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Abstract

Simulation-based inference (SBI) is a promising approach to leverage high fidelity
cosmological simulations and extract information from the non-Gaussian, non-
linear scales that cannot be modeled analytically. However, scaling SBI to the next
generation of cosmological surveys faces the computational challenge of requiring
a large number of accurate simulations over a wide range of cosmologies, while
simultaneously encompassing large cosmological volumes at high resolution. This
challenge can potentially be mitigated by balancing the accuracy and computational
cost for different component models of the simulations while ensuring robust infer-
ence. To guide our steps in this, we perform a sensitivity analysis of SBI for galaxy
clustering on various main components of the cosmological simulations: gravity
model, halo-finder and the galaxy-halo distribution models. We infer cosmological
parameters using galaxy power spectrum multipoles (two-point statistics) and the
bispectrum monopole (three-point statistics) assuming a galaxy number density
expected from current generation of galaxy surveys. We find that SBI is insensitive
to changing gravity model between accureate and slow N -body simulations and ap-
proximate and fast particle mesh simulations. However, changing the methodology
of finding the collapsed dark matter structures called halos which galaxies populate
can lead to biased cosmological inferences. For models of how galaxies populate
these halos, training SBI on more complex model leads to consistent inference
for less complex models, but SBI trained on simpler models fails when applied to
analyze data from a more complex model.
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1 Introduction

The three-dimensional distribution of galaxies provides a powerful means to characterize the nature
of dark matter and dark energy, to measure sum of the neutrino masses and to test gravity theory on
cosmological scales. This has been the focus of various existing, ongoing, and planned galaxy redshift
surveys. However, as galaxies are a complex and biased tracer of the underlying matter density
field, the complicated process of galaxy formation limits the ease of extracting the cosmological
information from the galaxy surveys. While the clustering amplitude of the galaxy density field can be
measured to percent-level precision, it cannot straightforwardly be related to the clustering amplitude
of the matter density field. Traditional methods of cosmological analysis have also largely been based
on using only two- or three-point clustering statistics and analytic models based on perturbation
theory (PT) [34, 11, 9]. As a result, these can access only linear and quasi-linear scales and are unable
to exploit the full information from galaxy redshift surveys.

Over the last few years, simulation-based inference (SBI), also called likelihood-free inference or
implicit-likelihood inference, has emerged as a promising approach to overcome these limitations
of traditional analysis [1, 2, 25, 19]. This approach uses high fidelity cosmological simulations
(or forward models1) to directly model the cosmological observables in full detail. The latest
SBI methods combine these simulations with neural density estimation approaches to infer the
cosmological parameters efficiently. Using cosmological forward models allows us to use any higher-
order summary statistics of the data such as bispectrum, wavelet scattering coefficients, k-nearest
neighbors or even machine-learnt optimal statistics that can be evaluated in the simulations [e.g.
3, 14, 41, 31]. It also enables us to push beyond quasi-linear scales while robustly accounting for
observation systematics such as imaging, completeness, fiber-collisions, etc., in our modeling [17, 20].
Meanwhile, since we use neural density estimators, we do not need to assume a Gaussian distribution
for the data likelihood but can instead learn the target distributions from the simulations themselves
[18]. We refer the readers to [10] for a review on SBI. This method has also recently been applied to
analyze survey data for weak lensing in [25] and galaxy clustering data [20].

However, scaling SBI approaches to the next generation of surveys is not straightforward. SBI uses
numerical simulations to build a model for analyzing data. Thus the accuracy and robustness of
inference with SBI depends to a large extent on- i) the accuracy of the simulators and ii) the number
of simulations used to train the SBI procedure. Accounting for both these criterion simultaneously
can be challenging. If the underlying simulator does not accurately model the observed data, then
the inference is not reliable [8]. This is known as model-misspecification, and the only way to
safeguard against it is by using the most accurate simulations for analysis. However, this makes these
simulations increasingly computationally expensive and hence for a fixed computational budget, there
is a trade-off between the accuracy and the number of these simulations. This challenge is further
exacerbated with the increasing volumes of cosmological surveys, and probing observables like
emission-line galaxies that increasingly reside in lower mass halos, thus requiring higher resolution
simulations. Both of these factors make the simulations more expensive for a given accuracy threshold.
To put things in context, the largest simulation suite currently available for training SBI for galaxy
clustering (Quijote simulations,Villaescusa-Navarro et al. 42, Hahn et al. 20) consists only of 1000
(Mpc/h)3 in volume2, which is smaller than the previous generation surveys that ended a decade ago,
and has coarse resolution of 1 Mpc/h. Given the current status, scaling SBI approaches to the scale
and fidelity required in the future can be computationally prohibitive and requires strategic planning.

Motivation We take first steps towards investigating the simulations requirements for scaling SBI
approaches to the next generation of galaxy clustering surveys, and study the sensitivity of SBI to
the different components of the forward models used in cosmological simulations. Our goal is to
ensure the robustness of inference while balancing the component models to potentially ease the
computational requirements. This is motivated by the following observation- the different stages
(component models) of simulations have very different computational cost and accuracy. Specifically,
for dark-matter only simulations for galaxy clustering, there are three stages in the forward model- i)
evolution of dark matter under gravity, ii) finding dark matter halos, and iii) populating these halos
with observed galaxies. The gravity evolution is the most computationally expensive part of the

1In this work, we will use ‘simulations’ and ‘forward models’ interchangeably.
2Mpc is one mega-parsec, approximately 3× 106 light years and h is the dimensionless Hubble parameter

that is proportional to the expansion rate of the Universe
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simulation, but we are also the most confident in our understanding of the underlying physics. On the
other hand, we are the most uncertain about the halo-galaxy connection models, having to infer and
marginalize over its parameters during the analysis. This interplay leads us to ask the question- do we
need the most accurate models of the gravity evolution if we are uncertain about other components of
the model, such as how to populate galaxies in the halos? Does it bias our results if we do not use the
most accurate model for all parts of the forward models? A sensitivity analysis of SBI to the different
components of the cosmological forward models will answer these questions.

Covering all aspects of this sensitivity analysis is beyond the scope of a single work as the number
of cases to investigate increases combinatorially with different components of the forward model,
summary statistics, and parameters considered. As a result, here we will focus only on the two
traditional summary statistics of galaxy clustering- power spectrum multipoles and bispectrum,
but push to smaller scales than the current PT-based analyses [23, 34, 11]. We will focus on only
two cosmological parameters- Ωm (proportional to the matter density) and σ8 (proportional to the
matter clustering amplitude), which are well constrained by these statistics. We will consider two
component models for each of the aforementioned three stages of these simulations- gravity evolution,
halo-finders, and galaxy occupation and study their impact on inference.

We begin in Section 2 by describing the different forward models we will consider for the sensitivity
analysis. We describe the simulation data used for each of these models in Section 3 and outline our
simulation-based inference methodology in Section 4. Finally we present our results in Section 5 and
discuss implications in Section 6.

2 Forward Models

In this section, we describe the different models that we will consider for each of the three stages of
cosmological simulations. For every stage, we implement two different component models- a simple,
often computationally cheap model, and a more complex, often computationally expensive model.
Our end-to-end simulations will then consist of all possible combinations of these component models.

2.1 Gravity Models

The first step in a cosmological simulation is to evolve dark matter particles under gravity from
their initial conditions set at earlier times, to their final distribution at the time of observations. This
evolution is generally the most computationally expensive part of the simulations. Here we will
consider two different gravity simulations commonly used in cosmology.

i) N -body simulations These are the most accurate simulations to evolve cold dark matter (CDM)
particles under gravity, for e.g. [16, 38]. N -body simulations accurately estimate gravitational forces
for particles on all scales, including the particle-particle interactions on the smallest scales at every
time-step, and the evolution is simulated with very small (often adaptive) time-stepping for many
hundreds of time-steps.

We will use the QUIJOTE N -body simulations [42] which simulate 10243 CDM particles in a 1000
Mpc/h box. Each of these simulation requires approximately 5000 CPU hours.

ii) Particle-mesh simulations Particle-mesh (PM) simulations trade-off accuracy for speed as
compared to the N -body simulations. These estimate the gravitational forces by interpolating CDM
particles on a uniform force grid. As a result, these lose information on scales smaller than the grid
resolution but are able to solve the Poisson equations using highly efficient fast Fourier transforms.
Thus, these simulations are accurate only on the large scales but can be more than 100× cheaper
than the N -body simulations [e.g. 40, 15]. Recent GPU implementations of PM simulations further
increase these computational gains [30, 29].

For this work, we will use FastPM particle-mesh scheme [15]. In each simulation, we evolve 10243

CDM particles on a force grid of 20483 for 10 time-steps. Each simulation required 200 CPU hours,
a factor of 10 less than the Quijote simulations.
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2.2 Halo Model

The next step in cosmology simulations is to find high-density regions called dark matter halos, where
the dark matter particles have self-collapsed under gravity. These regions serve as sites for galaxy
formation. In this work, we will use two halo-finders commonly used in the community[26].

i) Friends-of-friends (FoF) FoF is a cluster-finding algorithm, where the clusters represent halos
in this context. Operationally, FoF finds the clusters in the simulation as follows- if two particles, two
clusters, or a particle and a cluster are separated by a distance smaller than a pre-defined distance
(linking-length), then they are merged to form a bigger cluster (halo). We use the 3-D FoF halo-finder
implemented in NBodykit [21]. By default, this uses a linking-length of 0.2 lp where lp is the mean
inter-particle distance3.

ii) Rockstar Rockstar algorithm is a more sophisticated phase-space algorithm for finding halos.
We only give an intuition of the algorithm here and refer the reader to the original paper [4] for further
details. Briefly, the Rockstar halo finder starts by identifying FoF halos in 3-D position space with a
large linking length. It then iteratively refines these clusters using both the positions and velocities
of individual CDM particles by pruning those which are inconsistent with expected phase space
distribution. These halos are generally considered to be more realistic than FoF halos. Rockstar
halo-finder also estimates physical properties of the halo such as its spin, concentration etc., which
are not estimated by FoF halos.

2.3 Galaxy models

In CDM simulations, dark matter halos need to be populated with galaxies. This is usually done
with a statistical framework called the halo-occupation distribution [HOD; 5, 45]. HOD provides a
prescription for determining the number of galaxies, as well as their positions and velocities within
every halo. The flexibility and accuracy of this framework relates to the number of parameters in the
HOD prescription, which need to be inferred and marginalized during analysis. Other approaches to
populate galaxies in CDM simulations, such as sub-halo abundance matching (SHAM) and semi-
analytic models [37] require additional information from the simulations such as sub-halo distribution
and merger trees, but this makes the forward simulations significantly more expensive. Hence here
we will focus on using only the following two HOD models.

i) Zheng07 model The standard HOD model [45] assumes that the galaxy occupation depends
only on the halo mass, Mh. This model has five free HOD parameters which determine the number
of central and satellite galaxies: (logMmin, σlogM , logM0, logM1, α). Central galaxies are placed
at the center of the halos and assigned the velocity same as the halo. Satellite galaxies are placed
according to positions and velocities sampled from an NFW profile [32].

ii) Zheng07ex model Our second model extends the standard HOD model by including additional
parameters to model assembly, concentration, and velocity biases, leading to a total of 9 free
HOD parameters [20]. These are implemented using the decorated HOD prescription of [22]. The
assembly bias parameters (Ac, As) modify the number of galaxies based on halo concentration. The
concentration bias (ηconc) modifies the positions of satellite galaxies to allow deviation from the NFW
profile of their halos. Lastly, the central and satellite velocity biases (ηc, ηs) re-scale the velocities of
central and satellite galaxies with respect to the host halo. This HOD model was used for a recent
analysis of a subset of BOSS galaxies in the South Galactic Cap with SBI in [19].

2.4 End-to-end forward models

We combine the aforementioned components of our simulations in all possible combinations to
generate simulations with different end-to-end forward models to train SBI procedure. However,
there are two caveats-

1) Given the two gravity, halo-finding, and HOD models each, we can have a maximum of 8 LH with
different forward models. However, in practice, we use only 6 of these as the Rockstar halo-finder

3In 3-D FoF, all the distances are measured only in the three dimensional position space as opposed to a 6-D
phase space.
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is not compatible with the PM simulations in its default settings. Due to the missing small-scale
forces in PM simulations, the CDM particles are less clustered in phase space and Rockstar with
default configuration aggressively prunes these particles resulting in inaccurate halo mass function
and clustering. While it may be possible to overcome this by modifying Rockstar, it is out of scope
for this work.

2) FoF halo-finder does not estimate halo concentration accurately. Thus in our FoF catalogs, it is
instead estimated using analytic mass-concentration formulas from [13]. As a result, in the Zheng07ex
model, the assembly bias parameter does not capture bias based on halo assembly but instead only
results in a different dependence on halo mass than is included in the standard Zheng07 HOD model.
However this caveat should not affect our conclusions.

3 Data

In this section, we combine the component models described in the previous section to generate
training datasets for simulation-based inference.

3.1 Simulations

We use the publicly available simulation suite Quijote for our study here. There are 2000 simulations
available at different cosmologies, where we use 1500 simulations for training, 200 for validation and
300 for testing. We generate paired set of 2000 PM simulations at same cosmological parameters
and same Gaussian initial conditions as Quijote. Next, we find halos in these simulations. For the
N -body simulations, we use both Rockstar and FoF. For the PM simulations, we only use FoF for the
reasons explained in section 2.4. Finally, we populate each of these three cases, we populate the halo
catalogs with galaxies using the 2 HOD models described above. For each halo catalog, we sample
20 different HOD parameter values, resulting in a total of 40,000 galaxy catalogs per forward model.
The details of the parameters varied and their prior ranges are detailed in Appendix A.

3.2 Summary statistics

In this work, we restrict ourselves to analyzing only the power spectrum multipoles Pℓ(k) for
(ℓ = 0, 2, 4) and bispectrum monopole B0(k1, k2, k3). The power spectrum multipoles are measured
with fast Fourier transforms using Nbodykit [21] on a 5123 mesh. These multipoles are measured
in the range k ∈ [0.007, 0.5] h/Mpc, in bins of width ∆k = 2π/1000hMpc−1. This leads to a
data vector of 79×3 power spectrum coefficients. During training and testing, we also add to the
power spectrum monopole a randomly sampled shot-noise contribution beyond the Poisson shot
noise Sn ∼ U [103, 104], and marginalize over it during inference. This is done to be consistent with
previous Pℓ(k) analyses [20, 7, 23, 27]. However, we found that our conclusions remain the same
without it.

Bispectrum is measured on a 3603 mesh using the pySpectrum python package4, which implements
the [36] redshift-space bispectrum estimator. We measure bispectrum in triangle configurations
defined by k1, k2, k3 bins of width ∆k = 3kf , where kf = 2π/(1000h−1Mpc) is the fundamental
mode. We impose the same scale cut of kmax = 0.5 h/Mpc as power spectrum, and this leaves us
with 1980 triangle configurations. We show the sensitivity of these summary statistics on the gravity
model, halo model and HOD model in Appendix B.

4 Simulation-based Inference

Next, we outline the details of our simulation-based inference pipeline using the Latin-hypercubes
generated in the previous section as the training datasets.

Methodology: We have generated a training dataset of (θ,x) pairs where θ denotes the cosmology
and HOD parameters, and x denotes the corresponding observations i.e. the power spectrum
multipoles and bispectrum. To infer the posterior p(θ|x), we train a conditional neural density

4https://github.com/changhoonhahn/pySpectrum
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estimator qϕ(θ|x) with parameters ϕ which are fit by maximizing the log-probability of the model
parameters conditioned on the data over this training dataset.

Implementation: We use the SNPE-C algorithm implemented in sbi5 package to train masked
auto-regressive flows (MAF, [33]) as conditional neural density estimators and learn the posterior
qϕ(θ|x) ∼ p(θ|x). For robustness, we train 400 networks for each data-statistic by varying hyper-
parameters corresponding to the width and the number of layers in a single MAF block, number
of MAF blocks, learning rate, and the batch size. We use we use Weights-and-Biases6 package
for this hyperparmater exploration. After training, we collect 10 neural density estimators with best
validation loss and use them as an ensemble i.e. we construct a mixture distribution with uniform
weighting to approximate the posterior. For posterior inference over a test observation x′, we query
the trained ensemble estimator qϕ∗ to generate samples from the posterior i.e. θ ∼ qϕ∗(θ|x′).

Validation: To validate that our posteriors are well-specified, we use our trained ensemble to
predict the cosmology parameters over the held-out test-dataset from the same forward model as was
used for training the ensemble. We use these samples to do coverage tests as described in [39, 20],
and verify that all the rank histograms are uniformly distributed within the rank scatter. We will show
the coverage plots corresponding to these in the next section. Note that this is a necessary but not a
sufficient test to ensure that the posteriors are well calibrated. Furthermore since we use the same
forward model for training and testing the SBI procedure in this validation, note that this does not
test for model-misspecification.

5 Results

We now perform the sensitivity analysis of SBI by looking at the impact of using different component
models in training and testing the SBI procedure.

We have generated mock data from six different forward models. We will use these to vary one of the
three components (gravity model, halo-finder and HOD model) at a time between the two choices
that are described in Section 2, while keeping the other two components fixed. In each case, we will
consider inference in the two scenarios- when the test data is generated from the same forward model
as the training dataset, and when the test data is generated from another forward model which varies
one of the three components. The first scenario validates that our SBI procedure has been trained
properly and our posteriors are well calibrated, while the second scenario gauges the impact of model
misspecification.

In all cases, we infer the five cosmological and all HOD parameters using power spectrum multipoles
and bispectrum. However for the sake of clarity, we present the results only for Ωm and σ8 which are
the two parameters best constrained by these statistics. We present our results in the form of residuals,
i.e. the difference between the true and the inferred mean estimate of the parameters over the held out
test-dataset, as well as the corresponding posterior standard deviation. Additionally, we also show the
coverage plots to verify if the posteriors are well-calibrated, when relevant. In all the figures, we will
use blue (and orange) color to show the results for the case when SBI is trained and tested on the
same (and different) forward model.

Gravity models: We begin by investigating the impact of varying gravity model between the
N -body and PM simulations. The halo-finder is fixed to FoF since, as discussed earlier, Rockstar
halo-finder is incompatible with PM simulations. The HOD model is fixed to 10-parameter Zheng07-
ex model.

In Appendix C.1, we show the residuals for SBI trained on both the gravity models when the true
data is generated from the N -body simulations. We find that the residuals are consistent for the
test configurations, indicating that we are not sensitive to model misspecification in this case. In
Fig. 1, we show the coverage plots indicating that all the posteriors are also well-calibrated and do not
under-estimate or over-estimate the posterior widths. Though not shown here, we have checked for
consistency that same conclusions hold when the test observations are generated from PM simulations
instead of N -body simulations, other components kept the same. Overall, these results are promising

5https://github.com/mackelab/sbi
6https://wandb.ai/site
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Figure 1: Gravity models: Coverage plot corresponding to the posteriors for which residuals are
shown in Fig. 5. We use the same color scheme. Power spectrum and bispectrum results are in solid
and dashed lines respectively lines. Two columns show the two parameters. Diagonal lines following
y = x correspond to perfectly calibrated posteriors.
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Figure 2: Halo finders: Same as Fig.1 but for varying halo-finders. Varying halo-finders for training
SBI between Rockstar (blue) and FoF (orange). Test-data is generated with Rockstar halo-finder. The
gravity model is fixed to N -body and the galaxy model is 10-parameter Zheng07-extended HOD
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Figure 3: Galaxy Model II: Same as Fig.1, but for varying galaxy models. Varying the galaxy model
between the 10-parameter (blue) and 5-parameter HOD model (orange). Test-data is generated with
10-parameter HOD. The gravity model is fixed to N -body and we use Rockstar halos.
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as they indicate that at least for this particular experimental setting, one could generate cheaper
training data from PM simulation to infer parameters for the mock data generated from the expensive
N -body simulations.

Halo finder models: Next, we vary the halo-finder in the simulations between FoF and Rockstar.
The gravity model is fixed to N -body simulations and the HOD model is fixed to 10-parameter
Zheng07-extended model. In Appendix C.2 we show the residuals for SBI trained on the two halo
finders and applied to test-data generated from the Rockstar halo finder. In Fig. 2 we show the
covarage test for the same. In all cases considered, the posterior for Ωm seems to be well-calibrated
and unbiased. For σ8, the posteriors are unbiased when the summary statistic is power spectrum.
However when we use bispectrum, SBI trained on Rockstar halos infers well calibrated posteriors for
Rockstar data, but the SBI trained on FoF halos consistently under-predicts σ8. We observe similar
results when the test-data is generated from FoF catalogs. Together, these results clearly indicate that
bispectrum statistic is sensitive to differences in halo-finder when inferring σ8 and SBI suffers from
model-misspecification.

Galaxy models: Finally, we change the galaxy occupation model for the simulations between the
5-parameter Zheng07 and 10-parameter Zheng07-extended HOD models. The gravity model is fixed
to N -body and we use Rockstar halo-finder. In Appendix C.3 we show the results for simpler case
when the test-data generated from 5-parameter HOD model. As the 5-parameter HOD model is
a subset of the 10-parameter HOD model, SBI trained on both the HOD models gives consistent
inference for both the parameters and using either of the summary statistics.

We turn to the more interesting case where the test-data is generated from 10-parameter HOD model.
We show the residual plots in Appendix C.3 and coverage plot in Fig. 3. In this case, SBI trained
on the correct forward model results in well-calibrated posteriors for both the parameters from both
summary statistics. However for SBI trained on the 5-parameter HOD, both power spectrum and
bispectrum suffer from model misspecification albeit to different degree. While posterior inferred
by power spectrum is still sometimes consistent with the truth, bispectrum almost always leads to
incorrect posteriors for both the parameters. This suggests that when trained on a simplistic galaxy
occupation model, SBI struggles in doing inference with more complex galaxy models and this is
aggravated as the summary statistics used become more informative.

Summary: Based on the results of this and the previous section, it is clear that access to accurate
galaxy models will likely be the limiting factor in moving forward with all the methods that try to
construct models for small scales using cosmological simulations (for e.g. SBI, machine learning and
emulator based approaches Yuan et al. 43).

6 Discussion and Outlook

We have taken the first steps towards a sensitivity analysis of SBI for galaxy clustering to answer
the question- how sensitive are we to different components of our simulations? Studies like this are
necessary to scale SBI approaches for the future cosmological surveys, especially as these surveys
increase in volume and require higher resolution simulations to model observables.probe observables
in lower halo masses. It is becoming increasingly urgent to consider the trade-offs between accuracy
and the number of simulations that can be run to generate training datasets.

In this work, we have considered the problem of constraining two cosmological parameters, σ8

and Ωm from galaxy catalog using power spectrum and bispectrum statistics. We have varied three
components of the forward simulations- gravity evolution, halos-finders and galaxy occupation and
investigated their impact on inference. We find that inference in the current setup is not sensitive to
changing the gravity model between N -body and particle mesh simulations. However surprisingly,
changing the halo-finder between FoF and Rockstar leads to biased estimate of σ8 with bispectrum.
For varying galaxy models, SBI results in consistent inference when trained on a 10-parameter
HOD model and tested on 5-parameter HOD model, but not the other way round. When trained on
5-parameter HOD and tested on the 10-parameter model, both power spectrum and bispectrum can
lead to biased results but the degree of bias for bispectrum is much larger than power spectrum.

As we move towards more powerful statistics like wavelet coefficients, learnt neural summary
statistics etc. to extract more information in cosmology, we become increasingly more sensitive to
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model misspecification in our simulators. This also serves to guide the new methodologies being
developed to accelerate forward simulations [12, 28, 24] i.e. while it is important to report the
accuracy of the simulated summary statistics, it is non-trivial to translate these to the expected results
of doing inference using these accelerated simulations.

Finally, while we have focused on SBI as a specific tool for inference, the findings are more generally
applicalble. Since SBI learns the full likelihood (or the posterior) distribution of the data, it is simply
more suited to highlight these issues than the approaches which learn only the mean prediction
and assume a Gaussian likelihood. The challenge of robustness is faced by all methods that use
simulations for building a data-model (i.e. most machine learning or emulator based frameworks
[43]) on small scales where simulations can be unreliable.
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A Simulation details

Our simulated data consists of galaxy catalogs in redshift space at z = 0.5. The average number
density of galaxies is n̄ = 4× 10−4 (h/Mpc)3 with an average satellite fraction of 20%. We expect
similar level of co-moving galaxy number density from the luminous red galaxies (LRG) observed
using the DESI survey [46], though our estimate of satellite fraction is approximately 5-10% higher
compared to expectations from DESI LRGs [44, 6]. In SBI, we need a training dataset to learn the
relationship between the observed data and underlying cosmology parameters over a wide range.
Thus, for each of the 6 composite forward models described above, we generate mock galaxy catalogs
on a Latin-hypercube (LH) of cosmologies.

As mentioned in the main test, for the N -body simulations, we use the publicly available Quijote LH
subset [42]. It consists of 2000 simulations varying 5 cosmology parameters over the prior range-

Ωm ∼ U [0.1, 0.5], σ8 ∼ U [0.6, 1.0], Ωb ∼ U [0.03, 0.07], ns ∼ U [0.8, 1.2], h ∼ U [0.5, 0.9] (1)

The PM simulations are also generated at the same cosmologies as these N-body simulations.

Finally for the HOD parameters, 7 of these are sampled from the following fixed priors to be consistent
with previous SBI analysis for galaxy clustering [20]

α ∼ U [0.4, 1.0], σlogM ∼ U [0.3, 0.5], Ac, As ∼ N (0, 0.2) over [−1, 1],

ηconc ∼ U [0.2, 2.0], ηc ∼ U [0., 0.7], ηs ∼ U [0.2, 2.0].

For the 3 mass-based HOD parameters, we define priors that vary with cosmology (θ) as follows

logMmin ∼ U [logMθ
min ± 0.15], logM0 ∼ U [logMθ

0 ± 0.2], logM1 ∼ U [logMθ
1 ± 0.3]

For each cosmology, Mθ
min, M

θ
1 and Mθ

2 are set to ensure that the number density of generated
galaxy catalogs is close to the target number density of n̄ = 4 × 10−4. This increases sample
efficiency over using the same priors for all the cosmologies, which will need to be quite broad. We
estimate Mθ

min, M
θ
1 and Mθ

2 as follows- given the target number density n̄ and average satellite
fraction of 0.2, we estimate the average number of centrals N̄cen. For every cosmology, we use
this to determine the halo mass Mh above which the number of halos is the same as N̄cen and set
logMθ

min = logMθ
0 = Mh. With this, we then set logMθ

1 to match the average number of satellites
assuming a fiducial value of α = 0.7

B Summary statistics sensitivity

In this section we show how sensitive the power spectrum multipoles and bispectrum monopole are
to the variations in simulation inputs.

We compare the summary statistics of our galaxy catalogs for different forward models in Fig. 4.
In each column, we vary one component of the simulation at a time and show the ratio of the three
summary statistics- monopole, quadrapole and bisepctrum (rows)- for the two different models
considered for each component. For consistency, all the lines of the same color have same HOD
parameters (except Zheng07 model does not include the 5 assembly bias parameters of the extended
model). The largest difference is caused by varying the HOD model between the 5- and 10-parameter
models. However even with the same HOD model and parameters, changing gravity models and
halo-finder can lead to 10-20% difference in quadrapole and bispectrum.

C Residuals between trained SBI and truth

C.1 Gravity models

In Fig. 5, we show the residuals for SBI trained on both the gravity models when the true data is
generated from the N -body simulations. For both the summary statistics (rows) and parameters
(columns), the residuals are consistent, indicating that we are not sensitive to model misspecification
in this case. This suggests that marginalizing over the HOD parameters due to the uncertainty in
galaxy models indeed outweighs the refinements that happen at small scales with using more accurate
gravity models. We note that there is a slight negative slope in the σ8 residuals with power spectrum.
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Figure 4: Comparison of summary statistics for different forward models: We show the ratio of
summary statistics for galaxy catalogs generated by varying one stage of the forward model, as
indicated by the title of columns, while keeping the other two stages fixed. The three rows show the
ratios for power spectrum monopole (top), quadrapole (middle) and bispectrum (showing equilateral
configuration only for clarity, bottom) respectively. The three colors show three different HOD
realizations (different parameter values) for the same cosmology. HOD parameters are kept consistent
across the columns. The first column shows the ratio for FastPM and N -body simulations (with FoF
halo-finder and 10-parameter Zheng07-ex HOD model), the second column for simulations with FoF
and Rockstar (with N -body gravity and Zheng07-ex HOD model), and the third column varies HOD
model between 5-parameter Zheng07 and 10-parameter Zheng07-ex model (for N -body simulation
with Rockstar halo finder).

This effect is consistent with the bounded prior on σ8, and would likely go away with a broader prior
(relative to the constraint level). However since the same trends exist in both the FastPM and Quijote
posteriors, ensuring that the predictive posteriors are consistent, our conclusions regarding model
misspecification still hold.

C.2 Halo-finders

Fig. 6 show the residualsfor SBI trained on the two halo finders and applied to test-data generated
from the Rockstar halo finder.

We note that similar analyses were conducted in the robustness tests of SIMBIG[20]. The test sets
Test I and Test II of SIMBIGwere designed to assess the sensitivity of a SBI model trained with
Rockstar to the choice of the halo finder (FoF and CompaSO). However a direct comparison is not
possible since other components of the forward models were varied simultaneously (for Test I, the
HOD model was also changed to the 5-parameter Zheng07 HOD model, while for Test II the gravity
model was changed to Abacus). These tests were also done only on a single cosmology. Despite this,
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Figure 6: Same as Fig.5 but for varying halo-finders.
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similar robustness issues were observed for wavelet scattering statistics in [35] which forced them to
use aggressive scale-cuts to mitigate model misspecification.

C.3 Galaxy models

We begin by considering the test-data generated from 5-parameter HOD model in Fig. 7a and 7b. SBI
trained on both the HOD models gives consistent inference for both the parameters and using either
of the summary statistics. This is not completely surprising given that the 5-parameter HOD model is
a subset of the 10-parameter HOD model, it can simply be generated by setting the assembly bias,
concentration and velocity bias parameters to zero.

In the more interesting case in Fig. 8 the test-data is generated from 10-parameter HOD model. We
find that bispectrum in particular results in biased and mis-calibrated posteriors.
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(a) Same as Fig.5 but for varying galaxy models.
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Figure 7: Galaxy Model I: Varying the galaxy model between the 5-parameter (blue) and 10-parameter
HOD model (orange). Test-data is generated with 5-parameter HOD. The gravity model is fixed to
N -body and we use Rockstar halos.
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Figure 8: Same as Fig.5, but for varying galaxy models.
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