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Abstract

Large Language Models (LLMs) have achieved001
remarkable progress in serving as controllers to002
interpret user instructions and select models for003
audio tasks. However, current LLMs, when se-004
lecting tools, only consider the textual input, ne-005
glecting valuable information within the audio006
modality that could aid in choosing appropriate007
tools. Due to the possible ambiguity of instruc-008
tions, errors in selection are common. To this009
end, we introduce AudioAgent, a versatile and010
adaptable agent framework for audio fields. It011
is the first system that emphasizes audio com-012
prehension and utilizes these information to013
autonomously refine user-provided prompt by014
one finetuned LLM. Through clearer instruc-015
tions, AudioAgent empowers the controller to016
precisely select the best tools and enhances the017
performance of tasks. Our framework also en-018
ables users to freely register tools and utilize019
any LLM as the core controller. Both subjective020
and objective metrics validate the effectiveness021
of our work. Result samples are available at022
https://AudioAgentTool.github.io.023

1 Introduction024

In recent times, there has been rapid advancement025

in LLMs(Brown et al., 2020; Floridi and Chiriatti,026

2020; Ouyang et al., 2022; Zhang et al., 2022b; Bai027

et al., 2023; Chowdhery et al., 2023; Touvron et al.,028

2023), which are capable of receiving multimodal029

input and executing a series of complex tasks based030

on user’s textual instructions(Le Scao et al., 2022;031

Achiam et al., 2023; Bai et al., 2023; Team et al.,032

2023).033

Within the realm of these models, numerous034

End-to-End Voice LLMs showcase their outstand-035

ing capability in processing the audio modality.036

For instance, present work(Borsos et al., 2023;037

Kharitonov et al., 2023; Wang et al., 2023a) de-038

velope a series of audio generation methods that039

focus on individual tasks. In pursuit of creating040

comprehensive united framework for multitasking041

User: Please enhance audio’s quality for me.
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Figure 1: Upon receiving this instruction, Text-Based
Agent is unable to determine the specific tool for audio
enhancement due to multiple possibilities for audio’s
characteristics. Similarly, tasks marked with ‘×’ are also
affected by this uncertainty. Agent requires some audio
features as a hint to choose, which is realized in the
AudioAgent through modality comprehension.

through the LLM paradigm, endeavors like (Huang 042

et al., 2023; Rubenstein et al., 2023; Yang et al., 043

2023a) have emerged. As multi-task frameworks 044

continue to improve, users can now employ natural 045

language to instruct the model in Qwen-Audio(Chu 046

et al., 2023). These models take full advantage of 047

the reasoning prowess and generalization abilities 048

of LLMs. However, the overall number of tasks 049

they can handle is still limited. 050

To fully harness the potential of LLMs and fur- 051

ther expand the range of achieveable tasks, recent 052

work has made great progress towards building 053

agent-based LLMs(Du et al., 2021; Yang et al., 054

2023b; Qin et al., 2023; Ruan et al., 2023; Schick 055

et al., 2024). Along this direction, several methods 056

have been employed to enhance the tool’s match- 057

ing accuracy with textual instructions. Some focus 058

on refining the tool’s description to better clarify 059

its functionality(Huang et al., 2024a; Shen et al., 060

2024), some narrow down the scope of tools before 061

selection(Li et al., 2023a), others employ meticu- 062

lous training on open-source LLMs to enhance their 063

understanding of prompt(Ouyang et al., 2022). 064
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However, the textual prompt easily leads to con-065

fusion. As illustrated in Figure 1, for the given066

textual prompt, text-based agent struggles to dis-067

tinguish audio characteristics which determine the068

suitable tool. Actually, the modality comprehen-069

sion process can play a significant role in this sce-070

nario. For example, if the audio contains noise, op-071

timizing the prompt to “Please reduce the noise in072

audio” can assist the agent in making right choices.073

In this work, we introduce AudioAgent, a com-074

prehensive agent framework equipped with a versa-075

tile toolset to facilitate a wide range of audio tasks.076

It is the first agent framework that emphasizes au-077

dio comprehension and utilizes these information078

to autonomously refine user-provided prompt in079

content and expression, making it easier for agent-080

based LLMs to select the best tool.081

To validate our approach, we construct a dataset082

mainly comprising two parts, which are ToolMM-083

Bench(Wang et al., 2024a) and one instruction set084

generated by GPT3.5-turbo with releated audio.085

We compare the optimized prompts achieved by086

AudioAgent across different types of instructions,087

demonstrating the importance of audio compre-088

hension and prompt optimization in improving the089

accuracy of selection. Additionally, we utilize two090

baselines to validate the efficiency improvements091

through AudioAgent’s optimal tool selection.092

Overall, our contribution can be summarized in093

three main aspects as follows:094

• Comprehension: AudioAgent distinguishes it-095

self through its capacity to comprehend audio096

modality. Compared to previous agent models097

that focused solely on textual modality, we fully098

leverage this aspect to provide controllable fea-099

tures which improve the accuracy of selection.100

• Optimization: AudioAgent offers one well fine-101

tuned LLM for prompt optimization, ensuring102

grammatical correctness and contextual richness103

in textual modality. The clearer instructions en-104

able controller to select the best tools and en-105

hance task performance across various scenario.106

• Flexibility: AudioAgent enables users to flexi-107

bly register tools and utilize any LLM as con-108

troller. Furthermore, the component of modality109

comprehension and prompt optimization can be110

applicable to any agent framework.111

2 Related work 112

2.1 Large Language Models 113

Large Language Models have experienced rapid 114

development in recent years, with some notable 115

examples such as GPT4(Achiam et al., 2023), 116

PaLM(Chowdhery et al., 2023), Qwen(Bai et al., 117

2023) and LLaMA(Touvron et al., 2023). Nowa- 118

days, there is a growing focus on leveraging the 119

robust reasoning abilities of LLMs to tackle a wide 120

array of multimodal challenges beyond text, such 121

as audio, image and video tasks. Present research 122

in this domain can be categorized into two main 123

branches: One approach involves unified End-to- 124

End LLMs to handle various tasks (Alayrac et al., 125

2022; Li et al., 2023b; Huang et al., 2024b). The 126

other approach focuses on empowering LLMs to in- 127

dependently understand user prompt and utilize ex- 128

isting tools for solving multimodal tasks(Du et al., 129

2021; Qin et al., 2023; Ruan et al., 2023; Yang 130

et al., 2023b; Schick et al., 2024). 131

2.2 Agent & Tool Learning 132

The use of LLMs as agents for executing complex 133

tasks has gained increasing attention. Modelscope- 134

Agent(Li et al., 2023a) deploys a flexible frame- 135

work that allows any open-source LLMs to serve 136

as the primary brain. Toolformer(Schick et al., 137

2024) pioneers the exploration of integrating LLM 138

with external tools. HuggingGPT(Shen et al., 139

2024) broadens the spectrum of tasks by offering 140

a wide array of models in HuggingFace. Audio- 141

GPT(Huang et al., 2024a) stands out as the first 142

Agent tailored for audio. MLLM-Tool(Wang et al., 143

2024a) transforms audio into the MEL spectrum 144

and then utilizes an image encoder to fine-tune a 145

single-round dialogue Agent. 146

However, despite these advancements, most of 147

these agent models still solely rely on the text- 148

based understanding and reasoning ability of LLMs. 149

The selection process is based on the user’s textual 150

instructions and the tool’s description, making ac- 151

curacy heavily dependent on the precision of the 152

given text like the example in Figure 1. In other 153

word, they only utilize audio for task execution 154

part, thus lacking the incorporation of audio that 155

could assist in enhancing the accuracy of tool se- 156

lection. AudioAgent capitalizes on modality com- 157

prehension to extract information from the audio, 158

enabling the creation of clear and grammatically 159

correct prompt for LLM controller to understand 160

and select the most suitable tool from toolset. 161
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Figure 2: Our network architecture: AudioAgent first receives the user’s prompt and potentially existing audio
file, and converts the prompt into grammatically correct new one with sufficient features of the audio. The LLM
controller will then conduct historical retrieval, tool selection, task execution, and ultimately return the running
results, which is then organized by the LLM controller to generate the final reply to the user.

3 Methods162

3.1 Overview163

The overall architecture of AudioAgent is in Fig-164

ure 2, which consists of three parts: Modal-165

ity Comprehension(C) in Figure 2(a), Prompt166

Optimization(M ) in Figure 2(b), and Task Exe-167

cution and Dialogue(L) with Tool Library(T ) in168

Figure 2(c). The whole system can be defined as:169

AudioAgent = (C,M,L, {T t
1}) (1)170

When the user provides instructions and possi-171

ble audio for processing, Modality Comprehension172

analyzes the audio, offering simple feature anno-173

tations. Subsequently, Prompt Optimization com-174

bines these annotations with user’s textual prompt175

to generate a grammatically correct one with clear176

direction for the intended tools. Finally, in Task177

Execution and Dialogue part, AudioAgent utilizes178

the LLM controller to identify the tool in the set179

and organize the answer based on the execution180

result. If the user engages in multiple rounds of181

interaction, the results are retained in history for182

further iterations. The whole n-multiple dialogue183

can be formulated as the sequence:184

D = {(qi, q
′
i, ai, ri)} (2)185

The term qi represents the query from the user186

and ai represents the audio samples in this turn.187

Additionally, q
′
i represents the optimized prompt188

obtained through AudioAgent from qi and ai. The189

ri is target response generated for users.190

3.2 Modality Comprehension 191

AudioAgent differs from existing agent models by 192

enhancing audio comprehension, thus enabling a 193

more comprehensive perception of task scenarios. 194

Some dimensions, such as pitch and volume, do not 195

significantly impact tool selection in audio fields. 196

Therefore, these dimensions will not be considered 197

in this context. Our primary focus is on dimensions 198

that directly influence the selection of tools for 199

audio tasks. 200

Dimensions such as the length of audio can be 201

calculated using signal processing tools. As a re- 202

sult, we primarily focus on those cannot be di- 203

rectly measured. Initially, we draw inspiration from 204

Qwen-Audio(Chu et al., 2023) and utilize an Audio 205

Encoder module based on Whisper(Radford et al., 206

2023) to process the input audio. Within this mod- 207

ule, audio is first resampled to 16,000 Hz, and an 208

80-channel log-magnitude Mel spectrogram repre- 209

sentation is computed on 25-millisecond windows 210

with a 10-millisecond stride. After that, the result 211

undergos normalization, convolutional layers using 212

GELU activation(Hendrycks and Gimpel, 2016), 213

and Transformer layers employing pre-activation 214

residual blocks(Child et al., 2019) to obtain the 215

final representation. 216

Although Whisper is a pretrained multilingual 217

translator under self-supervision, its encoded rep- 218

resentation also contains rich information, and is 219

capable of reconstructing the original speech(Gong 220

et al., 2023; Zhang et al., 2023; Wang et al., 2024b). 221

Qwen-Audio even utilize its embedding to infer 222
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discrete tokens in Voice LLM(Chu et al., 2023).223

So, leveraging this embedding to support the com-224

prehension part is feasible.225

The LSTM, known for effecitively capturing226

long-term dependencies and handling time-series227

data(Staudemeyer and Morris, 2019; Yu et al.,228

2019; Sherstinsky, 2020), is utilized to retain cru-229

cial information within sequences. By leveraging230

the representations extracted by the encoder, mul-231

tiple classifiers based on LSTM are trained to pro-232

vide annotations for audio. Specifically, for each233

sample, approximately 3 seconds of audio is ran-234

domly extracted, with the corresponding embed-235

ding serving as input for classifiers. Then, if ei236

represents the result of the comprehension, it can237

be defined as:238

ei = C(Encoder(ai)) (3)239

Also, we have designed interfaces that enable240

users to offer additional labels in text modality if241

necessary. For instance, if new label is to added,242

user can modify the ei with new classifer C ′ as:243

ei = Concat(C(Encoder(ai)), C
′(ai)) (4)244

3.3 Prompt Optimization245

The current LLMs primarily rely on interpreting246

text when selecting tools. This approach may en-247

counter issues such as grammatical disarray and248

lack of information in the initial prompt qi, which249

significantly impacts tool selection accuracy. Lever-250

aging the results of Modality Comprehension ei251

and raw input qi, Prompt Optimization component252

is trained to automatically refine the content and253

expression of user’s instructions as better one with254

the finetuned LLM:255

q
′
i = M(qi, ei, ai) (5)256

For example, the feature "Neutral emotion, long257

time, English Language, Noisy feature" and the258

phrase "Please transcribed into text." will be trans-259

formed into "Please transcribe the long speech into260

English text.", which specifically points to the ASR261

tool designed for processing lengthy audio seg-262

ments in English. Prompt Optimization needs to263

comprehend instruction and select labels to com-264

pose a new sentence.265

In our experiments, we use GPT-3.5turbo to gen-266

erate a training dataset as outlined in Section 4.1.267

Specifically, we use unlabeled sentences with gram- 268

matical errors and all audio labels as input, labeled 269

sentences with correct grammar as target output. To 270

accomplish the task of enriching content and refin- 271

ing expression in Equation 5, we finetune an open- 272

source LLM. ChatGLM2-6B(Zeng et al., 2022), 273

a bilingual LLM based on the General Language 274

Model architecture, is selected. This model imple- 275

ments an efficient parameter P-tuning(Liu et al., 276

2021) method, reducing the number of parame- 277

ters that need to be finetuned to the original 0.1%. 278

Indeed, the flexibility of AudioAgent framework al- 279

lows for any NLP model to complete the optimiza- 280

tion process. We also develop interfaces through 281

which users can select their own pretrained model 282

to accomplish the prompt generation task. 283

3.4 Task and Dialogue Execution 284

When the above process acquires grammatically 285

correct instructions containing sufficient informa- 286

tion, they are able to provide a logical basis for 287

LLM controller to select from the toolset. We then 288

design a comprehensive framework capable of se- 289

lecting any LLM as controller, supporting flexible 290

registration of tools, and enabling multi-round dia- 291

logue as illustrated in Figure 2(c). 292

Specifically, during tool registration, users are 293

required to provide the unique tool name, suffi- 294

cient description, required parameters for the Tool 295

Library(T ). We have also prepared one toolset 296

that includes nearly all of the current audio tasks, 297

which can be seen in Appendix A. Regarding the 298

controller, users can freely utilize any API inter- 299

face of LLMs, which will receive the optimized 300

prompt and retrieve the most suitable tools ti in 301

Tool Library base on text modality as: 302

ti = F (q
′
i, {T t

1}) (6) 303

After obtaining the required tools, AudioAgent 304

will automatically invoke these tools, provide their 305

inputs, execute the tools, and obtain the output to re- 306

turn based on the tool’s outcomes, user instructions 307

q
′
i and history hi. Controller will continue to plan 308

whether to call other tool to finish the sequential 309

work. If another tool is needed, the process will 310

be repeated, otherwise, the final comprehensive 311

response is returned to the user. This turn of dia- 312

logue will also be encapsulated as history, enabling 313

potential multi-round dialogue to utilize. 314

ri = LLM(R, q
′
i, hi) (7) 315
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4 Training and Evalutaion316

4.1 Datasets317

For modality comprehension, we combine datasets318

to train 4 classifers. We utilize multilingual audio319

for language identification; VCTK, M4singer, Au-320

diocap for category recognition; ESD for emotion321

analysis; MS-SNSD and WSJ0+Reverb for charac-322

teristic discrimination. We provide details of these323

audio datasets in Appendix B.324

For prompt optimization, our goal is to enable an325

incomplete, syntactically incorrect textual prompt326

to select appropriate audio labels from all extracted327

features and construct a correct one. Since there328

is no dataset available for training and validation,329

we design a method for generating a batch of data330

in pairs. Specifically, these pairs include 1) Raw:331

sentences without any audio feature labels; 2) Raw332

(err): Raw with specific grammatical errors; 3) GT:333

sentences with audio feature labels; 4) GT (err):334

GT with specific grammatical errors.335

In short, the data for every audio task is gen-336

erated separately. We first select the characteris-337

tics that each task needs to retain. For example,338

the ASR task needs [langauge] and [time]. Be-339

gin by creating a template with placeholders (such340

as Transcribe the [time] speech into [language]341

text). Then, replace the placeholders with labels342

or remove them to generate Raw and GT (such as343

Transcribe the long speech into English text for344

GT). Finally, introduce errors to obtain Raw(err)345

and GT(err) (such as Transcrieb the speechs into346

txt for GT(err)). After we get all template sentences347

for single task, GPT3.5-turbo is used to combine348

them to create new ones that require multiple tools349

(such as Transcribe the [time] wav into [language]350

text. Then enhance the [feature] wav’s quality).351

We repeat the same process and finally get a to-352

tal 3,000,000 pairs for training. More generation353

details and samples are in Appendix C.354

For tool selection, we utilize two test sets. One355

is MLLM-Tool(Wang et al., 2024a), from which356

we enrich every prompt to four sentences with its357

original audio. The other is the dataset from prompt358

optimization, we manually select the correct tools359

and audio samples for every pair of prompt.360

4.2 Evaluation Metrics361

We mainly evaluate the agent framework through362

objective evaluation with some subjective evalua-363

tion part via Amazon Mechanical Turk. The expla-364

nation of metrics are as follows:365

• Feature accuracy: When assessing modality 366

comprehension, we directly employ the model’s 367

classification accuracy for the test set. 368

• Grammar accuracy: When evaluating the syn- 369

tax error in the sentence, we utilize the inde- 370

pendently trained grammar-checker as the ar- 371

biter(Warstadt et al., 2020). 372

• Selection Accuracy: We assess the accuracy of 373

LLM in tool selection with accuracy, F1 and Edit 374

Distance. The specific calculation method is de- 375

tailed in the Appendix D. 376

• Task Performance: We compare the perfor- 377

mance improvements through AudioAgent’s op- 378

timal selection with other Agent and End-to- 379

End Voice LLM, primarily employing the WER, 380

BLEU and MOS. 381

• Subjective evaluation: We conduct informa- 382

tional integrity and MOS assessments. All pro- 383

cess is held on the Amazon platform in English. 384

Specifically, for integrity, the tester needs to se- 385

lect the answer from five options according to 386

the tool’s description and prompt. The accuracy 387

is recorded as score. In MOS test, audio is rated 388

scores on 1-5 scale. Details are in Appendix D. 389

4.3 Model Configurations 390

For Audio Encoder in Modality Comprehension, 391

we utilize pre-trained Whisper which is a 32-layer 392

Transformer model that includes two convolution 393

down-sampling layers as a stem. The audio encoder 394

is composed of about 640M parameter. 395

For ChatGLM2-6B in Prompt Optimization, it is 396

finetuned with 4 2080Ti gpus for about one week 397

and ends at about 20K step. Adam optimizer is 398

used with β1 = 0.9, β2 = 0.999, ϵ = 10−8. The 399

learning rate is 1 ×10−2 at beginning. 400

5 Results and Analysis 401

5.1 Modality Comprehension Result 402

We initially evaluate the accuracy of classifiers for 403

Modality Comprehension. For dimensions that can- 404

not be directly measured, the result is shown in 405

the Table 1. The outcome further proves that the 406

Audio Encoder contains rich information, and its 407

embedding can be effectively used for highly ac- 408

curate feature extraction. In our experiment, we 409

primarily employ the LSTM structure to construct 410

all classifiers, users can utilize other more complex 411

structures to replace it if necessary. Furthermore, 412
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the feature dimension can be easily expanded by413

utilizing the Audio Encoder to train new classifiers414

or integrating other pre-trained models to provide415

labels, but we assume the feature utilized in Au-416

dioAgent is adequate for present audio tasks.417

Type Test Acc ↑

Language 98.64
Category 99.31
Emotion 84.02

Characteristic 97.77

Table 1: Results of Comprehension

5.2 Prompt Optimization Result418

We test sentences Raw, Raw(err), GT, and GT(err)419

along with the results Ours obtained by AudioA-420

gent from Raw(err) in grammar and integrity.421

Following the assessment in Table 2, the scores422

of Ours closely align with the scores of GT in gram-423

mar tests, distinctly differing from sentences with424

incorrect grammar. Moreover, the subjective in-425

tegrity test indicates that prompts with the correct426

labels guide the evaluators to select tools accurately,427

and Ours do the same. This suggests that the fine-428

tuned ChatGLM-6B model possesses the capability429

to correct grammatical errors and combine audio430

features into the context.431

5.3 Model Selection Result432

In this stage, we compare two scenarios: prompt433

for single tool selection and prompt for the sequen-434

tial selection of multiple tools. To demonstrate435

the impact of correct grammar and comprehensive436

information on LLM’s tool selection ability, we437

compare five types of prompt with totally 22 audio438

models for test, along with the open-source dataset439

MLLM-Tool. The details of LLM are in Appendix440

E and we use abbreviations here for simplicity.441

Obj. Syntax ↑ Subj. Integrity ↑

GT 83.96 95.49
GT(err) 25.67 92.91

Raw 79.87 34.74
Raw(err) 28.67 31.46

Ours 82.79 94.10

Table 2: Results of Prompt Optimization on Grammar
and Integrity. Raw: text w/o audio labels. Gt: text w/
audio labels. (err): grammar error

5.3.1 Single Selection 442

Every item in the MLLM-Tool includes one 443

prompt, one corresponding audio, and the tool to 444

be selected. Its prompt comes with a full definition 445

of audio, as it can be treated directly as GT. We use 446

GPT3.5-turbo to remove the feature labels in GT 447

and get Raw. Then, by introducing syntax errors, 448

we obtain Raw(error) and GT(error). By modality 449

comprehension and prompt optimization, Ours is 450

the result from the audio and Raw(error). 451

It is found that although MLLM-Tool tries to 452

combine the text prompt and audio to select the tool, 453

its selection accuracy is affected when features in 454

the text prompt are eliminated. LLM, which selects 455

solely based on text mode, is more influenced by 456

the feature labels in prompt for selection. This 457

illustrates the importance of adequate audio feature 458

labels in prompt for correct selection. 459

To further demonstrate the importance of fea- 460

ture labels in selection, we test on our own larger 461

set. When considering the selection of a single 462

model, the results also indicate that the accuracy 463

of the prompt with features (GT, GT(err), Ours) 464

significantly surpasses that of the prompt sentence 465

without features (Raw, Raw(err)) in Table 4. This 466

discrepancy arises because, in the absence of fea- 467

ture descriptions, LLMs lack the basis for selection 468

and consequently exhibit reduced accuracy. 469

When considering the impact of grammatical 470

correctness, it is observed that while a small num- 471

ber of LLMs, such as Claude, are less affected, 472

the vast majority experience a notable decline in 473

accuracy when encountering grammatical errors. 474

This finding emphasizes the necessity of grammar 475

correction in prompts to ensure accurate model 476

selection. That is to say, although some higher- 477

performing LLMs like Claude can better under- 478

stand commands, even when they contain grammat- 479

ical errors, due to the fact that the majority of these 480

high-performing LLMs are currently closed-source 481

or require payment, users can utilize open-source 482

or affordable LLMs as controllers to ensure higher 483

precision through prompt optimization. 484

5.3.2 Sequential Selection 485

For the sequential selection of multiple models, we 486

choose Claude, GPT3.5-turbo, and Qwen, which 487

exhibit the best performance in single-model se- 488

lection as the basis. Then, we select the prompt 489

involving multiple tasks and measure the charac- 490

teristics of related audio samples to determine the 491

correct tools and usage orders for generating the 492
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MLLM-Tool Qwen GPT3.5 Claude

GT 81.53 / 78.52 85.58 / 85.52 92.09 / 92.22 93.95 / 94.01
GT(err) 72.85 / 68.73 81.42 / 80.49 90.71 / 86.26 88.57 / 87.88

Raw 57.14 / 45.04 36.27 / 28.01 43.28 / 37.95 41.26 / 28.66
Raw(err) 56.91 / 44.72 35.71 / 27.04 37.14 / 21.25 38.57 / 29.49

Ours 79.84 / 75.32 83.26 / 83.04 91.62 / 91.45 95.34 / 95.32

Table 3: Selection Accuracy of Single Selection on MLLM-Tool’s Dataset-Accuracy↑ / F1 ↑. Raw: text w/o audio
labels. Gt: text w/ audio labels. (err): grammar error

LLam2 Gemini Vicuna GPT3.5 Qwen Claude

GT 40.00 / 23.01 92.86 / 92.31 52.86 / 40.84 92.85 / 92.31 94.43 / 88.53 97.14 / 96.79
GT(err) 34.29 / 19.39 72.86 / 68.66 35.71 / 20.51 82.86 / 78.07 82.86 / 78.07 94.29 / 93.73

Raw 34.29 / 17.87 30.00 / 19.03 17.14 / 9.91 44.29 / 36.10 35.71 / 27.09 40.00 / 26.66
Raw(err) 15.71 / 15.24 32.86 / 20.55 14.29 / 13.93 32.86 / 19.18 25.71 / 14.57 38.57 / 23.87

Ours 31.43 / 25.48 88.57 / 81.22 50.13 / 34.02 90.00 / 87.12 91.57 / 85.96 95.71 / 95.28

Table 4: Selection Accuracy of Single Selection-Accuracy↑ / F1↑. Raw: text w/o audio labels. Gt: text w/ audio
labels. (err): grammar error

test set. More details are in Appendix C.493

The results in Table 5 show that, although there494

is a certain degree of decline in overall correctness,495

the prominent pattern remains consistent with the496

selection of a single tool. Therefore, breaking down497

a long prompt into several shorter prompts with a498

specific sequence might be a method to improve499

precision in tool selection. We have identified this500

as one of our future research directions.501

Qwen GPT3.5 Claude

GT 15.24 / 74.69 32.25 / 65.81 8.66 / 88.26
GT(err) 17.60 / 71.12 33.62 / 65.94 11.68 / 84.85

Raw 56.53 / 22.08 55.85 / 32.19 60.02 / 20.37
Raw(err) 57.28 / 21.52 58.25 / 28.53 60.76 / 18.85

Ours 16.57 / 73.73 32.90 / 67.33 9.28 / 87.18

Table 5: Selection Accuracy of Sequential Selection-ED
↓ / F1 ↑. Raw: text w/o audio labels. Gt: text w/ audio
labels. (err): grammar error

5.4 Task and Dialogue Execution Result502

After obtaining the required tool name, the agent503

framework will call the required tool, pass in pa-504

rameters, collect the results and return them to the505

controller. The controller will then return content506

to the user based on the complete instructions, task507

description, model results, and interaction history,508

thereby completing a round of interaction. The509

complete process from receiving instructions to 510

providing a response is illustrated in Figure 3. A 511

more comprehensive dialogue from AudioAgent is 512

shown in Appendix F. 513

Through the above process, AudioAgent is 514

proved to enhance the accuracy of model selection, 515

thereby significantly improving the efficiency of 516

the task. To illustrate this, we compare the results 517

by AudioAgent’s optimal tool selection with those 518

of two baseline models which can be instructed 519

with natural language. Specifically, HuggingGPT 520

is the typical Agent framework before and Qwen- 521

Audio is the End-to-End Voice Large Language 522

Model. Here, the model’s input, as depicted in 523

Figure 3, is Raw(err) without directive features. 524

The results presented in Table 6 indicate that, 525

when compared to our AudioAgent, HuggingGPT 526

performs poorly in task execution due to its lack of 527

specific model discrimination ability. For instance, 528

in transcription tasks, HuggingGPT consistently 529

invokes English transcription tools as it cannot dis- 530

cern languages, resulting in nearly no useful output 531

for audio inputs in other languages. 532

On the other hand, Qwen-Audio only needs to 533

discern the task label to automatically execute the 534

corresponding task. For example, if it identifies 535

an Translation task, Qwen-Audio utilizes the uni- 536

fied framework for inference. However, it mainly 537

generates outputs for the text modality and cannot 538

7



• Yourtts
• Paraformer
• Whisper-large
• ‧ ‧ ‧ ‧ ‧ ‧ ‧

This is a audio 
from the videos I love,
can transcribes it for me ?

This is an English speech from the video I 
love, can you transcribe it for me?

ASR, English ⇒

Life was a box of chocolates……

Figure 3: The Process of One-turn Dialogue

fulfill tasks requiring audio modality outputs, such539

as audio enhancement. In contrast, AudioAgent not540

only generates multimodal output but also achieves541

comparable efficiency to Voice LLMs in capability542

by precisely selecting and utilizing multiple indi-543

vidually trained models.544

Model ASR↓ ST↑ AE↑

HuggingGPT 43.2 0.1 3.53± 0.10
Qwen-Audio 4.0 28.8 /
Ours 3.4 31.2 4.10± 0.06

Table 6: Results of Task with WER, BLEU and MOS.
HuggingGPT is Agent framework, Qwen-Audio is End-
to-End Voice LLM.

6 Ablation Study545

To demonstrate the direct impact of the feature di-546

mensions on the accuracy of model selection, we547

conduct Ablation tests on Claude, GPT-3.5turbo,548

and Qwen, three best LLMs in above Experiments.549

The dataset used here is the same as that used in550

the Single Selection and Sequential Selection sec-551

tions above, where we manually select the text552

instructions built by GPT3.5-turbo for each task553

and the audio corresponding to that task. But we554

will control the number of labels before prompt555

optimization to get different optimized prompt for556

the LLM controller to carry out tool selection.557

Our findings, as depicted in Table 7, reveal a558

direct positive correlation between the accuracy559

of model selection and the number of features uti-560

lized. This emphasizes the critical role of modality561

comprehension and prompt optimization in guiding562

decision-making for LLMs. Normally, precise fea-563

ture definitions contribute to a more robust logical564

foundation for LLMs, enabling them to make more 565

accurate judgments. 566

In the future, we also plan to expand modal 567

understanding to encompass additional modalities 568

like image and video, further enhancing AudioA- 569

gent’s capabilities. 570

LLMs Single Task Sequential Task

Acc↑ F1↑ ED↓ F1↑

Qwen 47.31 39.23 43.21 53.42
30% GPT3.5 39.12 30.14 48.15 51.08

Claude 48.93 31.76 40.12 54.13

Qwen 68.12 62.38 38.17 59.94
50% GPT3.5 59.83 55.43 61.63 23.21

Claude 67.32 63.76 33.48 63.39

Qwen 78.61 71.97 33.46 62.58
80% GPT3.5 76.73 69.02 39.72 56.87

Claude 85.21 79.01 10.31 85.63

Qwen 91.57 85.96 17.60 71.12
100% GPT3.5 90.00 87.12 33.62 67.33

Claude 95.71 95.28 9.28 87.18

Table 7: Selection Accuracy of Ablation Study on Ours

7 Conclusion 571

In this paper, we introduce AudioAgent, an agent 572

framework designed to address the common am- 573

biguity in textual instructions and the poor task 574

efficiency in execution for audio fields. In our 575

method, AudioAgent comprehends the characteris- 576

tics of the audio modality to optimize the prompt, 577

rather than solely using audio as the tool’s input. 578

Therefore, it enables the controller to accurately se- 579

lect the optimal model for each type of task within 580

a extensive toolset. Moreover, AudioAgent also 581

employs a straightforward and flexible framework, 582

enabling users to freely register tools and utilize 583

any LLM’s API as the controller. Both subjective 584

and objective evaluations have demonstrated the ef- 585

fectiveness of our work in selection and execution. 586

Additionally, relying on the exceptional scalability 587

of our framework, we intend to extend its applica- 588

tion to additional modalities such as images and 589

videos in the future. In other words, through modal- 590

ity comprehension and prompt optimization, our 591

framework can enhance the precision of tool selec- 592

tion across different modalities, leading to a unified 593

multimodal Agent Framework. We hope AudioA- 594

gent will introduce a novel research paradigm in 595

the realm of AI Agents. 596
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8 Limitation597

AudioAgent introduces a novel approach for598

scheduling tools in the audio domain. However,599

there are still several areas that require attention600

and enhancement: 1) Length Limitation: The maxi-601

mum token limit is currently still determined by the602

Large Language Models used in AudioAgent. This603

limitation may impact multi-turn conversations be-604

cause of the history in memory and calls for Prompt605

Optimization to condense user instructions. 2) Ex-606

pression fluency: While we have devised a compre-607

hensive process framework and enhanced selection608

accuracy in the interactive segment, the fluency609

of expression in interaction still relies on LLMs.610

Employing finetuned open source LLMs on Audio-611

related dataset tends to be beneficial. 3)Time Con-612

sumption: Improving selection accuracy entails613

modality comprehension and prompt optimization614

for input audio. Although the processing time is615

not extensive, it unavoidably extends user waiting616

time. In the future, we will further research lighter617

modal understanding components.618

9 Potential Risks619

AudioAgent reduces the barriers to entry for jobs620

within the audio domain, potentially leading to un-621

employment among professionals in related fields,622

such as speech engineering. Moreover, it could fa-623

cilitate misuse within the vocal domain, providing624

illicit actors with tools to inflict harm upon society.625
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A Tool Details994

When registering the tool, we design a well-crafted995

interface. It mainly consists of two modules. One996

primarily interacts with LLM. This part asks users997

to provide a detailed description of the function of998

tools and parameters. Audio-Agent will select the999

most suitable tool based on the optimized instruc-1000

tions and the functional descriptions.1001

Once the tool is determined, the LLM controller1002

extracts parameter content from the instructions1003

based on the parameter’s description. Then, the1004

next part will run the pre-trained model based on1005

the parameter and return the result for LLM con-1006

troller to generate the response.1007

In tool registration, the tool’s function and the1008

every parameter’s description should be detailed1009

but different from other tool in the toolset, it makes1010

LLM more easily to select the most suitable one.1011

Some examples of the registration are in Table 8.1012

To register tools as described above, we have1013

prepared a detailed tool set. This tool set contains1014

all the tasks we can think of in the audio field. If the1015

input mode is audio, AudioAgent will understand1016

the audio and optimize the prompt’s content and1017

syntax; If the input does not contain audio, the1018

syntax of the prompt is optimized and the agent’s1019

process proceeds normally. The detail of the toolset1020

is in Table 9.1021

B Dataset Statistics1022

In the modality comprehension section, we primar-1023

ily use the following datasets to train the compre-1024

hension component. We do not use all the data1025

because the Audio Encoder has rich information1026

and can efficiently train classifiers with high ac-1027

curacy. Specifically, we calibrate a set of data for1028

each classifier, divided by dividers in Table 10.1029

C Dataset Construction1030

We use GPT3.5-turbo(Wu et al., 2023) to construct1031

training data for Prompt Optimization part. Specif-1032

ically, we set multiple task scenarios, generate sen-1033

tence templates and replace the placeholders in the1034

templates with keywords.1035

For instance, if the task scenario is in an Tran-1036

scription environment, then the effective labels are1037

the language and time. We use GPT3.5-turbo to1038

first generate a template sentence with these label1039

placeholder such as [language] and [time]. For in-1040

stance, we get "Transcribe the [time] speech into1041

[language] text". Next, we list all audio labels1042

combination like "Long time; Chinese language; 1043

Angry emotion; Noisy feature; Speech type" and 1044

replace the placeholder with true labels to get GT, 1045

like "Transcribe the long speech into Chinese text". 1046

Since there are many combinations of such labels, 1047

one template sentence can be used multiple times. 1048

Then, remove the locators from the template 1049

sentence, and we get the grammatically correct but 1050

unlabeled sentence (Raw). Making spelling, tense, 1051

etc. errors for Raw and GT gives Raw(error) and 1052

GT(error). In summary, a template sentence can be 1053

combined with different tags to enrich our data set. 1054

Once we have these template sentences designed 1055

for a single task, we use GPT3.5turbo to merge 1056

pairwise into multi-task sentence combinations and 1057

repeat the same process for creation. Specific ex- 1058

amples of the data can be seen in the Table 12. 1059

After we get the prompt for each task scenario, 1060

we pick the appropriate audio to build the tool- 1061

selected test set. For example, for individual tool 1062

selection, ASR tasks use ASR’s prompt and Lib- 1063

riTTS; Audio Enhancement tasks use AE’s prompt 1064

and MS-SNSD. This builds the prompt and audio 1065

correspondence. For multi-tool selection, we first 1066

pick the prompt for multi-task. Then we manu- 1067

ally pick audio samples, test its multi-label features 1068

with the classifier, and specify the correct tools and 1069

their sequence in usage by the prompt. 1070

D Evalution Metrics 1071

Here we supplement some details regarding the 1072

evaluation metrics. 1073

D.1 Grammar 1074

For grammar measurement, we utilize the open- 1075

source tool available on HuggingFace. This 1076

tool is based on the FacebookAI/roberta-base 1077

model(Warstadt et al., 2020). We present online ex- 1078

ample in Figrue 4. Through experiments, this tool 1079

can rapidly discern the correctness of word spelling 1080

and can also perceive grammatical details such as 1081

errors in tense, which is useful in our experiment. 1082

D.2 Selection 1083

For model selection in our testing, we mainly uti- 1084

lize the F1 score, ED, and Accuracy as the three 1085

primary metrics. 1086

In multi-class classification problems, the F1 1087

score is a commonly used performance metric that 1088

comprehensively considers a model’s precision and 1089

recall. For datasets with imbalanced class distri- 1090

butions, the F1 score better reflects the model’s 1091
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Tool Name: Yourtts(Casanova et al., 2022)

Tool Description: Convert the text into speech, provide the prompt wav as the speaker if needed.
Parameter-Text: The text to be converted into the speech.
Parameter-Prompt: The path of ossible wav to be the prompt. If user don’t provide, be ’None’

Tool Name: Whisper-large-v2(Radford et al., 2023)

Tool Description: Translate the speech in language A into English text.
Parameter-Language_A: The language of the speech file.
Parameter-Path: The necessary path of the speech.

Tool Name: Chest_falsetto

Tool Description: Define the characteristic of the given song.
Parameter-Path: The necessary path of the song.

Tool Name: Speech_frcrn_ans_cirm_16k(Dubey et al., 2022; Zhao et al., 2022)

Tool Description: Reduce the noise in the noisy wav when executing audio enhancement.
Parameter-Path: The necessary path of the noisy wav file.

Tool Name: Make-An-Audio(Huang et al., 2023)

Tool Description: Comprehend the image and create the relevant audio based on it.
Parameter-Path: The necessary path of the image.

Table 8: Example of Tool Registration

Figure 4: The Test on Sentence with Right Grammar

performance. We use the F1 metric to measure the1092

number of correct tools selected by the LLM in1093

both single and multiple selections.1094

When multiple models need to be sequentially1095

selected, we also use the Edit Distance (ED) met-1096

ric. Edit Distance, also known as Levenshtein dis-1097

tance, measures the similarity between two strings.1098

It indicates the number of operations—insertions,1099

deletions, and substitutions—needed to transform1100

one string into another. This distance is useful for1101

comparing the similarity between two strings. We1102

use it to compare the format of the tool organiza-1103

tion provided by LLM with the standard answer1104

to gauge the correctness of our selection, which is1105

also utilized in HuggingGPT(Shen et al., 2024).1106

Accuracy directly measures the proportion of1107

correctly selected tools. It provides a straightfor- 1108

ward assessment of the number of correctly chosen 1109

tools. We use this metric to visualize the results 1110

of a single tool selection when testing it. Overall, 1111

we assume the three metrics can demonstrate the 1112

selection result of the LLM model. 1113

D.3 Subjective Metric 1114

In the subjective assessment, we primarily submit 1115

the results to Amazon Mechanical Turk for testing. 1116

To Integrity, since the instructions convey the 1117

user’s intent, we have evaluators read the instruc- 1118

tions to test their ability in selecting the correct 1119

results. Examples are in Table 13. Every question 1120

is rated by 4 testers and we design 50 question for 1121

Raw, Raw(err), GT, GT(err) and Ours. We believe 1122

that this can be used as an indicator of whether the 1123

instructions convey the necessary information for 1124

selection and how they influences the capability of 1125

the LLM in choosing the right tools. 1126

For the performance improvement brought about 1127

by precise tool selection, we also conduct MOS 1128

evaluations for the audio quality enhancement with 1129

95% confidence intervals (CI). We ask the testers 1130

to examine the audio quality and naturalness and 1131

ignore the content. We have 100 items in all and 1132

each data item is rated by 4 testers. The testers rate 1133
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Input Output Output Model
Text-to-Speech Text&Audio Audio Yourtts(Casanova et al., 2022)
Text-to-Audio Text Audio Make-An-Audio(Huang et al., 2023)

Speech Transcription Audio Text Paraformer(Gao et al., 2022), UniASR(Gao et al., 2010)...
Speech Translation Audio Text Whisper-large-v2(Radford et al., 2023)
Audio Captioning Audio Text Whisper-large-v2-audio-captioning(Kadlčík et al., 2023)

Speaker Verification Audio Text Wav2vec2-large-robust-24-ft-age-gende(Burkhardt et al., 2023)
Singing Definition Audio Text Chest_falsetto

Talking Head Synthesis Audio Video GeneFace(Ye et al., 2023)
Audio-to-Video Generation Audio Video TempoTokens(Yariv et al., 2023)

Speech Enhancement Audio Audio AudioSR(Liu et al., 2024)
Speech Denoise Audio Audio Speech_frcrn_ans_cirm_16k(Dubey et al., 2022; Zhao et al., 2022)

Speech Dereverberation Audio Audio Sgmse(Welker et al., 2022; Richter et al., 2023)
Mono-to-Binaural Audio Audio NeuralWarp(Grabocka and Schmidt-Thieme, 2018)

Pop-to-Piano Audio Audio Pop2piano(Choi and Lee, 2023)
Audio Source Separation Audio Audio Sepformer-libri3mix(Subakan et al., 2021, 2023)

Speech Separation Audio Audio TF-GridNet(Wang et al., 2023b)

Image-to-Audio Image Audio Make-An-Audio(Huang et al., 2023)

Table 9: Models for various audio processing tasks we have prepared, user can register tools into the original toolset
freely and easily. We support any modality as input and output.

scores on 1-5 scales and are paid $8 hourly. The1134

MOS evaluation is shown in Figure 5.1135

E LLM in Test1136

In our Tool Selection tests, we abbreviate the1137

LLM’s detail information. Here, we provide addi-1138

tional explanation for it in Table 11.1139

We find that the better the performance of the1140

LLM as a controller selection model, the less it1141

is influenced by syntactic instructions. However,1142

regardless of the type of LLM, it cannot accurately1143

select tools for instructions with incomplete con-1144

tent information. Furthermore, when the task sce-1145

nario is clear, such as audio quality enhancement,1146

the LLM cannot determine whether it should in-1147

crease the sampling rate or remove noise. So, it1148

consistently selects the same type of tool. This1149

demonstrates the logic behind the LLM’s tool se-1150

lection and highlights the necessity of providing1151

instructions with detailed information.1152

F Chat of LLM1153

In order to illustrate how the multi-round interac-1154

tion works, we test AudioAgent and record the1155

experimental results completely. The interaction1156

can be shown in the Figure 6. It can be seen that Au-1157

dioAgent can select the right tool according to the1158

user’s instructions, and Penguin can successfully1159

complete multiple rounds of dialogue interaction.1160
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Dataset Hours

Language

En:LibriTTS(Zen et al., 2019) 40.8
Zh:Thchs30(Wang and Zhang, 2015) 34.2
De:Thorsten(Müller and Kreutz, 2021) 27.1
Ja:Common Voice Corpus 8.0(Ardila et al., 2019) 41.0
Fr:Common Voice Delta Segment 11.0(Ardila et al., 2019) 39.0

Category

Speech:VCTK(Yamagishi et al., 2019) 30.0
Song:M4Singer(Zhang et al., 2022a) 29.8
Audio:Audiocap(Kim et al., 2019) 35.0

Emotion

ESD(Zhou et al., 2022) 29.1

Characteristic
MS-SNSD(Reddy et al., 2019) 30.0
WSJ0+Reverb(Scheibler et al., 2018) 32.1

Table 10: Dataset in Modality Comprehension

Used Details

NTE Natural Text Embedding(Li et al., 2023c)
LLam2 Llama2-Chat-13B(Touvron et al., 2023)
Gemini Gemini1.5-pro(Reid et al., 2024)
Vicuna Vicuna-33b(Zheng et al., 2023)
GPT3.5 Gpt3.5-turbo(Wu et al., 2023)
Qwen Qwen1.5-32b-chat(Bai et al., 2023)
Claude Claude 3 Sonnet(Kevian et al., 2024)

Table 11: Details about the LLM in Test

Figure 5: The test on Mos Quality
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Speech Transcription Template: Could you transcribe the [time] dialogue and translate it into
[language] for me?
Raw: Could you transcribe the dialogue and translate it for me?
Raw(err): Could you transcribing the dialogues and for me translates it?
GT: Could you transcribe the long dialogue and translate it into Japanese for me?
GT(err): Could you transcribing the long dialogues and translating it into Japanese for me?

Speech Translation Template: Could you translate the [language] speech into Spanish for me?
Raw: Could you translate the speech into English for me?
Raw(err): Translates the speech into English for I, Could you?
GT: Could you translate the Chinese speech into English for me?
GT(err): Could you translating the Chinese speeches into English for me?

Video Generation Template: Create the video associated with the [type]’s melody.
Raw: Create the video associated with the melody.
Raw(err): The video, create, associating with the melody.
GT: Create the video associated with the speech’s melody.
GT(err): Create the video associateing with the speech melody.

Singing Definition Template: Comprehend the characteristics of the [emotion] [type].
Raw: Comprehend the characteristics of the wav.
Raw(err): Comprehends the wav characteristics.
GT: Comprehend the characteristics of the sad song.
GT(err): The sad characteristics,comprehending of the song.

Audio Enhancement Template: Refine the quality of the [feature] recording.
Raw: Refine the quality of the recording.
Raw(err): The recoring, refining the quality.
GT: Refine the quality of the noisy recording.
GT(err): The noisy recordings, refined the quality of.

Sentence Combination 1 Template: Translate the [language] [type] into English text and define it.
Raw: Translate the wav into English text and define it.
Raw(err): Translates the wav into Englih text and define it.
GT: Translate the French speech into English text and define it.
GT(err): Translte the French speech into English txt and define it.

Sentence Combination 2 Template: Create the video related to the [type]’s melody. Then, enhance
the [feature] recording.
Raw: Create the video related to the melody. Then, enhance the recording.
Raw(err): Create the video related to the meloyd. Thens, enhancing the recording.
GT: Create the video related to the speech’s melody. Then, enhance the echoing recording.
GT(err): Create the video erlated to the speech’s melody. Then, Enhance the Echoing recording.

Table 12: Example of our dataset. We only need to enumerate the keyword combinations and make corresponding
substitutions to get a complete prompt. Raw: text w/o audio labels. Gt: text w/ audio labels. (err): grammar error
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Examples on Single Tool Selection

Prompt:Transcribing the audios into text.(Raw(err))

A: UniASR:Japanese ASR for short speech
B: Paraformer:Chinese ASR for long speech
C: Yourtts:Text to Speech with prompt
D: Sgmse:Reduce the audio’s noise.
E: Chest_falsetto:Define the song.

Prompt:Transcribe the long speech into Japanese text.(Ours)

A: UniASR:Japanese ASR for short speech
B: Paraformer:Chinese ASR for long speech
C: Yourtts:Text to Speech with prompt
D: Sgmse:Reduce the audio’s noise.
E: Chest_falsetto:Define the song.

Prompt:Enhancig the audio’s quality.(Raw(err))

A: AudioSR:Improve audio’s sampling rate
B: Sgmse:Reduce the audio’s noise.
C: Chest_falsetto:Define the song.
D: Make-an-Audio:Text to Audio.
E: TF-GridNet:Speech Seperation.

Prompt:Enhance the noisy audio’s quality, please.(Ours)

A: AudioSR:Improve audio’s sampling rate
B: Sgmse:Reduce the audio’s noise.
C: Chest_falsetto:Define the song.
D: Make-an-Audio:Text to Audio.
E: TF-GridNet:Speech Seperation.

Prompt:Defning the wav features.(Raw(err))

A: Chest_falsetto:Define the characteristic of song.
B: Wav2vec2(...):Define the speaker’s feature.
C: Whisper-large-v2:Translate the speech into other language.
D: TF-GridNet:Speech Seperation.
E: Chest_falsetto:Define the song.

Prompt:Can you define the song’s features?(Ours)

A: Chest_falsetto:Define the characteristic of song.
B: Wav2vec2(...):Define the speaker’s feature.
C: Whisper-large-v2:Translate the speech into other language.
D: UniASR:Japanese ASR for short speech
E: TF-GridNet:Speech Seperation.

Table 13: The Example of Subjective Test on Selection
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Q1: Hi, who are you?

A1: Hi, I’m Audio-Agent, a versatile and adaptable agent 
framework for audio fields. I can help you solve various 
audio tasks on different modality. 

Q2: Well, please convert the audio         audio/1.wav
into text for me. 

A2: I choose Whisper to convert the long English speech 
into English text,  the answer is “Life was a box of chocolate. ”

Q3: Then, can you enhance the audio’s quality?

A3: Yes, I select Speech_frcrn_ans_cirm_16k to refine 
the quality of the large volume noisy audio, the result 
audio is saved at       result/answer1.wav. Enjoy !

Q4: Please describe the wav’s characteristic and 
generate the related video for      audio/2.wav

A4: I use Chest_falsetto to describe the sad song, then I use 
GeneFace to generate the video. I think there is a male singer 
who sings in falsetto. The video is savd as       video/1.mp4 

Q5: Generate an audio for the picture.

Q5: Yes, here is the audio file you request. The audio is 
saved at       result/answer2.wav

Figure 6: The Whole Process of Multi-turn Dialogue
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