥∥
2

2

 ≤ a

a∑
i=1

E
[
∥εi − ei∥22

]
≤ a2σ2 (14)

For the second statement, ei depends on [εi−1, . . . , ε1]. Thus we choose to use a relaxed triangle
inequality

E

∥∥∥∥∥
a∑

i=1

εi

∥∥∥∥∥
2

2

 ≤ 2

∥∥∥∥∥
a∑

i=1

ei

∥∥∥∥∥
2

2

+ 2E

∥∥∥∥∥
a∑

i=1

εi − ei

∥∥∥∥∥
2

2

 (15)

then we use a much tighter expansion and we can get:

E

∥∥∥∥∥
a∑

i=1

εi − ei

∥∥∥∥∥
2

2

 =
∑
i,j

E
[
(εi − ei)

⊤
(εj − ej)

]
=
∑
i

E

∥∥∥∥∥
a∑

i=1

εi − ei

∥∥∥∥∥
2

2

 ≤ aσ2 (16)

When {εi − ei} form a martingale difference sequence, the cross terms will have zero means.
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Lemma 3. Suppose there is a sequence {yt ∈ Rd}t≥0 satisfying a recursive function yt+1 =
yt − η∆yt, where η > 0 is a constant and ∆yt ∈ Rd is a vector. Given a L-smooth function G, the
following inequality holds for any η and ∆yt:

G(yt+1) ≤ G(yt)−
ηη′

2
∥∇G(yt)∥22 −

(
1

2ηη′
− L

2

)
∥yt+1 − yt∥22 +

η

2η′
∥∆yt − η′∇G(yt)∥

2
2

(17)
where η′ > 0 can be any constant.

Proof. Since G is a L-smooth function, for any v, v̄ ∈ Rd, the following inequality holds:

G(v̄) = G(v) +

∫ 1

0

∂G(v + t(v̄ − v))

∂t
dt (18)

= G(v) +

∫ 1

0

∇G(v + t(v̄ − v)) · (v̄ − v)dt (19)

= G(v) +∇G(v)(v̄ − v) +

∫ 1

0

(∇G(v + t(v̄ − v))−G(v)) · (v̄ − v)dt (20)

≤ G(v) +∇G(v)(v̄ − v) +

∫ 1

0

L∥t(v̄ − v)∥2∥v̄ − v∥2dt (21)

≤ G(v) +∇G(v)(v̄ − v) +
L

2
∥v̄ − v∥22. (22)

Based on the conclusion on L-smooth drawn from Equation (22), we derive Equation (17) step by
step:

G (yt+1) ≤ G (yt) + ⟨∇G (yt) , yt+1 − yt⟩+
L

2
∥yt+1 − yt∥22 (23)

= G (yt) + ⟨∇G (yt) ,−η∆yt⟩+
L

2
∥yt+1 − yt∥22 (24)

= G (yt)−
η

η′
⟨η′∇G (yt) ,∆yt⟩+

L

2
∥yt+1 − yt∥22 (25)

= G (yt)−
η

2η′

(
η′2 ∥∇G (yt)∥22 + ∥∆yt∥22 − ∥∆yt − η′∇G (yt)∥

2
2

)
+

L

2
∥yt+1 − yt∥22

(26)

= G (yt)−
ηη′

2
∥∇G (yt)∥22 −

(
1

2ηη′
− L

2

)
∥yt+1 − yt∥22 +

η

2η′
∥∆yt − η′∇G (yt)∥

2
2

(27)

where Equation (26) is in accordance with ⟨α, β⟩ = 1
2

(
α2 + β2 − (α− β)

2
)

, and Equation (27)

follows ∥∆yt∥22 = 1
η2 ∥yt+1 − yt∥22.

19



Under review as a conference paper at ICLR 2023

C PRELIMINARY FOR FEDAMD
Algorithm 1 describes FedAMD in details. The objective in this part is to find the recursive function
for the sequence of models, i.e., {x̃t}t≥0. As mentioned in Line 26 in Algorithm 1, let ∆xt aggregate
∆x

(i)
t where client i updates model, then the difference between x̃t+1 and x̃t follows the recursive

function written as
x̃t+1 = x̃t − ηs · avg(∆xt) (28)

where avg() is same as defined in Lemma 1. As we know, the length of ∆xt changes over rounds but
does not exceed the number of participants, i.e., |∆xt| ≤ A. Then, suppose that ∆x

(m)
t is in ∆xt,

∆x
(m)
t can be expressed as

∆x
(m)
t = −

(
x
(m)
t,K − x̃t

)
= −

K−1∑
k=0

(
x
(m)
t,k+1 − x

(m)
t,k+1

)
=

K−1∑
k=0

ηlg
(m)
t,k+1 (29)

where the last equal sign is according to Line 20 in Algorithm 1. Next, with the recursive formula in
Line 19, we have

g
(m)
t,k+1 = g

(m)
t,k −∇fm

(
x
(m)
t,k−1,B

′

m,k

)
+∇fm

(
x
(m)
t,k ,B

′

m,k

)
(30)

= g̃t −
k∑

κ=0

∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)
+

k∑
κ=0

∇fm

(
x
(m)
t,κ ,B

′

m,κ

)
. (31)

Then, Equation (29) can be rewritten as

∆x
(m)
t = ηlKg̃t − ηl

K−1∑
k=0

k∑
κ=0

∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)
+ ηl

K−1∑
k=0

k∑
κ=0

∇fm

(
x
(m)
t,κ ,B

′

m,κ

)
(32)

D PROOFS UNDER SEQUENTIAL PROBABILISTIC SETTINGS

D.1 PRELIMINARY

Lemma 4. Suppose that Assumption 1, 2 and 3 hold. Let the local learning rate satisfy ηl ≤

min

(
1

2
√
3KL

, 1
2
√
3L2

σ

√
b′

K

)
. With FedAMD,

∑K−1
k=0

∥∥∥x(m)
t,k − x

(m)
t,k−1

∥∥∥2
2

represents the sum of the

second norm of every iteration’s difference. Therefore, the bound for such a summation in the
expected form should be

K−1∑
k=0

E
∥∥∥x(m)

t,k − x
(m)
t,k−1

∥∥∥2
2
≤ 6η2l K ∥g̃t −∇F (x̃t)∥22 + 6η2l K ∥∇F (x̃t)∥22 (33)

Proof. According to Equation (31), the update at (k − 1)-th iteration is

x
(m)
t,k − x

(m)
t,k−1 = −ηlg

(m)
t,k = −ηl

(
g̃t −

k−1∑
κ=0

∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)
+

k−1∑
κ=0

∇fm

(
x
(m)
t,κ ,B

′

m,κ

))
.

(34)
To find the bound for the expected value of its second norm, the analysis is presented as follows:

E
∥∥∥x(m)

t,k − x
(m)
t,k−1

∥∥∥2
2

(35)

= η2l E

∥∥∥∥∥g̃t −
k−1∑
κ=0

∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)
+

k−1∑
κ=0

∇fm

(
x
(m)
t,κ ,B

′

m,κ

)∥∥∥∥∥
2

2

(36)

≤ 3η2l ∥g̃t −∇F (x̃t)∥22 + 3η2l ∥∇F (x̃t)∥22

+ 3η2l E

∥∥∥∥∥
k−1∑
κ=0

∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)
−

k−1∑
κ=0

∇fm

(
x
(m)
t,κ ,B

′

m,κ

)∥∥∥∥∥
2

2

(37)
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= 3η2l ∥g̃t −∇F (x̃t)∥22 + 3η2l ∥∇F (x̃t)∥22 + 3η2l E

∥∥∥∥∥
k−1∑
κ=0

(
∇Fm

(
x
(m)
t,κ−1

)
−∇Fm

(
x
(m)
t,κ

))∥∥∥∥∥
2

2

+ 3η2l E

∥∥∥∥∥
k−1∑
κ=0

(
∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)
−∇fm

(
x
(m)
t,κ ,B

′

m,κ

)
−∇Fm

(
x
(m)
t,κ−1

)
+∇Fm

(
x
(m)
t,κ

))∥∥∥∥∥
2

2
(38)

≤ 3η2l ∥g̃t −∇F (x̃t)∥22 + 3η2l ∥∇F (x̃t)∥22 + 3η2l KL2
k−1∑
κ=0

E
∥∥∥x(m)

t,κ−1 − x
(m)
t,κ

∥∥∥2
2

+ 3η2l E

∥∥∥∥∥
k−1∑
κ=0

(
∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)
−∇fm

(
x
(m)
t,κ ,B

′

m,κ

)
−∇Fm

(
x
(m)
t,κ−1

)
+∇Fm

(
x
(m)
t,κ

))∥∥∥∥∥
2

2
(39)

≤ 3η2l ∥g̃t −∇F (x̃t)∥22 + 3η2l ∥∇F (x̃t)∥22 + 3η2l KL2
k−1∑
κ=0

E
∥∥∥x(m)

t,κ−1 − x
(m)
t,κ

∥∥∥2
2

+ 3η2l
L2
σ

b′

k−1∑
κ=0

E
∥∥∥x(m)

t,κ−1 − x
(m)
t,κ

∥∥∥2
2

(40)

where Equation (37) is based on Cauchy-Schwarz inequality; Equation (38) is based on the variance
expansion on the third term of Equation (37); Equation (39) is based on Cauchy-Schwarz inequality
and Assumption 1 on the third term of Equation (38); Equation (40) is based on Lemma 2 and
Assumption 3 on the fourth term of Equation (39).

Therefore, by summing Equation (40) for k = 1, . . . ,K, we have

K−1∑
k=0

∥∥∥x(m)
t,k − x

(m)
t,k−1

∥∥∥2
2
≤

K∑
k=0

∥∥∥x(m)
t,k − x

(m)
t,k−1

∥∥∥2
2

(41)

≤ 3η2l K ∥g̃t −∇F (x̃t)∥22 + 3η2l K ∥∇F (x̃t)∥22 + 3η2l K

(
KL2 +

L2
σ

b′

)K−1∑
k=0

E
∥∥∥x(m)

t,κ−1 − x
(m)
t,κ

∥∥∥2
2

(42)

Obviously, according to the setting of the local learning rate in the description above, the inequality
3η2l K

(
KL2 +

L2
σ

b′

)
≤ 1

2 holds. Therefore, we can easily obtain the bound for the sum of the second
norm of every iteration’s difference, which is consistent with Equation (33).

D.2 FULL CLIENT PARTICIPATION

Theorem 4. Suppose that Assumption 1, 2 and 3 hold, and all clients participate in the training,
i.e., A = M . Let the local updates K ≥ 1, and the local learning rate ηl and the global learning

rate ηs be ηsηl =
1

KL(1+2τ) , where ηl ≤ min

(
1

2
√
6KL

,

√
b′/K

4
√
3Lσ

)
. Therefore, the convergence rate

of FedAMD for non-convex objectives should be

min
t∈[T ]

∥∇F (x̃t)∥22 ≤ O

(
1 + 2τ

T − ⌊T/τ⌋

)
+O

(
1{b<n}

σ2

Mb

)
(43)

where we treat F (x̃0)− F∗ and L as constants.

Proof. When pt = 1, according to Algorithm 1, there is no model update between two consecutive
rounds, i.e., x̃t+1 = x̃t.

Next, we consider the case when pt = 0. Based on Lemma 3, we have

EF (x̃t+1)− F (x̃t) ≤− ηsηlK

2
∥∇F (x̃t)∥22 −

(
1

2ηsηlK
− L

2

)
E ∥x̃t+1 − x̃t∥22
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+
ηs

2ηlK
E ∥avg(∆xt)− ηlK∇F (x̃t)∥22 (44)

Knowing that when pt = 0 and all clients involve in the training,

avg(∆xt) =ηlKg̃t −
ηl
M

∑
m∈[M ]

K−1∑
k=0

k∑
κ=0

∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)

+
ηl
M

∑
m∈[M ]

K−1∑
k=0

k∑
κ=0

∇fm

(
x
(m)
t,κ ,B

′

m,κ

)
, (45)

we have the bound for E ∥avg(∆xt)− ηlK∇F (x̃t)∥22 according to the following derivation:

E ∥avg(∆xt)− ηlK∇F (x̃t)∥22 (46)

= E

∥∥∥∥∥∥ηlK (g̃t −∇F (x̃t)) +
ηl
M

∑
m∈[M ]

K−1∑
k=0

k∑
κ=0

(
∇fm

(
x
(m)
t,κ ,B

′

m,κ

)
−∇fm

(
x
(m)
t,κ−1,B

′

m,κ

))∥∥∥∥∥∥
2

2
(47)

≤ 2η2l K
2 ∥g̃t −∇F (x̃t)∥22

+ 2E

∥∥∥∥∥∥ ηlM
∑

m∈[M ]

K−1∑
k=0

k∑
κ=0

(
∇fm

(
x
(m)
t,κ ,B

′

m,κ

)
−∇fm

(
x
(m)
t,κ−1,B

′

m,κ

))∥∥∥∥∥∥
2

2

(48)

= 2η2l K
2 ∥g̃t −∇F (x̃t)∥22 + 2E

∥∥∥∥∥∥ ηlM
∑

m∈[M ]

K−1∑
k=0

k∑
κ=0

(
∇Fm

(
x
(m)
t,κ

)
−∇Fm

(
x
(m)
t,κ−1

))∥∥∥∥∥∥
2

2

+ 2E

∥∥∥∥∥∥ ηlM
∑

m∈[M ]

K−1∑
k=0

k∑
κ=0

(
∇fm

(
x
(m)
t,κ ,B

′

m,κ

)
−∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)
−∇Fm

(
x
(m)
t,κ

)
+∇Fm

(
x
(m)
t,κ−1

))∥∥∥∥∥∥
2

2
(49)

= 2η2l K
2 ∥g̃t −∇F (x̃t)∥22 +

2η2l KL2

M

∑
m∈[M ]

K−1∑
k=0

k∑
κ=0

k · E
∥∥∥x(m)

t,κ − x
(m)
t,κ−1

∥∥∥2
2

+ 2E

∥∥∥∥∥∥ ηlM
∑

m∈[M ]

K−1∑
k=0

k∑
κ=0

(
∇fm

(
x
(m)
t,κ ,B

′

m,κ

)
−∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)
−∇Fm

(
x
(m)
t,κ

)
+∇Fm

(
x
(m)
t,κ−1

))∥∥∥∥∥∥
2

2
(50)

≤ 2η2l K
2 ∥g̃t −∇F (x̃t)∥22 +

2η2l KL2

M

∑
m∈[M ]

K−1∑
k=0

k∑
κ=0

k · E
∥∥∥x(m)

t,κ − x
(m)
t,κ−1

∥∥∥2
2

+
2η2l
M2

∑
m∈[M ]

K−1∑
k=0

k∑
κ=0

L2
σ

b′
E
∥∥∥x(m)

t,κ − x
(m)
t,κ−1

∥∥∥2
2

(51)

≤ 2η2l K
2 ∥g̃t −∇F (x̃t)∥22 +

2η2l K
3L2

M

∑
m∈[M ]

K−1∑
k=0

E
∥∥∥x(m)

t,k − x
(m)
t,k−1

∥∥∥2
2

+
2η2l KL2

σ

M2b′

∑
m∈[M ]

K−1∑
k=0

E
∥∥∥x(m)

t,k − x
(m)
t,k−1

∥∥∥2
2

(52)

≤ 2η2l K
2 ∥g̃t −∇F (x̃t)∥22 + 12η4l K

2

(
L2
σ

Mb′
+K2L2

)(
∥g̃t −∇F (x̃t)∥22 + ∥∇F (x̃t)∥22

)
(53)
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where Equation (48) follows (α+ β)2 ≤ 2α2 + 2β2; Equation (49) is based on variance expansion;
Equation (50) is based on Cauchy-Schwarz inequality and Assumption 1; Equation (51) is based on
Lemma 2 and Assumption 3; Equation (53) is based on Lemma 4. According to the constraints on
the local learning rate, we can further simplify Equation (53) as

E ∥avg(∆xt)− ηlK∇F (x̃t)∥22 ≤ 4η2l K
2 ∥g̃t −∇F (x̃t)∥22 +

η2l K
2

2
∥∇F (x̃t)∥22 . (54)

Plugging Equation (54) into Equation (44), we have

EF (x̃t+1)− F (x̃t) ≤− ηsηlK

4
∥∇F (x̃t)∥22 −

(
1

2ηsηlK
− L

2

)
E ∥x̃t+1 − x̃t∥22

+ 2ηsηlK ∥g̃t −∇F (x̃t)∥22 . (55)

Let Λ(t) indicate the most recent round where pΛ(t) = 1 and Λ(t) ̸= t. It is noted that recursively
using Λ(·) can achieve the value of 0, i.e., Λ(Λ(...Λ︸ ︷︷ ︸

multiple Λ

(t))) = 0 By summing Equation (55) from Λ(t)

to t− 1, we have

EF (x̃t)− F
(
x̃Λ(t)

)
=

t−1∑
θ=Λ(t)

(EF (x̃θ+1)− F (x̃θ)) (56)

≤ −ηsηlK

4

t−1∑
θ=Λ(t)+1

∥∇F (x̃θ)∥22 −
(

1

2ηsηlK
− L

2

) t−1∑
θ=Λ(t)+1

E ∥x̃θ+1 − x̃θ∥22

+ 2ηsηlK

t−1∑
θ=Λ(t)+1

E ∥g̃θ −∇F (x̃θ)∥22 . (57)

The bound for the last term of Equation (57) is

E ∥g̃θ −∇F (x̃θ)∥22 = E
∥∥g̃Λ(θ) −∇F (x̃θ)

∥∥2
2

(58)

= E
∥∥g̃Λ(θ) −∇F

(
x̃Λ(θ)

)∥∥2
2
+ E

∥∥∇F
(
x̃Λ(θ)

)
−∇F (x̃θ)

∥∥2
2

(59)

≤ E
∥∥g̃Λ(θ) −∇F

(
x̃Λ(θ)

)∥∥2
2
+ L2E

∥∥x̃θ − x̃Λ(θ)

∥∥2
2

(60)

≤ E
∥∥g̃Λ(θ) −∇F

(
x̃Λ(θ)

)∥∥2
2
+ L2τ

θ−1∑
Ξ=Λ(θ)

E ∥x̃Ξ+1 − x̃Ξ∥22 (61)

≤ 1{b<n}
σ2

Mb
+ L2τ

θ−1∑
Ξ=Λ(θ)

E ∥x̃Ξ+1 − x̃Ξ∥22 (62)

where Equation (59) is based on the variance expansion; Equation (60) is based on Assumption 1;
Equation (61) is according to Cauchy-Schwarz inequality and θ − Λ(θ) ≤ τ ; Equation (62) follows
Assumption 2. Based on the definition of Λ(·), for all θ ∈ {Λ(t) + 1, . . . , t − 1}, Λ(θ) = Λ(t).
Therefore, with Equation (62), Equation (57) can be further simplified as:

EF (x̃t)− F
(
x̃Λ(t)

)
(63)

≤ −ηsηlK

4

t−1∑
θ=Λ(t)+1

∥∇F (x̃θ)∥22 −
(

1

2ηsηlK
− L

2

) t−1∑
θ=Λ(t)+1

E ∥x̃θ+1 − x̃θ∥22

+ 2ηsηlK (t− Λ(t)− 1) · 1{b<n}
σ2

Mb
+ 2ηsηlKL2τ

t−1∑
θ=Λ(t)+1

θ−1∑
Ξ=Λ(θ)

E ∥x̃Ξ+1 − x̃Ξ∥22 (64)

≤ −ηsηlK

4

t−1∑
θ=Λ(t)+1

∥∇F (x̃θ)∥22 −
(

1

2ηsηlK
− L

2
− 2ηsηlKL2τ2

) t−1∑
θ=Λ(t)+1

E ∥x̃θ+1 − x̃θ∥22
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+ 2ηsηlK (t− Λ(t)− 1) · 1{b<n}
σ2

Mb
(65)

Since ηsηl =
1

KL(1+2τ) , Equation (65) can be further simplified as

EF (x̃t)− F
(
x̃Λ(t)

)
≤ −ηsηlK

4

t−1∑
θ=Λ(t)+1

∥∇F (x̃θ)∥22 + 2ηsηlK (t− Λ(t)− 1) · 1{b<n}
σ2

Mb

(66)

Therefore, based on the equation above, by summing up all t ∈ {T + 1,Λ(T + 1), . . . , τ}, we can
obtain the following inequality:

F∗ − F (x̃0) ≤ EF (x̃T+1)− F (x̃0) (67)

≤ −ηsηlK

4

T∑
t=0;t mod τ=0

∥∇F (x̃t)∥22 + 2ηsηlK (T − ⌊T/τ⌋) · 1{b<n}
σ2

Mb
(68)

Thus, we have

1

T − ⌊T/τ⌋

T∑
t=0;t mod τ=0

∥∇F (x̃t)∥22 ≤ 4 (F (x̃0)− F∗)

ηsηlK (T − ⌊T/τ⌋)
+ 8 · 1{b<n}

σ2

Mb
(69)

By using the settings of the local learning rate and the global learning rate in the description, we can
obtain the desired result.

D.3 PARTIAL CLIENT PARTICIPATION

Theorem 5. Suppose that Assumption 1, 2 and 3 hold. Let the local updates K ≥ 1, and the
local learning rate ηl and the global learning rate ηs be ηsηl =

1
KL

(
1 + 2Mτ

A

)−1
, where ηl ≤

min

(
1

2
√
6KL

,

√
b′/K

4
√
3Lσ

)
. Therefore, the convergence rate of FedAMD for non-convex objectives

should be

min
t∈[T ]

∥∇F (x̃t)∥22 ≤ O

(
1

T − ⌊T/τ⌋

(
1 +

2Mτ

A

))
+O

(
1{b<n}

σ2

Mb

)
(70)

where we treat F (x̃0)− F∗ and L as constants.

Proof. When pt = 1, according to Algorithm 1, there is no model update between two consecutive
rounds, i.e., x̃t+1 = x̃t.

Next, we consider the case when pt = 0. Based on Lemma 3, we have

EF (x̃t+1)− F (x̃t) ≤− ηsηlK

2
∥∇F (x̃t)∥22 −

(
1

2ηsηlK
− L

2

)
E ∥x̃t+1 − x̃t∥22

+
ηs

2ηlK
E ∥avg(∆xt)− ηlK∇F (x̃t)∥22 (71)

Knowing that when pt = 0 and a set of clients A involve in the training,

avg(∆xt) =ηlKg̃t −
ηl
A

∑
i∈A

K−1∑
k=0

k∑
κ=0

∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)

+
ηl
A

∑
i∈A

K−1∑
k=0

k∑
κ=0

∇fm

(
x
(m)
t,κ ,B

′

m,κ

)
, (72)

we have the bound for E ∥avg(∆xt)− ηlK∇F (x̃t)∥22 according to the following derivation:

E ∥avg(∆xt)− ηlK∇F (x̃t)∥22 (73)
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= E

∥∥∥∥∥ηlK (g̃t −∇F (x̃t)) +
ηl
A

∑
i∈A

K−1∑
k=0

k∑
κ=0

(
∇fi

(
x
(i)
t,κ,B

′

i,κ

)
−∇fi

(
x
(i)
t,κ−1,B

′

i,κ

))∥∥∥∥∥
2

2

(74)

≤ 2η2l K
2 ∥g̃t −∇F (x̃t)∥22

+ 2E

∥∥∥∥∥ηlA ∑
i∈A

K−1∑
k=0

k∑
κ=0

(
∇fi

(
x
(i)
t,κ,B

′

i,κ

)
−∇fi

(
x
(i)
t,κ−1,B

′

i,κ

))∥∥∥∥∥
2

2

(75)

= 2η2l K
2 ∥g̃t −∇F (x̃t)∥22 + 2E

∥∥∥∥∥ηlA ∑
i∈A

K−1∑
k=0

k∑
κ=0

(
∇Fi

(
x
(i)
t,κ

)
−∇Fi

(
x
(i)
t,κ−1

))∥∥∥∥∥
2

2

+ 2E

∥∥∥∥∥ηlA ∑
i∈A

K−1∑
k=0

k∑
κ=0

(
∇fi

(
x
(i)
t,κ,B

′

i,κ

)
−∇fi

(
x
(i)
t,κ−1,B

′

i,κ

)
−∇Fi

(
x
(i)
t,κ

)
+∇Fi

(
x
(i)
t,κ−1

))∥∥∥∥∥
2

2
(76)

= 2η2l K
2 ∥g̃t −∇F (x̃t)∥22 +

2η2l KL2

A

∑
i∈A

K−1∑
k=0

k∑
κ=0

k · E
∥∥∥x(i)

t,κ − x
(i)
t,κ−1

∥∥∥2
2

+ 2E

∥∥∥∥∥ηlA ∑
i∈A

K−1∑
k=0

k∑
κ=0

(
∇fi

(
x
(i)
t,κ,B

′

i,κ

)
−∇fi

(
x
(i)
t,κ−1,B

′

i,κ

)
−∇Fi

(
x
(i)
t,κ

)
+∇Fi

(
x
(i)
t,κ−1

))∥∥∥∥∥
2

2
(77)

≤ 2η2l K
2 ∥g̃t −∇F (x̃t)∥22 +

2η2l KL2

A

∑
i∈A

K−1∑
k=0

k∑
κ=0

k · E
∥∥∥x(i)

t,κ − x
(i)
t,κ−1

∥∥∥2
2

+
2η2l
A2

∑
i∈A

K−1∑
k=0

k∑
κ=0

L2
σ

b′
E
∥∥∥x(i)

t,κ − x
(i)
t,κ−1

∥∥∥2
2

(78)

= 2η2l K
2 ∥g̃t −∇F (x̃t)∥22 +

2η2l KL2

M

∑
m∈[M ]

K−1∑
k=0

k∑
κ=0

k · E
∥∥∥x(i)

t,κ − x
(i)
t,κ−1

∥∥∥2
2

+
2η2l
AM

∑
m∈[M ]

K−1∑
k=0

k∑
κ=0

L2
σ

b′
E
∥∥∥x(i)

t,κ − x
(i)
t,κ−1

∥∥∥2
2

(79)

≤ 2η2l K
2 ∥g̃t −∇F (x̃t)∥22 +

2η2l K
3L2

M

∑
m∈[M ]

K−1∑
k=0

E
∥∥∥x(m)

t,k − x
(m)
t,k−1

∥∥∥2
2

+
2η2l KL2

σ

AMb′

∑
m∈[M ]

K−1∑
k=0

E
∥∥∥x(m)

t,k − x
(m)
t,k−1

∥∥∥2
2

(80)

≤ 2η2l K
2 ∥g̃t −∇F (x̃t)∥22 + 12η4l K

2

(
L2
σ

Ab′
+K2L2

)(
∥g̃t −∇F (x̃t)∥22 + ∥∇F (x̃t)∥22

)
(81)

where Equation (75) follows (α+ β)2 ≤ 2α2 + 2β2; Equation (76) is based on variance expansion;
Equation (77) is based on Cauchy-Schwarz inequality and Assumption 1; Equation (78) is based on
Lemma 2 and Assumption 3; Equation (79) is based on the setting of client selection, where each
client is selected with a probability of A/M ; Equation (81) is based on Lemma 4. According to the
constraints on the local learning rate, we can further simplify Equation (81) as

E ∥avg(∆xt)− ηlK∇F (x̃t)∥22 ≤ 4η2l K
2 ∥g̃t −∇F (x̃t)∥22 +

η2l K
2

2
∥∇F (x̃t)∥22 . (82)

Plugging Equation (82) into Equation (71), we have

EF (x̃t+1)− F (x̃t) (83)
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≤ −ηsηlK

4
∥∇F (x̃t)∥22 −

(
1

2ηsηlK
− L

2

)
E ∥x̃t+1 − x̃t∥22 + 2ηsηlKE ∥g̃t −∇F (x̃t)∥22

(84)

= −ηsηlK

4
∥∇F (x̃t)∥22 −

(
1

2ηsηlK
− L

2

)
E ∥x̃t+1 − x̃t∥22

+ 2ηsηlK
(
E ∥g̃t − Eg̃t∥22 + E ∥Eg̃t −∇F (x̃t)∥22

)
(85)

≤ −ηsηlK

4
∥∇F (x̃t)∥22 −

(
1

2ηsηlK
− L

2

)
E ∥x̃t+1 − x̃t∥22 + 2ηsηlK · 1{b<n}

σ2

Mb

+ 2ηsηlKE ∥Eg̃t −∇F (x̃t)∥22 (86)

where Equation (85) is based on variance expansion, and Equation (86) is based on Assumption 2.

By summing Equation (86) for all t ∈ {0, . . . , T}, we have

F∗ − F (x̃0) ≤ EF (x̃T+1)− F (x̃0) =

T∑
t=0

(EF (x̃t+1)− F (x̃t)) (87)

≤ −ηsηlK

4

T∑
t=0;t mod τ=0

∥∇F (x̃t)∥22 −
(

1

2ηsηlK
− L

2

) T∑
t=0;t mod τ=0

E ∥x̃t+1 − x̃t∥22

+ 2ηsηlK

T∑
t=0;t mod τ=0

E ∥Eg̃t −∇F (x̃t)∥22 + 2ηsηlK (T − ⌊T/τ⌋) · 1{b<n}
σ2

Mb
(88)

Let Λ(t) indicate the most recent round where pΛ(t) = 1 and Λ(t) ̸= t. It is noted that recursively
using Λ(·) can achieve the value of 0, i.e., Λ(Λ(...Λ︸ ︷︷ ︸

multiple Λ

(t))) = 0.

To find the bound for
∑T

t=0;t mod τ=0 E ∥Eg̃t −∇F (x̃t)∥22, the first step is to provide the bound
for E ∥Eg̃t −∇F (x̃t)∥22. When pt = 1, a client updates the caching gradient with a probability
of A/M , and therefore, Eg̃t =

(
1− A

M

)
Eg̃Λ(t) +

A
M∇F (x̃t). Based on this fact, the bound for

E ∥Eg̃t −∇F (x̃t)∥22 can be derived as follows:

E ∥Eg̃t −∇F (x̃t)∥22 = E
∥∥Eg̃Λ(t) −∇F (x̃t)

∥∥2
2

(89)

= E
∥∥∥∥(1− A

M

)
E
(
g̃Λ(Λ(t)) −∇F

(
x̃Λ(t)

))
+
(
∇F

(
x̃Λ(t)

)
−∇F (x̃t)

)∥∥∥∥2
2

(90)

≤
(
1− A

M

)
E
∥∥Eg̃Λ(Λ(t)) −∇F

(
x̃Λ(t)

)∥∥2
2
+

M

A
E
∥∥∇F

(
x̃Λ(t)

)
−∇F (x̃t)

∥∥2
2

(91)

≤
⌊t/τ⌋−1∑

θ=0

(
1− A

M

)⌊t/τ⌋−θ

· M
A

L2E
∥∥x̃θτ − x̃(θ+1)τ

∥∥2
2
+

M

A
L2E

∥∥x̃Λ(t) − x̃t

∥∥2
2

(92)

where Equation (91) follows (α + β)2 ≤
(
1 + 1

γ

)
α2 + (1 + γ)β2 −

(
1√
γα+

√
γβ
)2

≤(
1 + 1

γ

)
α2 + (1 + γ)β2 and γ = M−A

A . With Equation (92), we sum up all t ∈ {1, . . . , T}
and obtain the following result:

T∑
t=0

E ∥Eg̃t −∇F (x̃t)∥22 (93)

≤
T∑

t=0

⌊t/τ⌋−1∑
θ=0

(
1− A

M

)⌊t/τ⌋−θ

· M
A

L2E
∥∥x̃θτ − x̃(θ+1)τ

∥∥2
2
+

M

A
L2E

∥∥x̃Λ(t) − x̃t

∥∥2
2


(94)
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≤
⌊T/τ⌋−1∑

θ=0

M(M −A)

A2
L2τE

∥∥x̃θτ − x̃(θ+1)τ

∥∥2
2
+

M

A
L2

T∑
t=0

∥∥x̃t − x̃Λ(t)

∥∥2
2

(95)

≤
⌊T/τ⌋−1∑

θ=0

M(M −A)

A2
L2τ2

(θ+1)τ−1∑
Ξ=θτ+1

E ∥x̃Ξ+1 − x̃Ξ∥22

+
M

A
L2

T∑
t=0

(t− Λ(t)− 1)

t−1∑
Ξ=Λ(t)+1

∥x̃Ξ+1 − x̃Ξ∥22 (96)

≤ M(M −A)

A2
L2τ2

T−1∑
t=0;t mod τ=0

E ∥x̃t+1 − x̃t∥22 +
M

A
L2τ2

T−1∑
t=0;t mod τ=0

E ∥x̃t+1 − x̃t∥22 (97)

where Equation (95) follows that, for all θ ∈ {0, . . . , ⌊T/τ⌋ − 1}, the coefficient for M
A L2 includes(

1− A
M

)
, . . . ,

(
1− A

M

)⌊T/τ⌋−θ
, and each of them has a maximum of τ ts, meaning that the upper

bound of the coefficient should be

τ

((
1− A

M

)
+ · · ·+

(
1− A

M

)⌊T/τ⌋−θ
)

≤ τ · M
2A

(
1− A

M

)
; (98)

Equation (96) follows Cauchy-Schwarz inequality.

Plugging Equation (97) back to Equation (88), we have:

F∗ − F (x̃0) ≤ −ηsηlK

4

T∑
t=0;t mod τ=0

∥∇F (x̃t)∥22

−
(

1

2ηsηlK
− L

2
− ηsηlKL2τ2

M2

A2

) T∑
t=0;t mod τ=0

E ∥x̃t+1 − x̃t∥22

+ 2ηsηlK (T − ⌊T/τ⌋) · 1{b<n}
σ2

Mb
(99)

Since ηsηl = 1
KL

(
1 + 2Mτ

A

)−1
, 1

2ηsηlK
− L

2 − ηsηlKL2τ2M2

A2 ≥ 0 such that the term∑T
t=0;t mod τ=0 E ∥x̃t+1 − x̃t∥22 can be omitted in Equation (99). Hence, we can easily obtain

the following inequality:

1

T − ⌊T/τ⌋

T∑
t=0;t mod τ=0

∥∇F (x̃t)∥22 ≤ 4 (F (x̃0)− F∗)

ηsηlK (T − ⌊T/τ⌋)
+ 8 · 1{b<n}

σ2

Mb
(100)

By using the settings of the local learning rate and the global learning rate in the description, we can
obtain the desired result.
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E PROOFS UNDER CONSTANT PROBABILISTIC SETTINGS

E.1 PRELIMINARY

Lemma 5. Suppose that Assumption 1 holds, and pt ∈ (0, 1). Let g̃t be the definition of Line 9
of Algorithm 1, i.e., the average of the caching gradients. Therefore, the recursive expression for
{g̃t}t≥0 in the expected form is

Eg̃t =
{(

1− A
M pt−1

)
· Eg̃t−1 +

A
M pt−1 · ∇F (x̃t−1) , t > 0

∇F (x̃0) , t = 0
(101)

Furthermore, when t > 0 we can obtain the following inequality:

E ∥Eg̃t −∇F (x̃t)∥22 ≤
(
1− A

M
pt−1

)
·E ∥Eg̃t−1 −∇F (x̃t−1)∥22+

M

Apt−1
·L2·E ∥x̃t − x̃t−1∥22 .

(102)
As for t = 0, we have E ∥Eg̃t −∇F (x̃t)∥22 = 0.

Proof. According to the definition of Line 9 of Algorithm 1, g̃t+1 = avg (vt+1) =
1
M

∑
m∈[M ] v

(m)
t+1 .

Hence, for each element in vt+1, i.e., v(m)
t+1 , where m ∈ [M ], they have a probability of

(
1− A

M pt
)

to retain the previous value, or otherwise update as anchor clients using large batches. Thus, the
expected value for Ev(m)

t+1 is:

Ev(m)
t+1 =

A

M
pt · E∇fm (x̃t,Bm,t)] +

(
1− A

M
pt

)
· Ev(m)

t (103)

=
A

M
pt · ∇Fm (x̃t) +

(
1− A

M
pt

)
· Ev(m)

t (104)

Therefore, we have

Eg̃t+1 =
1

M

M∑
m=1

Ev(m)
t+1 =

A

M
pt · ∇F (x̃t) +

(
1− A

M
pt

)
· Eg̃t (105)

It is worth noting that Eg̃0 = ∇F (x̃0) as it is initialized at the beginning of the training, i.e., Line 2 –
4 in Algorithm 1. Therefore, E ∥Eg̃t −∇F (x̃t)∥22 = 0.

Next, we find the recursive bound for E ∥Eg̃t+1 −∇F (x̃t+1)∥22:

E ∥Eg̃t+1 −∇F (x̃t+1)∥22 (106)

= E
∥∥∥∥(1− A

M
pt

)
· (Eg̃t −∇F (x̃t)) +∇F (x̃t)−∇F (x̃t+1)

∥∥∥∥2
2

(107)

≤
(
1 +

Apt
M −Apt

)(
1− A

M
pt

)2

E ∥Eg̃t −∇F (x̃t)∥22

+

(
1 +

M −Apt
Apt

)
E ∥∇F (x̃t)−∇F (x̃t+1)∥22 (108)

≤
(
1− A

M
pt

)
E ∥Eg̃t −∇F (x̃t)∥22 +

M

Apt
L2E ∥x̃t+1 − x̃t∥22 (109)

where Equation (108) follows (α + β)2 ≤
(
1 + 1

γ

)
α2 + (1 + γ)β2 −

(
1√
γα+

√
γβ
)2

≤(
1 + 1

γ

)
α2 + (1 + γ)β2, and Equation (109) follows Assumption 1.

Lemma 6. Suppose that Assumption 1, 2 and 3 hold. Let the local learning rate satisfy ηl ≤

min

(
1

2
√
3KL

, 1
2
√
3L2

σ

√
b′

K

)
. With FedAMD,

∑K−1
k=0

∥∥∥x(m)
t,k − x

(m)
t,k−1

∥∥∥2
2

represents the sum of the
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second norm of every iteration’s difference. Therefore, the bound for such a summation in the
expected form should be

K−1∑
k=0

E
∥∥∥x(m)

t,k − x
(m)
t,k−1

∥∥∥2
2
≤ 2η2l (K+1)

σ2

Mb
+6η2l (K+1) ∥Eg̃t −∇F (x̃t)∥22+6η2l (K+1) ∥∇F (x̃t)∥22

(110)

Proof. According to Equation (31), the update at (k − 1)-th iteration is

x
(m)
t,k −x

(m)
t,k−1 = −ηlg

(m)
t,k = −ηl

(
g
(m)
t,0 −

k−1∑
κ=0

∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)
+

k−1∑
κ=0

∇fm

(
x
(m)
t,κ ,B

′

m,κ

))
.

(111)
To find the bound for the expected value of its second norm, the analysis is presented as follows:

E
∥∥∥x(m)

t,k − x
(m)
t,k−1

∥∥∥2
2

(112)

= η2l E

∥∥∥∥∥g̃t −
k−1∑
κ=0

∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)
+

k−1∑
κ=0

∇fm

(
x
(m)
t,κ ,B

′

m,κ

)∥∥∥∥∥
2

2

(113)

= η2l E

∥∥∥∥∥g̃t − Eg̃t −
k−1∑
κ=0

(
∇fm

(
x
(m)
t,κ−1,B

′

m,κ

)
−∇fm

(
x
(m)
t,κ ,B

′

m,κ

)
−∇Fm

(
x
(m)
t,κ−1

)
+∇Fm

(
x
(m)
t,κ

))∥∥∥∥∥
2

2

+ η2l E

∥∥∥∥∥Eg̃t −
k−1∑
κ=0

∇Fm

(
x
(m)
t,κ−1

)
+

k−1∑
κ=0

∇Fm

(
x
(m)
t,κ

)∥∥∥∥∥
2

2

(114)

= η2l

(
1{b<n}

σ2

Mb
+

k−1∑
κ=0

L2
σ

b′
E
∥∥∥x(m)

t,κ − x
(m)
t,κ−1

∥∥∥2
2

)

+ η2l E

∥∥∥∥∥Eg̃t −
k−1∑
κ=0

(
∇Fm

(
x
(m)
t,κ−1

)
−∇Fm

(
x
(m)
t,κ

))∥∥∥∥∥
2

2

(115)

= η2l

(
1{b<n}

σ2

Mb
+

k−1∑
κ=0

L2
σ

b′

∥∥∥x(m)
t,κ − x

(m)
t,κ−1

∥∥∥2
2

)

+ η2l E

∥∥∥∥∥Eg̃t −∇F (x̃t) +∇F (x̃t) +

k−1∑
κ=0

(
∇Fm

(
x
(m)
t,κ

)
+∇Fm

(
x
(m)
t,κ−1

))∥∥∥∥∥
2

2

(116)

≤ η2l

(
1{b<n}

σ2

Mb
+

k−1∑
κ=0

L2
σ

b′
E
∥∥∥x(m)

t,κ − x
(m)
t,κ−1

∥∥∥2
2

)

+ 3η2l · ∥Eg̃t −∇F (x̃t)∥22 + 3η2l ∥∇F (x̃t)∥22 + 3η2l K

k−1∑
κ=0

L2
∥∥∥x(m)

t,κ − x
(m)
t,κ−1

∥∥∥2
2

(117)

= η2l 1{b<n}
σ2

Mb
+ 3η2l · E ∥Eg̃t −∇F (x̃t)∥22 + 3η2l ∥∇F (x̃t)∥22

+ 3η2l

(
KL2 +

L2
σ

b′

) k−1∑
κ=0

E
∥∥∥x(m)

t,κ − x
(m)
t,κ−1

∥∥∥2
2

(118)

where Equation (114) is based on the variance expansion on the first term of Equation (113); Equation
(117) is based on Cauchy-Schwarz inequality.

Therefore, by summing Equation (118) for k = 1, . . . ,K, we have

E
K−1∑
k=0

∥∥∥x(m)
t,k − x

(m)
t,k−1

∥∥∥2
2
≤

K∑
k=0

E
∥∥∥x(m)

t,k − x
(m)
t,k−1

∥∥∥2
2

(119)
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≤ η2l (K + 1)1{b<n}
σ2

Mb
+ 3η2l (K + 1) ∥Eg̃t −∇F (x̃t)∥22 + 3η2l (K + 1) ∥∇F (x̃t)∥22

+ 3η2l K

(
KL2 +

L2
σ

b′

)K−1∑
k=0

E
∥∥∥x(m)

t,k − x
(m)
t,k−1

∥∥∥2
2

(120)

Obviously, according to the setting of the local learning rate in the description above, the inequality
3η2l K

(
KL2 +

L2
σ

b′

)
≤ 1

2 holds. Therefore, we can easily obtain the bound for the sum of the second
norm of every iteration’s difference, which is consistent with Equation (110).

E.2 PROOFS FOR NON-CONVEX OBJECTIVES

The following lemma provides a recursive expression on EF (x̃t+1) − F (x̃t) for time-varying
probability settings.

Lemma 7. Suppose that Assumption 1, 2 and 3 hold, and the time-varying probability sequence {pt ∈

(0, 1)}t≥0. Let the local updates K ≥ 1, and the local learning rate ηl ≤ min

(
1

2
√
6KL

,

√
b′/K

2
√
3Lσ

)
.

With the model training using FedAMD, the recursive function between F (x̃t+1) and F (x̃t) in
expected form is

EF (x̃t+1)− F (x̃t) ≤ −ηsηlK

4

(
1− (pt)

A
)
∥∇F (x̃t)∥22 −

(
1

2ηsηlK
− L

2

)
∥x̃t+1 − x̃t∥22

+ 4ηsηlK
(
1− (pt)

A
)
∥Eg̃t −∇F (x̃t)∥22

+ 3ηsηlK
(
1− (pt)

A
)
1{b<n}

σ2

Mb
(121)

Proof. According to Lemma 4, we have:

EF (x̃t+1)− F (x̃t) (122)

≤ −ηsηlK

2
∥∇F (x̃t)∥22 −

(
1

2ηsηlK
− L

2

)
∥x̃t+1 − x̃t∥22 +

ηs
2ηlK

E ∥∆xt − ηlK∇F (x̃t)∥22
(123)

When |∆xt| = 0, the probability will be (1− q)
a, and when |∆xt| ̸= 0, the probability will be 1−

(1− q)
a. Next, we find the bound for the third term of Equation (123), i.e., E ∥∆xt − ηlK∇F (x̃t)∥22.

By Lemma 1, we have the following derivation:

E ∥∆xt − ηlK∇F (x̃t)∥22 (124)

≤
(
1− (pt)

A
) 1

M

M∑
m=1

E
∥∥∥∆x

(m)
t − ηlK∇F (x̃t)

∥∥∥2
2
+ (pt)

A ∥ηlK∇F (x̃t)∥22 (125)

=
(
1− (pt)

A
) 1

M

M∑
m=1

(
E
∥∥∥∆x

(m)
t − E∆x

(m)
t

∥∥∥2
2
+ E

∥∥∥E∆x
(m)
t − ηlK∇F (x̃t)

∥∥∥2
2

)
+ (pt)

A
η2l K

2 ∥∇F (x̃t)∥22 (126)

where Equation (126) follows variance equation. To find the bound for Equation (126), we first

analyze its first term, i.e., E
∥∥∥∆x

(m)
t − E∆x

(m)
t

∥∥∥2
2
. According to Section C, we have:

E
∥∥∥∆x

(m)
t − E∆x

(m)
t

∥∥∥2
2

(127)

≤ 2η2l K
2E ∥g̃t − Eg̃t∥22 + 2η2l

K−1∑
k=0

(K − 1)
L2
σ

b′

∥∥∥x(m)
t,k − x

(m)
t,k−1

∥∥∥2
2

(128)

≤ 2η2l K
2

(
1 + 2η2l

L2
σ

b′

)
1{b<n}

σ2

Mb
+ 12η4l K

2L
2
σ

b′

(
∥Eg̃t −∇F (x̃t)∥22 + ∥∇F (x̃t)∥22

)
(129)
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where Equation (129) follows Lemma 6. According to the local learning rate setting in the description,
we have

E
∥∥∥∆x

(m)
t − E∆x

(m)
t

∥∥∥2
2
≤ 4η2l K

2 · 1{b<n}
σ2

Mb
(130)

+ 12η4l K
2L

2
σ

b′

(
∥Eg̃t −∇F (x̃t)∥22 + ∥∇F (x̃t)∥22

)
(131)

After finding the bound for the first term of Equation (126), we now give the bound for its second

term, i.e., E
∥∥∥E∆x

(m)
t − ηlK∇F (x̃t)

∥∥∥2
2
.

E
∥∥∥E∆x

(m)
t − ηlK∇F (x̃t)

∥∥∥2
2

(132)

= E

∥∥∥∥∥ηlK (Eg̃t −∇F (x̃t)) + ηl

K−1∑
k=0

k∑
κ=0

(
∇Fm

(
x
(m)
t,κ

)
−∇Fm

(
x
(m)
t,κ−1

))∥∥∥∥∥
2

2

(133)

≤ 2η2l K
2 ∥Eg̃t −∇F (x̃t)∥22 + 2η2l

∥∥∥∥∥
K−1∑
k=0

k∑
κ=0

(
∇Fm

(
x
(m)
t,κ

)
−∇Fm

(
x
(m)
t,κ−1

))∥∥∥∥∥
2

2

(134)

≤ 2η2l K
2 ∥Eg̃t −∇F (x̃t)∥22 + 2η2l KL2

K−1∑
k=0

k∑
κ=0

k
∥∥∥x(m)

t,κ − x
(m)
t,κ−1

∥∥∥2
2

(135)

≤ 2η2l K
2 ∥Eg̃t −∇F (x̃t)∥22 + 2η2l K

K(K − 1)

2
L2

K−1∑
k=0

∥∥∥x(m)
t,k − x

(m)
t,k−1

∥∥∥2
2

(136)

≤ 2η4l K
4L2 · 1{b<n}

σ2

Mb
+ 2η2l K

2
(
1 + 3η2l K

2L2
)
∥Eg̃t −∇F (x̃t)∥22 + 6η4l K

4L2 ∥∇F (x̃t)∥22
(137)

where Equation (134) follows (α + β)2 ≤ 2α2 + 2β2; Equation (135) follows Cauchy–Schwarz
inequality and Assumption 1; Equation (137) is based on Lemma 6. Then, according to the setting
for the local learning rate in the description above, we can further simplify Equation (137):

E
∥∥∥E∆x

(m)
t − ηlK∇F (x̃t)

∥∥∥2
2
≤ 2η4l K

4L2 · 1{b<n}
σ2

Mb
+ 4η2l K

2 ∥Eg̃t −∇F (x̃t)∥22

+ 6η4l K
4L2 ∥∇F (x̃t)∥22 (138)

Plugging Equation (131) and Equation (138) back to Equation (126), we can primarily obtain the
inequality below:

E ∥∆xt − ηlK∇F (x̃t)∥22 ≤ 2η2l K
2
(
1− (pt)

A
) (

2 + η2l K
2L2
)
1{b<n}

σ2

Mb

+ 4η2l K
2
(
1− (pt)

A
)(

1 + 3η2l
L2
σ

b′

)
∥Eg̃t −∇F (x̃t)∥22

+ 6η4l K
2
(
1− (pt)

A
)(2L2

σ

b′
+K2L2

)
∥∇F (x̃t)∥22 (139)

+ (pt)
A
η2l K

2 ∥∇F (x̃t)∥22 (140)

With the setting described in the Lemma, we have:

E ∥∆xt − ηlK∇F (x̃t)∥22 ≤ 6η2l K
2
(
1− (pt)

A
)
1{b<n}

σ2

Mb

+ 8η2l K
2
(
1− (pt)

A
)
∥Eg̃t −∇F (x̃t)∥22

+ 6η4l K
2
(
1− (pt)

A
)(2L2

σ

b′
+K2L2

)
∥∇F (x̃t)∥22 (141)
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+ (pt)
A
η2l K

2 ∥∇F (x̃t)∥22 (142)

Therefore, according to the upper bound analyzed in the previous inequalities, Equation (123) can be
reformulated as

EF (x̃t+1)− F (x̃t) (143)

≤ −ηsηlK

2

(
1− (pt)

A
)(

1− 6η2l

(
2L2

σ

b′
+K2L2

))
∥∇F (x̃t)∥22 −

(
1

2ηsηlK
− L

2

)
∥x̃t+1 − x̃t∥22

+ 4ηsηlK
(
1− (pt)

A
)
∥Eg̃t −∇F (x̃t)∥22 + 3ηsηlK

(
1− (pt)

A
)
1{b<n}

σ2

Mb
(144)

By means of the setting in the description above, we can obtain the desired conclusion.

Theorem 6. Suppose that Assumption 1, 2 and 3 hold. Let the local updates K ≥ 1, and the

local learning rate ηl and the global learning rate ηs be ηsηl =
1

KL

(
1 + 2M

Ap

√
1− pA

)−1

, where

ηl ≤ min

(
1

2
√
6KL

,

√
b′/K

4
√
3Lσ

)
. Therefore, the convergence rate of FedAMD for non-convex objectives

should be

min
t∈[T ]

∥∇F (x̃t)∥22 ≤ O

(
1

T

(
1

1− pA
+

M

Ap
√
1− pA

))
+O

(
1{b<n}

σ2

Mb

)
(145)

where we treat F (x̃0)− F∗ and L as constants.

Proof. With Lemma 5 and Lemma 7, we can find the following recursive function under the constant
probability settings:

EF (x̃t+1) +
4ηsηlK

(
1− pA

)
M

Ap
E ∥Eg̃t+1 −∇F (x̃t+1)∥22 (146)

≤ EF (x̃t) +
4ηsηlK

(
1− pA

)
M

Ap
E ∥Eg̃t −∇F (x̃t)∥22 −

ηsηlK

4

(
1− pA

)
∥∇F (x̃t)∥22

−

(
1

2ηsηlK
− L

2
−

4ηsηlK
(
1− pA

)
M

Ap

M

Ap
L2

)
E ∥x̃t+1 − x̃t∥22

+ 3ηsηlK
(
1− pA

)
1{b<n}

σ2

Mb
(147)

Since ηsηl =
1

KL

(
1 + 2M

Ap

√
1− pA

)−1

, we have:

F∗ ≤ EF (x̃T ) ≤ EF (x̃T ) +
4ηsηlK

(
1− pA

)
M

Ap
E ∥Eg̃T −∇F (x̃T )∥22 (148)

≤ EF (x̃T−1) +
4ηsηlK

(
1− pA

)
M
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E ∥Eg̃T−1 −∇F (x̃T−1)∥22

− ηsηlK

4

(
1− pA

)
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(
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)
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≤ F (x̃0) +
4ηsηlK

(
1− pA

)
M

Ap
∥Eg̃0 −∇F (x̃0)∥22

− ηsηlK

4

(
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) T−1∑
t=0

∥∇F (x̃t)∥22 + 3ηsηlKT
(
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)
1{b<n}

σ2

Mb
(150)

According to Lemma 5, ∥Eg̃0 −∇F (x̃0)∥22 = 0. Therefore, based on the derivation above, we can
attain the following inequality:

1

T

T−1∑
t=0

∥∇F (x̃t)∥22 ≤ 4 (F (x̃0)− F∗)

ηsηlKT (1− pA)
+ 31{b<n}

σ2

Mb
(151)
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By using the settings of the local learning rate and the global learning rate in the description, we can
obtain the desired result.

E.3 PROOFS FOR PL CONDITION

Theorem 7. Suppose that Assumption 1, 2, 3 and 4 hold. Let the local updates K ≥ 1, and the

local learning rate ηl and the global learning rate ηs be ηsηl = min

(
Ap

MKµ(1−pA)
, 1

KL(1+ 16M
µAp L)

)
,

where ηl ≤ min

(
1

2
√
6KL

,

√
b′/K

4
√
3Lσ

)
. Therefore, the convergence rate of FedAMD for PL condition

should be

EF (x̃T )− F∗ ≤

1− 1

2
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min
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(152)

Proof. With Lemma 7, we have the recursive function on the time-varying probability settings under
PL condition:

EF (x̃t+1)− F (x̃t) (153)
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According to the description, we consider the probability pt = p and have:

EF (x̃t+1)− F∗ (156)
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Since ηsηl ≤ Ap
MKµ(1−pA)

, we have:
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According to the description ηsηl ≤ 1

KL(1+ 16M
µAp L)

, we have:

EF (x̃t+1)− F∗ ≤ EF (x̃t+1)− F∗ +
8

µ
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≤
(
1− µηsηlK

2

(
1− pA

))(
F (x̃t)− F∗ +

8

µ
E ∥Eg̃t −∇F (x̃t)∥22

)
+ 3ηsηlK

(
1− pA

)
1{b<n}

σ2

Mb
(161)

33



Under review as a conference paper at ICLR 2023
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By using the settings of the local learning rate and the global learning rate in the description, we can
obtain the desired result.
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F ADDITIONAL EXPERIMENTS

In the main text, we have analyzed some experimental results in Section 5. In this part, we conduct
more thorough experiments by setting different numbers of local updates and different secondary
mini-batch sizes.

F.1 DETAILED EXPERIMENTAL SETUP

Training on Fashion MNIST. In Section 5, the experiment conducts on Fashion MNIST (Xiao
et al., 2017), an image classification task to categorize a 28×28 greyscale image into 10 labels
(including T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot). In
the training dataset, each class owns 6K samples. Then, we follow the setting of (Konečnỳ et al.,
2016; Li et al., 2019b) and partition the dataset into 100 clients (M = 100) such that each client
holds two classes with a total of 600 samples. By this means, we simulate the heterogeneous data
setting. To obtain a recognizable model on the images in the test dataset, we utilize a convolutional
neural network structure LeNet-5 (LeCun et al., 1989; 2015). Below comprehensively presents the
structure of LeNet-5 on Fashion MNIST:

Table 3: Details for LeNet-5 on Fashion-MNIST.

Layer Output Shape Trainable Parameters Activation Hyperparameters
Input (1, 28, 28) 0

Conv2d (6, 24, 24) 156 ReLU kernel size=5
MaxPool2d (6, 12, 12) 0 kernel size=2

Conv2d (16, 8, 8) 2416 ReLU kernel size=5
MaxPool2d (16, 4, 4) 0 kernel size=2

Flatten 256 0
Dense 120 30840 ReLU
Dense 84 10164 ReLU
Dense 10 850 softmax

Training on EMNIST digits. In addition to Fashion MNIST, we utilize one more dataset EMNIST
(Cohen et al., 2017) digits to further assess our approach efficiency. This task is to recognize 10
handwritten digits with a total of 240K training samples and 40K test samples. Similar to Fashion
MNIST, we equally disjoint the dataset into 100 clients (M = 100), and each client possesses two
classes. The model is trained with a 2-layer MLP (Yue et al., 2022), i.e.,

Table 4: Details for 2-layer MLP on EMNIST digits.

Layer Output Shape Trainable Parameters Activation Hyperparameters
Input (1, 28, 28) 0

Flatten 784 0
Dense 100 78500 ReLU
Dense 10 1010 softmax

Validation metrics. The training loss is calculated by the clients who perform local SGD on the
average loss of all iterations. As for the test accuracy, the server utilizes the entire test dataset after the
global model updates. The gradient complexity is the sum of all samples used for gradient calculation
by all clients throughout the training. The communication overhead is measured by the transmission
between the server and the clients.

Miscellaneous. Our simulation experiment runs on Ubuntu 18.04 with Intel(R) Xeon(R) Gold 6254
CPU, NVIDIA RTX A6000 GPU, and CUDA 11.2. Our code is implemented using Python and
PyTorch v.1.12.1. Clients are picked randomly and uniformly, without replacement in one round but
with replacement in subsequent rounds. For each baseline, the local learning (ηl) rate picks the best
one from the set {0.1, 0.03, 0.02, 0.01, 0.008, 0.005}, while the global learning rate (ηs) is selected
from the set {1.0, 0.8, 0.1}. Without the annotation, we implicitly assume Fashion MNIST follows
these settings: small minibatch size b′ = 64, large minibatch size b = full, and the number of local
updates K = 10. As for EMNIST, we suppose the anchor nodes utilize the entire dataset for the
caching gradient, i.e., b = full, and the number of participants in each round is 20, i.e., A = 20.
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Besides, to make BVR-L-SGD (Murata & Suzuki, 2021) compatible with partial participation in FL
training, we only use sampled clients to compute the full gradients of local objectives instead of using
all clients.

F.2 MORE NUMERICAL RESULTS ON FASHION MNIST
In addition to the empirical results in Section 5, we evaluate the performance of FedAMD by using
different large minibatch b settings. Then, considering the number of local updates K, we assess the
performance of the algorithm under various probability settings and compare it with other baselines.

F.2.1 COMPARISON AMONG VARIOUS HYPER-PARAMETER SETTINGS

The setting of large mini-batch b. Figure 2 – 4 depict the performance of FedAMD under constant
probability p = 0.9, optimal constant probability, and optimal sequential probability, respectively,
when the algorithm uses different bs. Overall, b = full always outperform b = 256 and b = 64.
Although there is no distinct difference between b = 256 and b = 64 in terms of final test accuracy
and training loss, b = 256 is easier to attain a lower training loss during the training.
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Figure 2: Comparison of test accuracy and training loss against the communication rounds for
FedAMD with constant p = 0.9.
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Figure 3: Comparison of test accuracy and training loss against the communication rounds for
FedAMD with optimal constant probability p.
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Figure 4: Comparison of test accuracy and training loss against the communication rounds for
FedAMD with sequential {0, 1}.

Number of local updates K. Figure 5 – 7 present the performance of FedAMD under the setting
of K = 10, K = 20, and K = 5, respectively. In Section 5, we present the results under K = 10
(Figure 5), which manifests that: (I) The setting {0, 1} is the most efficient performance under the
sequential probability setting; (II) The setting near the optimal probability can attain the best result
under the constant probability settings. In this part, we verify whether these two statements still hold
in two more examples. As for K = 20 and K = 5, it can provide the best performance when the
constant probability is set to be near the theoretical optimal one. However, statement (I) does not
always hold in both settings. Specifically, when all clients participate in the training, {0, 0, 1} even
outperforms {0, 1}. A possible reason is that {0, 0, 1} has more rounds to update the global model
while the caching gradient does not significantly change compared to the situation running for one
more round.
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Figure 5: Comparison of different probability settings using training loss and test accuracy against
the communication rounds for FedAMD by setting K = 10.
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Figure 6: Comparison of different probability settings using training loss and test accuracy against
the communication rounds for FedAMD by setting K = 20.
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Figure 7: Comparison of different probability settings using training loss and test accuracy against
the communication rounds for FedAMD by setting K = 5.

F.2.2 COMPARISON AMONG VARIOUS BASELINES

In Section 5, we present the comparison in a tabular format. Then, in this part, we visualize the
training progress as well as introduce more results under different Ks with the help of Figure 8.
In specific, Figure 8a – 8f are summarized into Table 2, while the rest explore the efficiency of
FedAMD under more scenarios. As described in Table 2 and the first six figures, when K = 10,
the conclusions we can draw include: (I) the final test accuracy of FedAMD exceeds that of the
baselines; (II) FedAMD is able to attain an accurate model with less communication and computation
consumption. Next, we evaluate the performance of FedAMD when K = 20 and K = 5.

• K = 20 (Figure 8g – 8l): In this case, the gradient computation of a miner is around twice as
that of an anchor. Therefore, FedAMD may consume less computation overhead than FedAvg and
SCAFFOLD. In terms of final test accuracy, these baselines achieve similar results in all cases,
while FedAMD achieves the performance with less computation overhead.

• K = 5 (Figure 8m – 8r): FedAMD eventually achieves the best accuracy compared to the existing
works. Additionally, we can obtain a well-performed model with less computational consumption.
These two phenomena are in support of the statements mentioned above.
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(k) 40 clients (K = 20)
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(l) 100 clients (K = 20)
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(m) 20 clients (K = 5)
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(n) 40 clients (K = 5)
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(o) 100 clients (K = 5)
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(p) 20 clients (K = 5)
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(q) 40 clients (K = 5)
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(r) 100 clients (K = 5)

Figure 8: Comparison of different algorithms using test accuracy against the communication rounds
and training loss against gradient complexity.
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F.3 NUMERICAL RESULTS ON EMNIST DIGITS

In this section, Figure 9 analyzes our algorithm with one more dataset, i.e., EMNIST. In the first
three figures, we evaluate different probability settings. As for the rest of the figures, we compare
FedAMD with other baselines.

With regards to different probability settings (Figure 9a – 9c), we are still able to draw two conclusions
as stated in Appendix F.2.1. As for the comparison among different algorithms, our proposed
algorithm is able to outperform the state-of-the-art works when we take the test accuracy and the
computation overhead into joint consideration.
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(a) K = 10, b′ = 256
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(b) K = 20, b′ = 128
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(c) K = 10, b′ = 128
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(d) K = 10, b′ = 256
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(e) K = 20, b′ = 128
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(f) K = 10, b′ = 128

Figure 9: Comparison of different baselines and probability settings using test accuracy against
communication rounds and gradient complexity, respectively.
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