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Abstract

Language-vision models like CLIP have made
significant progress in zero-shot vision tasks,
such as zero-shot image classification (ZSIC).
However, generating specific and expressive vi-
sual descriptions remains a challenge as current
methods produce descriptions that lack granu-
larity and are ambiguous. To tackle these chal-
lenges, we propose V-GLOSS: Visual Glosses,
a novel method that prompts language models
with semantic knowledge to produce improved
visual descriptions. We demonstrate that V-
GLOSS can be used to achieve state-of-the-art
results on benchmark ZSIC datasets, such as
ImageNet and STL-10. In addition, we intro-
duce a silver dataset with visual descriptions
generated by V-GLOSS and demonstrate its
utility for language-vision tasks.

1 Introduction

Language-vision models (Radford et al., 2021; Jia
et al., 2021) have made significant progress in zero-
shot vision tasks. However, we hypothesize that
their accuracy is limited by a lack of visual concept
descriptions that are both expressive and specific,
that is, glosses that describe what images depicting
a concept look like. In this work, we investigate this
hypothesis by creating and testing a novel method
for producing visual descriptions.

Improving visual descriptions is crucial for en-
hancing system performance in zero-shot vision
tasks. Such descriptions facilitate the creation of
more useful representations. Additionally, being
able to describe a concept in terms of its appear-
ance is essential for developing more robust and
adaptable methods incorporating diverse visual in-
formation across various domains, without the need
for extensive re-training.

Existing approaches to generating visual descrip-
tions, such as those employed by CLIP (Radford
et al., 2021) and CuPL (Pratt et al., 2022), involve
directly plugging class labels into fixed templates

Class / Concept ~ WordNet Gloss ~ V-GLOSS (Ours)

CORKSCREW

A bottle
opener that
pulls corks.

A tool with a spiral
blade that is used
to remove corks
from bottles.

A small brown bird
with a black head
and a white patch
on its chest.

Eurasian finch.

Branched A green vegetable
green with a thick stalk
undeveloped and florets that

flower heads. grow in a dense

head.

Table 1: A qualitative comparison between WordNet
concept glosses and V-GLOSS (Silver) class descrip-
tions for some ImageNet classes. Our method describes
what a class looks like, instead of what it does or is.

(e.g., a photo of X), or using large language models
such as InstructGPT (Ouyang et al., 2022) to gen-
erate descriptions based on class labels (e.g., what
does X look like ?). These methods suffer from two
main issues: class granularity and label ambiguity.
Class granularity refers to the difficulty in distin-
guishing between visually similar classes, such as
ALLIGATOR and CROCODILE. Label ambiguity is
caused by using polysemous words as labels for
distinct concepts. For example, CRANE can refer
to either a bird or a construction machine. These
issues limit the performance of existing models
(Radford et al., 2021).

To address these challenges, we introduce
V-GLOSS, a novel method that leverages lan-
guage models (LMs) and semantic knowledge
bases (SKBs) to generate improved visual descrip-
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(c) V-GLOSS for ZSIC: classifying a test image

Figure 1: For the DOG class, we depict (a) V-GLOSS’s architecture (Section 4.2.1), along with adaptations: (b)

ZSIC (Section 5.4.1) and (c) ZSCIG (Section 5.4.1)

tions — visual glosses. Table 1 shows some exam-
ples. By combining structured semantic informa-
tion from SKBs such as WordNet (Miller, 1998),
with a contrastive algorithm to distinguish similar
classes, V-GLOSS is designed to mitigate the dual
issues of granularity and ambiguity.

Our results demonstrate the effectiveness of V-
GLOSS in improving the performance of ZSIC
systems. We achieve state-of-the-art (SOTA) re-
sults on benchmark datasets such as ImageNet
(Deng et al., 2009), CIFAR-10, and CIFAR-100
(Krizhevsky et al., 2009) in the zero-shot setting,
and STL-10 (Coates et al., 2011) in both the zero-
shot and supervised settings. Additionally, we
introduce V-GLOSS Silver, a silver dataset con-
structed by V-GLOSS, consisting of a visual gloss
for each ImageNet class. We show that V-GLOSS
Silver is useful for language-vision tasks such as
ZSIC and ZSCIG, comparing favorably to Word-
Net glosses.

2 Tasks

Our main task is to generate a description for a
given class or concept. For example, if an image
classification dataset has the class DOG, we aim
to produce a description such as “A dog is a furry,
four-legged canine...” We consider such a descrip-
tion to be a specific kind of gloss.

We use two downstream tasks to compare meth-
ods of generating class descriptions: zero-shot
image classification (ZSIC), and zero-shot class-
conditional image generation (ZSCIG).

In ZSIC, the goal is to classify an image based
on a set of classes, without having seen any la-

beled images belonging to those classes. The set of
classes depends on the dataset. For example, given
an image depicting a dog, we aim to predict the
class DOG.

In ZSCIG, the goal is to generate an image that
corresponds to a specific class, again without hav-
ing seen any labeled examples. For example, given
a class DOG, we aim to generate an image of a dog.

In short, ZSIC is the task of classifying a given
image, while ZSCIG is the task of generating an
image given a class. Both involve classes and im-
ages. Visual descriptions of classes provide useful
information which can facilitate both tasks, by mak-
ing it easier to either recognize or generate images
of each class. Therefore, by developing a novel
method to improve the generation of such descrip-
tions, we hypothesize that performance on ZSIC
and ZSCIG can be improved.

3 Related Work

Language Models The advent of transformer-
based language models has revolutionized many
natural language processing tasks (Radford et al.,
2018; Devlin et al., 2018; Radford et al., 2019;
Brown et al., 2020; Black et al., 2022; Ouyang
et al., 2022). As these models are scaled up by
their number of parameters and quantity of training
data, they exhibit emergent abilities such as few-
shot and zero-shot learning (Wei et al., 2022).

Language-Vision Models Significant strides
have been made in the field of language-vision
models such as CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021). These models apply con-
trastive pre-training approaches on large image-text



datasets, leading to improved representation learn-
ing for both text and images and enhanced perfor-
mance on several multi-modal tasks (Mokady et al.,
2021; Song et al., 2022). Further advancements
have been achieved by scaling up pre-training and
incorporating auxiliary training objectives (Pham
et al., 2021; Yu et al., 2022).

Producing Descriptions & Prompting The gen-
eration of descriptions and prompting has been
explored in various studies. Radford et al. (2021)
introduced the template ensemble (TE) method,
which uses a custom set of class labels and a fixed
set of templates. Each label is inserted into these
templates, and the completed templates for each
class are aggregated into a single representation of
the class. The CuPL method (Pratt et al., 2022)
utilizes InstructGPT (Brown et al., 2020; Ouyang
et al., 2022) to generate descriptions for ImageNet
classes. Both TE and CuPL can be used for zero-
shot image classification. Hao et al. (2022) fine-
tuned GPT models (Radford et al., 2018, 2019)
to rephrase image-generation prompts, resulting
in improved images. (Zhou et al., 2022) learned
soft prompts that improve performance, but are
intractable to humans. In this work, we prompt lan-
guage models with semantic knowledge to generate
visual descriptions.

4 Method

We begin by describing how we map classes to
concepts in a semantic knowledge base (SKB), in
order to leverage the concept-specific information
the SKB contains. We then introduce of our novel
method V-GLOSS, which has two variants, nor-
mal and contrastive. We conclude by describing
the construction of V-GLOSS Silver, a set of class
descriptions produced using V-GLOSS.

4.1 Mapping Classes to WordNet Synsets

The ImageNet classes are already mapped to Word-
Net synsets by the dataset’s creators. For the
other datasets, we employ a heuristic that starts
by mapping each class to the most frequent sense
of the class label, as determined by WordNet'. For
CIFAR-10 and STL-10, this heuristic is sufficient.
For CIFAR-100, we manually re-map 18 classes.
For instance, we needed to re-map RAY from light
to sea creature, as the light sense is the most fre-
quent according to WordNet, but the RAY images
in the dataset depict sea creatures.

'https://www.nltk.org/

What does a platypus look like?

A platypus looks like a beaver with a duck's bill

(a) CuPL Pratt et al. (2022)

Concept name: eagle

Hypernyms: bird or prey

Hyponyms: bald eagle, eaglet, golden eagle, harpy
Gloss: any of various large keen-sighted diurnal birds
of prey noted for their broad wings and strong...
Unique and expressive visual description: Eagles are
large birds of prey with dark brown bodies and wings...

Concept name: platypus

Hypernyms: duckbill, duckbilled platypus, ...
Hyponyms: egg-laying mammal

Gloss: small densely furred aquatic monotreme of
Australia and Tasmania having a broad bill...
Unigue and expressive visual description:

Platypuses are water-dwelling mammals that have
broad duck-like bills and hind legs with a foot web that
has an intricate web of keratinised spongy hairs

(b) V-GLOSS

Figure 2: Class descriptions for PLATYPUS generated
by two different methods that use LMs. Input prompts,
output descriptions, and plugged values are shown.

4.2 V-GLOSS

We discuss the two variants of V-GLOSS below,
normal and contrastive. In both, for each class,
we produce multiple descriptions resulting in an
ensemble.

4.2.1 Normal V-GLOSS

We generate normal descriptions via in-context
learning with an LM, beginning by providing the
LM with a description of the task to be performed,
followed by multiple input-output examples. The
examples are fixed, involving the concepts EA-
GLE, BAT (animal), BAT (baseball), and TELEVI-
SION. We selected these to expose the model to am-
biguous class labels (bat), a natural object (eagle),
and an artificial object via (television). For each
class, we obtain from WordNet the hypernyms, hy-
ponyms, usage examples, synonyms, and glosses
of the sense to which the class is mapped, and pro-
vide this to the LM. Figure 2b shows a session with
the LM, beginning with the example of eagle, with
output generated for the class platypus. Table 1
compares our descriptions to WordNet glosses.

4.2.2 Contrastive V-GLOSS

During development, we observed that many er-
rors were caused by false positives involving vi-
sually similar classes. For example, the classes
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ENTITY

ALLIGATOR eoe CROCODILE . NOTEBOOK

Figure 3: A sample of WordNet hypernym hierarchy.
For contrastive prompting, we only distinguish classes
that are semantically similar to the target class, like
ALLIGATOR to CROCODILE.

CROCODILE for ALLIGATOR refer to similar-
looking animals, and are often confused for one
another. The contrastive variant of V-GLOSS is
designed to address this by using semantic sim-
ilarity between classes as a heuristic to estimate
visual similarity. For each class, we search for
other classes that are semantically similar, and if
any are found, we add a negative instruction to the
LM prompt, e.g. we generate a description for an
ALLIGATOR but not a CROCODILE, using the same
prompt structure as for normal V-GLOSS.
We create a similarity matrix M as follows:

M; j = Sim(S[i], S[j]) ¢))

Sim(sy, s2) is the Wu-Palmer path-similarity
function (Wu and Palmer, 1994) comparing synsets
s1 and so; this similarity function uses the path
between two concepts in the WordNet hypernym
hierarchy (Figure 3) to measure semantic related-
ness. S is the set of all classes in a dataset, D, and ¢
and j are indices ranging from 1 to |.S|. Concisely,
Equation 1 defines a similarity matrix containing
similarity scores between all classes in a dataset.
M is one of the inputs to our contrastive V-GLOSS
variant, shown in Algorithm 1.

In Algorithm 1, A is a threshold for minimum
similarity. We only generate contrastive descrip-
tions when classes have a similarity that exceeds
or is equal to A\. N indicates the maximum number
of classes to generate contrastive descriptions for.
k is the number of distinct descriptions to gener-

Class / Concept ~ Normal Contrastive
ALLIGATOR
A large reptile A large,
with a long dark-colored
snout, a broad reptile with a
head, and a rounded snout,
long tail. found in
freshwater.
CROCODILE
A reptile with A grayish-green
a broad, flat reptile with a

snout, a long
tail, and a long,
pointed snout.

v-shaped snout,
found in brackish
or saltwater.

Table 2: Two similar classes with key differences be-
tween their normal and contrastive descriptions.

ate for a class pair. LM, takes in the target class,
a neighbor class, and k, then prompts the LM to
generate k descriptions that distinguish the target
and neighbor classes. In summary, for each class,
Algorithm 1 identifies the classes most similar to
it, excluding itself, and generates descriptions that
distinguish them. Table 2 compares the normal
and contrastive descriptions for ALLIGATOR and
CROCODILE; note that distinguishing features of
the two classes are included in the LM’s output.
Table 3 shows examples of classes with high false
positive rates, and the classes they are contrasted
with.

Algorithm 1 Generate Contrastive Descriptions:
We generate contrastive descriptions to help distin-
guish the most similar classes.

Require: M': Equation 1 result

Require: )\, N, k: Hyperparameters

Require: S: All classes in dataset, D

Require: LM,: LM prompted contrastively
1: G < empty |S|-list for class descriptions
2: fori < 0to|S|—1do

target < S[i

4 S* <—top N classes : A < M; , <1

5 for s* in S* do

6: samples < LM_(target, s*, k)

7

8

w

Gli].insert(samples)

5 Evaluation

Toward evaluating V-GLOSS, we describe our
datasets, evaluation metrics, baselines, previous
methods, and experiments.



Class False Positives Contrastives
AFRICAN TUSKER (44), ASIAN  TUSKER, ASIAN
ELEPHANT  ELEPHANT (6) ELEPHANT
NOTEBOOK LAPTOP (22), LAPTOP,
DESKTOP (10), DESKTOP,
SPACE BAR (2) SPACE BAR

Table 3: False positives and their counts vs. classes
selected by the contrastive algorithm (see Equation 1
and Algorithm 1). Hits and misses are shown.

5.1 Datasets

We evaluate our method on the test splits of four
widely used benchmark datasets: ImageNet (Deng
et al., 2009) consists of 50,000 images equally dis-
tributed across 1,000 classes, and serves as our
primary benchmark. CIFAR-10 and CIFAR-100
(Krizhevsky et al., 2009) both comprise 10,000 test
samples across 10 and 100 classes, respectively.
Finally, STL-10 (Coates et al., 2011) comprises
100,000 test samples and is designed for unsuper-
vised learning. For CIFAR-10, CIFAR-100, and
STL-10, which are not pre-mapped to WordNet,
we employ the two-step process detailed in Section
4.1 to map each class to a WordNet synset.

Experiment 1 (Section 5.4) involves ImageNet
alone and covers both the ZSCIG and ZSIC tasks.
In contrast, Experiment 2 (Section 5.5), which is
our main experiment, tests the impact of various
class description methods on the ZSIC task and
uses all datasets. In Experiment 2, we allow meth-
ods to use ensembles of descriptions of each class,
while in Experiment 1, we experiment with only a
single description.

The datasets we selected to evaluate the follow-
ing properties of V-GLOSS:

1. Performance on benchmark datasets with
varying numbers of classes. Each dataset has
its own set of classes, ranging from ImageNet
with 1,000 classes, to CIFAR-100 with 100
classes, to CIFAR-10 and STL-10, each with
10 classes.

2. Ability to represent diverse concepts at
varying levels of granularity. The datasets
we use contain a wide range of concepts
across various domains, rather than those tar-
geting specific subareas such as pets (Parkhi
et al., 2012), foods (Bossard et al., 2014),
cars (Krause et al., 2013), scenes (Xiao et al.,
2010), or airplanes (Maji et al., 2013).

5.2 Evaluation Metrics

Top-1 Accuracy In ZSIC, this metric is the fre-
quency with which the model’s top prediction for
an image matches the gold label.

Fréchet Inception Distance (FID) For ZSCIG,
FID (Heusel et al., 2017) quantifies the divergence
between ground truth and generated images, with
lower scores signifying a better ability to produce
images similar to the ground truth.

Inception Score Also for ZSCIG, the inception
score (Salimans et al., 2016) uses an Inception
model’s (Szegedy et al., 2015) output probability
distribution to assess the diversity and realism of
generated images, with higher scores indicating
more diverse and convincing images. Unlike the
above metrics, this does not require ground-truth
images for comparison.

5.3 Baseline & Previous Methods

In this section, we describe the methods to which
we compare V-GLOSS. For methods that produce
ensembles of class descriptions (i.e. multiple de-
scriptions per class), a single representation of the
class is obtained by averaging individual represen-
tations for each description.

First, the 1-Template baseline inserts a class
label into a single specific template. For exam-
ple, given the class DOG, the baseline produces “A
photo of a dog.”

Template Ensemble (Radford et al., 2021) gen-
erates an ensemble of descriptions for a class by
inserting the class label into each of a set of tem-
plates. For example, some descriptions for DOG
are: “A photo of a dog.”, “A blurry photo of a
dog.”, and “An origami dog.” This method uses
a modified list of class labels? designed to reduce
ambiguity.

CuPL (Pratt et al., 2022) also generates an en-
semble of descriptions for each class. The descrip-
tions are generated by prompting a LLM, Instruct-
GPT (Ouyang et al., 2022), with questions such
as: “What does a dog look like?” and “Describe
an image of a dog from the internet.” CuPL uses
the same class labels as Template Ensemble.

The authors of CuPL also combined their
method with Template Ensemble. The resulting
method, CuPL + Template Ensemble, combines
the class descriptions from both methods.

https://github.com/anishathalye/
imagenet-simple-labels
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5.4 Experiment 1: V-GLOSS Silver

This experiment evaluates V-GLOSS’s ability to
generate a single description for each class, with-
out relying on ensembling. We then evaluate the V-
GLOSS description of each class against its Word-
Net gloss.

To construct this set of class descriptions, which
we view as a silver dataset of such descriptions,
we generate a single, normal description for each
ImageNet class via greedy decoding. We generate
only normal descriptions because they outperform
contrastive ones when only a single description is
used. We call the resulting dataset V-GLOSS Silver.

We extrinsically evaluate V-GLOSS Silver by
using it for the ZSIC and ZSCIG tasks, and com-
paring the results to those achieved using the 1-
Template baseline, and WordNet glosses. We do
not compare V-GLOSS Silver to CuPL or other
previous methods which do not produce a single
description for each class.

5.4.1 Technical Details

ZSIC We employ CLIP (Radford et al., 2021),
which comprises an image encoder and a text en-
coder, as the ZSIC backbone model. Our procedure
consists of three steps: First, we use the CLIP text
encoder to create an aggregate representation for
each class based on its description(s). Then, at
test time, we employ the CLIP image encoder to
generate a representation of the input image. Fi-
nally, we predict the class which maximizes the
cosine similarity between the representation of its
description(s), and the image representation (see
Figure 1c). We evaluate the predictions using top-1
accuracy.

ZSCIG For ZSCIG (see Figure 1b), we condition
Stable Diffusion (Rombach et al., 2022) on each
class description before generating an image. We
use a guidance scale of 7.5 and run 50 diffusion
steps. We evaluate the generated images using
Inception and FID scores.

5.4.2 Results

The results of Experiment 1 are shown in Table 4.
Based on our extrinsic evaluation in the ZSIC and
ZSCIG tasks, V-GLOSS Silver descriptions yield
better performance compared to baseline and Word-
Net Glosses. On ZSIC, we improve accuracy by
1.3%; on ZSCIG, we improve Inception and FID
scores by 9.9 and 5.7, respectively. This demon-
strates the effectiveness and utility of V-GLOSS:

ZSIC ZSCIG

Accuracy T Inception T FID |
Baseline (1-Template) 71.0 99.7 25.7
WordNet Glosses 44.7 58.5 30.0
V-GLOSS Silver 72.3 109.6 20.0

Table 4: Extrinsic evaluation on the tasks of ZSIC and
ZSCIG. | means that lower is better.

our visual descriptions yield better results on ZSIC
and ZSCIG.

5.4.3 Analysis

V-GLOSS Silver descriptions are considerably
more detailed, more expressive, and better visu-
ally grounded than their WordNet gloss counter-
parts (see Figure 1). Specifically, we observe that
V-GLOSS descriptions make greater use of descrip-
tive words and phrases, e.g. spiral, brown, green,
thick, small, etc.

5.5 Experiment 2: ZSIC

Our second experiment assesses the effectiveness
of V-GLOSS descriptions in facilitating ZSIC. The
details for the ZSIC pipeline are largely similar to
those described in Experiment 1 (Section 5.4), ex-
cept that we generate an ensemble of descriptions
per class, as opposed to only one description. We
also experiment with two image encoder variants:
ViT (Dosovitskiy et al., 2020) and RN50 (He et al.,
2016). For all baselines and methods (Section 5.3,
Section 4.2.1), we follow the same evaluation pro-
cedure after generating class descriptions.

5.5.1 Technical Details

We generate class descriptions using the 6.1B-
parameter Cohere LM>. We choose Cohere over al-
ternatives due to its extensive cost-free availability,
reducing the cost of our experiments. Cohere has
comparable performance to the similarly-sized In-
structGPT (Brown et al., 2020; Ouyang et al., 2022)
variant, as demonstrated by Liang et al. (2022)
across various benchmarks. Therefore, we do not
gain any advantage by using Cohere instead of In-
structGPT.

When generating class descriptions with nor-
mal V-GLOSS, we use a temperature of 2.5 to
produce an ensemble of 50 descriptions per class.
When generating contrastively, we use a tempera-
ture of 1.5 to generate an ensemble of 20 descrip-

*https://docs.cohere.com/docs/models
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Accuracy (%) on Datasets #1LM
Method Model
ImageNet CIFAR-100 CIFAR-10 STL-10 Parameters
. ViT 72.4 77.3 95.2 99.5
Baseline (1-Template) RN50  68.7 577 81.0 og4 0
ViT 76.2 77.9 96.2 99.4
Template Ensemble RN50 732 613 86.8 983 0
CuPL ViT 76.7 . . . 175B
ViT 77.6 - - -
CuPL + Template Ensemble RN50 751 ) ] ] 175B
ViT 77.3 77.5 95.6 99.4
V-GLOSS (Normal-Only) RN50 733 63.5 86.8 98.3 6.1B
» ViT 78.5 78.2 97.0 99.6
V-GLOSS (Normal + Contrastive) RNSO 745 64.6 7.8 08.8 6.1B

Table 5: Top-1 accuracy on ZSIC. ViT and RN are Transformer- and ResNet-based CLIP variants.

tions per class. Like Pratt et al. (2022), we observe
that performance saturates around 50 descriptions
for normal V-GLOSS, but we also observe satu-
ration at around 20 descriptions for contrastive V-
GLOSS. Based on tuning on development data, we
set N =5, A = 0.5, and k = 4 (see Algorithm 1).
In total, we obtain 70 class descriptions. During
generation, we set the maximum number of to-
kens to 35, but also terminate generation when the
boundary parameter or newline token is reached.

5.5.2 Results

The results of Experiment 2 are shown in Table 5.
V-GLOSS yields better accuracy than the baseline
by an average of 3.60% overall (2.22% with ViT
and 4.98% with RN50). V-GLOSS also outper-
forms Template Ensemble and CuPL + Template
Ensemble, by 1.21% and 0.15% respectively. This
improvement is especially notable since the top 15
results on the ImageNet benchmark differ by less
than 1% accuracy.*

In addition, we make the following observations.
(1) V-GLOSS (Normal + Contrastive) surpasses
V-GLOSS (Normal-Only), by an average of 0.91%
accuracy. (2) We outperform CuPL + Template En-
semble using an LLM with 28.7x fewer parameters.
(3) The RN backbone (He et al., 2016), which is
generally less capable than ViT (Dosovitskiy et al.,
2020), sees a more significant benefit from the V-
GLOSS method, on average 3.8%. (4) For STL-10,
V-GLOSS matches the top-performing supervised
system (Gesmundo, 2022) with a score of 99.6%.

We also note that the contrastive component is
more helpful on the larger datasets: CIFAR-100

*https://paperswithcode.com/sota/
image-classification-on-imagenet

and ImageNet, which have more opportunities for
mutual ambiguity between different classes, than
on the smaller ones: CIFAR-10 and STL-10. Con-
cretely, this improvement is 1.05%, on average.
Later, in Section 6, we discuss these results and
their implications more extensively.

5.5.3 Analysis

In Section 1, we pointed out several problems in
previous methods. Here, we carefully analyze how
our V-GLOSS method addresses these issues.

Label Ambiguity: Without adequate context,
text models may fail to grasp the intended mean-
ing of a polysemous word. Crane is a polysemous
word, and ImageNet (Deng et al., 2009) has two
classes that refer to different senses of the word:
construction machine and wading bird, but use the
same label. Thus, in /-Template, for example, both
classes have the same description. This point high-
lights an important benefit of linking classes to
WordNet, which resolves such ambiguity. Empiri-
cally, when compared with a ViT backbone to the
Lex Baseline, our accuracy on CRANE (machine)
and CRANE (bird) increase from 0% and 46% to
76% and 78%, respectively.

Relationship Between Performance & Context:
When comparing the baselines to the other meth-
ods, we observe that accuracy generally improves
as the amount of surrounding context increases.
On one hand, if a sentence consists of “my crane.”
alone, the sense of crane is unclear. On the other, if
the sentence is “my construction crane,” the mean-
ing of crane becomes clear. We see that providing
additional context helps to disambiguate words.
When a description provides more useful context,
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Figure 5: WordNet Gloss Attention Map

models can form better representations of specific
classes. By comparing V-GLOSS to the baselines
(see Table 5), we can observe that the benefits of
additional context extend to the vision-language
setting. Concretely, providing visually-grounded
context in the description improves performance.

Class Granularity: We consider pairs of classes
that are similar enough to be mistaken, such as
ALLIGATOR and CROCODILE. In WordNet, rela-
tionships between synsets are modeled through is-a
(hyponymy-hypernymy) and part-of (meronymy-
holonymy) relationships. For example, CROCODIL-
IAN is a hypernym of both ALLIGATOR and
CROCODILE, while only ALLIGATOR is a holonym
of SNOUT, since alligators have snouts while
crocodiles do not. Using our contrastive algorithm,
we generate descriptions that highlight how images
of a CROCODILE should depict a greener animal
with a rounded snout. Empirically, using ViT, the
average accuracy of V-GLOSS across these two
classes jumps from 36% to 68% when contrastive
glosses are used. This improvement highlights the
effectiveness of our contrastive V-GLOSS variant
in reducing false positives between visually similar
classes.

Attention To Relevant Context: We analyze
the model’s attention maps to better understand
V-GLOSS’s impact. Figure 4 shows the attention
map for V-GLOSS (see Table 1 for descriptions),
indicating effective utilization of visually-relevant
context. Conversely, Figure 5 shows the attention
map for the WordNet glosses (baseline), where the
attention score on bottle is 3.5x higher, implying
less distraction in V-GLOSS. These maps demon-
strate success in steering the model’s attention to-
ward relevant context, thus improving classification
accuracy across different classes and descriptions.

6 Discussion

When looking at our results, a pertinent question
arises: Why does an SKB, such as WordNet, help
us do better on tasks related to vision? In this
section, we formulate two insights on how the syn-
ergy between SKBs and LMs supports our improve-
ments.

Insight #1: SKBs represent concepts precisely
When LMs are prompted with better information,
they produce better output (Borgeaud et al., 2022).
WordNet provides a precise representation of a
class and its relationship to other classes, leaving
minimal room for ambiguity. Afterward, we can
prompt an LM with this precise information to
produce unambiguous and high-quality class de-
scriptions.

Insight #2: Semantic similarity is a useful proxy
for visual similarity WordNet models lexical se-
mantics as a graph (see Figure 3), with synsets as
nodes and is-a relationships as directed edges. The
distance between different nodes reflects the level
of semantic similarity and is by extension an indica-
tor of the level of visual similarity between synsets.
ALLIGATOR and CROCODILE are semantically sim-
ilar because they are both kinds of CROCODILIAN,
but they are visually similar as well (see Table 2).
Semantic similarity informs what classes we dis-
tinguish with our contrastive descriptions and why
they work (see Table 3). This is because semantic
and visual similarity are highly correlated.

7 Conclusion

This study concentrates on generating visual class
descriptions for ZSIC and ZSCIG tasks. We uti-
lize a unique method that merges Semantic Knowl-
edge Bases (SKBs) and Language Models (LMs)
to create high-quality descriptions. Our findings re-
veal that the semantic information from SKBs can
condition an LM to generate accurate, expressive,
and visually grounded descriptions. Furthermore,
we observe that LMs, although pre-trained solely
on text, contain latent knowledge about the visual
properties of concepts. This knowledge can be
harnessed using our novel V-GLOSS method, thus
improving the accuracy of zero-shot image classifi-
cation and generation models. This underscores the
strong relationship between language and vision,
suggesting potential for LMs in future multi-modal
tasks.



Limitations

The dataset must be mapped to an SKB. As
described earlier, mapping the dataset to WordNet,
although a one-time step, is not fully automatic. In
future work, we look to fully automate this step,
possibly by selecting a synset based on the simi-
larity between sample class images and potential
senses of the class label.

We are limited in terms of language, dataset
class count, and our SKB’s size. First, our
English-focused stance may prove a limiting factor
in our method being applied to ZSIC or ZSCIG
tasks based in other languages. Some classes are
strongly related to non-English languages.

Second, our largest evaluation dataset, ImageNet
(Deng et al., 2009), has 1,000 classes, representing
just 0.64% coverage of WordNet. We look forward
to evaluating our methods on a larger ImageNet
set: ImageNet-21k, which would cover 14.06% of
WordNet.

Third, although our method can be applied to
BabelNet (Navigli and Ponzetto, 2012), which has
over 1.5 billion synsets, we focus on WordNet,
which has 155,287. We look to explore alternative
SKBs such as BabelNet, or non-English wordnets,
both of which offer the benefit of being multilin-
gual.

Ethics Statement

In normal use, we discover no direct ethical issues
with our method. Note, however, that we may
inherit ethical problems from the components used
by our method. Both CLIP (Agarwal et al., 2021)
and LMs (Liang et al., 2021) have independently
been shown to exhibit some level of bias. Also,
semantic resources such as WordNet (Miller, 1995)
tend to focus on formalized concepts. This poses
a problem if our method’s use concerns people on
the fringes of society.

We noted earlier that our method is mostly
English-focused. This could be a source of bias
if our method is applied in a multilingual context.
We ask that people do not apply our method to real-
world problems where multilingual knowledge is
required. There is also the issue of semantic re-
sources for low-resource languages not being ex-
tensive enough (Magueresse et al., 2020).
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