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Abstract

In-context learning (ICL) empowers large lan-001
guage models (LLMs) to tackle new tasks by002
using a series of training instances as prompts.003
Since generating the prompts needs to sample004
from a vast pool of instances and annotate them005
(e.g., add labels in classification task), existing006
methods have proposed to select a subset of un-007
labeled examples for annotation, thus enhanc-008
ing the quality of prompts and concurrently009
mitigating annotation costs. However, these010
methods often require a long time to select in-011
stances due to their complexity, hindering their012
practical viability. To address this limitation,013
we propose a graph-based selection method,014
FastGAS, designed to efficiently identify high-015
quality instances while minimizing computa-016
tional overhead. Initially, we construct a data017
similarity graph based on instance similarities.018
Subsequently, employing a graph partitioning019
algorithm, we partition the graph into pieces.020
Within each piece (i.e., subgraph), we adopt021
a greedy approach to pick the most represen-022
tative nodes. By aggregating nodes from di-023
verse pieces and annotating the corresponding024
instances, we identify a set of diverse and repre-025
sentative instances for ICL. Compared to prior026
approaches, our method not only exhibits supe-027
rior performance on different tasks but also sig-028
nificantly reduces selection time. In addition,029
we demonstrate the efficacy of our approach in030
LLMs of larger sizes.031

1 Introduction032

Recent advances in natural language processing033

heavily leverage large language models, exempli-034

fied by models such as GPT-3 (Brown et al., 2020).035

Among them, in-context learning (ICL) emerges036

as a promising direction in this field. ICL adapts037

specific tasks with just a few instances as prompts,038

offering a viable alternative to traditional super-039

vised fine-tuning (Liu et al., 2023). The perfor-040

mance of ICL is intricately tied to the effectiveness041

of the prompt surface, encompassing factors such042

as instance selection and the sequence of demon- 043

stration instances (Zhao et al., 2021; Dong et al., 044

2022; Lu et al., 2021). In this study, we focus on 045

instance selection and explore novel solutions to 046

reduce manual annotation costs while maintaining 047

high in-context learning performance. 048

Previous research underscores the importance of 049

retrieving prompts from a vast set of annotated in- 050

stances to achieve optimal performance (Liu et al., 051

2021; Rubin et al., 2021). In particular, perfor- 052

mance is shown to improve significantly when 053

choosing in-context examples similar to each test 054

input (Liu et al., 2021). However, addressing the 055

unique requirements of different test instances re- 056

quires a large set of annotated examples, incurring 057

significant human and financial resources. 058

To mitigate annotation costs, previous efforts 059

have sought to identify a small number of unlabeled 060

instances for annotation (Su et al., 2022; Zhang 061

et al., 2023). The objective is to select diverse and 062

representative instances, where representativeness 063

aids in finding similar demonstrations for different 064

test instances, while diversity broadens the overall 065

coverage. Despite their superiority over random 066

selection, these methods have specific drawbacks. 067

For example, Vote-k (Su et al., 2022) emphasizes 068

diversity but adds inference costs due to predictions 069

on unlabeled data. IDEAL (Zhang et al., 2023) em- 070

ploys influence-driven selective annotations, draw- 071

ing inspiration from influence maximization in so- 072

cial graphs. However, both methods struggle to 073

balance diversity and representativeness, leading to 074

suboptimal performance. 075

Furthermore, a notable shortcoming of existing 076

methods is their computational inefficiency. The 077

precise calculation process (e.g., iteratively search- 078

ing the entire dataset) results in high computational 079

costs, making them less practical for real-world 080

applications. Figure 1 illustrates the time required 081

by our method and two baseline methods, Vote-k 082

and IDEAL, under the same hardware conditions 083
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Figure 1: Comparison of our method and two baselines
on three classification tasks (MPRC, SST-5, and DB-
pedia) with respect to time consumption during subset
selection. The annotation budget is 18. The y-axis rep-
resents the time consumption with a log scale. Notably,
our method significantly reduces the time cost in com-
parison to both baseline methods.

and annotation budgets. It is observed that both084

baselines necessitate at least 500 seconds to select085

a subset for DBpedia and SST-5 tasks. Remarkably,086

for the DBpedia task, Vote-k exceeds 30, 000 sec-087

onds (over eight hours) to select just 18 instances.088

As the annotation budget grows, the time needed089

by these methods to perform the selection process090

can increase exponentially (See Section 4.4), fur-091

ther constraining their applicability in real-world092

settings. In our pursuit of an efficient and effective093

selective annotation method, we pose the funda-094

mental question: Can we identify a set of diverse095

and representative instances with high efficiency?096

Answering this question, we propose FastGAS,097

a Fast Graph-based Annotation Selection method098

that works in an unsupervised manner. We first099

build a data similarity graph based on the similarity100

among unlabeled data. We then select instances101

for annotation based on the data similarity graph.102

In particular, our method focuses on the following103

three properties of selected instances:104

• Diversity: We perform graph partitioning to sep-105

arate the data similarity graph into segments. We106

treat each segment as a set of instances. We107

ensure the diversity of selected instances by se-108

lecting them from different segments.109

• Representiveness: For each segment, we select110

instances with the max corresponding node de-111

gree in the data similarity graph. The selected112

instances thus can maximally cover the subgraph113

and guarantee their representativeness.114

• Efficiency: We apply a multi-level graph bisec-115

tion algorithm to speed up the graph partitioning116

process. For the selection of each segment, we117

apply a simple but effective greedy algorithm. 118

Compared to baseline methods that iteratively se- 119

lect over the entire graph, applying the greedy al- 120

gorithm on each component can reduce the com- 121

putation time. 122

Compared with state-of-the-art baseline meth- 123

ods, our method improves the overall performance 124

on seven datasets in three types of tasks. Besides, 125

for all tasks, our method only needs a few seconds 126

to complete the instance selection process. In ad- 127

dition, we also provide a theoretical guarantee for 128

the effectiveness of the greedy selection algorithm. 129

2 Related Work 130

In-Context Learning In-context learning (ICL) 131

integrates a small number of training examples as 132

prompts before the test input (Brown et al., 2020), 133

demonstrating a remarkable ability to enhance the 134

performance of large language models (LLMs) in 135

a wide range of downstream tasks, such as ma- 136

chine translation (Agrawal et al., 2022; Sia and 137

Duh, 2023), data generation (Ye et al., 2022), and 138

others (Wang et al., 2021b; He et al., 2023; Panda 139

et al., 2023). Furthermore, the advent of advanced 140

strategies such as chain-of-thought prompting (Wei 141

et al., 2022) has significantly refined the efficacy of 142

ICL, offering deeper insights and more nuanced un- 143

derstanding within this innovative paradigm (Kim 144

et al., 2022; Chan et al., 2022; Srivastava et al., 145

2022; Bansal et al., 2022). 146

Despite its successes, ICL’s efficacy is often ham- 147

pered by the sensitivity to the choice of in-context 148

examples, leading to research on optimized selec- 149

tion strategies (Liu et al., 2021; Lu et al., 2021; 150

Zhao et al., 2021). Techniques have evolved from 151

selecting examples close to the test input in em- 152

bedding spaces (Liu et al., 2021; Wu et al., 2022; 153

Gao et al., 2020; Rubin et al., 2021). The focus 154

has also shifted towards annotation efficiency, ex- 155

ploring how to find a set of examples once for 156

all queries on the same task (Zhang et al., 2023; 157

Su et al., 2022; Chang and Jia, 2023). Follow- 158

ing existing works (Zhang et al., 2023; Su et al., 159

2022), we also use a graph to represent unlabeled 160

instances and employ graph-based methods to se- 161

lect instances for annotation. However, our method- 162

ology distinguishes itself from existing works by 163

focusing on efficiency in the selection of instances. 164

As discussed in Section 1, we aim to select di- 165

verse and representative instances while reducing 166

the computation cost. 167
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Active Learning Given a limited budget for la-168

beling, active learning empowers machine learn-169

ing models to achieve comparable or superior per-170

formance using a carefully selected set of labeled171

training instances (Cohn et al., 1994; Settles, 2009).172

Our work on selective annotation aligns with the173

goal of active learning applied to graphs, specifi-174

cally focusing on the selection of nodes for labeling175

to inform predictions (Cai et al., 2017; Jia et al.,176

2019; Wang et al., 2021a). Traditional graph-based177

active learning methods employ criteria such as un-178

certainty (Settles and Craven, 2008) and represen-179

tativeness (Li and Guo, 2013) for selection. Since180

the ICL tasks we focus on do not involve model181

training or finetuning, we compare our method182

with basic graph active learning methods that are183

not incorporated with model training, like those184

based on node degree (Cai et al., 2017; Wang et al.,185

2021a) and PageRank (Rodriguez, 2008). Our ex-186

periments indicate that while simple graph active187

learning methods work well in ICL, our approach188

still achieves better overall performance.189

3 Methods190

In this section, we will explain how to integrate a191

graph partition algorithm and a greedy algorithm192

in a selective annotation in in-context learning to193

reduce the annotation cost.194

3.1 Problem Setup195

We first give the definition of the selective anno-196

tation problem. In-context learning is a paradigm197

that allows language models to learn tasks given198

only a few examples in the form of demonstra-199

tion (Brown et al., 2020). Specifically, LLMs200

perform in-context learning tasks based on a task-201

specific prompt Z formed by concatenating M la-202

beled training examples Z = [z1, ..., zM ], where203

each zi represents one labeled example (xi,yi)204

consisting of the instance xi and label yi (e.g., the205

answer of a question based on the instance). In the206

real world, we usually only have unlabeled samples207

X = {xi}Ni=1, and obtaining large-scale annotated208

examples for ICL requires substantial manpower209

and financial resources.210

Selective annotation aims at selecting a subset211

L ⊂ X to be annotated, where |L| = M is the an-212

notation budget, such that ICL only using prompts213

retrieved from the selected subset can yield good214

performance on the test set and thus reduce the215

annotation cost.216

3.2 Fast Graph-based Annotation Selection 217

For the selective annotation problem, it is essential 218

to find a subset that covers vast unlabeled data. To 219

achieve this, we design a graph-based annotation 220

method that balances the diversity and represen- 221

tativeness of the annotated samples. Briefly, we 222

build a data similarity graph by assessing the simi- 223

larity of unlabeled data embeddings. We partition 224

the data similarity graph into distinct subgraphs 225

by employing a multi-level graph bisection algo- 226

rithm, and each subgraph is treated as a candidate 227

set. Through a stepwise, greedy selection process 228

of the most influential data nodes in each subgraph, 229

we generate subsets that encapsulate the subgraph’s 230

information. Ultimately, we aggregate these sub- 231

sets from all subgraphs to represent the unlabeled 232

data. We will now provide a detailed, step-by-step 233

explanation of the aforementioned process. 234

Data Similarity Graph Generation. By av- 235

eraging the resulting vectors over the text input 236

words, we compute the vector representation for 237

each unlabeled training instance using Sentence- 238

BERT (Reimers and Gurevych, 2019). We then use 239

the embedding vectors to create the data similarity 240

graph G = (V, E) where each vertex vi ∈ V rep- 241

resents an unlabeled instance xi ∈ X as defined 242

above. For each vertex v ∈ V , we introduce edges 243

connecting it to its k nearest neighbors in terms of 244

cosine similarity and get E . 245

Graph Partitioning. We aim to enhance instance 246

diversity by strategically selecting instances from 247

various regions within the data similarity graph. 248

The division of regions process can be conceptu- 249

alized as addressing a K-way graph partitioning 250

problem, where the goal is to effectively divide 251

the graph into K distinct components with ap- 252

proximately equal numbers of vertices but with 253

few edges crossing between components. The 254

formal definition of the graph partitioning prob- 255

lem is defined as follows: given a graph G = 256

(V, E) with |V| = N , partition V into K subsets, 257

V1,V2, ...,VK such that Vi ∩ Vj = ∅ for i ̸= j, 258

|Vi| is close N/K,
⋃

i Vi = V , and the number 259

of edges of E whose incident vertices belong to 260

different subsets is minimized. 261

The K-way graph partitioning problem is an 262

NP-complete problem. We tend to use recursive 263

bisection to find an approximate solution with an 264

acceptable execution time. Specifically, we first 265

obtain a 2-way partition of G, and then we recur- 266

sively bisect the two segments independently. Af- 267
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Figure 2: An overview FastGAS. Given the unlabeled data pool, we initially construct a graph based on data
similarity. This graph is then partitioned into distinct components. Within each component, we employ a greedy
algorithm to select nodes until we reach the annotation budget. The selected instances are annotated and subsequently
used to retrieve ICL prompts for the task.

ter logK phases, G is partitioned into K different268

components. Unfortunately, graph bisection is also269

NP-complete and has several inherent shortcom-270

ings (Hendrickson et al., 1995). In order to improve271

efficiency, we apply a multi-level graph bisection272

algorithm to produce high-quality partitions at low273

cost (Karypis and Kumar, 1998). It consists of the274

following three phases:275

• Coarsening phase: The graph G is transformed276

into a sequence of smaller graphs G1,G2, ...,Gm277

such that |V| > |V1| > |V2| > · · · > |Vm|.278

• Partitioning phase: A 2-way partition Pm of279

the graph Gm = (Vm, Em) is computed that par-280

titions Vm into two subgraphs, each containing281

half the vertices of G.282

• Uncoarsening phase: The partition Pm of Gm is283

projected back to G by going through intermedi-284

ate partitions Pm−1, Pm−2, ..., P1, P0.285

For more detailed methods of each phase, we286

will include them in Appendix C.287

Greedy Node Selection. The graph partitioning288

operation divides the data similarity graph into K289

disjoint components, ensuring diversity by treat-290

ing each component as a set of instances. How-291

ever, further discussion is required on the selection292

of suitable instances that exhibit significant rep-293

resentativeness for each subgraph. Following the294

graph partitioning process, which yields K sub-295

graphs with a similar number of nodes denoted as296

|Vi| = N/K, and considering an annotation budget297

|L| = M , our objective is to choose n = M/K298

instances within each subgraph. To mitigate po- 299

tential challenges associated with high memory 300

and computation costs, we employ a greedy selec- 301

tion method. In detail, for the subgraph Gi, we 302

first select the node v1i that has the largest degree: 303

v1i = argmaxv∈Gj
d(v). Then, we update the sub- 304

graph Gi by removing the selected node v1i and the 305

edges connecting v1i : Gi = Gi \ v1i . The above 306

steps are repeated n times to get the selected node 307

set Vsel
i = {v1i , ..., vni }, and the corresponding in- 308

stances X sel
i = {x1i , ..., xni } are chosen to repre- 309

sent the instances belonging to the subgraph Gi. 310

The iterative form can be written as 311

vji = argmax
v∈Gi\{vki |k∈[1,j−1]}

d(v) (1) 312

Specifically, the greedy selection algorithm guar- 313

antees the following property, demonstrating its 314

ability to enhance the representativeness of the se- 315

lected instances. 316

Proposition 3.1. Given the budget n and graph 317

G, the greedy algorithm will select Vsel = 318

{v1, ..., vn} that maximize the number of edges 319

within Vsel and those connecting Vsel and G \Vsel. 320

Vsel = argmax
|V|=n

|{(u, v)|u, v ∈ V}|

+ |{(u, v)|u ∈ V and v ∈ G \ V}|
321

Remark 1. The greedy selection process on sub- 322

graphs can be conceptualized as a divide-and- 323

conquer approach to selection on the entire graph, 324

leading to improved algorithmic efficiency. Specifi- 325

cally, when the annotation budget M is consider- 326

ably smaller than the total number of nodes N (i.e., 327
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M ≪ N ), the computational cost of greedy se-328

lection on the entire graph is O(2MN), while the329

cost incurred on the K subgraphs is significantly330

reduced to O
(
2MN
K

)
.331

Prompt Retrieval. Upon obtaining a set of in-332

stances L =
⋃

iX sel
i through the greedy selective333

annotation process, we manually annotate L to cre-334

ate a comprehensive set of labeled instances. Con-335

sistent with previous studies, we leverage Sentence-336

BERT (Reimers and Gurevych, 2019) to generate337

embeddings for all annotated instances and identify338

the most similar instances to each test input based339

on cosine similarity.340

4 Experiment341

In this section, we evaluate the effectiveness of our342

method in various datasets encompassing diverse343

task categories. We begin by presenting the de-344

tails of our experiment setups. Subsequently, the345

reported results demonstrate the superior perfor-346

mance of the proposed method in identifying an347

optimal selective annotation subset efficiently, out-348

performing established baselines. Furthermore, we349

conduct ablation studies to investigate the impact350

of crucial hyperparameters in our method.351

4.1 Setups352

Datasets and Models We conduct extensive ex-353

periments in seven diverse datasets, which include354

six distinct tasks detailed in Table 4. Following ex-355

isting works, each dataset adheres to the standard356

train/dev/test split provided by the Transformers357

library (Wolf et al., 2019). For datasets with pub-358

licly available test data (SST-5, XSUM, and DBpe-359

dia), we utilize the test set for evaluation. In cases360

where test data is not publicly accessible, consis-361

tent with previous works (Zhang et al., 2023; Su362

et al., 2022), we employ the dev data for evaluation.363

Evaluation metrics include precision for all classi-364

fication and multiple-choice selection datasets and365

ROUGE-L (Lin, 2004) for XSUM.366

Unless explicitly mentioned, we conduct all ex-367

periments using the GPT-J-6B model (Wang and368

Komatsuzaki, 2021). Additionally, we present re-369

sults from tests on other models such as GPT-Neo-370

2.7B (Black et al., 2021), OPT-6.7B (Zhang et al.,371

2022), as well as more advanced models includ-372

ing Llama-2-7B-Chat (Touvron et al., 2023) and373

GPT-3.5-Turbo (OpenAI, 2023).374

Baselines In our main experiments, we conduct a375

comprehensive evaluation of FastGAS against two376

state-of-the-art selective annotation baselines: Vote- 377

k (Su et al., 2022) and IDEAL (Zhang et al., 2023). 378

Additionally, we benchmark FastGAS against other 379

widely recognized methods in selecting core sets 380

from extensive unlabeled data pools. These meth- 381

ods include (1) Top-degree (Wu et al., 2019), which 382

selects nodes with the largest degrees until the an- 383

notation budget is met; (2) PageRank (Cai et al., 384

2017), which is used to score node representative- 385

ness in graph-based active learning; (3) Subclus- 386

tering (Chen et al., 2023), which initially clusters 387

instances into K groups via K-means, then fur- 388

ther subdivides each into M/K subclusters for cen- 389

troid instance selection; and (4) Louvain (Blondel 390

et al., 2008), which utilizes the Louvain commu- 391

nity detection algorithm for graph partitioning and 392

a greedy selection algorithm akin to FastGAS for 393

instance selection from each community.1 394

To emulate real-world conditions, we follow 395

Vote-k (Su et al., 2022) and IDEAL (Zhang et al., 396

2023), selectively annotating from a pool of 3,000 397

instances randomly subsampled from the original 398

training data for each task. For robustness, we con- 399

duct this subsampling procedure three times per 400

experiment, and the reported results represent the 401

average across three trials. 402

Hyperparameter Setting In our main experi- 403

ment, we create a data similarity graph for all 404

unlabeled instances by linking each vertex to its 405

ten nearest neighbors (k = 10). For the base- 406

line methods, we follow their hyperparameter set- 407

tings to construct directed graphs (Zhang et al., 408

2023; Su et al., 2022). Regarding the selection 409

of K for graph partitioning, we adjust K within 410

{2, 3, 6, 9} for an annotation budget of 18, and 411

within {2, 5, 10, 25, 50} for a budget of 100, iden- 412

tifying an optimal K for each task. Our method’s 413

selection time is significantly shorter than that of 414

the baselines (Section 4.4), making the time spent 415

finding the appropriate K negligible. We align our 416

annotation budgets of 18 and 100 with those used 417

in Vote-k (Su et al., 2022) and IDEAL (Zhang et al., 418

2023), choosing 18 specifically because it allows 419

all annotated examples to fit within the context lim- 420

its of LLMs without necessitating prompt retrieval. 421

The impacts of k and K are detailed in Sections 4.3 422

and 4.5, respectively. 423

1Since different communities contain different numbers of
nodes, we select instances in proportion to the size of each
community.
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4.2 Main Result424

Table 2 presents a comparison between FastGAS425
and other baseline methods across annotation bud-426

gets of |L| ∈ {18, 100}. FastGAS outperforms427

the two existing baselines in nearly all scenarios428

(13 out of 14). Notably, with an annotation bud-429

get of 18, all annotated examples fit within the430

prompt limitations of LLMs, making the evalu-431

ation results a direct reflection of the quality of432

selected instances (Zhang et al., 2023). When the433

annotation budget is 18, FastGAS performs better434

than the baseline on most datasets, which shows435

that FastGAS can select higher-quality data. While436

the proposed active learning baselines outshine in437

specific instances (e.g., the Subclustering method438

excels in the DBpedia task for both annotation bud-439

gets), their general performance is hindered by their440

approach to balancing representativeness and diver-441

sity of the selected instances. For example, meth-442

ods like Top-degree and PageRank prioritize repre-443

sentativeness (Cai et al., 2017). Overall, FastGAS444

generally surpasses these baselines (10 out of 14),445

demonstrating its effectiveness. Furthermore, as446

a deterministic selective annotation method, Fast-447

GAS operates based on a given set of unlabeled448

samples, mirroring the advantage seen with Vote-k.449

This means that the variability in FastGAS’s perfor-450

mance stems exclusively from the manner in which451

unlabeled samples are gathered. This significantly452

enhances the robustness of ICL by ensuring consis-453

tency in the selection process (Su et al., 2022). We454

provide detailed results that contain the maximum455

and minimum values of each task in Appendix F.456

4.3 Effect of k457

We compare FastGAS and other graph-based base-458

lines with respect to different k for the construction459

of the graph, and the result is shown in Figure 3.460

Initially, our method consistently exceeds other461

graph-based baselines in various settings. Second,462

we observe that the ideal k value varies among dif-463

ferent methods and datasets. Specifically, for the464

MNLI dataset, most methods perform better with465

k = 10. We also conclude that, for FedGAS, k466

must be carefully balanced, neither too large nor467

too small. A smaller k value, as well as a larger one,468

impedes the ability to differentiate between distinct469

representative nodes in the graph, complicating the470

selection process by potentially choosing multiple471

similar nodes. Concurrently, a larger k value could472

also increase the computational time.473
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Figure 3: Comparison of our method and other graph-
based baselines with respect to different k for the con-
struction of the graph.

4.4 Evaluating Time Efficiency 474

In Section 1, we illustrate that FastGAS drastically 475

reduces the time cost compared to two existing 476

methods with an annotation budget of 18. Fig- 477

ure 4 expands on this by showing the time con- 478

sumption of our method and two baselines for an 479

annotation budget of 100. Relative to Figure 1, the 480

time needed for FastGAS does not increase much. 481

This is because the most time-intensive processes 482

in FastGAS, i.e., constructing and partitioning the 483

data similarity graph, are not affected by the anno- 484

tation budget. In contrast, the time costs of the two 485

baselines, especially IDEAL, increase sharply; for 486

nearly all tasks, IDEAL and Vote-k require more 487

than eight hours for selection. As the annotation 488

budget increases, the efficiency of FastGAS in ex- 489

ample selection becomes even more pronounced. 490
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Figure 4: Comparison of our method and two baselines
on three classification tasks (MPRC, SST-5, and DB-
pedia) with respect to time consumption during subset
selection. The annotation budget is 100. The y-axis
represents the time consumption with a log scale.

4.5 Effect of Number of Partitions 491

The hyperparameter K plays a critical role in graph 492

partitioning, determining the number of compo- 493

nents into which the graph is divided. We explore 494

K’s impact on FastGAS and offer insights for ad- 495

justing it. Figure 5 illustrates FastGAS’s perfor- 496

mance in three datasets with an annotation budget 497

of 100. The figure demonstrates that enhancing 498
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Table 1: The results of FastGAS and six baselines on seven distinct datasets with annotation budgets of 100 and 18,
utilizing similarity-based prompt retrieval for all methods. We report the average results with three different runs for
each method. Bold fonts indicate the best performance, while underlines denote the second-best results.

|L| Methods Classification Multi-Choice Generation

MRPC SST-5 MNLI DBpedia RTE HellaSwag XSUM

100 Vote-k 64.60 46.61 38.93 89.19 57.68 65.89 19.55
100 IDEAL 65.49 49.87 41.02 90.63 58.98 64.97 19.68
100 Top-degree 62.76 42.32 41.02 83.85 51.69 66.67 19.39
100 PageRank 64.84 40.71 44.17 83.72 53.38 66.01 19.55
100 Subclustering 64.84 49.48 41.28 92.32 57.55 65.62 19.18
100 Louvain 59.63 39.58 41.14 86.33 53.52 65.89 19.27
100 FastGAS 66.15 50.26 42.06 90.76 61.98 67.45 20.00

18 Vote-k 56.90 41.78 39.45 88.02 56.64 66.02 19.45
18 IDEAL 63.80 44.92 39.58 83.20 53.65 65.89 19.21
18 Top-degree 48.57 39.45 41.93 77.34 54.43 65.76 20.05
18 PageRank 46.09 39.71 40.49 79.04 56.07 65.89 19.82
18 Subclustering 61.46 46.05 37.63 89.06 56.63 65.76 19.49
18 Louvain 61.33 38.02 38.02 83.59 55.86 65.62 20.23
18 FastGAS 65.23 46.61 44.53 88.93 56.51 66.67 20.26

K up to a certain point improves FastGAS’s per-499

formance; however, the increase beyond this op-500

timal threshold does not result in further perfor-501

mance gains. A small K results in relatively rough502

partitioning, such that significantly different data503

points are grouped into the same subgraph. Se-504

lecting through coarsely partitioned subgraphs can505

obscure meaningful distinctions in the data, result-506

ing in the loss of the diversity of the selected nodes.507

Conversely, with a sufficiently large K, the graph508

partitioning algorithm results in more edges being509

cut during the partitioning process, thus affecting510

the degree of nodes in each disjoint subgraph. As511

a result, nodes with a large degree in the origi-512

nal graph may lose a large number of edges due513

to partitioning and thus be ignored by the greedy514

algorithm. This alteration hampers the greedy al-515

gorithm’s ability to select representative nodes ef-516

fectively. Hence, a balanced K value facilitates517

the optimal performance of FastGAS by ensuring a518

balance of representativeness and diversity.519

4.6 Random Prompt Retrieval520

In Section 4.2, we evaluate the performance of521

FastGAS against other baselines using a similarity-522

based prompt retrieval method. Building on previ-523

ous research (Zhang et al., 2023; Su et al., 2022),524

we investigate the impact of employing a random525

retrieval method, specifically, by randomly select-526

2 5 10 25 5087
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Figure 5: Performance of FastGAS across different num-
bers of partitions with an annotation budget of 100.

ing labeled instances as prompts for each test in- 527

stance under the annotation budget 100 and 18. 528

The findings are presented in Table 2. We note 529

a marked decline in the effectiveness of selective 530

annotation methods under large annotation budgets 531

when prompts are chosen through random selection. 532

This deterioration may stem from the increased 533

likelihood of selecting instances from the larger la- 534

beled pool that are less relevant to the test sample, 535

as determined by their distance in the embedding 536

space (Liu et al., 2021). Significantly, FastGAS 537

continues to outperform the two baseline methods 538

across all datasets, even when employing random 539

retrieval. With an annotation budget of 18, all an- 540

notated instances fit within the prompt capacity of 541

LLMs, making the order of instances the only dif- 542

ference between the two prompt retrieval methods. 543

The performance of FastGAS underscores its capa- 544
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Table 2: Comparison of random and similar prompt
retrieval. The selection approach, when paired with
a similarity-based prompt retrieval method, generally
outperforms its counterpart, which utilizes a random
prompt retrieval technique.

Methods Datasets

|L| Selection Retrieval MRPC MNLI HellaSwag

100 Vote-k Similar 64.60 38.93 65.89
100 IDEAL Similar 65.49 41.02 64.97
100 FastGAS Similar 66.15 42.06 67.45

100 Vote-k Random 60.67 37.76 64.58
100 IDEAL Random 62.50 39.06 66.80
100 FastGAS Random 62.50 40.88 67.32

18 Vote-k Similar 56.90 39.45 66.02
18 IDEAL Similar 63.80 39.58 65.89
18 FastGAS Similar 65.23 44.53 66.67

18 Vote-k Random 54.56 41.02 66.54
18 IDEAL Random 64.19 38.15 66.54
18 FastGAS Random 64.71 44.01 67.19

bility to produce a more reliable training subset for545

ICL tasks (Chang and Jia, 2023).546

4.7 Evaluation on Different Language Models547

We conduct evaluations of FastGAS on various548

language models, including GPT-Neo 2.7B (Black549

et al., 2021), OPT-6.7B (Zhang et al., 2022), Llama-550

2-7B-Chat (Touvron et al., 2023), and GPT-3.5-551

Turbo (OpenAI, 2023)2, applying the same instruc-552

tions across each dataset. Table 3 shows the per-553

formance of three selective annotation methods554

on smaller language models (GPT-Neo 2.7B and555

OPT-6.7B) across three datasets, where FastGAS556

overall surpasses two baseline annotation methods.557

Notably, OPT-6.7B exhibits lower performance on558

the XSUM summarization task compared to other559

LLMs, a finding echoed in (Tam et al., 2022). How-560

ever, FastGAS remains superior to the baselines561

even when using the OPT-6.7B model.562

Further experiments on more advanced LLMs563

are presented in Figure 6, confirming FastGAS’s en-564

hanced performance with larger language models.565

This underscores FastGAS as a versatile approach566

effective across LLMs of varying sizes. Particu-567

larly, the performance leap with GPT-3.5-Turbo,568

especially notable on the MNLI dataset (improv-569

ing from 50.18% with Llama-2-7B-Chat to 70.18%570

with GPT-3.5-Turbo), highlights the advantage of571

larger models equipped with more parameters and572

2In a recent update, OpenAI announced the deprecation of
the logprobs endpoint. Consequently, in our experiment, we
employ the Vote-k method, specifically ‘Fast vote-k,’ which
does not depend on this value.

Table 3: Comparative performance of FastGAS versus
baselines using GPT-Neo-2.7B and OPT-6.7B models
across various datasets with an annotation budget of
18. FastGAS generally outperforms baseline methods
across a variety of models and datasets.

Methods Datasets

Selection Model MRPC DBpedia XSUM

Vote-k GPT-Neo-2.7B 57.42 80.73 19.45
IDEAL GPT-Neo-2.7B 65.89 78.38 19.69

FastGAS GPT-Neo-2.7B 66.02 80.86 20.15

Vote-k OPT-6.7B 36.59 88.02 6.86
IDEAL OPT-6.7B 45.18 83.20 6.13

FastGAS OPT-6.7B 44.66 88.93 6.89

extensive training data, thereby bolstering their ca- 573

pability in classification tasks.

MRPC MNLI RTE
44

55

65

75

A
cc

ur
ac

y
Llama-2-7B-Chat

MRPC MNLI RTE66

70

74

78

82 GPT-3.5-Turbo
Vote-k IDEAL FastGAS

Figure 6: Comparative performance of FastGAS versus
baselines using Llama-2-7B-Chat and GPT-3.5-Turbo
models across various datasets with an annotation bud-
get of 18.

574

5 Conclusion 575

Recent advancements have showcased the capabil- 576

ity of large language models (LLMs) to adapt to 577

new tasks with just a few demonstration instances. 578

While existing approaches aim to enhance model 579

performance by selecting a limited number of in- 580

stances to annotate for prompts, they are hindered 581

by significant computational demands and lengthy 582

processing times. To address these challenges, we 583

introduce a graph-based selection algorithm, Fast- 584

GAS, accompanied by a theoretical analysis of its 585

effectiveness. Our empirical evaluations reveal that 586

this method outperforms others in seven distinct 587

tasks, demonstrating exceptional efficacy. Unlike 588

conventional methods that require high computa- 589

tion costs, our method greatly improves the effi- 590

ciency of selecting instances, substantially enhanc- 591

ing its applicability to practical scenarios. Addition- 592

ally, we demonstrate FastGAS’s versatility across 593

LLMs of various sizes. We hope that these in- 594

sights will help researchers in devising effective 595

ICL strategies to optimize LLM performance. 596
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6 Limitation597

The primary constraint of our study is the inabil-598

ity to automatically select the most appropriate599

number of partitions (K) and the most appropriate600

number of neighbors (k) during the data similar-601

ity graph construction. Given the relatively short602

execution time of our method, conducting multi-603

ple trials to identify the ideal K and k value is604

viable. However, the cost of the inference phase605

could restrict the feasibility of such extensive ex-606

perimentation in practical settings. To enhance607

efficiency, FastGAS adopts a greedy selection pro-608

cess that is carried out separately for each piece.609

However, we have not explored how the interrela-610

tions between samples across different graph pieces611

influence the overall instance selection. Addition-612

ally, due to hardware limitations and available time,613

our research only covered LLMs up to 7B in size.614

Future investigations will aim to assess FastGAS’s615

efficacy with larger LLMs and across a broader616

array of tasks.617

7 Ethics Statement618

This work introduces FastGAS, a graph-based619

selective annotation method that can effectively620

and efficiently select high-quality instances for in-621

context learning tasks. While acknowledging the622

need for responsible usage of the proposed method,623

we do not foresee major negative societal impacts.624
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A General experimental conditions881

Our implementation of FastGAS and baselines is primarily conducted using PyTorch (Paszke et al., 2019).882

For the GPT-3.5-Turbo experiments, we utilize the OpenAI API. The models GPT-J-6B, GPT-Neo 2.7B,883

Llama-2-7B-Chat, and OPT-6.7B are sourced from the Huggingface Transformers Library (Wolf et al.,884

2019). All experiments are performed on a single NVIDIA RTX A6000 GPU with 48GB of memory.885

B The Detailed Information of Seven Datasets886

Table 4: The detailed information of seven datasets

Dataset Task

Classification MRPC (Dolan et al., 2004) Paraphrase Detection
SST-5 (Socher et al., 2013) Sentiment Analysis

DBpedia (Lehmann et al., 2015) Topic Classification
MNLI (Williams et al., 2018) Natural Language Inference
RTE (Bentivogli et al., 2009) Natural Language Inference

Multiple-Choice HellaSwag (Zellers et al., 2019) Commonsense Reasoning

Generation XSUM (Narayan et al., 2018) Summarization

C Detailed Graph Partition Algorithm887

• Coarsening phase: The graph G is transformed into a sequence of smaller graphs G1,G2, ...,Gm888

such that |V| > |V1| > |V2| > · · · > |Vm|.889

• Partitioning phase: A 2-way partition Pm of the graph Gm = (Vm, Em) is computed that partitions890

Vm into two parts, each containing half the vertices of G.891

• Uncoarsening phase: The partition Pm of Gm is projected back to G by going through intermediate892

partitions Pm−1, Pm−2, ..., P1, P0893

Coarsening phase Due to the construction of the data similarity graph, the degree of most vertices is894

close to the graph’s average degree. To generate coarser graphs, we employ a strategy of finding a random895

matching and merging the matched vertices into a multi-node (Bui and Jones, 1993; Hendrickson et al.,896

1995). A graph’s matching is a set of edges, each pair of which shares no common vertex. We create a897

subsequent coarser graph, Gi+1, from Gi by matching in Gi and merging the matched vertices. We utilize898

a random algorithm akin to those detailed in (Bui and Jones, 1993; Hendrickson et al., 1995).899

The algorithm operates as follows: vertices are processed in a random sequence. For an unmatched900

vertex u, an unmatched adjacent vertex v is randomly chosen, and the edge (u, v) is added to the matching.901

If there is no unmatched adjacent vertex for u, then u remains unmatched in this random matching process.902

The computational complexity of this algorithm is O(|E|).903

Partitioning phase To efficiently bisect the graph, we simply initiate from a vertex and expand a region904

around it using a breadth-first approach until half of the vertices are encompassed (Ciarlet Jr and Lamour,905

1996; Goehring and Saad, 1994). Given that the bisection quality is highly dependent on the initial906

vertex selection (Karypis and Kumar, 1998), we employ a strategy similar to (Karypis and Kumar, 1998),907

wherein we randomly select 10 vertices and subsequently expand 10 distinct regions from each. The trail908

yielding the smallest edge cut is then chosen for the partition.909

Uncoarsening phase During the uncoarsening phase, as each vertex u ∈ Gi+1 represents a unique910

subset U of vertices from Gi, we derive partition Pi from Pi+1 by assigning the vertices in U to the same911

part that vertex u belongs to. Although Pi+1 may represent a local minimum partition for Gi+1, the912

corresponding partition Pi might not be at a local minimum with respect to Gi. To refine this uncoarsened913

partition, we employ the KL algorithm (Kernighan and Lin, 1970), which iteratively searches for and914

swaps subsets of vertices between partitions to achieve a lower edge cut. This swapping process continues915

until no further improvements can be made, indicating that the partition has reached a local minimum.916
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D Proof of Proposition 3.1 917

Proof. We employ an inductive approach to demonstrate that the node set Vsel, selected by the greedy 918

algorithm, satisfies the maximum cover property, 919

Vsel = argmax
|V|=n

|{(u, v)|u, v ∈ V}|+ |{(u, v)|u ∈ V and v ∈ G \ V}| (2) 920

When n = 1, Vsel = {v1}. Thus, 921

|{(u, v)|u ∈ V and v ∈ G \ V}| = degree(v1) and |{(u, v)|u, v ∈ V}| = 0. 922

By selecting v1 = argmaxv∈G d(v), the maximum cover property holds for n = 1. 923

Assume it holds for n = k, let Vsel
k denotes the selected node set at the budget k and Vsel

k+1 = Vsel
k ∪{vk+1}. 924

For the first term in Eq. 2, we have 925

|{(u, v)|u, v ∈ Vsel
k+1}| = |{(u, v)|u, v ∈ Vsel

k }|+ |{(u, vk+1)|u ∈ Vsel
k }|. (3) 926

For the second term in Eq. 2, we have 927

|{(u, v)|u ∈ Vsel
k+1 and v ∈ G \ Vsel

k+1}|
=|{(u, v)|u ∈ Vsel

k and v ∈ G \ Vsel
k+1}|+ |{(vk+1, v)| v ∈ G \ Vsel

k+1}|
=|{(u, v)|u ∈ Vsel

k and v ∈ G \ Vsel
k+1}|+ |{(vk+1, v)| v ∈ G \ Vsel

k }|
=|{(u, v)|u ∈ Vsel

k and v ∈ G \ Vsel
k }| − |{(u, vk+1)|u ∈ Vsel

k }|+ |{(vk+1, v)| v ∈ G \ Vsel
k }|.

(4) 928

The second equality sign holds because 929

|{(vk+1, v)| v ∈ G \ Vsel
k+1}| = |{(vk+1, v)| v ∈ G \ Vsel

k }| − |{(vk+1, v)| v ∈ Vsel
k+1 \ Vsel

k }|,
|{(vk+1, v)| v ∈ Vsel

k+1 \ Vsel
k }| = |{(vk+1, v)| v ∈ {vk+1}}| = 0.

930

We then combine Eq. 3 and Eq. 4 and obtain that 931

|{(u, v)|u, v ∈ Vsel
k+1}|+ |{(u, v)|u ∈ Vsel

k+1 and v ∈ G \ Vsel
k+1}|

=|{(u, v)|u, v ∈ Vsel
k }|+ |{(u, vk+1)|u ∈ Vsel

k }|+ |{(u, v)|u ∈ Vsel
k and v ∈ G \ Vsel

k }|
− |{(u, vk+1)|u ∈ Vsel

k }|+ |{(vk+1, v)| v ∈ G \ Vsel
k }|

=|{(u, v)|u, v ∈ Vsel
k }|+ |{(u, v)|u ∈ Vsel

k and v ∈ G \ Vsel
k }|+ |{(vk+1, v)| v ∈ G \ Vsel

k }|

(5) 932

Since Vsel
k satisfies that 933

Vsel
k = argmax

|V|=k
|{(u, v)|u, v ∈ V}|+ |{(u, v)|u ∈ V and v ∈ G \ V}|, 934

and from the algorithm, we have 935

vk+1 = argmax
v∈G\{vi|i∈[1,k]}

degree(v) = argmax
v∈G\Vsel

k

|{(v, u)| u ∈ G \ Vsel
k }|. 936

Thus 937
Vsel
k+1 = Vsel

k ∪ {vk+1}
= argmax

|V|=k+1
|{(u, v)|u, v ∈ V}|+ |{(u, v)|u ∈ V and v ∈ G \ V}|. 938

In conclusion, given the budget n and graph G, the Vsel returned by the greedy algorithm satisfies the 939

property in Eq.2. 940
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E Example Prompt of Each Task941

E.1 MRPC942

Input: Are the following two sentences ‘equivalent’ or ‘not equivalent’?943

Excluding autos, retail sales rose by 0.3 % in September, lower than a forecast rise of 0.5 % ..944

Retail sales fell 0.2 percent overall in September compared to forecasts of a 0.1 percent dip ..945

answer:946

Output: not equivalent947

E.2 SST-5948

Input: How do you feel about the following sentence?949

... the film’s considered approach to its subject matter is too calm and thoughtful for agitprop, and the950

thinness of its characterizations makes it a failure as straight drama.951

answer:952

Output: very negative953

E.3 MNLI954

Input: Quite an hour, or even more, had elapsed between the time when she had heard the voices and 5955

o’clock when she had taken tea to her mistress. Based on that information, is the claim A day had passed956

from when she’d taken the tea in. "True," "False," or "Inconclusive"?957

answer:958

Output: False959

E.4 DBpedia960

Input: title: Grace Evangelical Lutheran Church (Minneapolis Minnesota); content: Grace Evangelical961

Lutheran Church is a church in Minneapolis, Minnesota, United States, adjacent to the University of962

Minnesota East Bank campus. The church was built in 1915-1917 by a Swedish Lutheran congregation to963

serve university students. It was designed by Chapman and Magney and built in the Gothic Revival style.964

The congregation was organized in Minneapolis in 1903 by the Swedish immigrant-dominated Augustana965

Evangelical Lutheran Church.966

Output: building967

E.5 RTE968

Input: He met U.S. President, George W. Bush, in Washington and British Prime Minister, Tony Blair,969

in London..970

question: Washington is part of London. True or False?971

answer:972

Output: False973

E.6 Hellaswag974

Input: The topic is Cleaning sink. A middle aged female talks about a cleaning product. The female975

opens a container of cleaner and puts it on a rag. the female,976

Options: ["then inflames a different cleaner to clean a sock.", "uses the rag to spray down a wall.",977

"washes the rug thoroughly and scratches it.", "then uses the rag to rub the inside of the sink."]978

Output: then uses the rag to rub the inside of the sink.979
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E.7 Xsum 980

Input: Stead curled home with 14 minutes remaining to cap a fine comeback at the Northern Gas and 981

Power Stadium after Louis Lang cancelled out Toto Nsiala’s opener. Hartlepool flew out of the blocks and 982

took an eighth-minute lead when Nsiala bundled home at the back post after Lewis Alessandra beat his 983

man and sent in a pin-point cross. 984

...... 985

Substitution, Notts County. Vadaine Oliver replaces Jonathan Forte because of an injury. Attempt saved. 986

Nathan Thomas (Hartlepool United) right footed shot from the left side of the box is saved in the bottom 987

right corner. Corner, Hartlepool United. Conceded by Matt Tootle. Attempt missed. Michael Woods 988

(Hartlepool United) right footed shot from outside the box is close, but misses the top right corner. Foul by 989

Billy Paynter (Hartlepool United). Stanley Aborah (Notts County) wins a free kick in the attacking half... 990

Output: Jon Stead struck the winner as Notts County came from behind to earn victory at Hartlepool 991

United in League Two. 992

F Detailed Main Results 993

In Section 4.2, we present the average evaluation outcomes of various methods across three random 994

trials. This section offers comprehensive results for FastGAS and two current baselines, detailing mean, 995

maximum, and minimum values. It is evident that FastGAS consistently delivers superior performance 996

across the majority of trials. Furthermore, FastGAS’s performance in the least favorable scenarios is 997

markedly better than that of the baselines in most instances. 998

Table 5: Mean/Maximum/Minimum performance of FastGAS and two baselines across the first four tasks in Table 1
over three trials. The best average performance for each task is highlighted in bold.

Methods MRPC SST-5 MNLI DBpedia

100 Vote-k 64.60/68.75/62.11 46.61/47.27/46.09 38.93/43.75/35.55 89.19/89.84/88.67
100 IDEAL 65.49/66.02/64.84 49.87/52.73/46.09 41.02/41.41/40.23 90.63/91.41/89.45

100 FastGAS 66.15/69.14/62.89 50.26/55.86/42.58 42.06/43.75/41.02 90.76/92.19/88.28
18 Vote-k 56.90/67.19/47.27 41.78/45.70/37.11 39.45/42.19/37.11 88.02/91.02/83.59
18 IDEAL 63.80/67.19/59.77 44.92/48.82/41.79 39.58/41.80/37.50 83.20/85.94/81.64

18 FastGAS 65.23/71.88/55.47 46.61/48.04/45.70 44.53/47.66/41.02 88.93/92.58/84.77

Table 6: Average/Maximum/Minimum performance of FastGAS and two baselines across the first four tasks in
Table 1 over three trials. The best performance for each task is highlighted in bold.

Methods RTE HellaSwag Xsum

100 Vote-k 57.68/58.20/57.42 65.89/69.14/64.06 19.55/19.94/19.13
100 IDEAL 58.98/60.94/57.42 64.97/69.53/61.72 19.68/19.77/19.58

100 FastGAS 61.98/63.28/60.55 67.45/71.88/65.23 20.00/20.55/19.59
18 Vote-k 56.64/57.81/55.86 66.02/71.09/63.28 19.45/20.45/18.30
18 IDEAL 53.65/55.47/52.34 65.89/70.70/63.28 19.21/20.09/18.76

18 FastGAS 56.51/57.81/54.69 66.67/69.92/64.84 20.26/20.65/19.63
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