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Abstract

We present a method for reconstructing a clear Neu-
ral Radiance Field (NeRF) even with fast camera motions.
To address blur artifacts, we leverage both (blurry) RGB
images and event camera data captured in a binocular
configuration. Importantly, when reconstructing our clear
NeRF, we consider the camera modeling imperfections that
arise from the simple pinhole camera model as learned em-
beddings for each camera measurement, and further learn
a mapper that connects event camera measurements with
RGB data. As no previous dataset exists for our binocular
setting, we introduce an event camera dataset with captures
from a 3D-printed stereo configuration between RGB and
event cameras. Empirically, we evaluate our introduced
dataset and EVIMOv2 and show that our method leads to
improved reconstructions. Our code and dataset are avail-
able at https://github.com/ubc-vision/LSENeRF.

1. Introduction

Novel view synthesis has rapidly advanced since the recent
advent of Neural Radiance Fields (NeRFs) [19]. NeRFs
learn a Multi-Layer Perceptron (MLP) to represent a scene,
and use volume rendering to realize an image at a given
camera pose. Various extensions have been explored, in-
cluding improvements to its efficiency [21], robustness to
occluders and transients [29], tolerance to inexact input
camera poses [14, 36], and applications to human-centric
modeling [8]. More recently, 3D Gaussian splatting [9]
has been proposed as an alternative representation based on
rasterization instead of volume rendering. Whether using
NeRFs or Gaussians splats, building a scene representation
capable of rendering high-quality novel views depends on
having clear and sharp images during training.
Consequently, there has been focused research on re-
moving this constraint by augmenting existing neural ren-
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Figure 1. Teaser — We propose a deblur NeRF method that uses
both RGB and event data. We focus on sensor modeling imper-
fections, which allows our method to effectively make use of both
modalities. As shown, our method provides significantly sharper
reconstructions compared to both when using only RGB and also
other RGB/event NeRF baselines.

dering pipelines with a blur model, allowing for the acqui-
sition of a deblurred reconstruction [12, 15, 36]. These
works incorporate a physical model of blur formation under
fast camera motions, and by doing so recover a non-blurred
scene, as an inverse problem. While these methods deblur
scenes to some extent, under large camera motions they still
suffer from imperfect reconstructions; see Figure 1. This is
inevitable as the blur removes details from the original in-
puts, and there is only so much that can be recovered with-
out additional priors.

To further mitigate this issue, researchers have also
sought additional data modalities, specifically event cam-
eras that can complement blurry RGB images [3, 10, 25,
26]. Event streams, unlike typical RGB images, do not
suffer from motion blur [5], hence incorporating them into
NeRF pipelines can help deblur the scene. Although these



methods improve the clarity of NeRF reconstructions, they
often focus on synthetic data [3, 10, 25, 26] and are lim-
ited to single-camera scenarios that have aligned RGB and
event data [3, 25, 26]. The latter restricts the type of de-
vices that can be used, and the resolution remains relatively
low (640 x 480) [16, 25, 26]. In fact, for our target binoc-
ular setting, methods like E2NeRF [25] perform poorly, as
demonstrated in Figure | and later in our experiments. Ad-
ditionally, some methods, such as EvDeblurNeRF [3], are
entirely unsuitable because their loss function requires pre-
cise alignment between the RGB and event sensors.

In this work, we aim to better utilize RGB and event data
to achieve deblurred NeRFs by also focusing on improved
sensor modeling. Specifically, (i) to model the sensor re-
sponse differences between RGB and event data, we use a
power mapping function, that is, the gamma function. (ii) to
take into account the per-measure variations that may hap-
pen due to various camera hardware functions, we utilize
per-time embeddings. The former, learning a gamma map-
ping, is performed together with the NeRF training process,
in contrast to the conventional constant threshold adapta-
tion [25, 26] and the normalization strategy [10, 27]. This
is similar in spirit to EvDeblurNeRF [3], where the response
functions are learned as MLPs, but as we show empirically,
our solution, despite its simplicity, is superior. For the lat-
ter, while per-time embeddings is a common strategy used
in training conventional NeRFs [33] in the non-blurred case,
we find that learning these embeddings, and then substitut-
ing them with a global embedding that works well for all
frames, is highly effective in mitigating blur—in fact, up to
a level where it can outperform RGB/event NeRF baselines.

To validate our work, as no high-resolution binocular
event-RGB dataset exists for deblurring applications that
cover both indoor and outdoor environments, we introduce
a new dataset with RGB images and corresponding events.
Specifically, we 3D print a stereo casing that holds a GigE
Blackfly S RGB camera [4] and a Prophesee EVK-3 HD
event camera [24]. We then capture five outdoor scenes and
five indoor scenes that exhibit fast and slow camera mo-
tion for training and testing, respectively. Unlike existing
datasets that are captured with a single camera that provides
both temporal and pixel aligned RGB and event streams,
our dataset is binocular, with each camera providing high
spatial resolution data of each modality. In more detail,
our dataset provides 1440 x 1080 RGB images and event
streams of resolution 1280 x 720, whereas existing datasets
typically offer a resolution of 346 x 260 for both RGB and
events. We believe our dataset will be helpful when ex-
perimenting with systems that have both sensor modalities,
installed in different physical locations, for example on aug-
mented reality headsets or vehicles. To facilitate research in
this area, we will release our code, dataset and 3D printing
schematics.

To summarize, our contributions are as follow:

* we introduce a novel method focused on sensor modeling
errors for RGB and event-based deblur NeRF;

* to facilitate training and evaluation in our novel setting,
we introduce a new dataset that provides high-resolution
RGB and event streams in a binocular setup; and

* we significantly outperform the state of the art.

2. Related Work

We first discuss previous work that focus on building a clear
3D representation from either (blurry) RGB images, event
data, or a combination of both. Next, we briefly discuss
RGB and event stream data used for deblur NeRF.

Deblur NeRF. Since the introduction of NeRF [19], many
extensions have been developed to enhance the recovery of
clear 3D neural representations from blurry images. Deblur-
NeRF [15] attempts to recover a clear 3D representation
by explicitly modeling the blurring process as an averaging
over multiple rays that potentially caused the blur, and op-
timizing a clear NeRF that would have created the blurry
images. More recent works [13, 36, 41] have observed
that camera poses from blurry images are inherently inac-
curate and include camera optimization in the training pro-
cess. Other works further enforce rigid camera motion [12]
or attempt to learn the 2D blur kernels with sharpness pri-
ors [11]. In our work, we show that learning a per-time em-
bedding during NeRF training, then substituting these em-
beddings with a global scene embedding also works well
for further deblurring, outperforming BADNeRF [36].

Event-based NeRF. To leverage the high temporal resolu-
tion provided by event cameras, recent works have explored
using event streams, with or without RGB images, to create
a NeRF. Concurrently, E-NeRF [10] and EventNeRF [28]
are the first to explore the use of events and color events
for neural fields, respectively. Later, methods that combine
RGB and events to deblur neural fields appeared [3, 25].
The camera optimization idea of deblur NeRFs has also
been extended to events and RGB NeRF [26]. Other works
also look into using RGB-D data in conjunction, for both
static [27] and dynamic scenes [16].

Besides NeRF, as 3D Gaussian splatting [9] has gained
popularity, event-based methods have also been converted
to Gaussian splats [37, 39]. These include those [37]
that extend the event double integral (EDI) [22] model
used in event-based NeRFs [26], or those [38] that include
event sampling strategies to address the accumulation pe-
riod question for frame-based event representation.

RGB and event stream data. In all of the RGB and event
works discussed above, except for DE-NeRF [16], all real
scenes are captured using a variant of the DAVIS 346 [34]
camera—a camera that captures both RGB and event
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Figure 2. Framework overview — To render a pixel considering
the camera motion blur, we pass points along the light rays of n
cameras through the hash grid to obtain their density and colors.
We then volume render the pixel colors for the n cameras and av-
erage them to generate the motion-blurred pixel color. We further
utilize a learned mapper that maps RGB volume render to an in-
tensity response for the event stream, which then utilizes the n — 1
subsequent camera pairs to measure events. Note that our color
Multi-Layer Perceptron (MLP) takes per-time learnable embed-
dings as input, to account for the sensor modeling imperfections.

streams, at a low resolution of 346 x 260, and further-
more, provide data where the two modalities are physically
aligned. This is a strong assumption, which limits the space
of device setups should one build a system that utilizes both
RGB and events. Consequently, some work require this
setup as an assumption in their loss formulations [3] that
limits their applicability. In the case of DE-NeRF [16],
they also utilize EVIMOV2 [2], another dataset that pro-
vides both, but decoupled, RGB and event streams, but this
dataset is limited to indoor scenarios, has artificial texture
in some scenes, and the event resolution is still lower than
ours—640 x 480 whereas ours is 1280 x 720. Further, as the
intent of this dataset was event-based object segmentation,
optical flow, and structure-from-motion, not all scenes are
useful for evaluating deblur performance. We thus collect
our own high-resolution dataset, with a binocular setup that
targets the deblurring task.

3. Method

Our main technical contribution are two-fold: (i) the learned
per-time embedding that we later find a global embedding
for; and (ii) the learned gamma mapper. We first discuss
the forward rendering pass and then provide details about
our training process. Figure 2 provides an overview of our
method.

3.1. Inference

To render a scene, we use the conventional NeRF [19]
paradigm with an Instant Neural Graphics Primitives (In-
stantNGP) [21] backbone. Specifically, given a 3D posi-
tion, x, and a direction, d, we train a neural network that
maps them into color, ¢, and density, o. Then, for a given

pixel with position (z,y) with corresponding ray, r(t), in
conventional NeRF, the color of this pixel, C, is rendered by
integrating along this ray between depths d and d,,:

~ dﬂ’
C(r) = / T(d)o(x(d)c(r(d), d)dd, (1)

where 7 is the transmittance defined as

d
T(d) = exp(—/ o(r(s))ds). )
ds
While this formulation works well in the ideal case with
clear training images and well modelled sensors under some
chosen sensor simplification, it is insufficient when sensor
modeling is critical, such as when blur is present.

Per-time embeddings. To encompass the sensor modeling
errors, we introduce a per-time embedding. This strategy
has previously been applied in other NeRF applications to
model per-view illumination changes or to model transient
objects [18], and is also suggested in NeRFStudio [33] to
accommodate camera auto white balancing. Here, we uti-
lize it to model characteristics of the sensors at each capture
time that are not included in the typical camera model. To
model how the world is perceived by the sensors and not the
underlying geometry, we pass the per-time embedding only
to the color branch of the neural field; see Figure 2. When
rendering a frame at ¢, we add a D-dimensional learnable
embedding, E; € RP, to Eq. (1):

A~ dn
C(r,t)z/d T(d)o(r(d))c(r(d),d,E;)dd.  (3)

These learnable embeddings give the network the freedom
to model the sensor imperfections.

Rendering events. To obtain event data, we follow the def-
inition of events. That is, an event occurs if the logarithm of
the intensity of a pixel, log(I), between a time interval de-
fined by two times, ¢ and t., is greater than some threshold,
w, at some pixel 2, y'. We thus write:

|log(1;,) —log(It,)| > w. 4)

At instances when this condition is satisfied, in either direc-
tion, we obtain an event tuple

e= (2,4 te,p), 5)

where p € {—1,1} is the sign (polarity) of the log intensity

change. As our focus is on static NeRF applications, these

intensity changes typically arise from camera motion.
However, a straightforward application of Eq. (4), that

is, setting I = G(C), where G is the RGB to grayscale con-
version function, assumes that the camera sensor response



functions are the same for the RGB and event cameras.
To account for the sensor response differences, we use a
gamma mapping:

I=G(0)", (6)

where c is a learnable mapping parameter. In contrast, oth-
ers learn the response function with MLPs (e.g., EvDe-
blurNeRF [3]) but here, we opt for a simple gamma map-
ping, the traditional mapping function used to model sensor
response functions.

3.2. Training

To train our network we rely on two losses: one for the RGB
data and one for the event data. Our total loss is given by

L= Ergb + /\evs‘cevsa (7)

where L, is the loss for the respective data, and A, is
the hyperparameter that balances the two losses. We next
explain the individual losses.

RGB loss — L, 4. For the RGB image, we use the stan-
dard mean squared error loss, but with motion blur included.
Specifically, following previous work [15, 36], we model
the blur as a continuous camera pose, P(t). Denoting the
exposure as 7, and the pathway a ray r takes as r(P(t)), we
express the rendered blurry pixel color as:

Blr,t) = / C(e(P(t)), t)dt. ®)

In practice, this integral is replaced with a Monte Carlo es-
timate:

B=2Y C(x(P(t:)) t:), ©)
i=1

where t; ~ U[t — 5,t + %], U is the uniform distribution
and n is the number of samples. We then use these blurry
RGB reconstructions to supervise the network’s blurry ap-
proximation:

Lrgh =Eyr s [HB(I‘,t) — Byt

2
} ; (10)

where By, is the ground truth blurry RGB image.

Note here how the supervision in Eq. (10) already takes
into account the motion blur, and thus allows the network to
learn a sharp signal that corresponds to the blur. This, how-
ever, is inherently an under-constrained problem, as there
are multiple sharp NeRFs that can render the same blur im-
age. Thus, while deblurNeRF methods [12, 15, 36] provide
a sharper reconstruction than NeRF, their reconstructions
can still be blurry, as shown already in Figure 1.

Event loss — L.,s. To supervise events, we use brightness
increment images (BII) [7]. Specifically, for each pixel at

position (x,y) at time ¢, we sum the intensity changes that
occur within a time window At:

L[z, y,t) = wo Y pis (11)

e, €€
where considering the event tuples in Eq. (5), we have:
E={elz=aj,y=ylte, —t| <At} (12)

wo = 0.2 is the default value used previously [6, 25], and
At = 2.5 ms is the optimal value found in prior work [17].

With the brightness increment image, I, [z, y, t], we su-
pervise our network with the conventional event loss [10]
that minimizes the difference between the events that our
network renders and the ground truth events. With the
gamma mapped image, I, from Eq. (6), we write:

log(I(r,t.)) —log(I(r,ts))

ﬂ
)
where ¢, and ¢, are the event times for each event stored in

Iey[z,y,t], and x, and y, are the pixel coordinates corre-
sponding to aray r.

Leys = IEr,(iﬁs.,te) [

te—i—ts}

_Iev [xrmyra 9

Finding the global embedding. Finally, once the net-
work is trained, we note that to render a novel view, we do
not have the per-time embedding for a new frame. We thus
find a global embedding, E, € RP, that works well for
all frames. To achieve this, we freeze the entire network
except the global embedding weights and then retrain for a
few thousand steps to determine the global embedding for
evaluation. In doing so, we utilize only the RGB loss, L, 4,
to find the global embedding, as we empirically found that
using the event loss, L.,s, did not work well—we ablate
this in Section 5.4.

Camera optimization. = Camera poses recovered from
blurry images are often inaccurate. To mitigate this, we al-
low both the RGB and the event camera poses to be opti-
mized. Since we do not have camera pose for BIIs in be-
tween RGB frames, we initialize these poses as linear in-
terpolations and optimize them. We parameterize camera
poses with exponential maps as in BADNeRF [36]. We then
optimize the camera poses directly with gradients from the
respective losses. In more detail:

* RGB cameras: As the RGB loss utilizes blurry im-
ages, it is important to consider ‘intermediate’ cameras
for which we do not have ground-truth images for. As
in BADNEeRF [36], we assume a linear trajectory for the
RGB camera using the exponential map parameterization.
We then optimize the poses of the cameras that we have
ground-truth images for directly with gradients from the
RGB loss.



Figure 3. Sample RGB frames from each scene in our dataset — Our dataset consists of (top row) five outdoor scenes and (bottom
row) five indoor scenes. The substantial image blur is caused by rapid camera movements.
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Figure 4. Capture rig — We 3D print a stereo casing that holds a
GigE Blackfly S camera and a Prophesee EVK-3 HD camera.

* Event cameras: For the event camera positions we dis-
cretize the trajectory into individual cameras for each
brightness increment image. We initially set the event
camera pose as linear interpolations of the RGB camera
pose and optimize them according to the event loss.

As the initial reconstructions are unstable, we only enable

camera optimization after the first 10K steps of training.

4. Data Collection

To validate our method, we collect our own dataset contain-
ing five indoor and five outdoor forward facing scenes.

Capture rig. While various other datasets exist, they are ei-
ther synthetic, or contain data collected from variants of the
DAVIS 346 camera that captures aligned RGB and events.
The assumption of aligned streams is a strong one, lim-
ited to certain devices, one that our method relaxes. Fur-
thermore, typically, these devices operate on a lower spa-
tial resolution to support both modalities. Hence, we opt
for a more versatile capture setup, where, as shown in Fig-
ure 4, we 3D print a stereo casing and use a GigE Black-
fly S [4] camera to capture RGB images and a Prophesee

EVK-3 HD camera [24] to capture events. Each device
provides high-resolution data, with the RGB camera cap-
turing 1440 x 1080 images and the event camera captur-
ing 1280 x 720 events. The two devices are temporarily
hardware-synced by triggers sent from the RGB camera.

Capture protocol. We capture our dataset by hand-holding
the stereo rig in various locations. Each scene is approx-
imately 20 seconds long, with the first 13 seconds being
blurry with fast swinging motions and the last seven sec-
onds exhibiting slow stable camera movement to provide
clear frames for evaluation.

Calibration. To calibrate the two cameras (i.e., recover
the intrinsics and relative extrinsics), we use the stan-
dard checkerboard calibration pattern and slowly move our
stereo rig to create events around the edges of the checker-
board.

We use the model from E2Calib [20] to map event
streams to event images and then stereo calibration from
OpenCV [1] to recover the intrinsics and extrinsics.

Camera pose. To recover the camera poses, we use
COLMAP [30-32]. To allow COLMAP to work well with
blurry images, we loosen its constraints on initialization and
match filtering. Specifically, we reduce the initialization
constraint to have 28 inliers with a minimum of five de-
grees. We also reduce the observation filter constraint by
setting the reprojection error to 12 pixels and reducing the
triangulation filter’s minimum angle to 0.08 radian.

Furthermore, as the extrinsics between the two cameras
for our calibrated stereo rig are provided in their own scene
scale (specifically metric scale), we need to also recover the
scene scale. To do this, we manually triangulate three points
from the RGB images and annotate the corresponding key-
points in the event brightness increment images (BII).

We then use Powell’s method [23] to minimize the repro-
jection error of the triangulated points to the corresponding
keypoints in the brightness increment images, which gives
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Figure 5. Qualitative examples — We show qualitative examples of zoomed-in reconstruction cutouts. Our method provides the sharpest
reconstructions. Interestingly, BADNeRF [36], combined with our embedding strategy, also provides clear results, being on par or slightly
better than even when event data is used. The best results, however, are obtained with our method where, RGB images are used together

with event data.

us the scene scale. Finally, we obtain the event camera
poses by applying the relative extrinsics to the RGB cam-
era poses, with the scene scale.

5. Results

5.1. Experimental setup

Dataset. In addition to our dataset, we further utilize the
EVIMOv2 [2] dataset for evaluation. EVIMOV2 [2] is
originally designed for object segmentation, optical flow
and Structure-from-Motion (SFM) tasks. As it is not a
dataset designed for deblurring tasks, we manually exam-
ine all images in the sequences chosen for our experiments
and manually select clear images to be held out for test-
ing. We choose three sequences from the dataset that have a
sufficient number of clear images: depth_var_1_1r_000000,
scene7_00_000001, scene8_01_000000. Because the dataset
is not designed to test debluring, we note that the selected

clear images may still contain slight blur.'

Baselines. We compare our method with the following:

* BADNeRF [36]: We reimplement their method in our
framework but without the exposure time optimization, as
in our data we have the exact exposure time. We use this
baseline to compare against the case when we do not use
the event data. See the supplemental for method details.

e E2NeRF [25]: We use the official code to demonstrate
the performance of a recent event-based NeRF method.

¢ Ablations: We further compare our method against abla-
tions, such as without the embedding, without the map-
per, and without the camera optimization to demonstrate
the effectiveness of each component.

Metrics. We use the following standard image quality eval-
uation metrics: Peak Signal-to-Noise Ratio (PSNR), Struc-

ITo ensure the reproducibility of our results, we will release the data
processing code for the selected scenes.
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SSIM{ PSNR{ LPIPS| SSIMt PSNRT LPIPS| SSIM{ PSNRT LPIPS| SSIM{ PSNR{ LPIPS| SSIM{ PSNR{ LPIPS| SSIMt PSNRf LPIPS,

0.457 0.806 24.169 0372 0.759 25.775 0.398 0.749 24.137 0.416
0.420 0.823 25446 0.339 0.760 26.363 0.398 0.761 25.058 0.393

0.501 0.785 24.37 0451 0.726 24.637 0.574 0.731 24.168 0.525
0.442 0.819 25.179 0346 0.760 26278 0.390 0.761 24.949 0.405
0.416 0.827 25.461 0.324 0.778 26.620 0.388 0.772 25.473 0.388
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SSIMt PSNR{ LPIPS) SSIM{ PSNRT LPIPS) SSIM{ PSNRT LPIPS| SSIM{ PSNR{ LPIPS| SSIM{ PSNR{ LPIPS| SSIM{ PSNR{ LPIPS]

0.572  0.826 25330 0.373 0.816 22389 0.356 0.749 24.166 0.464
0.552 0.850 26.195 0328 0.841 22970 0319 0.771 25250 0.423

BADNEeRF [36] 0.712 21.618 0475 0.735 26.450 0.380 0.734 22.670
BADNEeRF [36] + Emb. 0.716 22.359 0.451 0.754 26.895 [0.357 0.751 24.227
E2NeRF [25] 0.691 21904 0.592 0.696 26.172 0.508 0.757 23.754
Our method w/o Emb.  0.719 22314 0472 0.749 27.118 0.374 0.758 23.855
Our method 0.723 22.660 0.442 0.760 27.575 0.367 0.778 25.047
Grad Lounge Presentation Room
BADNEeRF [36] 0.737 24918 0.517 0.692 24.706 0.503 0.673 23.485
BADNEeRF [36] + Emb. [0.775 26261 0.440 0.692 25.623 0.475 0.699 25.120
E2NeRF [25] 0.707 24927 0.564 0.634 2324 0.613 0.61 23.363
Our method w/o Emb.  0.760 26.506 0.471 0.699 25.338 0.510 0.692 25.128
Our method 0.773 26.589 0.434 0.610 25.845 0.465 0.701 25.618

0.681 0.777 23921 0.427 0.746 21.667 0.487 0.695 23.424 0.554
0.601 0.850 26.123 0.318 0.841 22.986 0.310 0.768 25216 0.442
0.570 0.856 26.349 0.307 0.855 23.144 0.288 0.777 25.509 0.413

Table 1. Quantitative results for our dataset — We report the quantitative metrics for our method and the baselines on the test views.
We report results both for (top rows) outdoor scenes and (bottom rows) indoor scenes. We mark best and second-best results in each
column. Our method performs best in terms of all metrics. Interestingly, BADNeRF with our embedding strategy performs second-best,
although it is trained only on RGB images. This demonstrates using per-time embeddings to measure sensor modeling imperfections helps
significantly. In Sec. 5.4, we further show how one obtains the global embedding for inference is also critical.

tural Similarity Index (SSIM), and Learned Perceptual Im-
age Patch Similarity (LPIPS) [40]. As in prior work [14],
since we perform camera optimization, we perform camera
pose optimization for all methods to align novel views be-
fore calculating metrics for fair comparison.

Implementation details. We implement our method with
Nerfstudio [33]. We use the instant NGP [21] backbone
with the default configurations and train all methods for
200k iterations to ensure convergence. We empirically
set Aeys=1 for the event loss. After training, to find the
global embeddings, we perform 3k iterations of optimiza-
tion. When computing the metrics, we optimize the camera
pose for 6k iterations. We choose n = 4 in Eq. (9) to make
our RGB and event loss have a similar batch size of 597
and 588, respectively, which is the largest batch size that fits
on our NVIDIA 3090 GPU with 24GB VRAM. Following
Nerfstudio [33], we choose D=32 as our per-time embed-
ding dimension; we ablate our choice in the supplement.

5.2. Results on our dataset

We show example qualitative results in Fig. 5 and a quanti-
tative summary in Tab. 1. As shown in Tab. 1, our method
with the embeddings and the learned mapper performs best.
It is interesting to note that our embedding strategy, com-
bined with BADNeREF, already outperforms the state of the
art, up to a degree where it outperforms methods that use
events, although it uses only RGB data. This highlights the
importance of considering camera sensor modeling errors.
Still, our method of using events together with the per-time
embeddings and the learned gamma mapping performs best.

Besides the quantitative results, the differences between
the reconstructions are more pronounced in Fig. 5. With our
method, sharper reconstructions are obtained.

5.3. Results on the EVIMOVv2 [2] dataset

We also evaluate our method on EVIMOV2 [2]. We report
our results in Tab. 2°. It is interesting to note that while our
method performs best, once our per-time embedding strat-
egy is used, RGB-only reconstruction with BADNeRF [36]
works almost as well as using events without per-time em-
beddings. This further demonstrates the importance of in-
corporating these sensor modeling imperfections.

5.4. Ablation study

We now ablate our design choices. For all our ablations,
we use one indoor scene (‘Dragon Max’) and one outdoor
scene (‘Courtyard’) from our dataset.

Obtaining a good global embedding is critical. We
first examine our learned per-time embeddings, which
we already demonstrated its effectiveness in Sec. 5.2 and
Sec. 5.3, but this time, focusing on how one obtains the em-
beddings. In Tab. 3 we report the performance of BAD-
NeRF [36] with and without learned per-time embeddings,
including our strategy of finding a global embedding that
minimizes the RGB loss, and the typical default strategy of
training with embeddings, which is to use a zero embed-
ding. As shown, our strategy significantly improves recon-
struction quality, while the zero embedding offers only a mi-
nor improvement in SSIM and LPIPS, with negligible im-
pact to PSNR. Combining the event loss with the RGB loss
is detrimental, likely because event data is sparse, whereas

2E2NeRF [25] is excluded as the official implementation failed to re-
construct a clear scene despite our best efforts. We suspect this could be be-
cause E2NeRF [25] is MLP-based using positional encodings [35], which
requires careful scaling of the camera coordinates and the scene content
at the center. We tried various scaling and centering approaches, but none
produced reasonable results despite our best efforts.
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Average

SSIM{ PSNR{ LPIPS| SSIM{ PSNR{ LPIPS| SSIM{ PSNR{ LPIPS| SSIM{ PSNR{ LPIPS|
BADNeRF [36] 0.819 23358 0252 0.786 20.726 0396 0.754 20.144 0402 0786 21410 0.350
BADNeRF [36] + Emb. 0.852 24.912 0217 0825 22.126 0339 0.804 21368 0322 0827 22802 0.292
Our method w/o Emb.  0.856 24.486 0.212 0819 22439 0341 0805 21.619 0321 0.827 22.848 0.291
Our method 0.880 26.152 0.177 0.855 24.247 0.288 0.839 22.927 0257 0.858 24.442 0.241

Table 2. Quantitative results for the EVIMOV2 [2] dataset — We report the quantitative metrics for our method and the baselines on the

test views. Our method performs best.

Method SSIMT PSNRT  LPIPS| Method SSIMT PSNRT  LPIPS,
BADNERF [36] 0769 23474 0424 BADNGRF [36] w/o cam. opt. 0702 20.781  0.527
BADNERF [36] + Zero Emb. 0776  23.440  0.403 BADNeRF [36] 0.769 23474 0424
BADNeRF [36] + Our Emb. ~ 0.783 24277  0.389 Our method w/o cam. opt. 0755 23227 0452
Ours Lygp + Levs 0.783 24.390 0.387 Our method 0.790 24.504 0.374
Ours £, 0790 24504 0374

Table 3. Ablation: per-time embedding — We report the quan-
titative metrics with various strategies of using per-time embed-
dings. Using our strategy to obtain the global embedding sig-
nificantly improves performance while simply training with em-
beddings and then using a zero embedding, which is the default
strategy for NeRFStudio [33] only shows a minor improvement.
Furthermore, training only with the RGB loss, Eq. (10), to find the
embeddings provides better results than using also the event loss.

Method SSIM? PSNRT LPIPS}
Ours w/o events 0.783 24.277 0.389
Ours + Linear mapping 0.743 22.995 0.503
Ours + Normalized linear mapping 0.783 24.302 0.400
Ours + MLP mapping [3] 0.783 24.350 0.386
Ours + MLP mapping (both) [3] 0.777 24.257 0.411
Ours + Gamma mapping 0.790 24.504 0.374

Table 4. Ablation: mapper — We report quantitative metrics for
our gamma mapping (Eq. (6)), MLP mapping [3], and simply no
mapping (linear) with and without event normalization [10]. Using
an MLP mapper on either events or both events and RGB helps,
but it does not perform as well as our simple gamma mapper.

finding an embedding that accurately represents the scene
requires considering all parts of the scene. We further re-
mind the reader that in Tables 1 and 2 our global embed-
dings provide a significant boost in performance.

Gamma mapping outperforms MLP mapping. We re-
port various mapping options for linking between RGB and
event data in Tab. 4. Our learned gamma mapping provides
a simple yet effective mapping strategy. Using a simple lin-
ear mapping, that is, setting a constant default threshold for
events as w = 0.2 performs significantly worse. Other map-
ping strategies, such as using an MLP [3] or normalizing the

Table 5. Ablation: camera optimization — We report quantitative
metrics with and without camera optimization. Camera optimiza-
tion is critical to achieving the best performance.

events [10] do not perform as well as ours.

Camera optimization is important for blurry scenes. We
further look into the importance of camera optimization in
Tab. 5. As pointed out in previous work [36], camera op-
timization is especially important when it comes to deblur
settings. For our data, this also holds. Camera optimization
during training significantly improves rendering quality.

6. Conclusion and Future Work

We introduced a NeRF framework that utilizes both RGB
and event data to reconstruct a deblurred scene from data
captured with fast camera motion. Distinct from prior work,
our cameras are separate, decoupled sensors rather than
aligned. Central to our approach is learning sensor imper-
fections through a data-driven manner using per-time em-
beddings, combined with a gamma mapping between RGB
and event data. To evaluate our method in this unique stereo
capture setting, we introduced a new dataset, consisting of
five indoor and outdoor captures each. Empirically, we
showed that our method outperforms the state of the art.

Limitations. Our data collection process currently requires
manual human annotation. While this involves selecting
three or more points to properly scale the scene to the cal-
ibrated extrinsics, it remains a manual effort. Addition-
ally, our work relies on NeRF, while much of the field is
transitioning to the 3D Gaussian splatting [9] framework.
Nonetheless, we believe our findings are backbone agnostic
and will also benefit 3D Gaussian splatting-based methods.
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