Average Sensitivity of Euclidean £-Clustering

Yuichi Yoshida Shinji Ito
National Institute of Informatics NEC
JST, PRESTO i-shinji@nec.com

yyoshida@nii.ac. jp

Abstract

Given a set of n points in R, the goal of Euclidean (k, £)-clustering is to find k&
centers that minimize the sum of the ¢-th powers of the Euclidean distance of each
point to the closest center. In practical situations, the clustering result must be
stable against points missing in the input data so that we can make trustworthy
and consistent decisions. To address this issue, we consider the average sensitivity
of Euclidean (k, ¢)-clustering, which measures the stability of the output in total
variation distance against deleting a random point from the input data. We first
show that a popular algorithm k-MEANS++ and its variant called D‘-SAMPLING
have low average sensitivity. Next, we show that any approximation algorithm for
Euclidean (k, ¢)-clustering can be transformed to an algorithm with low average
sensitivity while almost preserving the approximation guarantee. As byproducts
of our results, we provide several algorithms for consistent (k, £)-clustering and
dynamic (k, £)-clustering in the random-order model, where the input points are
randomly permuted and given in an online manner. The goal of the consistent
setting is to maintain a good solution while minimizing the number of changes to
the solution during the process, and that of the dynamic setting is to maintain a
good solution while minimizing the (amortized) update time.

1 Introduction

Euclidean (k, €)-clustering is a popular problem used to compute clustering of points in the Euclidean
space, where k is a positive integer and ¢ > 1. In this problem, given a set of points X = {z1,...,z,}
in RY, we are to compute a set Z = {z1,..., z;} of k points in R? that minimizes

n
costy (X) := z:costéz(gci)7
i=1

where cost?, (z;) := minj—;__ ||z;—z;||5 is the £-th power of the Euclidean distance between x and
the closest point in Z. Let opt(X) = miny cost’, (X ), where the minimum is over sets of k points
in R? (not X). This problem is called k-means clustering when ¢ = 2 [18]) and k-medians clustering
when ¢ = 1. Although providing an exact solution to Euclidean (k, £)-clustering is NP-hard [3} [7]]
(even when ¢ = 2), polynomial-time approximation schemes (PTASes) do exist [13]. In practice, an
algorithm called D’-SAMPLING is often used, which computes O(2¢ log k)-approximate solution in
polynomial time [4]. When ¢ = 2, this algorithm is often called k-MEANS++.

In practical situations, it is reasonable to assume that the input contains some noise. If the clustering
results are altered by the slightest change in the input, the interpretability and reliability of the
clustering results are compromised, and hence the clustering result should be stable. Stability is also
important when making marketing strategies or product production plans building on the clustering
result because changing decisions can be very costly. In this work, we focus on a situation in which
some points are missing from the input, and we consider average sensitivity to measure the stability
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of clustering algorithms, which is defined below. For a set of points X = {z1,...,2,} and ¢ € [n],
let X(*) denote the set {x1,...,T;_1,Tis1,...,2Tn}, where [n] := {1,2,...,n}. Then, the average
sensitivity of a (randomized) algorithm A on X (with respect to the total variation distance) [23]] is
defined as

BA,X) = D dre (A(X), AXD)), 0

where dry (A(X), A(X®)) is the total variation distance between the distributions of A(X) and

A(X (i)). Average sensitivity has been studied on various problems such as maximum matching [25]],
spectral clustering [21]], dynamic programming [15} [16], and network centralities [20].

It is crucial to take the average in @) instead of the maximum, which measures the worst-case
sensitivity against deleting points. To see this, let us consider the case k¥ = 2 and a set of points X
consisting of two clusters each having (n — 1) /2 points and one distant point. Then any good solution
must contain the distant point and a middle point between the two clusters. However, for the set of
points X’ obtained from X by deleting the distant point, any good solution must contain a point from
each cluster. Hence, the worst-case sensitivity is {2(1). By contrast, the average sensitivity can be
O(1/n) because the contribution of deleting the distant point to the average sensitivity is O(1/n).

1.1 Our contributions

Algorithms with low average sensitivity We first show that D*-SAMPLING has average sensitivity
O(k/n) (Section [2). This matches the lower bound of (k/n) on the average sensitivity of any
algorithm with a finite approximation ratio (Appendix [A).

We then show that any approximation algorithm can be transformed to an algorithm with low average
sensitivity while almost preserving the approximation ratio. Specifically, given an a-approximation
algorithm A for (k, £)-clustering and e > 0, we can transform it into a (1 + €)a-approximation
algorithm A’ with average sensitivity poly(d, k, 2¢, 1/¢) /n (Section . For example, if we plug in a
PTAS for (k, £)-clustering [13] as A, we obtain a PTAS with average sensitivity poly(d, k, 2¢,1/¢) /n
as A’. In our transformation, we first construct a coreset [2, [I1] of the input, a subset of the input
that preserves the objective function, and then apply the approximation algorithm AE] We notice that
we can construct the coreset with low average sensitivity, and hence any approximation algorithm
applied on it has low average sensitivity. This approach is new to the design of algorithms with low
average sensitivity.

Consistent clustering In consistent Euclidean (k, £)-clustering, n points in R? arrive online, and
the goal is to maintain a good solution, while minimizing inconsistency, which is defined as the total
number of points changed in the solution, i.e., Zte[nq] |Z:ANZy 11|, where Z; is the output of the
algorithm after the ¢-th point arrived.

We consider the random-order model, in which the input points are randomly permuted. We observe
that an average sensitivity analysis can be used to obtain consistent algorithms. Specifically, we show
that, given an input X, an index ¢ € [n], and the output Z of an algorithm A for Euclidean (k, £)-
clustering for X, we can compute an output Z’ so that the probability Z and Z’ disagree is at most the
total variation distance between A(X) and A(X (?)) in expectation over Z. Using this connection, we
show that a variant of D‘-SAMPLING is an O(2¢ log k)-approximation algorithm with inconsistency
O(k?logn). Also, we show that the abovementioned PTAS with low average sensitivity can be used
to obtain a (1 4 ¢)-approximation algorithm with inconsistency poly(d, k, 2,1 /) - log n.

Lattanzi and Vassilvitskii [17] considered consistent algorithms for metric (k, £)-clustering, for which
the underlying metric can be arbitrary but the output points should be selected from the input points.
They showed an 29(9)-approximation algorithm with inconsistency O(k? log4 n), where n is the
number of points. Subsequently, Fichtenberger et al. [8] gave an algorithm for metric (k, 1)-clustering
with approximation ratio O(1) and inconsistency O(k - poly(log(nA))), where A is the aspect ratio
of the input, that is, the ratio between the largest and smallest distances. We note that these results are

'We note that the term sensitivity is used as the name of a well studied notion in the study of coresets, which
measures the importance of a point in the input (See Section [3.I), and the reader should not confuse it with
average sensitivity, which measures the solution change caused by deleting points from the input.



incomparable to ours because in Euclidean (k, £)-clustering we can output points that do not appear
in the input, which may significantly reduces the objective value.

Dynamic clustering In dynamic (or incremental) Euclidean (k, £)-clustering, points arrive online,
and the goal is to maintain a good solution, while minimizing the (amortized) time required to
update the solution. For this problem, a few heuristics have been proposed [1]], but to the best of our
knowledge, there is no known dynamic algorithm with a theoretical guarantee on its update time.

As with consistent clustering, we consider the random-order model. We show that the consistent
version of D*-SAMPLING can be implemented such that the amortized update time is O(dk + (k -+
logn)klogn). Also, we show that the abovementioned consistent PTAS can be implemented such

that the amortized update time is poly(d, k, £, 1/¢€) + gpoly(d:k.2,1/€) |62 .

We note that several dynamic algorithms that maintain coresets for metric k-clustering have been
proposed [10,[12]. However, it is not clear whether these algorithms can be used to solve dynamic
Euclidean (k, ¢)-clustering.

1.2 Related work

Differentially private k-means/medians clustering Differential privacy is a popular notion used
to measure privacy risks. Although we do not define it formally here, we note that, if an algorithm is
[B-differentially private, then its average sensitivity is at most 3 (see, e.g., [23]]). In [9], it is shown that
any polynomial-time a-approximation algorithm for k-means/medians clustering can be converted
into an f-differentially private algorithm that, given a set X of points in a d-dimensional unit ball,
outputs a solution Z such that

- Oa(1)
cost%(X) < (14 €)a - opt’(X) + O, <W> ,

€

where O,, () means that « is regarded as a constant and O(+) suppresses polylogarithmic dependence
on n, d, k, and 5. We note that the additive error is inevitable while obtaining S-differentially
private algorithms for k-means/medians clustering [22]], whereas we do not need it to bound average
sensitivity.

Stability Let D be a distribution over points in R?, and suppose that we want to find a cluster
structure in D using an algorithm A. In many cases, we do not know the parameter k that best
describes D. A popular method for selecting k is based on the following stability arguments. That is,
we select the k that minimizes the instability of A,

Instab(k,n) == E d(A(X,k), A(X",k)),

(k)= B d(AQXK). ACX'E)

where A(X, k) is the output of A on a set of points X and the number of clusters &, and d(-, -) is the
distance between two clusterings, which can be defined in various ways.

The main focus of the literature on instability is characterizing D such that Instab(k,n) — 0 (n —
00) holds when A is the algorithm that outputs an optimal solution, because we can then claim that
the k captures the cluster structure in D well. Refer to [24] for a survey on this topic. A notable
difference of our work is that we focus on designing an algorithm with low average sensitivity for
any input set X, and not characterizing X such that a certain algorithm has low average sensitivity.

2 Average sensitivity of D’-sampling

In this section, we analyze the average sensitivity of a popular algorithm for Euclidean (k, £)-
clustering called D*-sampling, which has approximation ratio O(2¢ log k) [4]]. This algorithm starts
with a uniformly sampled point in the input X, and then iteratively adds points to the solution Z: at
each step, a point x € X is sampled with probability proportional to costez(z) (See Algorithmfor
details). Throughout, we use the symbol n to denote the number of points in the input set X. Our
goal is to show the following:

Theorem 2.1. The average sensitivity of D*-SAMPLING(X, k, £) is O(k/n).



Algorithm 1: D*-sampling for Euclidean (k, ¢)-clustering

1 Procedure D‘-SAMPLING(X, k, ¢)

2 Sample x € X uniformly at random and then set Z = {z};
3 fori=2,...,kdo
4 Let Dx, 7 be the probability distribution over X such that x € X is sampled with
14
probability px z(z) := Cofq’tf(x) ;
’ cost?, (X)
5 Sample z € X from Dx, 7 and add it to Z.
6 | return Z.

We start by analyzing the average sensitivity of the process of sampling from Dy z:
Lemma 2.2. The average sensitivity of the process of sampling from Dx 7 is O(1/n).

Proof. For notational simplicity, we use p(x) and p(*) (z) to denote px z(z) and Px ), z(x), respec-
tively (Recall that X = {x1, ..., 2;_1,%i41,...,2,}). Note that p(x) = cost’, () /costy (X).
We start by analyzing the change in the sampling probability p(x) caused by deleting a point from X.
Forany i € [n] and z € X, we have
. costé, (z costé, (z cost? x;) - costé, (z
0(a) = pla) = OEAD)__ comthla) __contha)-comhla)
costy (X)) costy(X)  costy (X)) costy(X)
where the last equality follows from cost, (X) — cost% (X)) = cost%,(2;). Then, we have

n ¢ n ¢
0 ‘ _ cost’ (z;) - costy () _ costy, (z;) _
Z Z ‘p( Z Z costy, (X (@) - costy, (X) ; cost’, (X)

i=1 pcx (@) ex ()

Noting that z; does not exist in X (? ), the average sensitivity of the process of sampling from Dx z is

1 & . 1 1 1
S s+ 3 o -s0)| | =2+ 2=0 (1) =
nl:Z1 P xgi)‘px P m‘ n n n

We next analyze the average sensitivity of D‘-SAMPLING and prove Theorem

Proof of Theorem[2.1] Let z1, ..., z; € X be the sequence of points added to Z. Note that they are
random variables. We use zj(»l) to denote z; for the input X (), First, we have

1 — ’ Ie=|(1 1 1 Ie~/1 1 1
A =3 (T X <n_1‘n> :nz(nm):O(n)'

zEX (M i=1
(2
For j € [k] and ¢1,...,qk—1 € X, we denote by {z; | z1 = ¢1,...,2j—1 = gj—1} the random
variable z; conditioned on z1 = q1,...,2j_1 = gj_1. We define zgl), . (1) and {z(l | zl
qiy-- -, J( )1 = q;_1} similarly using X (@,

Then by Lemma[2.2] we have
1 ¢ 1
ﬁZdTV<{Zj|21:Q1a~ 1 2j-1 = qj—1}, {Z )|Z =dqi,--5 % J()l—qJ 1}) ()

i=1

forevery j € {2,...,k}andqq,...,qr—1 € X.
Given (2)) and (3)), by induction, we obtain

%ZdTV({Zl,...7zk}7{z§i)7...7z,gi)}) :O<k>. -
i=1
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Algorithm 2: Coreset construction by importance sampling

Procedure CORESET(X, k, £, s, m)

Let C be an empty set;

for m times do
Sample 2 € X with probability p(x) := s(x)/ >, cx s(z') ;
C+ CU{x};
Sample p from [p(x), (1 + €/2)p(x)] uniformly at random ;
if w(x) is undefined then w(zx) < 1/p. ;
else w(z) « w(z)+1/p.;

return (C, w).

3 General transformation

In this section, we show that any approximation algorithm for Euclidean (k, ¢)-clustering can be
converted into an algorithm with low average sensitivity. Specifically, we show the following:

Theorem 3.1. Let A be an a-approximation algorithm for Euclidean (k,£)-clustering with time
complexity T'(n,d, k,{), where n is the number of points and d is the dimension of the Euclidean
space. Then for any €,0 > 0, there exists an algorithm for Euclidean (k,{)-clustering such that

* it outputs (1 + €)a-approximation with probability at least 1 — 6,

~ (2% 1
where O(-) suppresses a polylogarithmic factor in k and 1/e, and
s it runs in poly(n,d, k) + T'(poly(d, k, 1/¢,log(1/4)),d, k, £).

* [ts average sensitivity is

For example, by plugging in a PTAS to Theorem [3.1][13]], we obtain a PTAS with the same average
sensitivity as in the theorem.

Our transformation constructs a coreset for the input, which is a small subset that approximately
preserves the objective function, and then apply the given algorithm. We first describe known results
about coresets in Section[3.1] and then provide an algorithm that constructs coresets with low average
sensitivity in Section Finally, we prove Theorem [3.1]in Section[3.3]

3.1 Preliminaries

A weighted set is a pair of a set X and a weight function w : X — R,. We say that (X, w) is
a weighted subset of Y if X C Y. For a weighted set (X, w) and a set of points Z, we define
costy (X, w)) as 3, x w(x)costy (). Note that costy ((X,w)) = cost’,(X) whenw = 1. A
coreset for Euclidean (k, £)-clustering is defined as follows:

Definition 3.2 (Coreset for Euclidean (k, £)-clustering [2,11]). Let X be a set of points in R, For
e > 0, we say that a weighted subset (C,w) of X is an e-coreset of X if for any set Z C X of k
points, we have

(1 — €)costz(X) < costZ((C,w)) < (1 + €)costy(X).

Importance sampling is a popular approach to obtain a small coreset. Given a set of points X in
R?, an importance function s : X — R, and a positive integer m > 0, we sample a point z € X
with probability proportional to s(x) and then set its weight to be the reciprocal of the sampling
probability, and then we repeat this process m times to construct a coreset. For technical reasons, we
slightly perturb the weight of the points. See Algorithm [2|for details.

A popular choice for the importance is the sensitivity with respect to the input. In the context of
Euclidean (k, ¢)-clustering, for a set X of points in R?, the sensitivity of x € X is defined to be
costly (x
ox(z):= max #.
2CX:|Z|=k costy (X))



Indeed, any upper bound on sensitivity can be used to construct a coreset:

Theorem 3.3 (Theorem 5.5 in [5], restated. See also [13]). Let X be a set of points in R and
s: X — Ry be an arbitrary upper bound on o x. Let (C,w) = CORESET(X, k, {, s, m) with

m > g <dklogS+log 1) , 4)
€ é

where ¢ > 0 is some universal constant and S =),y s(x). Then, with probability at least 1 — 9,
(C,w) is an e-coreset of X.

We note that the slight modification to the assigned weights preserves the objective value to within
the factor of 1/(1 + €/2), and hence the original analysis of Theorem 3.3 goes through.

The reason that we consider upper bounds on sensitivity in Theorem [3.3]is that no algorithm for
exactly computing sensitivity is known. The following lemma shows that any approximate solution
can be used to obtain an upper bound.

Lemma 3.4 ([13]). Let X be a set of points in R? and let Z C X be an a-approximate solution
to Euclidean (k,{)-clustering on X. Forx € X, let Z, = {y € X : 3z € Zs.t. ||z — 2||§ =
costy (), ||y — z||5 = costy, (y)} be the set of all points in the same cluster as x. Then, the sensitivity
ox (z) is bounded from above by

th () 1
. 920+2 2_(COSZ +>.
5(@) “ costy(X) | Z,]

Furthermore, we have S =" _ \ s(z) < 22302k,

3.2 Coreset construction with low average sensitivity

In this section, we consider constructing coresets with low average sensitivity. Specifically, we show
the following:

Lemma 3.5. For any €, > 0, there exists a polynomial-time algorithm that, given a set X of points
in R? and a positive integer k and { > 1, outputs a weighted subset (C,w) such that (i) (C,w) is an
e-coreset of X with probability at least 1 — 9, and (ii) we have

~ (22 1
IC|<m:=0 <2k (dkf—i—log >> .
€ )

The average sensitivity of the algorithm is at most O(Zx).

Our algorithm is as follows. We first compute a set Z C X by calling D*-SAMPLING(X, k, £).
Then, we compute the upper bounds on the sensitivities of points in X as in Lemma [3.4] which
we denote by sx_ z(x) for z € X. Finally, we apply Theorem 3.3|using sx z(x) with the smallest
m satisfying the condition in the statement, denoted m 2. Note that sx z(x) and myz are random
variables because the output Z of D*-SAMPLING is a random variable. It is clear that this algorithm
outputs an O(¢)-coreset with probability at least 1 — d. The proof of Lemma is deferred to

Appendix [B]

3.3 Proof of Theorem 3.1]

Our algorithm is as follows: We first compute an e-coreset (C, w) of the input X using Lemma
and then apply the a-approximation algorithm A given in the statement to the coreset. The analysis
of approximation ratio and average sensitivity is trivial.

We discuss the time complexity of the algorithm above. Suppose that the algorithm A runs in
T(n,d,k,¢) time. Then, we can compute the coreset (C,w) in poly(n,d, k) time. To run the
algorithm A, we need T'(|C|,d, k,£) = T(poly(d, k,1/e,log(1/4)),d, k, £) time. Hence, in total,
we need poly(n,d, k) + T(poly(d, k, 1/¢,log(1/4)),d, k, ) time.



4 Consistent clustering in the random-order model

In this section, we show that algorithms for Euclidean (k, £)-clustering with low average sensitivity
can be used to design algorithms for consistent Euclidean (k, ¢)-clustering in the random-order model.
In Section 4.1 we show that an algorithm with low average sensitivity satisfying a certain condition
can be transformed into a consistent algorithm. Then, we see in Sectiond.2]and Appendix [C|that the
algorithms discussed in Sections [2]and 3] respectively, satisfy the condition and can be transformed
into consistent algorithms.

4.1 Low average sensitivity to consistency

We start with the following definition.

Definition 4.1. Let X = {z1,...,2,} be a set of points in RY. For i € [n], let Z and
Z() be two distributions over subsets of X and X (), respectively, of size k. Suppose that
S drv(Z@, Z)/n < B holds. Then, we say that a probability transportation for Z of average
sensitivity 3 is computable if the following holds:

1. For each i € [n], there is a distribution D) over pairs of sets such that its marginal
distributions on the first and second coordinates are equal to Z(*) and Z, respectively.

2. 3 Prze, zympo (2@ £ Z)/n < B.

3. Foreach i € [n], there is a (randomized) algorithm that takes a set Z(*) and returns a set Z,
such that if the input Z(*) is distributed as the distribution Z(?), then the distribution of the
pair (2, Z) is equal to D). In particular, Z is distributed as Z.

The following gives a general transformation from algorithms with low average sensitivity to consis-
tent algorithms where a probability transportation is computable:

Lemma 4.2. Let A be a (randomized) algorithm for Euclidean (k, €)-clustering with approximation
ratio « and average sensitivity at most 3(n) for inputs of size n. Suppose that the probability
transportation for A(X) of average sensitivity (n) is computable for any set X of n points. Then,
there is an algorithm for consistent Euclidean (k, {)-clustering in the random-order model such that

* the expected approximation ratio is o for each step, where the expectation is taken over the
randomness of the algorithm, and

* the expected inconsistency is at most k -y ., 3(i), where the expectation is taken over
both the randomness of the algorithm and the arrival order of the input.

Proof. Let X = {x1,...,x,} be a set of points in R?, and let o be a random permutation of [n].
The points are given in the order 251y, . . ., To(n). We first compute Z, 1 by running A on (). For
t > 2, we compute Z, ; from Z, ;1 using the probability transportation for A({Z (1), -, T })
given in the statement. Let D, ; be the joint distribution given by the probability transportation such
that the marginal on the first and second coordinates are Z, ; and Z,, ;_1, respectively. Our output
sequence is Zy 1,..., Lo p-

We observe that the expected approximation ratio is « because the distribution of Z, ; is the same
as the output distribution of A({ (1), ..., %) }). The expected number of times that the output
changes is bounded as

Pr|Z,:_ Z, = P Z+7
E Z 1 Zo—1 # Zoy) ](573 ; (Z’Z/)ipw[ # Z']
n 1 n n
= P (Z # 7'] P Z+7 =1 < t).
Z Lzz»imt # ] ZTLZELZZ' I, 27 E e Z] _;5()
Aswehave E|Z, - 10Zy,| < k-Pr[Z, 1 # Zs ), the claim holds. O



4.2 Consistent D’-sampling

In this section, we propose a consistent algorithm that is a slight modification of D‘-SAMPLING, and
show the following:

Theorem 4.3. There exists a polynomial-time O(log k)-approximation algorithm for consistent
Euclidean (k, {)-clustering in the random-order model with inconsistency O(k?logn).

For a probability distribution Z, we say that we have sampling access to Z if we can sample a value
from Z. For z in the support of Z, let Z(z) denote the probability that z is sampled from Z. Then,
we say that we have query access to Z if we can obtain the value of Z(z) for a specified z. We use
the following lemma.

Lemma 4.4 ([14]]). Let Z, Z’ be probability distributions, and suppose that we have sample and
query accesses to Z and Z'. Then, there is an algorithm called LAZYSAMPLING that, given z
sampled from Z, outputs z' such that

o the distribution of ' is equal to Z/,
° Prz,z’ [Z 7é Z/] S dTV(Za ZI),
* the expected number of samples drawn from Z and Z' is O(1).

o the expected number of queries to Z and Z' is O(1).

The following lemma provides the probability transportation for D*-SAMPLING.

Lemma 4.5. The probability transportation for D*-SAMPLING(X, k, £) with average sensitivity
O(k/n) is computable.

Proof. Fix i € [n]. We provide an algorithm that takes a set Z() = {zgi), ce zl(;)} of k points
distributed as D’-SAMPLING(X (), k, ¢) and outputs a set Z = {z;,..., 2} of k points such
that Z is distributed as D‘-SAMPLING(X, k,¢) and the probability that Z(Y) # Z is at most
drv (D’ -SAMPLING(X )k, £), D*-SAMPLING(X, k, £)).

We first set 21 = LAZYSAMPLING(zgi) JUxy,Ux ), where Ux ) and Ux are the uniform distribu-
tions over X “~1) and X, respectively. If z; # zy) then we compute 25, .. ., zx by following the
process of D?-SAMPLING(X, k, £) conditioned on having chosen z; as the first point. If z; = zy),
then we compute zo = LAZYSAMPLING(Zéi)7 Dx i) g2} Dx {z}) (see Algorithmfor the defini-
tion of D’-sampling distribution D x,z). We repeat this process until we compute zj.

We can observe that the distribution of Z is equal to that of A(X') and that the total variation distance

between Z(%) and Z is at most that between D’-SAMPLING(X (), k, ) and D*-SAMPLING (X, k, £).
Hence, the claim holds. O

Proof of Theoremd.3] Consider an algorithm obtained by combining Lemmas 4.2 and @ It is
clearly an O(log k)-approximation algorithm, and inconsistency is k - >_;-_; O(k/t) = O(k*logn).
O

S Dynamic clustering in the random-order model

In this section, we consider algorithms for dynamic Euclidean (k, £)-clustering in the random-order
model. Our algorithms are obtained by carefully implementing the consistent algorithms discussed
in Section ] so that the amortized update time is small. We provide efficient implementations for
algorithms discussed in Section[d.2]in Section[5.1] We also show that the consistent transformation
discussed in [C|can be efficiently implemented in

5.1 Dynamic D’-sampling

In this section, we show the following:



Theorem 5.1. There exists an O(2* log k)-approximation algorithm for dynamic Euclidean (k,)-
clustering in the random-order model with amortized update time O(dk + (k + logn)klogn).

Proof. Let x1,...,7, € R? be the input points (that arrive in this order). Throughout the pro-
cess, we maintain points z1, ..., z; and sequences St, ..., Sy of real values. When z; (¢t € [n])
arrive, for each j € [k], we update z; so that its distribution is equal to that of the j-th point
selected in D*-SAMPLING(X4, k, ), where X; = {x1,...,2;}. Also, we update S; to be the se-
quence costy  (z1),...,costy,  (z;), where Z; = {z1,...,2;}. When j = 1, we regard that
cost‘vizji1 (x;) = 1 forevery ¢ € [t]. For each j € [k|, we maintain a binary tree on .S; so that we
can append a value and compute the sum of values in an arbitrary (consecutive) subsequence of .S;
in O(logn) time. We can support those queries using, say, a segment tree. Note that by querying
consecutive sums on S;, we can compute py,, Zia (x) (see Algorithmfor the definition), which
is required to simulate D*-SAMPLING in O(logn) time. Also, we can draw a sample from the
distribution Dx, z,_, in O(log2 n) time using the consecutive sum queries (e.g., draw a number
uniformly from [0, costeri1 (X¢)] and then perform binary search to find the position that the number
belongs to). Note that for j = 1, the distribution Z; ; is just a uniform distribution over X;.

We initialize z1, ..., zx and S1, ..., Sy using the first point ;. That is, z; = - - = 2z = x1, which
is the k points selected by D¢-SAMPLING({x1}, k, £). Then for each j € [k], we initialize S; to be
the sequence consisting of a single value cost,  (z1)/costy, (X1) =

Jj—1 j—1

Below, we explain how we update zy, ..., z; and Sp,..., Sy when x; for ¢ > 1 arrives. When
updating z; using LAZYSAMPLING as in Section[f.2] we need sampling and query accesses to Z; 1 ;
and Z; ;. We can provide sampling and query accesses to the former by using the current binary tree
on S}, and those to the latter by using the binary tree obtained by appending x; (We can access both
by keeping the old one at this step). If z; is updated to a different point, we rebuild binary trees on
S, ..., Sk from scratch.

Now we analyze the amortized update time. At each step, for each j € [k], we need O(dk) time
to compute costy (z¢),...,costy (2;), and O(klogt) time to append ; to the binary trees on

S1,...,Sk. Then, we need O(k log2 n) time to update z1, . .., 2. When z; is replaced, we rebuild
binary trees on .Sj, . . ., Sy, which takes O(ktlogt) time. Recalling that the probability of replacing
some of z;’s at t-th step is O(k/t), we need

> (O(dk)+0(klogt))+O(klog” n n+ZO ktlogt)-O <’:) = O(dkn+(k+logn)knlogn)

t=1 t=1

time in total. Hence the amortized update time is O(dk + (k + logn)klogn). O

6 Conclusion

We have shown that the average sensitivity of D‘-SAMPLING is small and that any approximation
algorithm can be transformed to one with low average sensitivity. Then, we show that these algorithms
can be used to obtain consistent and dynamic algorithms in the random-order model. We believe
consistent and dynamic algorithms for other problems can also be obtained via average sensitivity
analysis.

It is an interesting open question whether we can remove the dependency on d from the sensitivity
bound in Theorem [3.1] A natural idea is to apply dimension reduction, e.g., [19]. However, it is not
clear whether we can recover a solution for the original space from that for the reduced space with a
small average sensitivity. Another natural idea is to use coresets of size independent of d, e.g., [6,[13].
A challenge here is that their constructions are more complicated than the importance sampling used
in this work, and their average sensitivity might be high.
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