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Abstract

Language-vision models like CLIP have made001
significant progress in zero-shot vision tasks,002
such as zero-shot image classification (ZSIC).003
However, generating specific and expressive vi-004
sual descriptions remains a challenge as current005
methods produce descriptions that lack granu-006
larity and are ambiguous. To tackle these chal-007
lenges, we propose V-GLOSS: Visual Glosses,008
a novel method that prompts language models009
with semantic knowledge to produce improved010
visual descriptions. We demonstrate that V-011
GLOSS can be used to achieve state-of-the-art012
results on benchmark ZSIC datasets, such as013
ImageNet and STL-10. In addition, we intro-014
duce a silver dataset with visual descriptions015
generated by V-GLOSS and demonstrate its016
utility for language-vision tasks.017

1 Introduction018

Language-vision models (Radford et al., 2021; Jia019

et al., 2021) have made significant progress in zero-020

shot vision tasks. However, we hypothesize that021

their accuracy is limited by a lack of visual concept022

descriptions that are both expressive and specific,023

that is, glosses that describe what images depicting024

a concept look like. In this work, we investigate this025

hypothesis by creating and testing a novel method026

for producing visual descriptions.027

Improving visual descriptions is crucial for en-028

hancing system performance in zero-shot vision029

tasks. Such descriptions facilitate the creation of030

more useful representations. Additionally, being031

able to describe a concept in terms of its appear-032

ance is essential for developing more robust and033

adaptable methods incorporating diverse visual in-034

formation across various domains, without the need035

for extensive re-training.036

Existing approaches to generating visual descrip-037

tions, such as those employed by CLIP (Radford038

et al., 2021) and CuPL (Pratt et al., 2022), involve039

directly plugging class labels into fixed templates040

Class / Concept WordNet Gloss V-GLOSS (Ours)

CORKSCREW

A bottle
opener that
pulls corks.

A tool with a spiral
blade that is used
to remove corks
from bottles.

BRAMBLING

Eurasian finch. A small brown bird
with a black head
and a white patch
on its chest.

BROCCOLI

Branched
green
undeveloped
flower heads.

A green vegetable
with a thick stalk
and florets that
grow in a dense
head.

Table 1: A qualitative comparison between WordNet
concept glosses and V-GLOSS (Silver) class descrip-
tions for some ImageNet classes. Our method describes
what a class looks like, instead of what it does or is.

(e.g., a photo of X), or using large language models 041

such as InstructGPT (Ouyang et al., 2022) to gen- 042

erate descriptions based on class labels (e.g., what 043

does X look like?). These methods suffer from two 044

main issues: class granularity and label ambiguity. 045

Class granularity refers to the difficulty in distin- 046

guishing between visually similar classes, such as 047

ALLIGATOR and CROCODILE. Label ambiguity is 048

caused by using polysemous words as labels for 049

distinct concepts. For example, CRANE can refer 050

to either a bird or a construction machine. These 051

issues limit the performance of existing models 052

(Radford et al., 2021). 053

To address these challenges, we introduce 054

V-GLOSS, a novel method that leverages lan- 055

guage models (LMs) and semantic knowledge 056

bases (SKBs) to generate improved visual descrip- 057
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(a) V-GLOSS producing a DOG description

(b) V-GLOSS for ZSCIG: generating a DOG image (c) V-GLOSS for ZSIC: classifying a test image

Figure 1: For the DOG class, we depict (a) V-GLOSS’s architecture (Section 4.2.1), along with adaptations: (b)
ZSIC (Section 5.4.1) and (c) ZSCIG (Section 5.4.1)

tions – visual glosses. Table 1 shows some exam-058

ples. By combining structured semantic informa-059

tion from SKBs such as WordNet (Miller, 1998),060

with a contrastive algorithm to distinguish similar061

classes, V-GLOSS is designed to mitigate the dual062

issues of granularity and ambiguity.063

Our results demonstrate the effectiveness of V-064

GLOSS in improving the performance of ZSIC065

systems. We achieve state-of-the-art (SOTA) re-066

sults on benchmark datasets such as ImageNet067

(Deng et al., 2009), CIFAR-10, and CIFAR-100068

(Krizhevsky et al., 2009) in the zero-shot setting,069

and STL-10 (Coates et al., 2011) in both the zero-070

shot and supervised settings. Additionally, we071

introduce V-GLOSS Silver, a silver dataset con-072

structed by V-GLOSS, consisting of a visual gloss073

for each ImageNet class. We show that V-GLOSS074

Silver is useful for language-vision tasks such as075

ZSIC and ZSCIG, comparing favorably to Word-076

Net glosses.077

2 Tasks078

Our main task is to generate a description for a079

given class or concept. For example, if an image080

classification dataset has the class DOG, we aim081

to produce a description such as “A dog is a furry,082

four-legged canine...” We consider such a descrip-083

tion to be a specific kind of gloss.084

We use two downstream tasks to compare meth-085

ods of generating class descriptions: zero-shot086

image classification (ZSIC), and zero-shot class-087

conditional image generation (ZSCIG).088

In ZSIC, the goal is to classify an image based089

on a set of classes, without having seen any la-090

beled images belonging to those classes. The set of 091

classes depends on the dataset. For example, given 092

an image depicting a dog, we aim to predict the 093

class DOG. 094

In ZSCIG, the goal is to generate an image that 095

corresponds to a specific class, again without hav- 096

ing seen any labeled examples. For example, given 097

a class DOG, we aim to generate an image of a dog. 098

In short, ZSIC is the task of classifying a given 099

image, while ZSCIG is the task of generating an 100

image given a class. Both involve classes and im- 101

ages. Visual descriptions of classes provide useful 102

information which can facilitate both tasks, by mak- 103

ing it easier to either recognize or generate images 104

of each class. Therefore, by developing a novel 105

method to improve the generation of such descrip- 106

tions, we hypothesize that performance on ZSIC 107

and ZSCIG can be improved. 108

3 Related Work 109

Language Models The advent of transformer- 110

based language models has revolutionized many 111

natural language processing tasks (Radford et al., 112

2018; Devlin et al., 2018; Radford et al., 2019; 113

Brown et al., 2020; Black et al., 2022; Ouyang 114

et al., 2022). As these models are scaled up by 115

their number of parameters and quantity of training 116

data, they exhibit emergent abilities such as few- 117

shot and zero-shot learning (Wei et al., 2022). 118

Language-Vision Models Significant strides 119

have been made in the field of language-vision 120

models such as CLIP (Radford et al., 2021) and 121

ALIGN (Jia et al., 2021). These models apply con- 122

trastive pre-training approaches on large image-text 123
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datasets, leading to improved representation learn-124

ing for both text and images and enhanced perfor-125

mance on several multi-modal tasks (Mokady et al.,126

2021; Song et al., 2022). Further advancements127

have been achieved by scaling up pre-training and128

incorporating auxiliary training objectives (Pham129

et al., 2021; Yu et al., 2022).130

Producing Descriptions & Prompting The gen-131

eration of descriptions and prompting has been132

explored in various studies. Radford et al. (2021)133

introduced the template ensemble (TE) method,134

which uses a custom set of class labels and a fixed135

set of templates. Each label is inserted into these136

templates, and the completed templates for each137

class are aggregated into a single representation of138

the class. The CuPL method (Pratt et al., 2022)139

utilizes InstructGPT (Brown et al., 2020; Ouyang140

et al., 2022) to generate descriptions for ImageNet141

classes. Both TE and CuPL can be used for zero-142

shot image classification. Hao et al. (2022) fine-143

tuned GPT models (Radford et al., 2018, 2019)144

to rephrase image-generation prompts, resulting145

in improved images. (Zhou et al., 2022) learned146

soft prompts that improve performance, but are147

intractable to humans. In this work, we prompt lan-148

guage models with semantic knowledge to generate149

visual descriptions.150

4 Method151

We begin by describing how we map classes to152

concepts in a semantic knowledge base (SKB), in153

order to leverage the concept-specific information154

the SKB contains. We then introduce of our novel155

method V-GLOSS, which has two variants, nor-156

mal and contrastive. We conclude by describing157

the construction of V-GLOSS Silver, a set of class158

descriptions produced using V-GLOSS.159

4.1 Mapping Classes to WordNet Synsets160

The ImageNet classes are already mapped to Word-161

Net synsets by the dataset’s creators. For the162

other datasets, we employ a heuristic that starts163

by mapping each class to the most frequent sense164

of the class label, as determined by WordNet1. For165

CIFAR-10 and STL-10, this heuristic is sufficient.166

For CIFAR-100, we manually re-map 18 classes.167

For instance, we needed to re-map RAY from light168

to sea creature, as the light sense is the most fre-169

quent according to WordNet, but the RAY images170

in the dataset depict sea creatures.171

1https://www.nltk.org/

(a) CuPL Pratt et al. (2022)

(b) V-GLOSS

Figure 2: Class descriptions for PLATYPUS generated
by two different methods that use LMs. Input prompts,
output descriptions, and plugged values are shown.

4.2 V-GLOSS 172

We discuss the two variants of V-GLOSS below, 173

normal and contrastive. In both, for each class, 174

we produce multiple descriptions resulting in an 175

ensemble. 176

4.2.1 Normal V-GLOSS 177

We generate normal descriptions via in-context 178

learning with an LM, beginning by providing the 179

LM with a description of the task to be performed, 180

followed by multiple input-output examples. The 181

examples are fixed, involving the concepts EA- 182

GLE, BAT (animal), BAT (baseball), and TELEVI- 183

SION. We selected these to expose the model to am- 184

biguous class labels (bat), a natural object (eagle), 185

and an artificial object via (television). For each 186

class, we obtain from WordNet the hypernyms, hy- 187

ponyms, usage examples, synonyms, and glosses 188

of the sense to which the class is mapped, and pro- 189

vide this to the LM. Figure 2b shows a session with 190

the LM, beginning with the example of eagle, with 191

output generated for the class platypus. Table 1 192

compares our descriptions to WordNet glosses. 193

4.2.2 Contrastive V-GLOSS 194

During development, we observed that many er- 195

rors were caused by false positives involving vi- 196

sually similar classes. For example, the classes 197
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Figure 3: A sample of WordNet hypernym hierarchy.
For contrastive prompting, we only distinguish classes
that are semantically similar to the target class, like
ALLIGATOR to CROCODILE.

CROCODILE for ALLIGATOR refer to similar-198

looking animals, and are often confused for one199

another. The contrastive variant of V-GLOSS is200

designed to address this by using semantic sim-201

ilarity between classes as a heuristic to estimate202

visual similarity. For each class, we search for203

other classes that are semantically similar, and if204

any are found, we add a negative instruction to the205

LM prompt, e.g. we generate a description for an206

ALLIGATOR but not a CROCODILE, using the same207

prompt structure as for normal V-GLOSS.208

We create a similarity matrix M as follows:209

Mi,j = Sim(S[i], S[j]) (1)210

Sim(s1, s2) is the Wu-Palmer path-similarity211

function (Wu and Palmer, 1994) comparing synsets212

s1 and s2; this similarity function uses the path213

between two concepts in the WordNet hypernym214

hierarchy (Figure 3) to measure semantic related-215

ness. S is the set of all classes in a dataset,D, and i216

and j are indices ranging from 1 to |S|. Concisely,217

Equation 1 defines a similarity matrix containing218

similarity scores between all classes in a dataset.219

M is one of the inputs to our contrastive V-GLOSS220

variant, shown in Algorithm 1.221

In Algorithm 1, λ is a threshold for minimum222

similarity. We only generate contrastive descrip-223

tions when classes have a similarity that exceeds224

or is equal to λ. N indicates the maximum number225

of classes to generate contrastive descriptions for.226

k is the number of distinct descriptions to gener-227

Class / Concept Normal Contrastive

ALLIGATOR

A large reptile
with a long
snout, a broad
head, and a
long tail.

A large,
dark-colored
reptile with a
rounded snout,
found in
freshwater.

CROCODILE

A reptile with
a broad, flat
snout, a long
tail, and a long,
pointed snout.

A grayish-green
reptile with a
v-shaped snout,
found in brackish
or saltwater.

Table 2: Two similar classes with key differences be-
tween their normal and contrastive descriptions.

ate for a class pair. LMc takes in the target class, 228

a neighbor class, and k, then prompts the LM to 229

generate k descriptions that distinguish the target 230

and neighbor classes. In summary, for each class, 231

Algorithm 1 identifies the classes most similar to 232

it, excluding itself, and generates descriptions that 233

distinguish them. Table 2 compares the normal 234

and contrastive descriptions for ALLIGATOR and 235

CROCODILE; note that distinguishing features of 236

the two classes are included in the LM’s output. 237

Table 3 shows examples of classes with high false 238

positive rates, and the classes they are contrasted 239

with. 240

Algorithm 1 Generate Contrastive Descriptions:
We generate contrastive descriptions to help distin-
guish the most similar classes.

Require: M : Equation 1 result
Require: λ, N , k: Hyperparameters
Require: S: All classes in dataset, D
Require: LMc: LM prompted contrastively

1: G← empty |S|-list for class descriptions
2: for i← 0 to |S| − 1 do
3: target← S[i]
4: S∗ ← top N classes : λ ≤Mi,∗ ≤ 1
5: for s∗ in S∗ do
6: samples← LMc(target, s

∗, k)
7: G[i].insert(samples)

8: return G

5 Evaluation 241

Toward evaluating V-GLOSS, we describe our 242

datasets, evaluation metrics, baselines, previous 243

methods, and experiments. 244
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Class False Positives Contrastives

AFRICAN
ELEPHANT

TUSKER (44), ASIAN
ELEPHANT (6)

TUSKER, ASIAN
ELEPHANT

NOTEBOOK LAPTOP (22),
DESKTOP (10),
SPACE BAR (2)

LAPTOP,
DESKTOP,
SPACE BAR

Table 3: False positives and their counts vs. classes
selected by the contrastive algorithm (see Equation 1
and Algorithm 1). Hits and misses are shown.

5.1 Datasets245

We evaluate our method on the test splits of four246

widely used benchmark datasets: ImageNet (Deng247

et al., 2009) consists of 50,000 images equally dis-248

tributed across 1,000 classes, and serves as our249

primary benchmark. CIFAR-10 and CIFAR-100250

(Krizhevsky et al., 2009) both comprise 10,000 test251

samples across 10 and 100 classes, respectively.252

Finally, STL-10 (Coates et al., 2011) comprises253

100,000 test samples and is designed for unsuper-254

vised learning. For CIFAR-10, CIFAR-100, and255

STL-10, which are not pre-mapped to WordNet,256

we employ the two-step process detailed in Section257

4.1 to map each class to a WordNet synset.258

Experiment 1 (Section 5.4) involves ImageNet259

alone and covers both the ZSCIG and ZSIC tasks.260

In contrast, Experiment 2 (Section 5.5), which is261

our main experiment, tests the impact of various262

class description methods on the ZSIC task and263

uses all datasets. In Experiment 2, we allow meth-264

ods to use ensembles of descriptions of each class,265

while in Experiment 1, we experiment with only a266

single description.267

The datasets we selected to evaluate the follow-268

ing properties of V-GLOSS:269

1. Performance on benchmark datasets with270

varying numbers of classes. Each dataset has271

its own set of classes, ranging from ImageNet272

with 1,000 classes, to CIFAR-100 with 100273

classes, to CIFAR-10 and STL-10, each with274

10 classes.275

2. Ability to represent diverse concepts at276

varying levels of granularity. The datasets277

we use contain a wide range of concepts278

across various domains, rather than those tar-279

geting specific subareas such as pets (Parkhi280

et al., 2012), foods (Bossard et al., 2014),281

cars (Krause et al., 2013), scenes (Xiao et al.,282

2010), or airplanes (Maji et al., 2013).283

5.2 Evaluation Metrics 284

Top-1 Accuracy In ZSIC, this metric is the fre- 285

quency with which the model’s top prediction for 286

an image matches the gold label. 287

Fréchet Inception Distance (FID) For ZSCIG, 288

FID (Heusel et al., 2017) quantifies the divergence 289

between ground truth and generated images, with 290

lower scores signifying a better ability to produce 291

images similar to the ground truth. 292

Inception Score Also for ZSCIG, the inception 293

score (Salimans et al., 2016) uses an Inception 294

model’s (Szegedy et al., 2015) output probability 295

distribution to assess the diversity and realism of 296

generated images, with higher scores indicating 297

more diverse and convincing images. Unlike the 298

above metrics, this does not require ground-truth 299

images for comparison. 300

5.3 Baseline & Previous Methods 301

In this section, we describe the methods to which 302

we compare V-GLOSS. For methods that produce 303

ensembles of class descriptions (i.e. multiple de- 304

scriptions per class), a single representation of the 305

class is obtained by averaging individual represen- 306

tations for each description. 307

First, the 1-Template baseline inserts a class 308

label into a single specific template. For exam- 309

ple, given the class DOG, the baseline produces “A 310

photo of a dog.” 311

Template Ensemble (Radford et al., 2021) gen- 312

erates an ensemble of descriptions for a class by 313

inserting the class label into each of a set of tem- 314

plates. For example, some descriptions for DOG 315

are: “A photo of a dog.”, “A blurry photo of a 316

dog.”, and “An origami dog.” This method uses 317

a modified list of class labels2 designed to reduce 318

ambiguity. 319

CuPL (Pratt et al., 2022) also generates an en- 320

semble of descriptions for each class. The descrip- 321

tions are generated by prompting a LLM, Instruct- 322

GPT (Ouyang et al., 2022), with questions such 323

as: “What does a dog look like?” and “Describe 324

an image of a dog from the internet.” CuPL uses 325

the same class labels as Template Ensemble. 326

The authors of CuPL also combined their 327

method with Template Ensemble. The resulting 328

method, CuPL + Template Ensemble, combines 329

the class descriptions from both methods. 330

2https://github.com/anishathalye/
imagenet-simple-labels
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5.4 Experiment 1: V-GLOSS Silver331

This experiment evaluates V-GLOSS’s ability to332

generate a single description for each class, with-333

out relying on ensembling. We then evaluate the V-334

GLOSS description of each class against its Word-335

Net gloss.336

To construct this set of class descriptions, which337

we view as a silver dataset of such descriptions,338

we generate a single, normal description for each339

ImageNet class via greedy decoding. We generate340

only normal descriptions because they outperform341

contrastive ones when only a single description is342

used. We call the resulting dataset V-GLOSS Silver.343

We extrinsically evaluate V-GLOSS Silver by344

using it for the ZSIC and ZSCIG tasks, and com-345

paring the results to those achieved using the 1-346

Template baseline, and WordNet glosses. We do347

not compare V-GLOSS Silver to CuPL or other348

previous methods which do not produce a single349

description for each class.350

5.4.1 Technical Details351

ZSIC We employ CLIP (Radford et al., 2021),352

which comprises an image encoder and a text en-353

coder, as the ZSIC backbone model. Our procedure354

consists of three steps: First, we use the CLIP text355

encoder to create an aggregate representation for356

each class based on its description(s). Then, at357

test time, we employ the CLIP image encoder to358

generate a representation of the input image. Fi-359

nally, we predict the class which maximizes the360

cosine similarity between the representation of its361

description(s), and the image representation (see362

Figure 1c). We evaluate the predictions using top-1363

accuracy.364

ZSCIG For ZSCIG (see Figure 1b), we condition365

Stable Diffusion (Rombach et al., 2022) on each366

class description before generating an image. We367

use a guidance scale of 7.5 and run 50 diffusion368

steps. We evaluate the generated images using369

Inception and FID scores.370

5.4.2 Results371

The results of Experiment 1 are shown in Table 4.372

Based on our extrinsic evaluation in the ZSIC and373

ZSCIG tasks, V-GLOSS Silver descriptions yield374

better performance compared to baseline and Word-375

Net Glosses. On ZSIC, we improve accuracy by376

1.3%; on ZSCIG, we improve Inception and FID377

scores by 9.9 and 5.7, respectively. This demon-378

strates the effectiveness and utility of V-GLOSS:379

ZSIC ZSCIG

Accuracy ↑ Inception ↑ FID ↓

Baseline (1-Template) 71.0 99.7 25.7

WordNet Glosses 44.7 58.5 30.0

V-GLOSS Silver 72.3 109.6 20.0

Table 4: Extrinsic evaluation on the tasks of ZSIC and
ZSCIG. ↓ means that lower is better.

our visual descriptions yield better results on ZSIC 380

and ZSCIG. 381

5.4.3 Analysis 382

V-GLOSS Silver descriptions are considerably 383

more detailed, more expressive, and better visu- 384

ally grounded than their WordNet gloss counter- 385

parts (see Figure 1). Specifically, we observe that 386

V-GLOSS descriptions make greater use of descrip- 387

tive words and phrases, e.g. spiral, brown, green, 388

thick, small, etc. 389

5.5 Experiment 2: ZSIC 390

Our second experiment assesses the effectiveness 391

of V-GLOSS descriptions in facilitating ZSIC. The 392

details for the ZSIC pipeline are largely similar to 393

those described in Experiment 1 (Section 5.4), ex- 394

cept that we generate an ensemble of descriptions 395

per class, as opposed to only one description. We 396

also experiment with two image encoder variants: 397

ViT (Dosovitskiy et al., 2020) and RN50 (He et al., 398

2016). For all baselines and methods (Section 5.3, 399

Section 4.2.1), we follow the same evaluation pro- 400

cedure after generating class descriptions. 401

5.5.1 Technical Details 402

We generate class descriptions using the 6.1B- 403

parameter Cohere LM3. We choose Cohere over al- 404

ternatives due to its extensive cost-free availability, 405

reducing the cost of our experiments. Cohere has 406

comparable performance to the similarly-sized In- 407

structGPT (Brown et al., 2020; Ouyang et al., 2022) 408

variant, as demonstrated by Liang et al. (2022) 409

across various benchmarks. Therefore, we do not 410

gain any advantage by using Cohere instead of In- 411

structGPT. 412

When generating class descriptions with nor- 413

mal V-GLOSS, we use a temperature of 2.5 to 414

produce an ensemble of 50 descriptions per class. 415

When generating contrastively, we use a tempera- 416

ture of 1.5 to generate an ensemble of 20 descrip- 417

3https://docs.cohere.com/docs/models
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Method Model
Accuracy (%) on Datasets # LM

ParametersImageNet CIFAR-100 CIFAR-10 STL-10

Baseline (1-Template) ViT 72.4 77.3 95.2 99.5 0RN50 68.7 57.7 81.0 98.4

Template Ensemble ViT 76.2 77.9 96.2 99.4 0RN50 73.2 61.3 86.8 98.3

CuPL ViT 76.7 - - - 175B

CuPL + Template Ensemble ViT 77.6 - - - 175BRN50 75.1 - - -

V-GLOSS (Normal-Only) ViT 77.3 77.5 95.6 99.4 6.1BRN50 73.3 63.5 86.8 98.3

V-GLOSS (Normal + Contrastive) ViT 78.5 78.2 97.0 99.6 6.1BRN50 74.5 64.6 87.8 98.8

Table 5: Top-1 accuracy on ZSIC. ViT and RN are Transformer- and ResNet-based CLIP variants.

tions per class. Like Pratt et al. (2022), we observe418

that performance saturates around 50 descriptions419

for normal V-GLOSS, but we also observe satu-420

ration at around 20 descriptions for contrastive V-421

GLOSS. Based on tuning on development data, we422

set N = 5, λ = 0.5, and k = 4 (see Algorithm 1).423

In total, we obtain 70 class descriptions. During424

generation, we set the maximum number of to-425

kens to 35, but also terminate generation when the426

boundary parameter or newline token is reached.427

5.5.2 Results428

The results of Experiment 2 are shown in Table 5.429

V-GLOSS yields better accuracy than the baseline430

by an average of 3.60% overall (2.22% with ViT431

and 4.98% with RN50). V-GLOSS also outper-432

forms Template Ensemble and CuPL + Template433

Ensemble, by 1.21% and 0.15% respectively. This434

improvement is especially notable since the top 15435

results on the ImageNet benchmark differ by less436

than 1% accuracy.4437

In addition, we make the following observations.438

(1) V-GLOSS (Normal + Contrastive) surpasses439

V-GLOSS (Normal-Only), by an average of 0.91%440

accuracy. (2) We outperform CuPL + Template En-441

semble using an LLM with 28.7x fewer parameters.442

(3) The RN backbone (He et al., 2016), which is443

generally less capable than ViT (Dosovitskiy et al.,444

2020), sees a more significant benefit from the V-445

GLOSS method, on average 3.8%. (4) For STL-10,446

V-GLOSS matches the top-performing supervised447

system (Gesmundo, 2022) with a score of 99.6%.448

We also note that the contrastive component is449

more helpful on the larger datasets: CIFAR-100450

4https://paperswithcode.com/sota/
image-classification-on-imagenet

and ImageNet, which have more opportunities for 451

mutual ambiguity between different classes, than 452

on the smaller ones: CIFAR-10 and STL-10. Con- 453

cretely, this improvement is 1.05%, on average. 454

Later, in Section 6, we discuss these results and 455

their implications more extensively. 456

5.5.3 Analysis 457

In Section 1, we pointed out several problems in 458

previous methods. Here, we carefully analyze how 459

our V-GLOSS method addresses these issues. 460

Label Ambiguity: Without adequate context, 461

text models may fail to grasp the intended mean- 462

ing of a polysemous word. Crane is a polysemous 463

word, and ImageNet (Deng et al., 2009) has two 464

classes that refer to different senses of the word: 465

construction machine and wading bird, but use the 466

same label. Thus, in 1-Template, for example, both 467

classes have the same description. This point high- 468

lights an important benefit of linking classes to 469

WordNet, which resolves such ambiguity. Empiri- 470

cally, when compared with a ViT backbone to the 471

Lex Baseline, our accuracy on CRANE (machine) 472

and CRANE (bird) increase from 0% and 46% to 473

76% and 78%, respectively. 474

Relationship Between Performance & Context: 475

When comparing the baselines to the other meth- 476

ods, we observe that accuracy generally improves 477

as the amount of surrounding context increases. 478

On one hand, if a sentence consists of “my crane.” 479

alone, the sense of crane is unclear. On the other, if 480

the sentence is “my construction crane,” the mean- 481

ing of crane becomes clear. We see that providing 482

additional context helps to disambiguate words. 483

When a description provides more useful context, 484
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Figure 4: V-GLOSS Attention Map

Figure 5: WordNet Gloss Attention Map

models can form better representations of specific485

classes. By comparing V-GLOSS to the baselines486

(see Table 5), we can observe that the benefits of487

additional context extend to the vision-language488

setting. Concretely, providing visually-grounded489

context in the description improves performance.490

Class Granularity: We consider pairs of classes491

that are similar enough to be mistaken, such as492

ALLIGATOR and CROCODILE. In WordNet, rela-493

tionships between synsets are modeled through is-a494

(hyponymy-hypernymy) and part-of (meronymy-495

holonymy) relationships. For example, CROCODIL-496

IAN is a hypernym of both ALLIGATOR and497

CROCODILE, while only ALLIGATOR is a holonym498

of SNOUT, since alligators have snouts while499

crocodiles do not. Using our contrastive algorithm,500

we generate descriptions that highlight how images501

of a CROCODILE should depict a greener animal502

with a rounded snout. Empirically, using ViT, the503

average accuracy of V-GLOSS across these two504

classes jumps from 36% to 68% when contrastive505

glosses are used. This improvement highlights the506

effectiveness of our contrastive V-GLOSS variant507

in reducing false positives between visually similar508

classes.509

Attention To Relevant Context: We analyze510

the model’s attention maps to better understand511

V-GLOSS’s impact. Figure 4 shows the attention512

map for V-GLOSS (see Table 1 for descriptions),513

indicating effective utilization of visually-relevant514

context. Conversely, Figure 5 shows the attention515

map for the WordNet glosses (baseline), where the516

attention score on bottle is 3.5x higher, implying517

less distraction in V-GLOSS. These maps demon-518

strate success in steering the model’s attention to-519

ward relevant context, thus improving classification520

accuracy across different classes and descriptions.521

6 Discussion 522

When looking at our results, a pertinent question 523

arises: Why does an SKB, such as WordNet, help 524

us do better on tasks related to vision? In this 525

section, we formulate two insights on how the syn- 526

ergy between SKBs and LMs supports our improve- 527

ments. 528

Insight #1: SKBs represent concepts precisely 529

When LMs are prompted with better information, 530

they produce better output (Borgeaud et al., 2022). 531

WordNet provides a precise representation of a 532

class and its relationship to other classes, leaving 533

minimal room for ambiguity. Afterward, we can 534

prompt an LM with this precise information to 535

produce unambiguous and high-quality class de- 536

scriptions. 537

Insight #2: Semantic similarity is a useful proxy 538

for visual similarity WordNet models lexical se- 539

mantics as a graph (see Figure 3), with synsets as 540

nodes and is-a relationships as directed edges. The 541

distance between different nodes reflects the level 542

of semantic similarity and is by extension an indica- 543

tor of the level of visual similarity between synsets. 544

ALLIGATOR and CROCODILE are semantically sim- 545

ilar because they are both kinds of CROCODILIAN, 546

but they are visually similar as well (see Table 2). 547

Semantic similarity informs what classes we dis- 548

tinguish with our contrastive descriptions and why 549

they work (see Table 3). This is because semantic 550

and visual similarity are highly correlated. 551

7 Conclusion 552

This study concentrates on generating visual class 553

descriptions for ZSIC and ZSCIG tasks. We uti- 554

lize a unique method that merges Semantic Knowl- 555

edge Bases (SKBs) and Language Models (LMs) 556

to create high-quality descriptions. Our findings re- 557

veal that the semantic information from SKBs can 558

condition an LM to generate accurate, expressive, 559

and visually grounded descriptions. Furthermore, 560

we observe that LMs, although pre-trained solely 561

on text, contain latent knowledge about the visual 562

properties of concepts. This knowledge can be 563

harnessed using our novel V-GLOSS method, thus 564

improving the accuracy of zero-shot image classifi- 565

cation and generation models. This underscores the 566

strong relationship between language and vision, 567

suggesting potential for LMs in future multi-modal 568

tasks. 569
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Limitations570

The dataset must be mapped to an SKB. As571

described earlier, mapping the dataset to WordNet,572

although a one-time step, is not fully automatic. In573

future work, we look to fully automate this step,574

possibly by selecting a synset based on the simi-575

larity between sample class images and potential576

senses of the class label.577

We are limited in terms of language, dataset578

class count, and our SKB’s size. First, our579

English-focused stance may prove a limiting factor580

in our method being applied to ZSIC or ZSCIG581

tasks based in other languages. Some classes are582

strongly related to non-English languages.583

Second, our largest evaluation dataset, ImageNet584

(Deng et al., 2009), has 1,000 classes, representing585

just 0.64% coverage of WordNet. We look forward586

to evaluating our methods on a larger ImageNet587

set: ImageNet-21k, which would cover 14.06% of588

WordNet.589

Third, although our method can be applied to590

BabelNet (Navigli and Ponzetto, 2012), which has591

over 1.5 billion synsets, we focus on WordNet,592

which has 155,287. We look to explore alternative593

SKBs such as BabelNet, or non-English wordnets,594

both of which offer the benefit of being multilin-595

gual.596

Ethics Statement597

In normal use, we discover no direct ethical issues598

with our method. Note, however, that we may599

inherit ethical problems from the components used600

by our method. Both CLIP (Agarwal et al., 2021)601

and LMs (Liang et al., 2021) have independently602

been shown to exhibit some level of bias. Also,603

semantic resources such as WordNet (Miller, 1995)604

tend to focus on formalized concepts. This poses605

a problem if our method’s use concerns people on606

the fringes of society.607

We noted earlier that our method is mostly608

English-focused. This could be a source of bias609

if our method is applied in a multilingual context.610

We ask that people do not apply our method to real-611

world problems where multilingual knowledge is612

required. There is also the issue of semantic re-613

sources for low-resource languages not being ex-614

tensive enough (Magueresse et al., 2020).615
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