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Abstract

Large Language Models (LLMs) have achieved
remarkable progress in serving as controllers to
interpret user instructions and select models for
audio tasks. However, current LLMs, when se-
lecting tools, only consider the textual input, ne-
glecting valuable information within the audio
modality that could aid in choosing appropriate
tools. Due to the possible ambiguity of instruc-
tions, errors in selection are common. To this
end, we introduce AudioAgent, a versatile and
adaptable agent framework for audio fields. It
is the first system that emphasizes audio com-
prehension and utilizes these information to
autonomously refine user-provided prompt by
one finetuned LLM. Through clearer instruc-
tions, AudioAgent empowers the controller to
precisely select the best tools and enhances the
performance of tasks. Our framework also en-
ables users to freely register tools and utilize
any LLM as the core controller. Both subjective
and objective metrics validate the effectiveness
of our work. Result samples are available at
https://AudioAgentTool.github.io.

1 Introduction

In recent times, there has been rapid advancement
in LLMs(Brown et al., 2020; Floridi and Chiriatti,
2020; Ouyang et al., 2022; Zhang et al., 2022b; Bai
et al., 2023; Chowdhery et al., 2023; Touvron et al.,
2023), which are capable of receiving multimodal
input and executing a series of complex tasks based
on user’s textual instructions(Le Scao et al., 2022;
Achiam et al., 2023; Bai et al., 2023; Team et al.,
2023).

Within the realm of these models, numerous
End-to-End Voice LLMs showcase their outstand-
ing capability in processing the audio modality.
For instance, present work(Borsos et al., 2023;
Kharitonov et al., 2023; Wang et al., 2023a) de-
velope a series of audio generation methods that
focus on individual tasks. In pursuit of creating
comprehensive united framework for multitasking

Y o
User: Please enhance audio’s quality for me.
- quality -W\/V\—

Audio Agent

Text-Based Agent @
ext-Basec Agent e e N

[E) Audio tasks planning
¢
) Registered tool retrieval |:|

(@ Confusion about the selection

: Prompt Optimization
)
“ Please reduce the noise in audio ”

. .
A Registered tool retrieval

1

1 =

Inaudibility

® Speech Denoise
® Speech Translation

Pop-to-Piano
Text-to-Audio
Text-to-Speech © ® Singing Definition

® Speech Transcription

@ @

Image-to-Audio & Echo Noise Distortion

:. Tools Related to Audio Enhancement

Figure 1: Upon receiving this instruction, Text-Based
Agent is unable to determine the specific tool for audio
enhancement due to multiple possibilities for audio’s
characteristics. Similarly, tasks marked with ‘x’ are also
affected by this uncertainty. Agent requires some audio
features as a hint to choose, which is realized in the
AudioAgent through modality comprehension.

through the LLM paradigm, endeavors like (Huang
et al., 2023; Rubenstein et al., 2023; Yang et al.,
2023a) have emerged. As multi-task frameworks
continue to improve, users can now employ natural
language to instruct the model in Qwen-Audio(Chu
et al., 2023). These models take full advantage of
the reasoning prowess and generalization abilities
of LLMs. However, the overall number of tasks
they can handle is still limited.

To fully harness the potential of LLMs and fur-
ther expand the range of achieveable tasks, recent
work has made great progress towards building
agent-based LLMs(Du et al., 2021; Yang et al.,
2023b; Qin et al., 2023; Ruan et al., 2023; Schick
et al., 2024). Along this direction, several methods
have been employed to enhance the tool’s match-
ing accuracy with textual instructions. Some focus
on refining the tool’s description to better clarify
its functionality(Huang et al., 2024a; Shen et al.,
2024), some narrow down the scope of tools before
selection(Li et al., 2023a), others employ meticu-
lous training on open-source LLMs to enhance their
understanding of prompt(Ouyang et al., 2022).



However, the textual prompt easily leads to con-
fusion. As illustrated in Figure 1, for the given
textual prompt, text-based agent struggles to dis-
tinguish audio characteristics which determine the
suitable tool. Actually, the modality comprehen-
sion process can play a significant role in this sce-
nario. For example, if the audio contains noise, op-
timizing the prompt to “Please reduce the noise in
audio” can assist the agent in making right choices.

In this work, we introduce AudioAgent, a com-
prehensive agent framework equipped with a versa-
tile toolset to facilitate a wide range of audio tasks.
It is the first agent framework that emphasizes au-
dio comprehension and utilizes these information
to autonomously refine user-provided prompt in
content and expression, making it easier for agent-
based LLMs to select the best tool.

To validate our approach, we construct a dataset
mainly comprising two parts, which are ToolIMM-
Bench(Wang et al., 2024a) and one instruction set
generated by GPT3.5-turbo with releated audio.
We compare the optimized prompts achieved by
AudioAgent across different types of instructions,
demonstrating the importance of audio compre-
hension and prompt optimization in improving the
accuracy of selection. Additionally, we utilize two
baselines to validate the efficiency improvements
through AudioAgent’s optimal tool selection.

Overall, our contribution can be summarized in
three main aspects as follows:

e Comprehension: AudioAgent distinguishes it-
self through its capacity to comprehend audio
modality. Compared to previous agent models
that focused solely on textual modality, we fully
leverage this aspect to provide controllable fea-
tures which improve the accuracy of selection.

* Optimization: AudioAgent offers one well fine-
tuned LLM for prompt optimization, ensuring
grammatical correctness and contextual richness
in textual modality. The clearer instructions en-
able controller to select the best tools and en-
hance task performance across various scenario.

* Flexibility: AudioAgent enables users to flexi-
bly register tools and utilize any LLM as con-
troller. Furthermore, the component of modality
comprehension and prompt optimization can be
applicable to any agent framework.

2 Related work
2.1 Large Language Models

Large Language Models have experienced rapid
development in recent years, with some notable
examples such as GPT4(Achiam et al., 2023),
PalLM(Chowdhery et al., 2023), Qwen(Bai et al.,
2023) and LLaMA (Touvron et al., 2023). Nowa-
days, there is a growing focus on leveraging the
robust reasoning abilities of LLMs to tackle a wide
array of multimodal challenges beyond text, such
as audio, image and video tasks. Present research
in this domain can be categorized into two main
branches: One approach involves unified End-to-
End LLMs to handle various tasks (Alayrac et al.,
2022; Li et al., 2023b; Huang et al., 2024b). The
other approach focuses on empowering LLMs to in-
dependently understand user prompt and utilize ex-
isting tools for solving multimodal tasks(Du et al.,
2021; Qin et al., 2023; Ruan et al., 2023; Yang
et al., 2023b; Schick et al., 2024).

2.2 Agent & Tool Learning

The use of LLMs as agents for executing complex
tasks has gained increasing attention. Modelscope-
Agent(Li et al., 2023a) deploys a flexible frame-
work that allows any open-source LLMs to serve
as the primary brain. Toolformer(Schick et al.,
2024) pioneers the exploration of integrating LLM
with external tools. HuggingGPT(Shen et al.,
2024) broadens the spectrum of tasks by offering
a wide array of models in HuggingFace. Audio-
GPT(Huang et al., 2024a) stands out as the first
Agent tailored for audio. MLLM-Tool(Wang et al.,
2024a) transforms audio into the MEL spectrum
and then utilizes an image encoder to fine-tune a
single-round dialogue Agent.

However, despite these advancements, most of
these agent models still solely rely on the text-
based understanding and reasoning ability of LLMs.
The selection process is based on the user’s textual
instructions and the tool’s description, making ac-
curacy heavily dependent on the precision of the
given text like the example in Figure 1. In other
word, they only utilize audio for task execution
part, thus lacking the incorporation of audio that
could assist in enhancing the accuracy of tool se-
lection. AudioAgent capitalizes on modality com-
prehension to extract information from the audio,
enabling the creation of clear and grammatically
correct prompt for LLM controller to understand
and select the most suitable tool from toolset.
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Figure 2: Our network architecture: AudioAgent first receives the user’s prompt and potentially existing audio
file, and converts the prompt into grammatically correct new one with sufficient features of the audio. The LLM
controller will then conduct historical retrieval, tool selection, task execution, and ultimately return the running
results, which is then organized by the LLM controller to generate the final reply to the user.

3 Methods

3.1 Overview

The overall architecture of AudioAgent is in Fig-
ure 2, which consists of three parts: Modal-
ity Comprehension(C) in Figure 2(a), Prompt
Optimization(M) in Figure 2(b), and Task Exe-
cution and Dialogue(L) with Tool Library(T') in
Figure 2(c). The whole system can be defined as:

AudioAgent = (C, M, L, {T}}) (1)

When the user provides instructions and possi-
ble audio for processing, Modality Comprehension
analyzes the audio, offering simple feature anno-
tations. Subsequently, Prompt Optimization com-
bines these annotations with user’s textual prompt
to generate a grammatically correct one with clear
direction for the intended tools. Finally, in Task
Execution and Dialogue part, AudioAgent utilizes
the LLM controller to identify the tool in the set
and organize the answer based on the execution
result. If the user engages in multiple rounds of
interaction, the results are retained in history for
further iterations. The whole n-multiple dialogue
can be formulated as the sequence:

D:{(Qi7Q;7ai)ri)} (2)

The term g; represents the query from the user
and a; represents the audio samples in this turn.
Additionally, q; represents the optimized prompt
obtained through AudioAgent from ¢; and a;. The
r; 18 target response generated for users.

3.2 Modality Comprehension

AudioAgent differs from existing agent models by
enhancing audio comprehension, thus enabling a
more comprehensive perception of task scenarios.
Some dimensions, such as pitch and volume, do not
significantly impact tool selection in audio fields.
Therefore, these dimensions will not be considered
in this context. Our primary focus is on dimensions
that directly influence the selection of tools for
audio tasks.

Dimensions such as the length of audio can be
calculated using signal processing tools. As a re-
sult, we primarily focus on those cannot be di-
rectly measured. Initially, we draw inspiration from
Qwen-Audio(Chu et al., 2023) and utilize an Audio
Encoder module based on Whisper(Radford et al.,
2023) to process the input audio. Within this mod-
ule, audio is first resampled to 16,000 Hz, and an
80-channel log-magnitude Mel spectrogram repre-
sentation is computed on 25-millisecond windows
with a 10-millisecond stride. After that, the result
undergos normalization, convolutional layers using
GELU activation(Hendrycks and Gimpel, 2016),
and Transformer layers employing pre-activation
residual blocks(Child et al., 2019) to obtain the
final representation.

Although Whisper is a pretrained multilingual
translator under self-supervision, its encoded rep-
resentation also contains rich information, and is
capable of reconstructing the original speech(Gong
et al., 2023; Zhang et al., 2023; Wang et al., 2024b).
Qwen-Audio even utilize its embedding to infer



discrete tokens in Voice LLM(Chu et al., 2023).
So, leveraging this embedding to support the com-
prehension part is feasible.

The LSTM, known for effecitively capturing
long-term dependencies and handling time-series
data(Staudemeyer and Morris, 2019; Yu et al.,
2019; Sherstinsky, 2020), is utilized to retain cru-
cial information within sequences. By leveraging
the representations extracted by the encoder, mul-
tiple classifiers based on LSTM are trained to pro-
vide annotations for audio. Specifically, for each
sample, approximately 3 seconds of audio is ran-
domly extracted, with the corresponding embed-
ding serving as input for classifiers. Then, if e;
represents the result of the comprehension, it can
be defined as:

e; = C(Encoder(a;)) 3)

Also, we have designed interfaces that enable
users to offer additional labels in text modality if
necessary. For instance, if new label is to added,
user can modify the e; with new classifer C” as:

e; = Concat(C(Encoder(a;)),C"(a;)) (4

3.3 Prompt Optimization

The current LLMs primarily rely on interpreting
text when selecting tools. This approach may en-
counter issues such as grammatical disarray and
lack of information in the initial prompt g;, which
significantly impacts tool selection accuracy. Lever-
aging the results of Modality Comprehension e;
and raw input ¢;, Prompt Optimization component
is trained to automatically refine the content and
expression of user’s instructions as better one with
the finetuned LLM:

’

q; = M(qi, €:, ;) )

For example, the feature "Neutral emotion, long
time, English Language, Noisy feature" and the
phrase "Please transcribed into text." will be trans-
formed into "Please transcribe the long speech into
English text.", which specifically points to the ASR
tool designed for processing lengthy audio seg-
ments in English. Prompt Optimization needs to
comprehend instruction and select labels to com-
pose a new sentence.

In our experiments, we use GPT-3.5turbo to gen-
erate a training dataset as outlined in Section 4.1.

Specifically, we use unlabeled sentences with gram-
matical errors and all audio labels as input, labeled
sentences with correct grammar as target output. To
accomplish the task of enriching content and refin-
ing expression in Equation 5, we finetune an open-
source LLM. ChatGLM2-6B(Zeng et al., 2022),
a bilingual LLM based on the General Language
Model architecture, is selected. This model imple-
ments an efficient parameter P-tuning(Liu et al.,
2021) method, reducing the number of parame-
ters that need to be finetuned to the original 0.1%.
Indeed, the flexibility of AudioAgent framework al-
lows for any NLP model to complete the optimiza-
tion process. We also develop interfaces through
which users can select their own pretrained model
to accomplish the prompt generation task.

3.4 Task and Dialogue Execution

When the above process acquires grammatically
correct instructions containing sufficient informa-
tion, they are able to provide a logical basis for
LLM controller to select from the toolset. We then
design a comprehensive framework capable of se-
lecting any LLLM as controller, supporting flexible
registration of tools, and enabling multi-round dia-
logue as illustrated in Figure 2(c).

Specifically, during tool registration, users are
required to provide the unique tool name, suffi-
cient description, required parameters for the Tool
Library(7"). We have also prepared one toolset
that includes nearly all of the current audio tasks,
which can be seen in Appendix A. Regarding the
controller, users can freely utilize any API inter-
face of LLMs, which will receive the optimized
prompt and retrieve the most suitable tools ¢; in
Tool Library base on text modality as:

ti = F(q;, {T}}) (6)

After obtaining the required tools, AudioAgent
will automatically invoke these tools, provide their
inputs, execute the tools, and obtain the output to re-
turn based on the tool’s outcomes, user instructions
q; and history h;. Controller will continue to plan
whether to call other tool to finish the sequential
work. If another tool is needed, the process will
be repeated, otherwise, the final comprehensive
response is returned to the user. This turn of dia-
logue will also be encapsulated as history, enabling
potential multi-round dialogue to utilize.

ri = LLM (R, q;, h) (7



4 Training and Evalutaion

4.1 Datasets

For modality comprehension, we combine datasets
to train 4 classifers. We utilize multilingual audio
for language identification; VCTK, M4singer, Au-
diocap for category recognition; ESD for emotion
analysis; MS-SNSD and WSJO+Reverb for charac-
teristic discrimination. We provide details of these
audio datasets in Appendix B.

For prompt optimization, our goal is to enable an
incomplete, syntactically incorrect textual prompt
to select appropriate audio labels from all extracted
features and construct a correct one. Since there
is no dataset available for training and validation,
we design a method for generating a batch of data
in pairs. Specifically, these pairs include 1) Raw:
sentences without any audio feature labels; 2) Raw
(err): Raw with specific grammatical errors; 3) GT:
sentences with audio feature labels; 4) GT (err):
GT with specific grammatical errors.

In short, the data for every audio task is gen-
erated separately. We first select the characteris-
tics that each task needs to retain. For example,
the ASR task needs [langauge] and [time]. Be-
gin by creating a template with placeholders (such
as Transcribe the [time] speech into [language]
text). Then, replace the placeholders with labels
or remove them to generate Raw and GT (such as
Transcribe the long speech into English text for
GT). Finally, introduce errors to obtain Raw(err)
and GT(err) (such as Transcrieb the speechs into
txt for GT(err)). After we get all template sentences
for single task, GPT3.5-turbo is used to combine
them to create new ones that require multiple tools
(such as Transcribe the [time] wav into [language]
text. Then enhance the [feature] wav’s quality).
We repeat the same process and finally get a to-
tal 3,000,000 pairs for training. More generation
details and samples are in Appendix C.

For tool selection, we utilize two test sets. One
is MLLM-Tool(Wang et al., 2024a), from which
we enrich every prompt to four sentences with its
original audio. The other is the dataset from prompt
optimization, we manually select the correct tools
and audio samples for every pair of prompt.

4.2 Evaluation Metrics

We mainly evaluate the agent framework through
objective evaluation with some subjective evalua-
tion part via Amazon Mechanical Turk. The expla-
nation of metrics are as follows:

* Feature accuracy: When assessing modality
comprehension, we directly employ the model’s
classification accuracy for the test set.

* Grammar accuracy: When evaluating the syn-
tax error in the sentence, we utilize the inde-
pendently trained grammar-checker as the ar-
biter(Warstadt et al., 2020).

* Selection Accuracy: We assess the accuracy of
LLM in tool selection with accuracy, F1 and Edit
Distance. The specific calculation method is de-
tailed in the Appendix D.

* Task Performance: We compare the perfor-
mance improvements through AudioAgent’s op-
timal selection with other Agent and End-to-
End Voice LLM, primarily employing the WER,
BLEU and MOS.

¢ Subjective evaluation: We conduct informa-
tional integrity and MOS assessments. All pro-
cess is held on the Amazon platform in English.
Specifically, for integrity, the tester needs to se-
lect the answer from five options according to
the tool’s description and prompt. The accuracy
is recorded as score. In MOS test, audio is rated
scores on 1-5 scale. Details are in Appendix D.

4.3 Model Configurations

For Audio Encoder in Modality Comprehension,
we utilize pre-trained Whisper which is a 32-layer
Transformer model that includes two convolution
down-sampling layers as a stem. The audio encoder
is composed of about 640M parameter.

For ChatGLM2-6B in Prompt Optimization, it is
finetuned with 4 2080Ti gpus for about one week
and ends at about 20K step. Adam optimizer is
used with 51 = 0.9, B> = 0.999, ¢ = 1078, The
learning rate is 1 x 102 at beginning.

5 Results and Analysis
5.1 Modality Comprehension Result

We initially evaluate the accuracy of classifiers for
Modality Comprehension. For dimensions that can-
not be directly measured, the result is shown in
the Table 1. The outcome further proves that the
Audio Encoder contains rich information, and its
embedding can be effectively used for highly ac-
curate feature extraction. In our experiment, we
primarily employ the LSTM structure to construct
all classifiers, users can utilize other more complex
structures to replace it if necessary. Furthermore,



the feature dimension can be easily expanded by
utilizing the Audio Encoder to train new classifiers
or integrating other pre-trained models to provide
labels, but we assume the feature utilized in Au-
dioAgent is adequate for present audio tasks.

Type Test Acc 1
Language 98.64
Category 99.31
Emotion 84.02

Characteristic 97.77

Table 1: Results of Comprehension

5.2 Prompt Optimization Result

We test sentences Raw, Raw(err), GT, and GT(err)
along with the results Ours obtained by AudioA-
gent from Raw(err) in grammar and integrity.

Following the assessment in Table 2, the scores
of Ours closely align with the scores of GT in gram-
mar tests, distinctly differing from sentences with
incorrect grammar. Moreover, the subjective in-
tegrity test indicates that prompts with the correct
labels guide the evaluators to select tools accurately,
and Ours do the same. This suggests that the fine-
tuned ChatGLM-6B model possesses the capability
to correct grammatical errors and combine audio
features into the context.

5.3 Model Selection Result

In this stage, we compare two scenarios: prompt
for single tool selection and prompt for the sequen-
tial selection of multiple tools. To demonstrate
the impact of correct grammar and comprehensive
information on LLM’s tool selection ability, we
compare five types of prompt with totally 22 audio
models for test, along with the open-source dataset
MLLM-Tool. The details of LLM are in Appendix
E and we use abbreviations here for simplicity.

‘ Obj. Syntax 1 ‘ Subj. Integrity 1

GT 83.96 95.49
GT(err) 25.67 92.91
Raw 79.87 34.74
Raw(err) 28.67 31.46
Ours | 8279 | 94.10

Table 2: Results of Prompt Optimization on Grammar
and Integrity. Raw: text w/o audio labels. Gt: text w/
audio labels. (err): grammar error

5.3.1 Single Selection

Every item in the MLLM-Tool includes one
prompt, one corresponding audio, and the tool to
be selected. Its prompt comes with a full definition
of audio, as it can be treated directly as GT. We use
GPT3.5-turbo to remove the feature labels in GT
and get Raw. Then, by introducing syntax errors,
we obtain Raw(error) and GT(error). By modality
comprehension and prompt optimization, Ours is
the result from the audio and Raw(error).

It is found that although MLLM-Tool tries to
combine the text prompt and audio to select the tool,
its selection accuracy is affected when features in
the text prompt are eliminated. LLM, which selects
solely based on text mode, is more influenced by
the feature labels in prompt for selection. This
illustrates the importance of adequate audio feature
labels in prompt for correct selection.

To further demonstrate the importance of fea-
ture labels in selection, we test on our own larger
set. When considering the selection of a single
model, the results also indicate that the accuracy
of the prompt with features (GT, GT(err), Ours)
significantly surpasses that of the prompt sentence
without features (Raw, Raw(err)) in Table 4. This
discrepancy arises because, in the absence of fea-
ture descriptions, LLMs lack the basis for selection
and consequently exhibit reduced accuracy.

When considering the impact of grammatical
correctness, it is observed that while a small num-
ber of LLMs, such as Claude, are less affected,
the vast majority experience a notable decline in
accuracy when encountering grammatical errors.
This finding emphasizes the necessity of grammar
correction in prompts to ensure accurate model
selection. That is to say, although some higher-
performing LLMs like Claude can better under-
stand commands, even when they contain grammat-
ical errors, due to the fact that the majority of these
high-performing LLMs are currently closed-source
or require payment, users can utilize open-source
or affordable LL.Ms as controllers to ensure higher
precision through prompt optimization.

5.3.2 Sequential Selection

For the sequential selection of multiple models, we
choose Claude, GPT3.5-turbo, and Qwen, which
exhibit the best performance in single-model se-
lection as the basis. Then, we select the prompt
involving multiple tasks and measure the charac-
teristics of related audio samples to determine the
correct tools and usage orders for generating the



‘ MLLM-Tool ‘ Qwen ‘ GPT3.5 ‘ Claude
81.53/78.52 85.58/85.52 92.09/92.22 93.95/94.01
GT(err) 72.85/68.73 81.42/80.49 90.71/86.26 88.57/87.88
57.14/45.04 36.27/28.01 43.28/37.95 41.26 / 28.66
Raw(err) 56.91/44.72 35.71/27.04 37.14/21.25 38.57/29.49
Ours | 79.84/7532 | 8326/83.04 | 91.62/9145 | 953479532

Table 3: Selection Accuracy of Single Selection on MLLM-Tool’s Dataset-Accuracyt / F1 1. Raw: text w/o audio

labels. Gt: text w/ audio labels. (err): grammar error

‘ LLam?2 ‘ Gemini ‘ Vicuna ‘ GPT3.5 ‘ Qwen ‘ Claude
GT 40.00/23.01 | 92.86/92.31 | 52.86/40.84 | 92.85/92.31 | 94.43/88.53 | 97.14/96.79
GT(err) | 34.29/19.39 | 72.86/68.66 | 35.71/20.51 | 82.86/78.07 | 82.86/78.07 | 94.29/93.73
Raw | 34.29/17.87 | 30.00/19.03 | 17.14/9.91 | 44.29/36.10 | 35.71/27.09 | 40.00/26.66
Raw(err)| 15.71/15.24 | 32.86/20.55 | 14.29/13.93 | 32.86/19.18 | 25.71/14.57 | 38.57/23.87
Ours | 31.43/25.48 | 88.57/81.22 | 50.13/34.02 | 90.00/87.12 | 91.57/85.96 | 95.71/95.28

Table 4: Selection Accuracy of Single Selection-Accuracy? / F11. Raw: text w/o audio labels. Gt: text w/ audio

labels. (err): grammar error

test set. More details are in Appendix C.

The results in Table 5 show that, although there
is a certain degree of decline in overall correctness,
the prominent pattern remains consistent with the
selection of a single tool. Therefore, breaking down
a long prompt into several shorter prompts with a
specific sequence might be a method to improve
precision in tool selection. We have identified this
as one of our future research directions.

‘ Qwen ‘ GPT3.5 ‘ Claude
GT 15.24/74.69(32.25/65.81| 8.66/ 88.26
GT(err) [17.60/71.12|33.62/65.94|11.68 / 84.85

Raw(err)| 57.28 / 21.52|58.25 / 28.53|60.76 / 18.85
16.57/73.73|32.90/67.33| 9.28/87.18

Raw 56.53/22.08|55.85/32.19/60.02 / 20.37

Ours

Table 5: Selection Accuracy of Sequential Selection-ED
J /F1 1. Raw: text w/o audio labels. Gt: text w/ audio
labels. (err): grammar error

5.4 Task and Dialogue Execution Result

After obtaining the required tool name, the agent
framework will call the required tool, pass in pa-
rameters, collect the results and return them to the
controller. The controller will then return content
to the user based on the complete instructions, task
description, model results, and interaction history,
thereby completing a round of interaction. The

complete process from receiving instructions to
providing a response is illustrated in Figure 3. A
more comprehensive dialogue from AudioAgent is
shown in Appendix F.

Through the above process, AudioAgent is
proved to enhance the accuracy of model selection,
thereby significantly improving the efficiency of
the task. To illustrate this, we compare the results
by AudioAgent’s optimal tool selection with those
of two baseline models which can be instructed
with natural language. Specifically, HuggingGPT
is the typical Agent framework before and Qwen-
Audio is the End-to-End Voice Large Language
Model. Here, the model’s input, as depicted in
Figure 3, is Raw(err) without directive features.

The results presented in Table 6 indicate that,
when compared to our AudioAgent, HuggingGPT
performs poorly in task execution due to its lack of
specific model discrimination ability. For instance,
in transcription tasks, HuggingGPT consistently
invokes English transcription tools as it cannot dis-
cern languages, resulting in nearly no useful output
for audio inputs in other languages.

On the other hand, Qwen-Audio only needs to
discern the task label to automatically execute the
corresponding task. For example, if it identifies
an Translation task, Qwen-Audio utilizes the uni-
fied framework for inference. However, it mainly
generates outputs for the text modality and cannot



This is a audio
from the videos I love,
can transcribes it for me ?

This is an English speech from the video I
Q love, can you transcribe it for me?
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Figure 3: The Process of One-turn Dialogue

fulfill tasks requiring audio modality outputs, such
as audio enhancement. In contrast, AudioAgent not
only generates multimodal output but also achieves
comparable efficiency to Voice LLMs in capability
by precisely selecting and utilizing multiple indi-
vidually trained models.

Model | ASR| | STt |  AEf
HuggingGPT 432 | 0.1 | 3.53+0.10
Qwen-Audio 4.0 28.8 /
Ours 3.4 31.2 | 4.10+0.06

Table 6: Results of Task with WER, BLEU and MOS.
HuggingGPT is Agent framework, Qwen-Audio is End-
to-End Voice LLM.

6 Ablation Study

To demonstrate the direct impact of the feature di-
mensions on the accuracy of model selection, we
conduct Ablation tests on Claude, GPT-3.5turbo,
and Qwen, three best LLLMs in above Experiments.
The dataset used here is the same as that used in
the Single Selection and Sequential Selection sec-
tions above, where we manually select the text
instructions built by GPT3.5-turbo for each task
and the audio corresponding to that task. But we
will control the number of labels before prompt
optimization to get different optimized prompt for
the LLM controller to carry out tool selection.
Our findings, as depicted in Table 7, reveal a
direct positive correlation between the accuracy
of model selection and the number of features uti-
lized. This emphasizes the critical role of modality
comprehension and prompt optimization in guiding
decision-making for LLMs. Normally, precise fea-
ture definitions contribute to a more robust logical

foundation for LLMs, enabling them to make more
accurate judgments.

In the future, we also plan to expand modal
understanding to encompass additional modalities
like image and video, further enhancing AudioA-
gent’s capabilities.

LLMs  Single Task  Sequential Task

Acct FI7T ED] F171

Qwen 4731 39.23 4321 5342

30% GPT3.539.12 30.14 48.15 51.08
Claude 4893 31.76 40.12 54.13
Qwen 68.12 6238 38.17 59.94

50% GPT3.559.83 5543 61.63 2321
Claude 67.32 63.76 33.48 63.39
Qwen 78.61 7197 3346 62.58

80% GPT3.576.73 69.02 39.72 56.87
Claude 85.21 79.01 10.31 85.63
Qwen 91.57 8596 17.60 71.12
100% GPT3.5 90.00 87.12 33.62 67.33
Claude 95.71 95.28 9.28  87.18

Table 7: Selection Accuracy of Ablation Study on Ours

7 Conclusion

In this paper, we introduce AudioAgent, an agent
framework designed to address the common am-
biguity in textual instructions and the poor task
efficiency in execution for audio fields. In our
method, AudioAgent comprehends the characteris-
tics of the audio modality to optimize the prompt,
rather than solely using audio as the tool’s input.
Therefore, it enables the controller to accurately se-
lect the optimal model for each type of task within
a extensive toolset. Moreover, AudioAgent also
employs a straightforward and flexible framework,
enabling users to freely register tools and utilize
any LLM’s API as the controller. Both subjective
and objective evaluations have demonstrated the ef-
fectiveness of our work in selection and execution.
Additionally, relying on the exceptional scalability
of our framework, we intend to extend its applica-
tion to additional modalities such as images and
videos in the future. In other words, through modal-
ity comprehension and prompt optimization, our
framework can enhance the precision of tool selec-
tion across different modalities, leading to a unified
multimodal Agent Framework. We hope AudioA-
gent will introduce a novel research paradigm in
the realm of Al Agents.



8 Limitation

AudioAgent introduces a novel approach for
scheduling tools in the audio domain. However,
there are still several areas that require attention
and enhancement: 1) Length Limitation: The maxi-
mum token limit is currently still determined by the
Large Language Models used in AudioAgent. This
limitation may impact multi-turn conversations be-
cause of the history in memory and calls for Prompt
Optimization to condense user instructions. 2) Ex-
pression fluency: While we have devised a compre-
hensive process framework and enhanced selection
accuracy in the interactive segment, the fluency
of expression in interaction still relies on LLMs.
Employing finetuned open source LLMs on Audio-
related dataset tends to be beneficial. 3)Time Con-
sumption: Improving selection accuracy entails
modality comprehension and prompt optimization
for input audio. Although the processing time is
not extensive, it unavoidably extends user waiting
time. In the future, we will further research lighter
modal understanding components.

9 Potential Risks

AudioAgent reduces the barriers to entry for jobs
within the audio domain, potentially leading to un-
employment among professionals in related fields,
such as speech engineering. Moreover, it could fa-
cilitate misuse within the vocal domain, providing
illicit actors with tools to inflict harm upon society.
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A Tool Details

When registering the tool, we design a well-crafted
interface. It mainly consists of two modules. One
primarily interacts with LLM. This part asks users
to provide a detailed description of the function of
tools and parameters. Audio-Agent will select the
most suitable tool based on the optimized instruc-
tions and the functional descriptions.

Once the tool is determined, the LLM controller
extracts parameter content from the instructions
based on the parameter’s description. Then, the
next part will run the pre-trained model based on
the parameter and return the result for LLM con-
troller to generate the response.

In tool registration, the tool’s function and the
every parameter’s description should be detailed
but different from other tool in the toolset, it makes
LLM more easily to select the most suitable one.
Some examples of the registration are in Table 8.

To register tools as described above, we have
prepared a detailed tool set. This tool set contains
all the tasks we can think of in the audio field. If the
input mode is audio, AudioAgent will understand
the audio and optimize the prompt’s content and
syntax; If the input does not contain audio, the
syntax of the prompt is optimized and the agent’s
process proceeds normally. The detail of the toolset
is in Table 9.

B Dataset Statistics

In the modality comprehension section, we primar-
ily use the following datasets to train the compre-
hension component. We do not use all the data
because the Audio Encoder has rich information
and can efficiently train classifiers with high ac-
curacy. Specifically, we calibrate a set of data for
each classifier, divided by dividers in Table 10.

C Dataset Construction

We use GPT3.5-turbo(Wu et al., 2023) to construct
training data for Prompt Optimization part. Specif-
ically, we set multiple task scenarios, generate sen-
tence templates and replace the placeholders in the
templates with keywords.

For instance, if the task scenario is in an Tran-
scription environment, then the effective labels are
the language and time. We use GPT3.5-turbo to
first generate a template sentence with these label
placeholder such as [language] and [time]. For in-
stance, we get "Transcribe the [time] speech into
[language] text". Next, we list all audio labels
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combination like "Long time; Chinese language;
Angry emotion; Noisy feature; Speech type" and
replace the placeholder with true labels to get GT,
like "Transcribe the long speech into Chinese text".
Since there are many combinations of such labels,
one template sentence can be used multiple times.

Then, remove the locators from the template
sentence, and we get the grammatically correct but
unlabeled sentence (Raw). Making spelling, tense,
etc. errors for Raw and GT gives Raw(error) and
GT(error). In summary, a template sentence can be
combined with different tags to enrich our data set.

Once we have these template sentences designed
for a single task, we use GPT3.5turbo to merge
pairwise into multi-task sentence combinations and
repeat the same process for creation. Specific ex-
amples of the data can be seen in the Table 12.

After we get the prompt for each task scenario,
we pick the appropriate audio to build the tool-
selected test set. For example, for individual tool
selection, ASR tasks use ASR’s prompt and Lib-
riTTS; Audio Enhancement tasks use AE’s prompt
and MS-SNSD. This builds the prompt and audio
correspondence. For multi-tool selection, we first
pick the prompt for multi-task. Then we manu-
ally pick audio samples, test its multi-label features
with the classifier, and specify the correct tools and
their sequence in usage by the prompt.

D Evalution Metrics

Here we supplement some details regarding the
evaluation metrics.

D.1 Grammar

For grammar measurement, we utilize the open-
source tool available on HuggingFace. This
tool is based on the FacebookAl/roberta-base
model(Warstadt et al., 2020). We present online ex-
ample in Figrue 4. Through experiments, this tool
can rapidly discern the correctness of word spelling
and can also perceive grammatical details such as
errors in tense, which is useful in our experiment.

D.2 Selection

For model selection in our testing, we mainly uti-
lize the F1 score, ED, and Accuracy as the three
primary metrics.

In multi-class classification problems, the F1
score is a commonly used performance metric that
comprehensively considers a model’s precision and
recall. For datasets with imbalanced class distri-
butions, the F1 score better reflects the model’s



Tool Name: Yourtts(Casanova et al., 2022)

Tool Description: Convert the text into speech, provide the prompt wav as the speaker if needed.
Parameter-Text: The text to be converted into the speech.
Parameter-Prompt: The path of ossible wav to be the prompt. If user don’t provide, be ’None’

Tool Name: Whisper-large-v2(Radford et al., 2023)

Tool Description: Translate the speech in language A into English text.
Parameter-Language_A: The language of the speech file.

Parameter-Path: The necessary path of the speech.

Tool Name: Chest_falsetto

Tool Description: Define the characteristic of the given song.
Parameter-Path: The necessary path of the song.

Tool Name: Speech_frcrn_ans_cirm_16k(Dubey et al., 2022; Zhao et al., 2022)

Tool Description: Reduce the noise in the noisy wav when executing audio enhancement.
Parameter-Path: The necessary path of the noisy wav file.

Tool Name: Make-An-Audio(Huang et al., 202

3)

Tool Description: Comprehend the image and create the relevant audio based on it.
Parameter-Path: The necessary path of the image.

Table 8: Example of Tool Registration

Inference API

=4 Text Classification Examples v

Convert the Chinese speech into English text.

Compute

0.959
0K

0.041
GRAMMAR_ERRORS

Figure 4: The Test on Sentence with Right Grammar

performance. We use the F1 metric to measure the
number of correct tools selected by the LLM in
both single and multiple selections.

When multiple models need to be sequentially
selected, we also use the Edit Distance (ED) met-
ric. Edit Distance, also known as Levenshtein dis-
tance, measures the similarity between two strings.
It indicates the number of operations—insertions,
deletions, and substitutions—needed to transform
one string into another. This distance is useful for
comparing the similarity between two strings. We
use it to compare the format of the tool organiza-
tion provided by LLM with the standard answer
to gauge the correctness of our selection, which is
also utilized in HuggingGPT(Shen et al., 2024).

Accuracy directly measures the proportion of
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correctly selected tools. It provides a straightfor-
ward assessment of the number of correctly chosen
tools. We use this metric to visualize the results
of a single tool selection when testing it. Overall,
we assume the three metrics can demonstrate the
selection result of the LLM model.

D.3 Subjective Metric

In the subjective assessment, we primarily submit
the results to Amazon Mechanical Turk for testing.

To Integrity, since the instructions convey the
user’s intent, we have evaluators read the instruc-
tions to test their ability in selecting the correct
results. Examples are in Table 13. Every question
is rated by 4 testers and we design 50 question for
Raw, Raw(err), GT, GT(err) and Ours. We believe
that this can be used as an indicator of whether the
instructions convey the necessary information for
selection and how they influences the capability of
the LLM in choosing the right tools.

For the performance improvement brought about
by precise tool selection, we also conduct MOS
evaluations for the audio quality enhancement with
95% confidence intervals (CI). We ask the testers
to examine the audio quality and naturalness and
ignore the content. We have 100 items in all and
each data item is rated by 4 testers. The testers rate



Input Output  Output Model
Text-to-Speech Text&Audio Audio Yourtts(Casanova et al., 2022)
Text-to-Audio Text Audio Make-An-Audio(Huang et al., 2023)
Speech Transcription Audio Text Paraformer(Gao et al., 2022), UniASR(Gao et al., 2010)...
Speech Translation Audio Text Whisper-large-v2(Radford et al., 2023)
Audio Captioning Audio Text Whisper-large-v2-audio-captioning(Kadlcik et al., 2023)
Speaker Verification Audio Text  Wav2vec2-large-robust-24-ft-age-gende(Burkhardt et al., 2023)
Singing Definition Audio Text Chest_falsetto
Talking Head Synthesis Audio Video GeneFace(Ye et al., 2023)
Audio-to-Video Generation  Audio Video TempoTokens(Yariv et al., 2023)
Speech Enhancement Audio Audio AudioSR(Liu et al., 2024)
Speech Denoise Audio Audio Speech_frcrn_ans_cirm_16k(Dubey et al., 2022; Zhao et al., 2022)
Speech Dereverberation Audio Audio Sgmse(Welker et al., 2022; Richter et al., 2023)
Mono-to-Binaural Audio Audio NeuralWarp(Grabocka and Schmidt-Thieme, 2018)
Pop-to-Piano Audio Audio Pop2piano(Choi and Lee, 2023)
Audio Source Separation Audio Audio Sepformer-libri3mix(Subakan et al., 2021, 2023)
Speech Separation Audio Audio TF-GridNet(Wang et al., 2023b)
Image-to-Audio Image Audio Make-An-Audio(Huang et al., 2023)

Table 9: Models for various audio processing tasks we have prepared, user can register tools into the original toolset
freely and easily. We support any modality as input and output.

scores on 1-5 scales and are paid $8 hourly. The
MOS evaluation is shown in Figure 5.

E LLM in Test

In our Tool Selection tests, we abbreviate the
LLM’s detail information. Here, we provide addi-
tional explanation for it in Table 11.

We find that the better the performance of the
LLM as a controller selection model, the less it
is influenced by syntactic instructions. However,
regardless of the type of LLM, it cannot accurately
select tools for instructions with incomplete con-
tent information. Furthermore, when the task sce-
nario is clear, such as audio quality enhancement,
the LLM cannot determine whether it should in-
crease the sampling rate or remove noise. So, it
consistently selects the same type of tool. This
demonstrates the logic behind the LLM’s tool se-
lection and highlights the necessity of providing
instructions with detailed information.

F Chat of LLM

In order to illustrate how the multi-round interac-
tion works, we test AudioAgent and record the
experimental results completely. The interaction
can be shown in the Figure 6. It can be seen that Au-
dioAgent can select the right tool according to the
user’s instructions, and Penguin can successfully
complete multiple rounds of dialogue interaction.

15



Dataset Hours
Language

En:LibriTTS(Zen et al., 2019) 40.8
Zh:Thchs30(Wang and Zhang, 2015) 342
De:Thorsten(Miiller and Kreutz, 2021) 27.1
Ja:Common Voice Corpus 8.0(Ardila et al., 2019) 41.0
Fr:Common Voice Delta Segment 11.0(Ardila et al., 2019) 39.0
Category

Speech: VCTK(Yamagishi et al., 2019) 30.0
Song:M4Singer(Zhang et al., 2022a) 29.8
Audio:Audiocap(Kim et al., 2019) 35.0
Emotion

ESD(Zhou et al., 2022) 29.1
Characteristic

MS-SNSD(Reddy et al., 2019) 30.0
WSJO+Reverb(Scheibler et al., 2018) 32.1

Table 10: Dataset in Modality Comprehension

Used Details

NTE Natural Text Embedding(Li et al., 2023c)
LLam?2 Llama2-Chat-13B(Touvron et al., 2023)
Gemini Geminil.5-pro(Reid et al., 2024)

Vicuna Vicuna-33b(Zheng et al., 2023)

GPT3.5 Gpt3.5-turbo(Wu et al., 2023)

Qwen Qwenl.5-32b-chat(Bai et al., 2023)
Claude Claude 3 Sonnet(Kevian et al., 2024)

Table 11: Details about the LLM in Test

Instructions | | Shortcuts | How natural (i.e. human-sounding) is this recording of audio? Please ignore the content and focus on audio quality?

» 0:00/0:12

Se

0 i

Figure 5: The test on Mos Quality
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lect an option

Excellent - Completely natural audio- 5

45

Good - Mostly natural audio - 4

3.5

Fair - Equally natural and unnatural audio - 3
2.5

Poor - Mostly unnatural audio - 2

15

Bad - Completely unnatural audio - 1

6 ® N o o & w N oo

| Submit



Speech Transcription Template: Could you transcribe the [time] dialogue and translate it into
[language] for me?

Raw: Could you transcribe the dialogue and translate it for me?

Raw(err): Could you transcribing the dialogues and for me translates it?

GT: Could you transcribe the long dialogue and translate it into Japanese for me?

GT(err): Could you transcribing the long dialogues and translating it into Japanese for me?

Speech Translation Template: Could you translate the [language] speech into Spanish for me?
Raw: Could you translate the speech into English for me?

Raw(err): Translates the speech into English for I, Could you?

GT: Could you translate the Chinese speech into English for me?

GT(err): Could you translating the Chinese speeches into English for me?

Video Generation Template: Create the video associated with the [type]’s melody.
Raw: Create the video associated with the melody.

Raw(err): The video, create, associating with the melody.

GT: Create the video associated with the speech’s melody.

GT(err): Create the video associateing with the speech melody.

Singing Definition Template: Comprehend the characteristics of the [emotion] [type].
Raw: Comprehend the characteristics of the wav.

Raw(err): Comprehends the wav characteristics.

GT: Comprehend the characteristics of the sad song.

GT(err): The sad characteristics,comprehending of the song.

Audio Enhancement Template: Refine the quality of the [feature] recording.
Raw: Refine the quality of the recording.

Raw(err): The recoring, refining the quality.

GT: Refine the quality of the noisy recording.

GT(err): The noisy recordings, refined the quality of.

Sentence Combination 1 Template: Translate the [language] [type] into English text and define it.
Raw: Translate the wav into English text and define it.

Raw(err): Translates the wav into Englih text and define it.

GT: Translate the French speech into English text and define it.

GT(err): Translte the French speech into English txt and define it.

Sentence Combination 2 Template: Create the video related to the [type]’s melody. Then, enhance
the [feature] recording.

Raw: Create the video related to the melody. Then, enhance the recording.

Raw(err): Create the video related to the meloyd. Thens, enhancing the recording.

GT: Create the video related to the speech’s melody. Then, enhance the echoing recording.
GT(err): Create the video erlated to the speech’s melody. Then, Enhance the Echoing recording.

Table 12: Example of our dataset. We only need to enumerate the keyword combinations and make corresponding
substitutions to get a complete prompt. Raw: text w/o audio labels. Gt: text w/ audio labels. (err): grammar error

17



Examples on Single Tool Selection

Prompt:Transcribing the audios into text.(Raw(err))

A: UniASR:Japanese ASR for short speech
B: Paraformer:Chinese ASR for long speech
C: Yourtts:Text to Speech with prompt

D: Sgmse:Reduce the audio’s noise.

E: Chest_falsetto:Define the song.

Prompt:Transcribe the long speech into Japanese text.(Ours)

A: UniASR:Japanese ASR for short speech
B: Paraformer:Chinese ASR for long speech
C: Yourtts:Text to Speech with prompt

D: Sgmse:Reduce the audio’s noise.

E: Chest_falsetto:Define the song.

Prompt:Enhancig the audio’s quality.(Raw(err))

A: AudioSR:Improve audio’s sampling rate
B: Sgmse:Reduce the audio’s noise.

C: Chest_falsetto:Define the song.

D: Make-an-Audio:Text to Audio.

E: TF-GridNet:Speech Seperation.

Prompt:Enhance the noisy audio’s quality, please.(Ours)

A: AudioSR:Improve audio’s sampling rate
B: Sgmse:Reduce the audio’s noise.

C: Chest_falsetto:Define the song.

D: Make-an-Audio: Text to Audio.

E: TF-GridNet:Speech Seperation.

Prompt:Defning the wav features.(Raw(err))

A: Chest_falsetto:Define the characteristic of song.

B: Wav2vec2(...):Define the speaker’s feature.

C: Whisper-large-v2:Translate the speech into other language.
D: TF-GridNet:Speech Seperation.

E: Chest_falsetto:Define the song.

Prompt:Can you define the song’s features?(Ours)

A: Chest_falsetto:Define the characteristic of song.

B: Wav2vec2(...):Define the speaker’s feature.

C: Whisper-large-v2:Translate the speech into other language.
D: UniASR:Japanese ASR for short speech

E: TF-GridNet:Speech Seperation.

Table 13: The Example of Subjective Test on Selection
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Q1: Hi, who are you? AlA

,ﬁ, Al: Hi, ’'m Audio-Agent, a versatile and adaptable agent
= framework for audio fields. I can help you solve various
audio tasks on different modality.

QZ: Well, please convert the audio audio/1.wav .ou
into text for me.

2 A2:1choose Whisper to convert the long English speech
into English text, the answer is “Life was a box of chocolate.

o

Q3: Then, can you enhance the audio’s quality? AlA

S5, A3: Yes, I select Speech_frcrn_ans_cirm_16k to refine
the quality of the large volume noisy audio, the result
audio is saved at |f3) result/answerl.wav. Enjoy !

Q4: Please describe the wav’s characteristic and )
generate the related video for |Z] audio/2. wav A

A4: 1 use Chest_falsetto to describe the sad song, then I use
GeneFace to generate the video. I think there is a male singer
who sings in falsetto. The video is savd as [} video/1.mp4

Q5: Generate an audio for the picture.

Q5: Yes, here is the audio file you request. The audio is
saved at |f3) result/answer2.wav

Figure 6: The Whole Process of Multi-turn Dialogue
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