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Abstract—intelligence (AI) in expediting glaucoma detection
and enabling consensus. The Vision Transformer (ViT) model is
a promising solution for this problem as it uses the self-attention
mechanism to improve performance and interpretability. Fur-
thermore, eye-tracking data provides valuable information about
a clinician’s decision-making process during the diagnosis of
glaucoma using Optical Coherence Tomography (OCT) reports.
In this study, two approaches were originated for incorporating
eye-tracking data into the ViT’s training process, using solely eye
movement fixation order and attention-alignment loss. Fixation-
order-informed (FOI) ViT models were found to perform better
than the original ViT model, with fewer parameters and faster
training. The use of attention-alignment in the ViT loss function
resulted in improved performance when the effect of clinician-
generated spatial attention was increased. The attention maps
generated by these modified ViTs enabled interpretability and
made the reasons for missed predictions more transparent espe-
cially for our FOI ViT model. Overall, these findings demonstrate
the potential of using expert eye-tracking data to improve the
performance of ViT models in glaucoma diagnosis.

Index Terms—attention, computer-aided diagnosis, eye-
tracking, glaucoma, interpretability, optical coherence tomogra-
phy, vision transformer

I. INTRODUCTION

Glaucoma is a chronic eye disease that leads to optic nerve
damage and vision loss if left untreated. It is the leading cause
of irreversible blindness worldwide, affecting an estimated
80 million people in 2020, and its prevalence is expected
to rise to 111.8 million by 2040 [1], [2]. The prevalence of
glaucoma is higher among older adults, with an estimated 10%
of individuals over 80 years old affected by the disease [3].
In the United States, it is estimated that more than 3 million
people have glaucoma, and it is the leading cause of blindness
among African Americans.

Optical coherence tomography (OCT) imaging is commonly
used to diagnose glaucoma, but its interpretation can be
challenging due to complexity of the images and variation in
individual anatomy. Clinicians must carefully analyze OCT
scans to identify structural changes that indicate glaucoma
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progression, which can be a subjective and time-consuming
process. Moreover, there can be discrepancies in the inter-
pretation of OCT scans among different clinicians [4]. As a
result, there is a need for objective and reliable diagnostic
tools to support clinicians in achieving accurate and efficient
glaucoma diagnosis to expedite delivery of sight-saving treat-
ment. Therefore, the development of automated methods for
analyzing OCT scans can potentially improve the accuracy and
consistency of glaucoma diagnosis.

Artificial Intelligence (AI) has emerged as a promising
solution to improve glaucoma diagnosis. Machine learning
algorithms can analyze large amounts of data and identify
patterns that may be missed by human clinicians [5]. However,
interpretability remains a crucial issue in the field. The ‘black-
box’ nature of AI systems is a significant barrier that hinders
their adoption in the clinic. Clinicians need to understand
how AI models make decisions to trust their recommendations
fully. Therefore, there is a need to develop AI models whose
reasoning can be explained to clinicians [6]. This will enable
clinicians to make informed decisions about patient care and
improve the accuracy of glaucoma diagnosis.

Medical expert visual attention is a valuable tool for in-
terpreting clinical decisions. In 1981, Carmody et al. [7]
conducted one of the earliest eye-tracking studies in radiology,
investigating the detection of lung nodules in chest X-ray
films. The study revealed that individual radiologists’ eye
scanning strategies could impact the false negative errors in
X-ray readings. Kundel et al. [8] collected eye-tracking data
and found that 57% of cancer lesions were located within the
first second of viewing. These findings suggest that eye move-
ments of medical experts could help elucidate their decision-
making process and enhance bioinspired AI. Experts’ visual
mechanisms that underlie their decision-making process, as
reflected in their eye movements, can offer valuable insights
for developing more interpretable and reliable AI partners
for clinicians. By incorporating eye-tracking into the clinical
workflow and analyzing the resulting data, AI models can
be trained to better emulate the decision-making process of
medical experts, leading to improved accuracy of diagnoses.

We propose two novel strategies that utilize Vision Trans-



former (ViT) models and eye-tracking data from clinicians
for detecting glaucoma from OCT reports. The first strategy
prioritizes computational efficiency by analyzing only the
image patches that experts fixate on during glaucoma diagnosis
from OCT images. The positional embeddings used in this
approach are derived from clinician fixation order, rather than
inherent image structure. The second strategy modifies ViT’s
attention mechanism by incorporating a loss function that
aims to align its attention map with that of the clinicians.
By employing these approaches, we seek to aid the diagnosis
of glaucoma while also bolstering interpretability.

II. BACKGROUND

A. Eye Tracking and Deep Learning in Medical Imaging

In recent years, there has been a growing interest in ex-
ploring the potential of eye-tracking data in medical image
analysis, particularly from the perspective of deep learning.
One approach is to use eye-tracking data to aid in the annota-
tion of medical images, which can be a time-consuming and
labor-intensive task. For example, Stember and colleagues [11]
used eye-tracking data and speech recognition to automatically
label tumors in brain images. This approach was found to
be faster and easier than the conventional manual annotation
using mouse clicking and dragging.

Another area of research is investigating the relationship
between human visual attention and deep learning models in
medical image analysis. Mall and colleagues [12] explored
this relationship in the context of mammography, studying
the effectiveness of convolutional neural networks (CNNs)
in finding cancer in mammography data. The authors also
modeled the visual search behavior of radiologists looking
for breast cancer using CNNs [13]. Li and colleagues [14]
introduced an attention-based convolutional neural network
(AG-CNN) for glaucoma detection, addressing the lack of
attention mechanisms in existing CNN-based medical image
recognition approaches. The authors established a large-scale
attention-based glaucoma (LAG) database with 5,824 labeled
fundus images and attention maps collected via simulated eye-
tracking experiments done by ophthalmologists. The proposed
AG-CNN includes an attention prediction subnet, a patholog-
ical area localization subnet, and a glaucoma classification
subnet, visualizing features as localized pathological areas to
enhance glaucoma detection performance.

Numerous studies have demonstrated the usefulness of eye-
tracking data as a prior for deep learning models in medical
imaging. Huang and colleagues [15] drew inspiration from
the selective attention mechanism observed in human visual
processing, which allows the cognitive system to learn from a
limited number of training samples by selectively attending
to task-relevant visual clues while ignoring distractors. In
their work, the authors leveraged eye-gaze data in a limited
data setting and developed a method that achieved superior
performance in both 3D tumor segmentation and 2D chest X-
ray classification tasks. The success of Huang and colleague’s
approach highlights the potential of eye-tracking data to guide
deep learning models in medical imaging. By using eye-gaze

data as a prior, deep learning models can focus on the most
informative regions of the image, thereby improving efficiency
and accuracy, especially in cases where training data is limited.

Jiang and colleagues [16] obtained eye-tracking data from
clinicians performing diabetic retinopathy diagnosis and ex-
plored different ways to utilize the gaze maps. They evaluated
the impact of gaze maps on the original fundus image through
two image fusion methods and used a weighted gaze map
to guide a neural network model’s attention learning. Fur-
thermore, they proposed an attention learning strategy that
considers the difficulty and class of the image to improve
model interpretability.

Similarly, Saab and colleagues [19] also introduced a
method that integrates passively and inexpensively collected
gaze data into a CAD system for medical image classification
by transforming the gaze data into a rich source of supervision.
They identified a set of gaze features and demonstrated that
they contain class-discriminative information. They then pro-
posed two methods for incorporating these gaze features into
deep learning pipelines. Their findings revealed that their their
method without task labels performed comparably to models
trained with task labels. When task labels were available,
their method exhibited improved performance over multiple
baselines. This work demonstrates the potential of gaze data
as a powerful tool for training deep learning models.

In fact, the study conducted by Ma and colleagues [20]
stands as the sole endeavor to enhance the training of a ViT
using eye-tracking data in medicine. Their model, known as
eye-gaze-guided ViT (EG-ViT), involves masking out patches
in the input radiology image that fall outside the radiologists’
field of interest. Additionally, they introduce an extra residual
connection in the last encoder layer. This not only resulted in
improved performance but also enhanced the interpretability
of the model. While such examples have focused on radi-
ology, we are one of the first teams to introduce ophthal-
mologist viewing behavior on OCT images into the training
of ViT models specifically for the detection of glaucoma.
We incorporate eye-tracking data into the training process
without modifying the ViT architecture itself. Therefore, our
methodologies remain agnostic to ViT variants such as DeiT
[21], PVT [22], TNT [23], Swin [24], and CSWin [25]. Our
primary objective is to harness the potential of eye-tracking
data for ViT training by exploring various approaches to
integrate this data. We strive to develop techniques that strike
a balance between interpretability, generalizability, accuracy,
computational efficiency, and the preservation of the original
model architecture.

III. METHODS

Eye-tracking data was obtained from a group of 14 clin-
icians at the Harkness Eye Institute, Columbia University
Medical Center, comprising of 9 residents and 5 glaucoma
faculty/fellows. The clinicians were presented with 2 subsets
of 20 OCT reports (10 glaucomatous and 10 healthy), one set
fixed for all participants (‘control’) and the other randomly
selected (‘experimental’) out of a total of 185 OCT reports,



with 121 reports being glaucomatous and 64 reports being
healthy. During the analysis of the OCT reports, the clinicians
wore a Pupil Labs Core (200-Hertz) eye-tracker device, which
was mounted on their heads like glasses. They were asked
to provide a score between 0 and 100 for glaucoma (0 indi-
cating definite health and 100 indicating definite glaucoma)
and to briefly summarize the OCT report features used in
making their diagnoses. This study, Protocol AAAU4079, was
approved by the Columbia University Irving Medical Center
Institutional Review Board on 12/22/2022 and is in accordance
with the tenets set forth by the Declaration of Helsinki.
Informed consent was obtained from all study participants.

A. Fixation-Order-Informed (FOI) ViT

In this section, we outline the steps involved in training a
ViT model that incorporates the order of fixations made by
clinicians on OCT reports during glaucoma diagnosis. Supp.
Fig. 5 shows a flow-chart of both FOI and OGA ViT pipelines.

1) Eye-tracking Data Preprocessing: In our preliminary
analysis, we observed that glaucoma faculty/fellows required
on average approximately half as many fixations on OCT
reports as residents to make correct glaucoma diagnoses [26].
Given that glaucoma faculty/fellows are able to make correct
predictions faster (with fewer fixations) than residents, we
chose to exclusively use eye-tracking data from glaucoma fac-
ulty/fellows (hereafter referred to as ‘experts’) in developing
our FOI ViT model.

To mitigate errors and optimize accuracy/precision, we
validated the eye tracker on a simple calibration task prior
to data collection; we controlled room lighting, the display
monitor and settings, and prevented head-mounting slippage
by measuring and keeping nose-to-screen distance constant be-
tween participants. In spite of these efforts, the eye-tracker did
at times produce noisy measurements due to minor variation
in calibration, focus settings, and lighting conditions. In some
instances, the number of fixations on a report was less than 10,
and all fixations were concentrated in a relatively small region
despite the clinician looking at different regions of the report.
To eliminate these noisy trials, we retained eye-gaze patterns
where the number of fixations was greater than 40 (equivalent
to approximately 10 seconds) and the spatial variance was in
the top 50%. We calculated spatial variance for any eye-gaze
pattern by computing the covariance matrix between X and Y
coordinates (which is a 2 × 2 matrix) and adding all entries,
except one of the non-diagonal entries.

Since each of the five experts viewed one randomized
experimental subset of 20 reports and one controlled subset
of the same 20 reports each, we initially had 200 eye-gaze
patterns (40x5). After limiting the eye-gaze patterns to those
that corresponded to correct diagnoses (based on prior ground
truth established by expert review of clinical and imaging
data), we were left with 171 patterns. Finally, by applying
the aforementioned spatial variance criteria, we were left with
31 eye-gaze patterns. These patterns were incorporated indi-
vidually into different FOI ViT models, and the methodology
for incorporating them into ViT training is described below.

2) Image Preprocessing: The original OCT reports were of
size 2680×5375 pixels or larger; to decrease model processing
time, we reduced each dimension of the input image to
roughly one-fifth of its original value, making the dimension
of each input image 500 × 1000 pixels irrespective of initial
size. The pixel values of resized images were normalized
using pre-determined mean and standard deviation values of
[0.485, 0.456, 0.406] and [0.229, 0.224, 0.225], for R, G, and B
channels, respectively. These values are consistent with those
used for normalizing images while training the popular ResNet
[27] CNN. Such image normalization ensures that the pixel
values across images belong to a similar distribution, which
leads to faster model convergence.

To facilitate input of eye-gaze data from clinicians, our
fixation-order-informed ViT (FOI ViT) model requires im-
ages to undergo further pre-processing. Specifically, we select
corresponding patches from the OCT report based on the
clinician’s eye-gaze pattern, and stack these patches in a
row-wise raster fashion. The relative placement of patches
is determined by the order in which the clinician looked at
different parts of the report, with unviewed patches being
dropped. The resulting processed image has dimensions of
h × 1000, where h is the height of the image, equal to the
number of fixations in the eye-gaze pattern, multiplied by
the patch width of 20, divided by 1000, and then multiplied
by the patch height of 20. As shown in Figure 1 (bottom,
also enlarged in Supplementary Figure 6), the top-left patch
represents the first patch viewed by the clinician, while the
bottom-right patch (non-black) corresponds to the last patch
viewed. Prior to being inputted into the FOI ViT model, this
pre-processing step is performed on every image based on
the corresponding eye-gaze pattern. Each of the 31 eye-gaze
patterns are used in 31 different models, and each model
applies its corresponding eye-gaze pattern to all 185 input
images.

Fig. 1. Top-left: example original OCT report; Top-Right: example eye-gaze
patches in context (with remaining OCT report blackened); Bottom: eye-gaze
patches stacked in row-wise raster fashion, serving as input to FOI-ViT model.
Enlarged version of this figure also in Supplementary Materials.

3) Data Augmentation: In the different experiments, the
clinicians viewed OCT reports with varying appearances. Dur-
ing preprocessing, the images are resized to 500×1000 pixels
to ensure consistent dimensions, and the colors are normalized
as previously described. However, additional differences such
as relative distances between sections, as well as the sizes and
aspect ratios of those sections, must also be considered. Failure
to account for these differences could result in the FOI ViT



model seeing a patch in some reports but not others, leading
to insufficient information for making reliable predictions.

To solve the problem of differences in appearance between
OCT reports, two types of data augmentations are used during
image pre-processing. Firstly, the X and Y coordinates in
the eye-gaze pattern are perturbed by 1 unit probabilistically.
Specifically, there is a 5% chance of incrementing and a
5% chance of decrementing any X-coordinate, and the same
for any Y -coordinate in the gaze pattern; we call this data
augmentation strategy ‘jittering’. Secondly, the area of each
patch’s receptive field is increased probabilistically to ensure
that an eye-gaze pattern is not restricted to a narrow region
across different reports. With 80% probability, each patch has
an area of 1 unit2. With 15% probability, the patch area is
4 unit2, and with 5% probability, it is 9 unit2; we refer to
this data augmentation strategy as varying ‘receptive field’.
Even though the receptive field of a patch may increase, it is
down-sampled to be consistent with patch size of 20× 20.

Supplementary Figure 1 shows patches extracted using
eye-gaze data in their original positions on the OCT report
(top) and with data augmentations applied (bottom). The first
difference one can notice is that positions of many patches are
different between top and bottom. Secondly, one can observe
that neighboring patches in Supp. Fig. 1 (top) are continuous
and join seamlessly. On the other hand, neighboring patches
in Supp. Fig. 1 (bottom) do not join seamlessly, and this is
because the patches may have different receptive fields (1, 4, or
9 unit2). Overall, this dynamic augmentation allows the FOI
ViT model to ‘see’ regions that are near but along the gaze-
pattern, accounting for small differences in relative distances,
sizes, and aspect ratios between reports.

4) Model Training: To evaluate the impact of integrating
fixation order into ViT training, we employed a control ViT
model and several FOI ViT models, each utilizing a different
eye-gaze pattern. The primary difference between control and
FOI ViT models was in the pre-processing of their input
images and the setting of their positional embeddings. Despite
these differences, both models shared certain similarities. For
instance, we chose a patch size of 20 × 20 for both models,
as this size is the smallest common divisor of the resized
image dimensions (500× 1000) that is greater than 16, which
is the patch size used in the original ViT paper [28]. It is
worth noting that we did not select a smaller patch size, as
this would have resulted in a higher number of patches and
increased computational complexity. Additionally, we used the
hyperparameters shown in Table I for both models.

The differences in input image pre-processing and positional
embedding setting between the control and FOI ViT models
were motivated by the aim to investigate the impact of gaze-
data on FOI ViT performance. In natural language processing
(NLP), transformers use sinusoidal positional embeddings to
encode positional information of tokens in a sequence [29].
Similarly, in ViT, positional embeddings encode informa-
tion about the position of a patch in the image. Positional
embeddings can be visualized as vectors that shift close
patches in the image to close positions in the embedding

TABLE I
HYPERPARAMETER CHOICES FOR CONTROL AND FOI VIT MODELS

Patch Size 20× 20
Embedding Dimension 1024

Depth 3
Number of Heads 8
MLP Dimension 1024

Dropout Rate 0.1
Embedding Dropout Rate 0.1

Optimizer Adam
Weight Decay 10−4

Learning Rate 10−4

Number of Epochs 15
Batch Size 10

Expert Participants 5
Gaze-Image Samples Per Model (for testing accuracy) 185

Number of Unique FOI-ViT Models 31

space. The authors of the original ViT paper [28] made their
positional embeddings learnable, instead of sinusoidal, which
are non-learnable. They found that the model was able to
learn appropriate positional embeddings based on the inherent
image structure. The control ViT model’s learnable positional
embeddings allow it to learn relative positions between patches
in the report. This information can be leveraged to identify
which parts of the report are crucial to making a glaucomatous
prediction.

On the other hand, our FOI ViT model uses non-learnable
sinusoidal positional embeddings, akin to those in NLP
transformers. In NLP, the language’s grammatical structure
determines the order in which tokens appear in an input.
Similarly, for our FOI ViT models, the expert eye-gaze pattern
determines not only the patches that the model can see but also
the order in which patches appear in the input image. Conse-
quently, non-learnable positional embeddings constrain/refine
the FOI ViT model to “see” the report in the same manner
that clinicians did.

B. Attention-Aligned Loss in Vision Transformers

Our second strategy for augmenting the ViT with expert eye
movement data involved guiding the transformer to “learn”
to match certain aspects of clinician eye movement behavior.
The ViT’s self-attention mechanism gives insight into how
the model mimics the human visual system’s approach for
deciding what to learn from the most while training [31]. We
attempted to guide the self-attention of the ViT to high-density
fixation regions of clinicians, thereby learning human expert
priors to improve the ViT’s accuracy and interpretability.

To achieve this, we introduced an attention-alignment term
in the loss function of the ViT model. In addition to a
regular classification cross-entropy loss term, Lclassification,
our expert attention-aligned ViT incorporates an additional
“attention-alignment” (AA) term into the loss function (as
shown in Equation 1), which measures the similarity between
the ViT attention weights and clinician eye-tracking patterns.
This cross-entropy distance between medical-expert attention
and ViT self-attention (LAA) is weighted by an additional α



hyperparameter, which determines the importance of align-
ment in model training. α is determined manually. When
α is set to 0, it indicates no clinician knowledge involved;
when α is set to 1, it indicates only clinician eye fixation
attention (no ViT self-attention) is involved. By employing this
approach, we seamlessly integrate rich human visual attention
information into the loss function of the ViT. Leveraging
expert eye movement data as a guide, we instruct the ViT to
align its attention weights with the fixation points identified
by clinicians during their diagnostic process. This bears a
resemblance to knowledge distillation [32], yet our exclusive
teacher is composed solely of clinician gaze information.

Loss = (1− α)× Lclassification + α× LAA (1)

1) Eye-tracking and OCT Image Preprocessing: To quan-
tify alignment between ViT attention and expert clinician
attention, we converted the clinician eye-tracking data and ViT
self-attention matrix into matrices of the same dimension, in
which each grid corresponds to a patch in the original OCT
scan. The ViT attention matrix is computed by taking the self-
attention outputs from the ViT and marginalizing the attention
directed into each patch. The eye-tracking attention matrix
(hereafter referred to as ‘heatmap’) is computed as described
in the next paragraph.

Within our dataset, a single OCT report may be reviewed
by multiple clinicians, resulting in various sets of eye-tracking
data for the same report. In order to avoid creating multiple
heatmaps for a single report, we aggregate all the gaze data
of clinicians who viewed a given report via a method we call
‘patch bucketing’, creating a global heatmap for that OCT
report derived from all the clinicians who viewed it. For every
clinician who assessed the same report (on average a given
report was viewed by about 3 clinicians), we standardize the
X and Y positions (ranging from 0.0 to 1.0) of their fixation
locations and group them together. We then create a 14x14
heatmap by multiplying each normalized X and Y value by
14; to aggregate all clinician fixation data, we increment the
quantized patches within the 14x14 heatmap that correspond
to each clinician’s fixations in a given OCT report. The
resulting heatmap accumulates counts where clinicians fixated
most on that OCT report. Finally, we normalize this global
heatmap to produce a weighting between 0.0 to 1.0 for each
region. This technique results in a consistent, ‘global’ heatmap
representation capturing all clinician eye movement data for a
given OCT report while training the ViT.

2) Model Information: The model, a pretrained transformer
using Google’s vit-base-patch16-224-in21k transformer, was
trained (fine-tuned) on 185 OCT scans and their corresponding
eye-tracking data.

IV. RESULTS

A. Fixation Order Informed ViT

To ensure a fair comparison of performance, we conducted
5-fold cross-validation five times (yielding 25 model eval-

uations) on both the control ViT model and the 31 FOI
ViT models, using identical hyperparameters. The optimal
model for each fold was determined using validation loss
as the measure of performance. The results from training
these models are summarized in Table II, where each column
represents a metric averaged over the 25 optimal models from
each fold. In order to provide a clear picture of the relative
performance of the FOI ViT models, we have presented the
results for two models, FOI ViT-4 and FOI ViT-20, which
represent the best and worst performing FOI ViT models,
respectively. We also provide results in Supplementary Table I
of models generated by ablating either our jittering or receptive
field data augmentation approaches (or both) to show the
relative contribution of these strategies on model performance.

To assess whether differences in performance were statisti-
cally significant, we conducted Mann-Whitney U tests between
all models. Our choice of performance measure was the F1-
score, as it is robust to class imbalance, which is a common
occurrence during cross-validation due to our dataset contain-
ing 121 glaucomatous reports and only 64 healthy reports.
Our analysis revealed that out of the 31 FOI ViT models, four
performed significantly worse than the control ViT model, with
FOI ViT-20 being the poorest performer (refer to Supp. Table
1). Conversely, the remaining 27 FOI ViT models performed
comparably or slightly better than the control ViT model, with
FOI ViT-4 emerging as the best performer among them. Supp.
Table 1 ablation tests show that, while presence of both jitter
and receptive field augmentation strategies together did help
to improve FOI ViT-4’s performance, presence of only one
augmentation strategy had negligible impact on performance.

B. Attention-Aligned Loss in Vision Transformers

Figure 2 demonstrates the alignment score (shown in Equa-
tion 1) measured over about 30 epochs of training as well
as corresponding expert-aligned ViT attention outputs. The
alignment score here represents the cross entropy between
attention outputs and clinician fixation data. A decreasing loss
score indicates that the transformer is aligning its attention to
be more similar to clinician gaze patterns. Table II shows glau-
coma classification performance of attention-aligned (hereafter
referred to as ‘OGA’, Ophthalmologist-Gaze-Augmented) ViT
models at varying values of α.

V. DISCUSSION

Table II shows collective performance (mean F-1 score,
precision, and recall) of our best FOI ViT models, best
OGA ViT models (with optimal α values), and multiple
baseline models using CNN and ViT architectures with and
without gaze overlaid on OCT reports. Comparison with
these baselines serves to showcase the glaucoma detection
accuracy improvement afforded by incorporation of clinician
eye tracking data into ViT training.

A. Fixation-Order-Informed ViT

1) Efficiency and Accuracy: Our findings demonstrate that
the incorporation of eye-tracking data from clinicians enables



TABLE II
MEAN F-1 SCORE, MEAN PRECISION, AND MEAN RECALL GLAUCOMA DETECTION PERFORMANCE FOR FOI VIT AND ATTENTION-ALIGNED (OGA)

VIT VS. BASELINE CNN AND VIT ARCHITECTURES WITH AND WITHOUT GAZE DATA OVERLAID ON OCT REPORT INPUTS

Model and Input # of Trainable Params Image Resolution Mean F1-Score Mean Precision Mean Recall
FOI ViT-4 13M hx1000, h ≪ 500 0.918 0.924 0.824

OCT + Gaze + ViT 16.4M 500x1000 0.922 0.928 0.915
OCT + Gaze + ResNet50 23.5M 500x1000 0.908 0.921 0.901
Control ViT (No Gaze) 16M 500x1000 0.898 0.917 0.883

FOI ViT-20 16M 500x1000 0.836 0.837 0.849
OGA-ViT (alpha=0.05) 85.8M 224x224 0.920 0.960 0.896
OGA-ViT (alpha=0.01) 85.8M 224x224 0.897 0.898 0.905
OGA-ViT (alpha=0.1) 85.8M 224x224 0.888 0.900 0.899

OGA-ViT (alpha=0), No Gaze 85.8M 224x224 0.866 0.875 0.882
OCT + ResNet50 (No Gaze) 23.5M 224x224 0.860 0.888 0.840

Fig. 2. Alignment loss between ViT self-attention and clinician global
heatmaps for α = 0.05. A lower score indicates that the ViT and clinician
are focusing on the same regions. There are approximately 5-6 steps in
each epoch. The inset shows heatmaps used to calculate attention alignment.
Inset from left to right: attention-aligned (OGA) ViT outputs over time with
α = 0.05 and t = 3, 53, 92 and 147 steps, respectively. Note that the
attention output at t = 147 steps highlights circumpapillary b-scan, RNFL,
and GCL regions, consistent with the ‘CU-Method’ used by clinicians to
diagnose glaucoma at CUIMC. Inset at far right: attention of cumulative
clinician fixation data.

the development of FOI ViT models that perform with slightly
higher accuracy (average F1-score of 0.918 for FOI ViT-4)
compared to ViT models that do not use such data (average F1-
score of 0.898 for control ViT). This outcome is particularly
noteworthy given that almost all FOI ViT models observe
less than 10% of each report, as each model is limited to
only seeing the regions where a clinician’s fixations landed;
FOI ViT-4 in particular has an image resolution of h x 1000,
where h is much smaller than 500. Moreover, FOI ViT models
have around 13 million model weights (trainable parameters),
while the control ViT model has approximately 16 million
model weights, because the latter contains learnable positional
embeddings. Due to the smaller input image size and fewer
parameters, the FOI ViT model’s training speed is 50% faster
than that of the control ViT model.

Our FOI-ViT model also achieves glaucoma detection ac-
curacy with comparable accuracy and higher efficiency (fewer

model parameters) than baseline ViT (OCT + Gaze + ViT)
and CNN-based (OCT + Gaze + ResNet50) architectures
taking as input full OCT reports overlaid with (or without)
clinician gaze as a heatmap (example gaze-overlaid image
shown in Supplementary Figure 4); results of these baseline
models are also shown in Table II. These results underscore
the significance of eye-tracking data. Despite observing a
significantly smaller portion of the OCT report and having
fewer parameters, the FOI ViT model performs comparably
to the larger and slower-to-train control ViT model as well
as the baseline ViT and CNN architectures. Our findings
indicate that the utilization of eye-tracking data, especially
when using the fixation order in eye-gaze, can function as
an efficient prior. Our introduction of jitter and receptive field
data augmentation strategies also played a role in improving
FOI ViT performance, as demonstrated in Supp. Table 1.

The poor performance of FOI ViT-20 in spite of utilizing
gaze may arise from the fact that the gaze pattern for this
model came from a trainee (with 3 or less years of experience),
whereas the gaze pattern for our best FOI ViT-4 came from a
glaucoma faculty member with 30 or more years of experience.
This suggests that the variance in expertise levels among the
participants could have played a role in the observed difference
in model performance.

Statistically, we observed an effect size (Cohen’s d) of 0.499
(based on FOI ViT-4 vs. control ViT F1 scores and standard
deviations from Table II), with F-1 score increasing from 0.898
(control ViT) to 0.918 (FOI-ViT) on average (at 80% power, α
= 0.05), indicating a sample size of 130 would be sufficient (65
in each class). After pre-processing, we analyzed 31 unique
eye-gaze patterns applied to 185 OCT reports, yielding 185
gaze-image samples for each model assessed, providing a well-
powered sample.

2) Interpretability: The attention maps generated by ViT
models provide valuable insights into the areas of the input that
the model attends to when making predictions. For example,
Supplementary Figures 2 and 3 display the attention maps for
the best and worst performing FOI ViT models, respectively.
By analyzing these attention maps, researchers can gain a
deeper understanding of why some eye-gaze patterns perform
better than others. For example, Supp. Fig. 3 shows that the



FOI ViT-20 model’s suboptimal performance is because it
assigns higher importance to only one patch (yellow patch in
the top-left is on a vitreous region of circumpapillary b-scan
with no tissue), whereas FOI ViT-4 (Supp. Fig. 2) assigns high
attention values to several patches corresponding to retinal
nerve fiber layer (RNFL) and ganglion cell layer (GCL)
regions, consistent with the systematic viewing ‘algorithm’
(known as the ‘CU-Method’) taught to ophthalmologists at
CUIMC.

In addition to shedding light on the model’s decision-
making process, attention maps generated by high-performing
FOI ViT models, such as the one displayed in Supp. Fig. 2,
can be used to discern the relative importance of various OCT-
report regions and compare them to regions that clinicians
observe to learn potentially new OCT biomarkers picked up
by the AI. Furthermore, when ViT models make incorrect
predictions, researchers can use these attention maps to di-
agnose the reasons for these mistakes both for the AI or a
medical trainee. For example, researchers can determine if the
model assigns higher importance to an incorrect region or if
the corresponding clinician eye-gaze pattern does not cover
relevant regions.

B. Attention-Aligned Loss in Vision Transformer

Our results with the attention-aligned loss function indicate
that there are effects on accuracy with different levels of α.
As demonstrated in Figure 2, model accuracy improves when
α is set to 0.05 compared to α of 0, 0.01, or 0.1, indicating a
moderate expert attention contribution optimizes our attention-
aligned ViT model.

Observing Figure 2, we see evidence of our model’s
medical-expert alignment process in action. The downward
trend of the graph indicates that attention alignment is success-
fully altering the ViT model’s behavior. We can also visualize
the two inputs used to calculate the alignment score. On the far
right of the inset, we see the aggregated clinician fixation data
converted into a heatmap, where brighter patches represent
OCT-report areas which have been fixated more often. On the
left side of the Figure 2 inset, we see the ViT’s attention-
aligned outputs as they change over time. During training,
the model observed samples of global clinician heatmaps
and used these to appropriately adjust its own self-attention
outputs. In this instance, the clinicians focused mainly on
the top left and bottom right of the OCT scans. Whereas,
the attention-aligned ViT focused attention towards the top
left, top right, and bottom right of the report as training time
increased, representing the b-scan, RNFL, and RGCL regions
of the OCT report, consistent with the ‘CU-method’ used by
clinicians at CUIMC to diagnose glaucoma. Furthermore, our
‘patch bucketing’/global heatmap generation approach, while
reducing sample size for training, enabled the aggregation of
fixation information from multiple experts on one heatmap,
enhancing our OGA ViT models’ training consistency by
ensuring aligned expert attention guidance for a given OCT
input.

Thus, the effect of attention-alignment here serves an impor-
tant role. By blending regions from the clinician fixations with
areas that the vision transformer pinpoints as important, we
utilize existing medical domain expertise while concurrently
discovering new AI-learned regions. Such interplay bridges
the clinician’s existing prior knowledge with novel ViT-based
insights, generating suggestions for clinicians while improving
performance for deep learning models.

Fig. 3. Violin Plot Comparing FOI, OGA, and Baseline Models.

C. Comparing Models with and without Gaze Augmentation

The violin plot in Figure 3 demonstrates the advantageous
impact of integrating gaze data into model architectures,
exemplified by notable improvements in median performance
going from left to right in the figure. Models incorporating
gaze data, such as FOI ViT-4, CNN, and ViT with overlaid
gaze, and OGA ViT (with α of 0.05), consistently outperform
their counterparts that lack eye-tracking information. This
lower performance is particularly evident for the ResNet50
(without gaze), FOI ViT-20, and the attention-unaligned ViT
model (with α of 0).

The width of the violin plots also serves as a visual gauge
for the variability in outcomes. Models relying on eye-tracking
data exhibit a greater frequency of data distributed closer to
the median result values, indicative of heightened consistency.
Moreover, these models yield higher F1-scores, showcasing
their reliability and efficacy. In contrast, models that do not
use gaze data not only demonstrate lower performance but also
showcase inconsistent results, exemplified by their narrower
frequency about the median. The incorporation of eye-tracking
data emerges as a factor in enhancing both the robustness and
overall accuracy of these models.

VI. CONCLUSION

In conclusion, our study demonstrates the potential of using
eye-tracking data to augment the training process of AI models
for diagnosing glaucoma. The use of fixation-order-informed
(FOI) ViT models and attention-alignment loss in ViT models
have shown promising results, with better performance than
the original ViT model while using fewer parameters/smaller



input image resolution and training faster as well as offering
more interpretability/mechanistic transparency. Our findings
suggest that increasing the effect of clinician-generated spatial
attention in ViT models (OGA-ViT) can improve performance,
highlighting the importance of using eye-tracking data in the
ViT training process.

Moreover, our research presents a novel approach to incor-
porating eye-tracking data as a prior for training AI models,
which can be extended to other types of medical reports and
diseases. The ability to develop interpretable models that can
provide new insights while also learning from experts to gain
domain knowledge is crucial for the future of AI in healthcare.
By doing so, we can improve accountability for both AI
and clinicians and promote a better understanding of how
AI systems make decisions. Just as this work builds on past
work using ophthalmology resident gaze data alone [33], as
we move forward, we anticipate that extending these models
to larger datasets, with more reports and eye-tracking data,
will further improve their effectiveness.

In future work, we aim to generalize our attention-aligned
loss approach by capturing both fixation duration and se-
quence order of multiple experts by fully leveraging ViT’s
self-attention matrix and multiple heads. With the continued
development of AI in healthcare, there is great potential for the
use of eye-tracking data to augment the training process of AI
models and improve clinical decision-making by enhancing the
accuracy, efficiency, and interpretability of diagnoses made by
‘medical-expert–AI teams’, leading to better patient outcomes.
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