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Abstract

This work compares seven energy-based learn-
ing algorithms, namely contrastive learning (CL),
equilibrium propagation (EP), coupled learning
(CpL) and different variants of these algorithms
depending on the type of perturbation used.
The algorithms are compared on deep convolu-
tional Hopfield networks (DCHNs) and evaluated
on five vision tasks (MNIST, Fashion-MNIST,
SVHN, CIFAR-10 and CIFAR-100). The results
reveal that while all algorithms perform similarly
on the simplest task (MNIST), differences in per-
formance become evident as task complexity in-
creases. Perhaps surprisingly, we find that nega-
tive perturbations yield significantly better results
than positive ones, and the centered variant of EP
emerges as the top-performing algorithm. Lastly,
we report new state-of-the-art DCHN simulations
on all five datasets (both in terms of speed and
accuracy), achieving a 13.5x speedup compared
to Laborieux et al. (2021).

1. Introduction
Prior to the dominance of backpropagation-based machine
learning, an alternative ‘energy-based’ learning (EBL) ap-
proach was introduced by Hopfield, Hinton and co-others,
in which the model dynamics is governed through an energy
function (Hopfield, 1984; Hinton et al., 1984). One of the
earliest EBL algorithms to train such energy-based models
was constrastive learning (CL)(Anderson & Peterson, 1987;
Movellan, 1991; Baldi & Pineda, 1991). In the machine
learning literature, interest in EBL algorithms has remained
limited (LeCun et al., 2006) due to the widespread success
of deep neural networks (DNNs) trained by backpropagation
on GPUs. However, EBL algorithms have more recently
revived interest as a promising learning framework for ana-
log learning machines (Kendall et al., 2020; Stern et al.,
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2021). Small-scale EBL-trained variable resistor networks
have been built (Dillavou et al., 2022; 2023), projecting
a possible 10,000× improvement in energy consumption
compared to GPU-based training of deep neural networks
(Yi et al., 2023).

In recent years, several variants of CL have been proposed,
such as equilibrium propagation (EP) (Scellier & Bengio,
2017), the centered variant of EP (Laborieux et al., 2021)
and coupled learning (CpL) (Stern et al., 2021). These algo-
rithms are often evaluated on different models and different
datasets without being compared to CL and to one another.
Due to the lack of explicit comparison between these algo-
rithms, they are typically clustered under the ’contrastive
learning’ banner (Luczak et al., 2022; Stern & Murugan,
2023; Dillavou et al., 2022; Peterson & Lavin, 2022) with
many follow-up works indifferently selecting among these
algorithms (Ernoult et al., 2019; Dillavou et al., 2022; Watfa
et al., 2022; Kiraz et al., 2022; Wycoff et al., 2022; Stern
et al., 2022; Yi et al., 2023; Dillavou et al., 2023). One of the
main issues for direct comparisons is the slow simulation
speed of EBL algorithms. Due to this slowness, EBL algo-
rithms have often been used to train very small networks on
very small datasets (by deep learning standards). 1

In this work, we aim to explicitly compare seven EBL algo-
rithms, including the four above-mentioned and three new
ones. Our comparative study is conducted on deep convolu-
tional Hopfield networks (DCHNs), an energy-based model
for which simulation times are not prohibitive (Ernoult et al.,
2019) and previously demonstrated to scale to more ad-
vanced tasks such as CIFAR-10 (Laborieux et al., 2021) and
Imagenet 32x32 (Laborieux & Zenke, 2022). Our study
consists in training DCHNs with each algorithm on five vi-
sion tasks (MNIST, Fashion-MNIST, SVHN, CIFAR-10
and CIFAR-100). We observe notable behavioural dif-
ferences between algorithms as task difficulty increases.
We also introduce a novel energy minimization procedure
for DCHNs that significantly accelerates simulation speed
(13.5x speedup compared to Laborieux et al. (2021)), yield-

1For example, Kendall et al. (2020) use SPICE to simulate the
training of a one-hidden-layer network (with 100 ‘hidden nodes’)
on MNIST, which takes one week for only ten epochs of training.
Similarly, Stern et al. (2021) simulate the training of disordered
networks of up to 2048 nodes on a subset of 200 images of the
MNIST dataset.
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ing state-of-the-art DCHN simulations both in terms of per-
formance and speed.

Figure 1. Cartoon illustrating the seven energy-based learning
(EBL) algorithms: contrastive learning (CL), positively-perturbed
algorithms (P-EP and P-CpL), negatively-perturbed algorithms
(N-EP and N-CpL) and centered algorithms (C-EP and C-CpL).
The desired output is y. The model prediction is o⋆ (i.e. the output
configuration minimizing the energy function). The strength of the
perturbation is β. A positive perturbation pulls the model output
(oβ⋆ ) towards y. A negative perturbation pushes the model output
(o−β

⋆ ) away from y. Arrows indicate the weight update: green
(resp. red) arrows decrease (resp. increase) the energy value of the
corresponding configuration.

2. Energy-based learning algorithms
In the setting of classification, an energy-based model is
composed of an input variable (x), a parameter variable
(θ) a hidden variable (h) and an output variable (o). A
scalar function E called energy function assigns to each
tuple (θ, x, h, o) a real number E(θ, x, h, o). Given θ and
x, among all possible configurations (h, o), the effective
configuration of the model is the equilibrium state, denoted
(h⋆, o⋆) and implicitly defined as a minimum of the energy
function,

(h⋆, o⋆) := argmin
(h,o)

E(θ, x, h, o). (1)

The equilibrium value of output variables, o⋆, represents a
prediction of the model, which we also denote o(θ, x) = o⋆
to emphasize its dependence on the input x and the model
parameter θ. The goal of learning is to adjust θ so that,

for any input x, the output o(θ, x) coincides with a desired
output y (the label associated to x).

2.1. Contrastive learning

Contrastive learning (CL) is the earliest energy-based learn-
ing (EBL) algorithm (Movellan, 1991). The CL algorithm
proceeds in two phases. In the first phase, input variables x
are clamped, while the hidden and output variables are free
to stabilize to their equilibrium value (h⋆, o⋆) as in (1). In
the second phase, the output variables o are clamped to the
desired output y (i.e., a strong perturbation), and the hidden
variables h are free to stabilize to a second energy minimum,
denoted h+

⋆ , characterized by

h+
⋆ := argmin

h
E(θ, x, h, y). (2)

The contrastive learning rule for the model parameters reads

∆CLθ = η

(
∂E

∂θ
(θ, x, h⋆, o⋆)−

∂E

∂θ

(
θ, x, h+

⋆ , y
))

,

(3)
where η is a learning rate.

2.2. Equilibrium propagation

Equilibrium propagation (EP) is another EBL algorithm
(Scellier & Bengio, 2017). One notable difference in EP
is that one explicitly introduces a cost function C(o, y) to
measure the discrepancy between the output o and desired
output y. EP is a variant of CL which also consists of
contrasting two states. The first phase of EP is the same as in
CL. In the second phase of EP however, the output variables
are only slightly perturbed (or nudged) rather than clamped
to y. This is achieved by augmenting the model’s energy
by a term βC(o, y), where β ∈ R is a scalar – the nudging
parameter. The model settles to another equilibrium state,
the perturbed state, characterized by

(hβ
⋆ , o

β
⋆ ) = argmin

(h,o)

[E(θ, x, h, o) + βC(o, y)] . (4)

The learning rule of EP is similar to CL:

∆EPθ =
η

β

(
∂E

∂θ
(θ, x, h⋆, o⋆)−

∂E

∂θ

(
θ, x, hβ

⋆ , o
β
⋆

))
.

(5)
The EP learning rule (5) comes in two variants depending
on whether β > 0 or β < 0. In this work, we refer to
the variant with β > 0 as positively-perturbed EP (P-EP)
and the variant with β < 0 as negatively-perturbed EP (N-
EP). We also consider the centered variant of EP (C-EP)
introduced by Laborieux et al. (2021) whose learning rule
reads

∆θ =
η

2β

(
∂E

∂θ

(
θ, x, h−β

⋆ , o−β
⋆

)
− ∂E

∂θ

(
θ, x, hβ

⋆ , o
β
⋆

))
.

(6)
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2.3. Coupled learning

Coupled learning (CpL) is another variant of CL, also pro-
ceeding in two phases (Stern et al., 2021). The first phase
of CpL is identical to the one of CL. In the second phase of
CpL, output variables are clamped to a weighted mean of
o⋆ and y, and the hidden variables are allowed to settle to
equilibrium. The weighted mean of outputs, denoted oβC , is
parameterized by a parameter β ∈ R \ {0} as follows:

hβ
C := argmin

h
E(θ, x, h, oβC), oβC := (1− β)o⋆ + βy.

(7)
Similarly to CL and EP, the learning rule of CpL reads

∆CpLθ =
η

β

(
∂E

∂θ
(θ, x, h⋆, o⋆)−

∂E

∂θ

(
θ, x, hβ

C , o
β
C

))
.

(8)
In particular, for β = 1, CpL boils down to CL. In their
original formulation, Stern et al. (2021) use β > 0 ; here we
refer to this version as positively-perturbed CpL (P-CpL).
We also introduce negatively-perturbed CpL (N-CpL, with
β < 0) and centered CpL (C-CpL):

∆θ =
η

2β

(
∂E

∂θ

(
θ, x, h−β

C , o−β
C

)
− ∂E

∂θ

(
θ, x, hβ

C , o
β
C

))
.

(9)

2.4. Theoretical results

Theorem 1 (Contrastive learning). The contrastive learning
rule (3) performs one step of gradient descent on the so-
called contrastive function J , i.e. ∆CLθ = −η ∂J

∂θ (θ, x, y),
where

J(θ, x, y) := E
(
θ, x, h+

⋆ , y
)
− E (θ, x, h⋆, o⋆) . (10)

Theorem 1 is proved in Movellan (1991); Baldi & Pineda
(1991). However, it is not clear that the contrastive function
J has the desirable properties of an objective function from a
machine learning perspective. The equilibrium propagation
(EP) learning rules have better properties ; the results below
are adapted from Scellier et al. (2022).

Theorem 2 (P-EP and N-EP). There exists a function Lβ

on which the learning rule (5) performs one step of gradient
descent, i.e. ∆EPθ = −η

∂Lβ

∂θ (θ, x, y). This function is a
lower bound of the ‘true’ cost function if β > 0 (P-EP), and
an upper bound if β < 0 (N-EP), i.e.

Lβ(θ, x, y) ≤ C (o(θ, x), y) ≤ L−β(θ, x, y), ∀β > 0,
(11)

where o(θ, x) := o⋆ as defined in (1). Furthermore, Lβ

approximates the true cost function when β → 0 as

Lβ(θ, x, y) = C (o(θ, x), y) +O(β). (12)

Theorem 3 (Centered EP). There exists a function L−β,+β

on which the learning rule (6) of C-EP performs one step
of gradient descent, i.e. ∆C−EPθ = −η

∂L−β,+β

∂θ (θ, x, y).
Furthermore, this loss function for C-EP approximates the
‘true’ cost function up to O(β2), i.e.

L−β,+β(θ, x, y) = C (o(θ, x), y) +O(β2). (13)

The analysis of coupled learning (P-CpL, N-CpL and C-
CpL) is more complicated. The coupled learning rules (8)
and (9) provably do not perform gradient descent on the
mean squared error (MSE). In fact, there exist situations
where the MSE increases under one step of the coupled
learning rule, for any value of β and any value of η.

3. Deep convolutional Hopfield networks
To compare the EBL algorithms presented in section 2, we
consider the EBL model of Laborieux et al. (2021), which
we call here deep convolutional Hopfield network (DCHN)
model. The network has an input layer, four hidden layers,
and an output layer of M units, where M is the number
of categories for the classification task considered. Succes-
sive layers are interconnected by convolutional interactions
with kernel size 3×3, padding 1, and max pooling. Except
for the last hidden layer and the output layer, which are
interconnected by a dense interaction.

One novelty in our DCHN simulations is that we use an
energy minimization procedure based on ‘asynchronous
updates’ so as to compute the steady states (free state and
perturbed states) required by the learning algorithms. This
is in contrast with the ‘synchronous update’ procedure used
in other works (Ernoult et al., 2019; Laborieux et al., 2021;
Laydevant et al., 2021; Laborieux & Zenke, 2022). We find
experimentally that our asynchronous procedure requires
fewer steps to converge than the synchronous one.

4. Simulations
4.1. Comparative study of EBL algorithms

We compare with simulations the seven EBL algorithms
of section 2 on the deep convolutional Hopfield network
(DCHN) of section 3. To do this, we train a DCHN on
MNIST, Fashion-MNIST, SVHN, CIFAR-10 and CIFAR-
100 using each of the seven EBL algorithms. For each
simulation, the DCHN is trained for 100 epochs. Each run
is performed on a single A100 GPU. A run on MNIST and
FashionMNIST takes 3 hours 30 minutes ; a run on SVHN
takes 4 hours 45 minutes ; and a run on CIFAR-10 and
CIFAR-100 takes 3 hours. All these simulations are per-
formed with the same network using the same initialization
scheme and the same hyperparameters.

We draw several lessons from Table 1.

3
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Table 1. Results obtained by training the deep convolutional Hop-
field network (DCHN) of Section 3 with the seven EBL algorithms
of Section 2. We also report two baselines: truncated backpropaga-
tion (TBP) and recurrent backpropagation (RBP) (Almeida, 1987;
Pineda, 1987). For each of these 45 experiments, we perform three
runs and report the mean test error rate in %.

MNIST F-MNIST SVHN C-10 C-100

TBP 0.42 6.12 3.76 10.1 33.4
RBP 0.44 6.28 3.87 10.7 34.4

CL 0.61 10.10 6.1 31.4 71.4
P-EP 1.66 90.00 83.9 72.6 89.4
N-EP 0.42 6.22 80.4 11.9 44.7
C-EP 0.44 6.47 3.51 11.1 37.0

P-CpL 0.66 64.70 40.1 46.9 77.9
N-CpL 0.50 6.86 80.4 13.5 51.9
C-CpL 0.44 6.91 4.23 14.9 46.5

Algorithms perform alike on MNIST. Little difference
is observed in the test performance of the algorithms on
MNIST, ranging from 0.42% to 0.66% test error rate for six
of the seven EBL algorithms.

Negative perturbations yield better results than positive
ones. On Fashion-MNIST, CIFAR-10 and CIFAR-100, the
N-EP and N-CpL algorithms (employing negative perturba-
tions) perform significantly better than CL, P-EP and P-CpL
(employing positive perturbations). This can be partly ex-
plained by Theorem 2, which shows that N-EP optimizes an
upper bound of the cost function, whereas P-EP optimizes a
lower bound. 2

Two-sided perturbations yield better results than one-
sided perturbations. While there is little difference
between centered algorithms (C-EP and C-CpL) and
negatively-perturbed algorithms (N-EP and N-CpL) on
MNIST, FashionMNIST and CIFAR-10, the centered al-
gorithms significantly improve the test error rate on CIFAR-
100 and unlock training on SVHN. This can be partly ex-
plained by Theorems 2 and 3, which show that the loss
function of C-EP better approximates the cost function (up
to O(β2)) than the loss function L−β of N-EP (up to O(β)).

The EP perturbation method yields better results than
the one of CpL. C-EP outperforms C-CpL on all tasks,
sometimes by a significant margin (CIFAR-10 and CIFAR-

2We note that on SVHN, the results obtained with N-EP and N-
CpL are much worse than CL. However, further simulations with a
different weight initialization scheme show that N-EP and N-CpL
generally perform better than CL, P-EP and P-CpL, supporting our
conclusion.

100). Similarly, N-EP outperforms N-CpL on all tasks. 3

Weak positive perturbations perform worse than strong
ones. P-EP fails on most datasets (Fashion-MNIST,
SVHN, CIFAR-10 and CIFAR-100). P-CpL performs better
than P-EP on all tasks, but also yields poor results in general.
It is noteworthy that CL, which employs a strong positive
perturbation, performs better than P-CpL and P-EP (which
employ weak positive perturbations) on all tasks, sometimes
by a very large margin (Fashion-MNIST and SVHN).

4.2. State-of-the-art DCHN simulations (performance
and speed)

The comparative study conducted in the previous subsection
highlights C-EP as the best EBL algorithm among those
considered in this work. Using C-EP, we then perform addi-
tional simulations on MNIST, CIFAR-10 and CIFAR-100,
where we optimize the hyperparameters of training (weight
initialization, initial learning rates, number of iterations,
value of the nudging parameter and weight decay) to yield
the best performance. We report the results in Table 2.

Table 2. We achieve state-of-the-art results with C-EP-trained
DCHNs on MNIST, CIFAR-10 and CIFAR-100. For each dataset,
we report the test error rate averaged over 3 runs, after 100 epochs
of training, and after 300 epochs, and we compare with the existing
literature on deep convolutional Hopfield networks (DCHNs)

MNIST C-10 C-100

Ernoult et al. (2019) 1.02
Laborieux et al. (2021) 11.68
Laydevant et al. (2021) 0.85 13.78

Luczak et al. (2022) 20.03
Laborieux & Zenke (2022) 11.4 38.4

This work (100 epochs) 0.44 10.40 34.2
This work (300 epochs) 9.70 31.6

We achieve better simulation results than existing works on
DCHNs on all three datasets, both in terms of performance
and speed. For instance, our 100-epoch simulations on
CIFAR-10 take 3 hours 18 minutes, which is 7 times faster
than those reported in (Laborieux & Zenke, 2022) (1 day),
and 36 times faster than those reported in Laydevant et al.
(2021) (5 days), and our 300-epoch simulations on CIFAR-
10 yield 9.70% test error rate, which is significantly lower
than (Laborieux & Zenke, 2022) (11.4%). Since no earlier
work on DCHNs has performed simulations on Fashion-
MNIST and SVHN, our results reported in Table 1 are
state-of-the-art on these datasets as well.

Our important speedup comes from our novel energy-

3We note however that P-EP performs worse than P-CpL on all
tasks.
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minimization procedure based on “asynchronous updates”,
combined with 60 iterations at inference (free phase) and
the use of 16-bit precision ; in comparison, Laborieux et al.
(2021) used “synchronous updates” with 250 iterations and
32-bit precision. These changes result in a 13.5x speedup
on the same device (a A100 GPU) without degrading the
performance.

5. Conclusion
Our comparative study of energy-based learning (EBL) al-
gorithms delivers a few key take-aways: 1) while all EBL
algorithms work equally well on MNIST, more difficult
tasks magnify small algorithmic differences, 2) negative
perturbations yield better results than positive ones, 3) two-
sided (centered) perturbations perform better than one-sided
perturbations, and 4) the perturbation technique of equi-
librium propagation yields better results than the one of
coupled learning. Our results highlight the centered variant
of equilibrium propagation (C-EP) as the best EBL algo-
rithm among those considered in the present work.

Our work also establishes new state-of-the-art results for
deep convolutional Hopfield networks (DCHNs) on all five
datasets, both in terms of performance (accuracy) and speed.
In particular, thanks to the use of a novel “asynchronous”
energy-minimization procedure for DCHNs, we manage to
reduce the number of iterations required to converge to equi-
librium from 250 to 60. Combined with the use of 16-bit
precision (instead of 32-bit), this leads our simulations to be
13.5 times faster than those of Laborieux et al. (2021) when
run on the same hardware. We hope that our important sim-
ulation speedup will help foster more interest and research
in EBL algorithms.

Ultimately, while we have conducted our comparative study
on simulations of Hopfield networks, the potential of EBL al-
gorithms is for the training of analog hardware. We believe
that our findings can inform the design of analog learning
machines (Dillavou et al., 2022; Yi et al., 2023; Dillavou
et al., 2023), and simulations of these machines (Kendall
et al., 2020; Stern et al., 2021). Finally, our theoretical
insights (Section 2.4) also apply to novel EBL algorithms
(Scellier et al., 2022; Anisetti et al., 2022; Laborieux &
Zenke, 2022; Hexner, 2023), and more generally to bi-level
optimization problems (Zucchet & Sacramento, 2022), in-
cluding the training of Lagrangian systems (Kendall, 2021;
Scellier, 2021), meta-learning (Zucchet et al., 2022), as well
as predictive coding (Millidge et al., 2022). We think that
our insights and experimental findings can also guide the
development of better learning algorithms in these settings
as well.
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