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ABSTRACT

We introduce Discrete Predictor-Corrector diffusion models (DPC), extending
predictor-corrector samplers in Gaussian diffusion models to the discrete case.
Predictor-corrector samplers are a class of samplers for diffusion models, which
improve on ancestral samplers by correcting the sampling distribution of intermedi-
ate diffusion states using MCMC methods. In DPC, the Langevin corrector, which
does not have a direct counterpart in discrete space, is replaced with a discrete
MCMC transition defined by a learned corrector kernel. The corrector kernel is
trained to make the correction steps achieve asymptotic convergence, in distribution,
to the correct marginal of the intermediate diffusion states. Equipped with DPC,
we revisit recent transformer-based non-autoregressive generative models through
the lens of discrete diffusion, and find that DPC can alleviate the compounding
decoding error due to the parallel sampling of visual tokens. Our experiments show
that DPC improves upon existing discrete latent space models for class-conditional
image generation on ImageNet, and outperforms continuous diffusion models and
GANs, according to standard metrics and user preference studies.

1 INTRODUCTION

Generative Adversarial Networks (GANs) are the leading model class for a wide variety of content
creation tasks (Goodfellow et al., 2014; Brock et al., 2018; Karras et al., 2020). Recently, however,
likelihood-based models, such as diffusion models (Dhariwal & Nichol, 2021; Ho et al., 2020; 2022)
and generative transformers (Ramesh et al., 2021; Esser et al., 2021b; Chang et al., 2022), have
started rivaling GANs in offering an alternative training paradigm with superior training stability
and improved generation diversity. In particular, ADM (Dhariwal & Nichol, 2021) and CDM (Ho
et al., 2022) presented diffusion models attaining better perceptual quality on the class-conditional
ImageNet benchmark compared to BigGAN (Brock et al., 2018).

Sampling speed, however, is still a bottleneck hindering the practical application of diffusion models.
These models can be orders of magnitude slower than GANs, due to the need to take up to hundreds
of steps to synthesize a single image during inference. Recently, discrete diffusion has been receiving
attention as a promising direction for achieving an improved trade-off between generation quality
and efficiency. Like the continuous (Gaussian) diffusion process (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Ho et al., 2020; Gu et al., 2022), these models incrementally corrupt training data until
a known base distribution is reached, and this corruption process is reversed when sampling from the
learned model. Unlike continuous diffusion models, the corruption is applied in a latent, possibly
low-dimensional, discrete space. The image generation quality of discrete diffusion models is still
inferior to that of continous diffusion models. For example, the state-of-the-art discrete diffusion
model (i.e., VQ-Diffusion (Gu et al., 2022)) still notably underperforms CDM (Ho et al., 2022) and
BigGAN (Brock et al., 2018) on ImageNet without the guidance from external classifiers.

Contemporarily, non-autoregressive transformers (Chang et al., 2022; Gu et al., 2022; Zhang et al.,
2021; Lezama et al., 2022) have demonstrated promising performances in both perceptual image
quality and efficiency on the ImageNet benchmark. In particular, a non-autoregressive transformer
model named MaskGIT (Chang et al., 2022) achieves comparable generation quality to the leading
diffusion model ADM on ImageNet, while enjoying two orders-of-magnitude faster inference speed.

∗Corresponding author joselezama@google.com

1



Published as a conference paper at ICLR 2023

It brings down the generation time of ADM from ∼500 steps to only 18 steps, making it possible to
generate an image within 0.1 second on a TPU device. Non-autoregressive transformers are trained
to predict masked visual tokens, inspired by masked language models such as BERT (Devlin et al.,
2019). The decoding process, similar to non-autoregressive sampling techniques from machine
translation (Ghazvininejad et al., 2019; Kong et al., 2020), predicts all missing tokens in parallel,
starting from a fully masked sequence, and subsequently following an iterative refinement schedule.
By viewing non-autoregressive transformers through the lens of discrete diffusion, our analysis
yields new insights into a critical issue with these models, namely the compounding decoding error,
which causes a mismatch between the inference and training distributions of the intermediate latents
produced during the parallel sampling process.

To tackle the compounding decoding error, we propose Discrete Predictor-Corrector (DPC) diffusion
models that introduce iterative refinement of the intermediate diffusion states. DPC learns a corrector
kernel that, coupled with the reverse diffusion predictor, forms a discrete Markov Chain Monte Carlo
(MCMC) predictor-corrector algorithm that has the correct marginal distribution of the intermediate
latents as its limiting distribution. The proposed DPC model is a new type of discrete diffusion model
that is distinct from both non-autoregressive transformers and conventional discrete diffusion models.
Compared to non-autoregressive transformers (Chang et al., 2022; Lezama et al., 2022; Gu et al.,
2022), DPC introduces new techniques to perform multi-step correction of intermediate states in the
sampling process. Furthermore, it provides a theoretical underpinning for this model class, and shows
that, in the ideal case, it can completely correct the train/test mismatch between the distributions of
intermediate states. DPC advances conventional discrete diffusion by introducing a new discrete
MCMC correction kernel, which can be considered as a discrete analogue to the Langevin corrector
that was of (Song et al., 2021) for the continuous case.

We empirically validate that DPC is able to achieve a good quality-vs-efficiency trade-off on two
tasks: class-conditional image generation on the ImageNet dataset and unconditional generation on
the Places2 (Zhou et al., 2017) dataset. The results show that DPC performs favorably against both
non-autoregressive transformers (Chang et al., 2022; Lezama et al., 2022; Esser et al., 2021b) and
discrete diffusion baselines (Gu et al., 2022) while maintaining a fast inference speed. In particular,
without the help of external classifiers, DPC outperforms the state-of-the-art continuous diffusion
models (i.e., ADM (Dhariwal & Nichol, 2021) and CDM (Ho et al., 2022)) in FID (Heusel et al.,
2017), thereby establishing a new state-of-the-art on the high-resolution (512×512) image synthesis
task on ImageNet. When leveraging an external pre-trained classifier and upsampling, DPC produces
state-of-the-art class-conditional generation, yielding better Inception Score (IS) and FID compared
to state-of-the-art GANs, (e.g. StyleGAN-XL (Sauer et al., 2022)) and continuous diffusion models
(e.g. ADM (Dhariwal & Nichol, 2021)). Furthermore, we present user preference studies that confirm
the perceptual quality provided by DPC.

2 BACKGROUND AND PROBLEM STATEMENT

2.1 DISCRETE DIFFUSION MODELS

Let x0 ∈ {1, . . . ,K}N be a vector of discrete data, such as an image or a set of image tokens
obtained by Vector-Quantized (VQ) encoding with a dictionary of K elements. Using a discrete
diffusion process q(xt+1|xt), we can sample a sequence of latent variables x1,x2, . . . ,xT such
that the final latent xT has a simple known and fixed distribution p(xT ). Starting from a sample
from p(xT ), we can then reverse this process using a learned reverse diffusion model pθ(xt−1|xt),
eventually producing a sample x0.

One instance of such a discrete diffusion process q, is the absorbing state diffusion process from
(Austin et al., 2021), in which we set xt = x0�mt, where mt is a vector of binary masks that starts
out as all ones, m0 = 1, and ends up as all zeros, mT = 0. In between we gradually evolve mt by
randomly setting more and more of its elements to zero according to mt ∼ q(mt|mt−1).

The reverse diffusion model pθ(xt−1|xt,mt) can be constructed by first sampling a new mask
q(mt−1|mt), and then sampling a new value for xt−1 corresponding to those values of mt−1 that
are newly unmasked, i.e. sampling xit−1 ∼ pθ(xit−1|xt) for those i for which mi

t−1 = 1, and mi
t = 0.
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2.2 ORDER-AGNOSTIC AUTOREGRESSIVE MODELS

When sampling from a discrete diffusion model with a sufficiently large number of steps t, only a
single element of x is masked/unmasked in each transition, so we only need to sample a single xit−1
at each step of the reverse diffusion process. In this case, pθ is an order-agnostic autoregressive
model, as introduced by Uria et al. (2014) and discussed in more detail by Hoogeboom et al. (2022).
As shown in Uria et al. (2014), these models can be trained efficiently by maximizing the likelihood∑

i s.t. mit=0

log pθ(x
i
t−1 = xi0|xt,mt), (1)

where the sum is over all possible orderings of the data that are consistent with mt: this has lower
variance than just maximizing the likelihood for the single ordering that was actually sampled by
q(·), but is otherwise equivalent. Alternatively, it can be interpreted as denoising the corrupted data
xt towards the original clean data x0, trained by maximizing the log-likelihood log p̃θ(x0|xt,mt)
for the whole vector x0 at once, under a one-step model p̃θ defined by

p̃θ(x0|xt,mt) =
∏
i

pθ(x
i
0|xt,mt), (2)

where we use the p̃θ notation to distinguish this factorized one-step denoising model from the full
multi-step generative model pθ(x0) =

∑
xt>0

∏
t pθ(xt−1|xt). In the following we use p̃θ for all

distributions affected by using the one-step model in the generative process.

2.3 NON-AUTOREGRESSIVE TRANSFORMERS FOR IMAGE SYNTHESIS

Transformer-based models generate images in two stages (Esser et al., 2021b; Ramesh et al., 2021).
First, the image is quantized into a grid of discrete tokens by a VQ-autoencoder (van den Oord
et al., 2017). In the second stage, an autoregressive transformer decoder (Vaswani et al., 2017;
Chen et al., 2020a) is learned on the flattened token sequence to generate image tokens sequentially
using autoregressive decoding. In the end, the generated codes are mapped to pixel space using the
VQ-decoder learned in the first stage (Esser et al., 2021b).

Recently, non-autoregressive transformers (Chang et al., 2022; Gu et al., 2022; Zhang et al.,
2021) are proposed to improve the second stage, adapted from non-autoregressive machine trans-
lation (Ghazvininejad et al., 2019; Kong et al., 2020). An example of such model is the Masked
Generative Image Transformer (MaskGIT) (Chang et al., 2022), which follows the masked modeling
in BERT (Devlin et al., 2019) (equation 2). During decoding, MaskGIT starts with all the image
tokens masked out. In each inference step, it uses parallel decoding, i.e. predicting all tokens simul-
taneously while only keeping the ones with the highest prediction scores. The remaining tokens
are masked out and will be re-predicted in the next iteration. The mask ratio is made decreasing,
according to a cosine function, until all tokens are generated within a few iterations of refinement.

2.4 COMPOUNDING DECODING ERROR IN NON-AUTOREGRESSIVE TRANSFORMERS

To sample from an autoregressive model, one would typically sample one element i at a time, which
is costly when the total number of elements N in x is large. By ignoring the dependencies between
the xit−1, one can accelerate this process by sampling several xit−1 in parallel at each transition. This
idea has been explored in discrete diffusion models by (Gu et al., 2022; Hoogeboom et al., 2022), and
is exploited by non-autoregressive generative transformers (Chang et al., 2022). As suggested in prior
work (Austin et al., 2021; Gu et al., 2022; Savinov et al., 2021; Lezama et al., 2022), there exists a
close relation between non-autoregressive transformers and discrete diffusion models. For example,
the masked-modeling training of state-of-the-art MaskGIT (Chang et al., 2022), can be modeled by
the discrete diffusion process with the absorbing state ([MASK]) (Austin et al., 2021). MaskGIT’s
parallel sampling may be understood as a reverse diffusion process using the one-step model in (2).

However, parallel sampling introduces errors as the factorized p̃θ does not exactly match the original
generative model pθ for the joint distribution of the elements of x. As a result, the marginal inference
distribution p̃θ(xt) will deviate from the training distribution q(xt) as sampling progresses. We refer
to this as a compounding decoding error, as small differences between q(xt−1|xt) and p̃θ(xt−1|xt)
can accumulate into large differences between q(xt) and p̃θ(xt) after many sampling steps (cf .
teacher forcing error).
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2.5 PREDICTOR-CORRECTOR SAMPLERS

Predictor-Corrector samplers were proposed by Song et al. (2021) for use in Gaussian diffusion
models: before applying each time transition in the generative model pθ(xt−1|xt), these samplers
correct the distribution of xt by applying one or more steps of Langevin MCMC at constant timestep
t, thereby bringing the distribution of xt closer to q(xt). The corrector has the form

xt ← xt + εtsθ(xt, t) +
√

2εtz, z ∼ N (0, I),

where sθ(xt, t) ≈ ∇x log qt(xt) is the learned score function and εt is a step size.

3 DISCRETE PREDICTOR-CORRECTOR SAMPLERS

In this section, we address the critical issue of compounding decoding error due to parallel sampling
in non-autoregressive transformers. We propose to mitigate the gap between q(xt) and p̃θ(xt)
by applying a learned discrete corrector MCMC step to iteratively improve intermediate diffusion
states. This allows our models to exploit the computational advantages of parallel sampling in
non-autoregressive transformers, while maintaining high synthesis quality.

To reduce the compounding decoding error in p̃θ(xt), we adjust the sampled xt to more closely
resemble samples from q(xt), before applying the time-transition from xt to xt−1. In the discrete
diffusion case, however, there is no direct counterpart to the score function that gives the rate of
change required to improve the likelihood of a sample (Campbell et al., 2022). Instead, we propose
to utilize an MCMC corrector step of the following form:

x̂0 ∼ p̃θ(x̂0|xt,mt) (3)

x′t ∼ pφ(xt|x̂0, t), (4)

where pφ is a learned corrector distribution1, trained so that when applying this procedure multiple
times, the distribution of x′t converges to q(xt), making this a valid corrector kernel (Section 3.1).

Since xt = x̂0 �mt, the corrector distribution pφ can equivalently be stated in terms of the mask
mt, which is resampled at every corrector step, mt ∼ pφ(mt|x̂0, t). The mask is a collection of
binary variables, of which a known number k are equal to one at a given time step t, and the others
are zero. Thus, the corrector distribution pφ(mt|x̂0, t) is a categorical distribution over all possible
binary masks with k non-zero elements. We model this distribution using the Plackett-Luce model
(Plackett, 1975), which gives

pφ(mt|x̂0, t) =
∑

ck(mt)

k∏
i=1

exp[l
cik
φ (x̂0, t)]∑k

j=i exp[l
cjk
φ (x̂0, t)] +

∑
l:ml

t=0 exp[llφ(x̂0, t)]
, (5)

where lφ(x̂0, t) is the N -dimensional output of a neural network corrector model, with elements
liφ(x̂0, t) representing the relative log-odds (logits) of mi

t being positive for the given x̂0, and where
we sum over all possible permutations ck of the indices of the k non-zero elements of the mask mt.
In numpy notation: ck = np.permute(np.nonzero(mt)). We provide more background on
this model in Appendix A.

In practice, we can sample from the mask model by forming perturbed logits by adding i.i.d. Gumbel
noise, l̃i = liφ(x̂0, t) + Gi, where Gi ∼ Gumbel(0, 1), and setting the mask to 1 for the top-k
elements of l̃, with k determined by t. This is known as the Gumbel-top-k trick (Kool et al., 2019).

3.1 DISCRETE PREDICTOR-CORRECTOR TRAINING

The learned corrector function pφ is trained to achieve detailed balance between the MCMC corrector
steps (3) and (4), and the training marginal q(xt). Let J(x′t|xt) be the transition kernel of the Markov
chain given by (3) and (4). Then, this Markov chain has q(xt) as stationary distribution if

pφ(xt|x̂0) =
p̃θ(x̂0|xt)q(xt)

Z(x̂0)
, (6)

1We use the subscript θ for models of the reverse process and φ for the corrector model, which goes in the
forward direction. The random variables described by the models are determined by what is inside the brackets.
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with Z(x̂0) =
∑

xt
p̃θ(x̂0|xt)q(xt). Assuming (6), the detailed balance condition of J(x′t|xt) with

respect to q(xt) follows from:

q(xt)J(x′t|xt) = q(xt)
∑
x̂0

pφ(x′t|x̂0)p̃θ(x̂0|xt) (7)

= q(xt)
∑
x̂0

[
p̃θ(x̂0|x′t)q(x′t)

Z(x̂0)

]
p̃θ(x̂0|xt) (8)

= q(xt)q(x
′
t)
∑
x̂0

p̃θ(x̂0|x′t)p̃θ(x̂0|xt)
Z(x̂0)

= q(x′t)J(xt|x′t), (9)

where the last step is derived from applying the same operations in the other direction.

The goal of training the corrector kernel is then to obtain pφ(xt|x̂0) ∝ p̃θ(x̂0|xt)q(xt) (equation 6),
which can be done by minimizing the KL divergence

KL
[
p̃θ(x̂0|xt)q(xt)‖pφ(xt|x̂0)Z(x̂0)

]
= −E(x̂0,xt)∼p̃θ(x̂0|xt)q(xt) log pφ(xt|x̂0) + C, (10)

where C are terms that do not include φ. Importantly, the denoiser p̃θ is pre-trained and its parameters
are frozen during the training of the corrector pφ. Thus, the corrector distribution can be trained by
first obtaining a masked sample from the training distribution q(xt), and then using the denoising
model p̃θ(x̂0|xt) (with frozen weights θ) to obtain a corresponding x̂0, after which pφ(xt|x̂0) can
be trained by maximum likelihood. Since xt is completely determined by x̂0 and the mask mt, this
is equivalent to training pφ to maximize the likelihood of the sampled mask mt.

Under our chosen model in (5), evaluating the likelihood for all mask elements jointly would require
summing over all possible masks, which is computationally expensive. Another simple training
objective is binary cross entropy applied independently to each mask element using pφ(mi

t =
1|x̂0, t) ≈ σ(liφ(x̂0, t)), where σ is the sigmoid function. In our experiments we find this simplified
loss to be very effective. We discuss this choice in greater depth in Appendix A.

Following MaskGIT, we use the cosine schedule for determining the masking ratio during both
training and inference. Let T denote the time horizon. For S sampling iterations, we set the masking
ratio to γ(t) = 1 − cos(t/S · π/2), for t ∈ {1, . . . , T/S}. During training of both the generator
pθ and corrector pφ, we first sample a time t, i.e. t ∼ U[0,1], before inputting it to compute γ(t).
Likewise, during inference, we compute γ(t) using the current decoding step. In practice, this
scheduling gives more weight to the transitions with lower masking rates, in a similar fashion to the
cosine weighing scheme of other diffusion models (e.g., (Hoogeboom et al., 2021)).

3.2 EFFICIENT IMPLEMENTATION USING SHORTCUT TIME TRANSITIONS

Our predictor-corrector sampler consists of taking one predictor step:

xt−1 ∼ pθ(xt−1|xt) (step 1),

followed by one or multiple corrector steps:

x̂0 ∼ p̃θ(x̂0|xt−1) (step 2) followed by xt−1 ∼ pφ(xt−1|x̂0) (step 3).

Under the exact diffusion distribution q, we have that∑
xt−1

q(x0|xt−1)q(xt−1|xt) = q(x0|xt).

Since our model p̃θ(x0|xt) is trained to approximate q(x0|xt) as well as possible, we then also have∑
xt−1

p̃θ(x̂0|xt−1)pθ(xt−1|xt) ≈ p̃θ(x̂0|xt),

to a close approximation. Hence, step 1 and step 2 of our predictor-corrector sampler can be combined
into a single step x̂0 ∼ p̃θ(x̂0|xt). Using this result, the shortcut time transition becomes

x̂0 ∼ p̃θ(x̂0|xt) followed by xt−1 ∼ pφ(xt−1|x̂0).

This avoids one sampling step, and offers a more efficient way of implementing DPC. In the
special case of a single corrector step, this implementation of DPC also closely resembles the
non-autoregressive transformer Token-Critic (Lezama et al., 2022).
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Figure 1: Random samples from ImageNet 512×512 class-conditional generation for selected classes:
‘tusker’, ‘koala’, ‘model T’ and ‘steam locomotive’. Left: StyleGAN-XL (NFE = 1). Center: ADM
+ Classifier Guidance + Upsampling (NFE = 250× 3). Right: DPC-light(5) (NFE = 66).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets, Baselines, and Metrics We evaluate the proposed DPC model for the tasks of class-
conditional and unconditional image generation. For class-conditional image generation, we use the
standard ImageNet dataset at resolutions 256×256 and 512×512. For unconditional generation, we
use the Places2 dataset (Zhou et al., 2017) of 1.8M images at resolution 512×512.

We compare to state-of-the-art models on class-conditional image generation, which include (1)
non-autoregressive generative transformers: MaskGIT (Chang et al., 2022) and Token-Critic (Lezama
et al., 2022); (2) continuous diffusion models: ADM (Dhariwal & Nichol, 2021) and CDM (Ho et al.,
2022); (3) discrete diffusion model: VQ-Diffusion (Gu et al., 2022); (4) GAN models: BigGAN
(Brock et al., 2018) and StyleGAN-XL (Sauer et al., 2022). We use FID (Heusel et al., 2017),
Inception Score (IS) (Salimans et al., 2016), and Precision vs. Recall (Kynkäänniemi et al., 2019) to
evaluate perceptual quality. We also report the number of neural function evaluations (NFE) required
by each method. ImageNet generation is evaluated against the training set, and Places2 against the
validation set, following Chang et al. (2022). Numbers for the baseline models are quoted from their
respective papers except for MaskGIT for which we used a provided model. In addition, we conduct
user preference studies to further evaluate the perceptual quality and diversity of the models’ samples.

Refinement Schedule We evaluate two versions of DPC, varying the number of correction steps
c(t) in each intermediate state t, where we take c(t) to include the corrector step in the shortcut time
transition (section 3.2):

6



Published as a conference paper at ICLR 2023

• DPC-full(C): c(t) = C

• DPC-light(C): c(t) = min(sC(t, τ1), sC(T − t, T − τ2)),

with sC(t) = max(1, C + min(0, t− τ)) a slanted step function, making c(t) a trapezoid with the
top vertices at t = τ1 and t = τ2. In DPC-light, c(t) concentrates more correction steps around
t = τ1 to t = τ2. To further reduce the cost, we stop the reverse process at t = T − 5. Table 5
presents results varying C, and shows that more DPC correction steps effectively lead to improved
sampling performance. Ablation studies for τ1, τ2 and β are included in Appendix B.

Upsampling in Discrete Latent Space Following the success of cascaded upsampling approaches
in continuous diffusion models (Dhariwal & Nichol, 2021; Ho et al., 2022), we experiment with using
a cascaded super-resolution stage in the discrete latent space, and observe significant improvements
compared to single resolution modeling (Table 2). Specifically, we train an upsampling discrete
denoising model to model the sequence of high-resolution visual tokens, conditioned on the low-
resolution sequence. The upsampling model is trained with the objective of (2), using a cosine
masking schedule. We refer to Appendix C for further details on the upsampling stage.

Implementation Details The input images are discretized into a set of 10-bit integers using a
VQGAN encoder (Esser et al., 2021b), e.g. a 512×512 image is represented as a grid of 32×32
integer indices over a codebook of 1024 elements. For class-conditional generation, we prepend
a class token to the sequence of visual tokens. The denoiser p̃θ and corrector pφ are transformer
models in which, following MaskGIT (Chang et al., 2022) and Token-Critic (Lezama et al., 2022),
the denoiser has 24 layers and 16 heads. Importantly, we used the same denoiser p̃θ for MaskGIT,
Token-Critic and the proposed DPC, which was trained using maximum likelihood of the one-step
model in (2). Thus, the comparison between these methods is restricted to the sampling scheme.
The corrector is a 20-layer, 12-head transformer. The denoiser was trained for 600 epochs and the
corrector for 300 epochs on 32 TPUs v4 with batch size 256. The VQGAN encoder was trained at
256×256 resolution on the same datasets. The upsampling stage is a 16layer transformer and was
trained for 300 epochs to denoise the encodings of 512×512 images conditioned on the encoding
of ground truth 256×256 images. For DPC, unless otherwise noted, we use T = 18 diffusion steps,
C = 5 and τ1 = 4, τ2 = 5. We control the sampling temperature of pφ with the scale parameter β of
the Gumbel noise, which is set to β = 0.6 for DPC-full and β = 0.5 for DPC-light.

4.2 MAIN RESULTS

Quantitative Evaluation Table 1 presents the quantitative comparison for the class-conditional
generation on ImageNet. To compare the base modeling capacity of each method, no external pre-
trained classifiers or upsampling stages are used during training or sampling. As shown, the proposed
DPC yields the best IS and FID scores on both 256×256 and 512×512 resolutions. DPC-light(5)
achieves a good balance between the fidelity and the number of function evaluations (correction
+ time-transitions). For example, DPC-light(5) outperforms the previous best discrete diffusion
VQ-Diffusion model by a large margin in FID while using fewer diffusion steps. It improves the

ImageNet 256×256 ImageNet 512×512

Model Type NFE FID ↓ IS ↑ Prec ↑ Rec ↑ FID ↓ IS ↑ Prec ↑ Rec ↑
BiGGAN GAN 1 6.95 202.6 0.86 0.24 8.43 177.9 0.85 0.25
ADM cont. 250 10.94 101.0 0.69 0.63 23.24 58.06 0.73 0.60
CDM cont. 250 4.88 158.7 − − − − − −
MaskGIT transf. 18 6.56 203.6 0.79 0.48 8.48 167.1 0.78 0.46
MaskGIT (T=66) transf. 66 5.09 198.7 0.79 0.52 7.10 166.6 0.77 0.50
Token-Critic transf. 36 4.69 174.5 0.76 0.53 6.80 182.1 0.73 0.50
VQ-Diffusion discrete 100 11.9 − − − − − − −
DPC-full(5) discrete 180 4.45 244.8 0.78 0.52 6.06 218.9 0.80 0.47
DPC-light(5) discrete 66 4.8 249.0 0.80 0.50 6.09 228.1 0.81 0.46

Table 1: Bare model comparison on class-conditional generation on ImageNet (models do not use
external classifiers or upsampling during sampling or training). We list the model type where “cont.”
is short for continuous diffusion, “discrete” for discrete diffusion, and “transf.” for transformer.
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Model NFE FID ↓ IS ↑ Prec ↑Rec ↑
SyleGAN-XL 1 3.58 219.8 0.73 0.43
ADM+G+U 250×3 3.85 221.7 0.84 0.53
MaskGIT+U 18+6 5.10 221.8 0.80 0.51
MaskGIT+R+U 18×5 4.26 326.9 0.81 0.50

DPC-light(5)+U 66+6 3.62 249.4 0.77 0.56
DPC-light(5)+R+U 66×5+6 3.54 350.2 0.78 0.55

Table 2: Performance of methods that leverage an up-
sampling stage (U) and/or a pre-trained classifier for
guidance (G) or rejection (R), on ImageNet 512x512.

Model quality diversity
StyleGAN-XL 77.6% ±0.42 54.4% ±0.50

ADM+G+U 67.6% ±0.42 53.2% ±0.50

MaskGIT 68.8% ±0.46 54.0% ±0.50

Token-Critic 68.0% ±0.46 48.4% ±0.50

Table 3: Proportion of times our DPC-
light(5) model is preferred over other
state-of-the-art class-conditional genera-
tion models in the user studies conducted
on the ImageNet (512×512) benchmark.

quality of non-autoregressive transformers MaskGIT and Token-Critic with a reasonable increase
in NFE (36) which is still less than that of the continuous diffusion models (250). We show DPC’s
performance for the unconditional generation on the Places2 dataset in Table 4.

In Table 2, we examine the comparison when the class-conditional generation is aided by pre-trained
classifiers used as gradient guidance (G) or rejection samplers (R), or when leveraging an upsampling
stage (U) for cascaded generation. Using external classifiers improves the generation quality but
makes it difficult to compare models given the distinct types of classifier architectures being used
such as DeiT (Touvron et al., 2021) in SyleGAN-XL, UNet with CLIP attention (Radford et al., 2021)
in ADM, or ResNet (He et al., 2016) in MaskGIT. Nevertheless, we present results for this setup by
using a rejection sampling scheme based on a ResNet-50 classifier pretrained on ImageNet, with a
specified acceptance rate of 25%. We apply the rejection sampling in samples generated at 256×256
resolution and then apply 6 upsampling decoding iterations to obtain the final 512×512 samples. For
reference, ADM+G+U (Dhariwal & Nichol, 2021) uses 128×128 generation followed by upsampling
to 512×512. DPC achieves the best FID and Inception Score under this setup among the models we
consider, and is highly competitive when using only generation and upsampling.

User Preference Study To further understand the perceptual differences between the compared
models, we conduct two user preference studies on Amazon Mechanical Turk to verify the visual
quality and diversity of our model’s samples. We compare our DPC-light(5), without classifier
rejection or upsampling, to StyleGAN-XL, ADM with guidance and upsampling, and MaskGIT and
Token-Critic without classifier rejection. The compared images are generated using the public models
of StyleGAN-XL, ADM, and MaskGIT, obtained from their official websites.

For the quality test, we present two randomly sampled images of the same class side-by-side (one
from DPC-light and one from the compared model), and ask the graders to select which one looks
more realistic. For the diversity test, we show graders two sets of six randomly sampled images each
for four different classes, and ask them to select which set is more diverse looking. The quality and
diversity tests are carried out on each of the 1,000 ImageNet classes, with 14 different graders, for a
total of 14,000 comparisons. The comparison to each method is organized into 250 task groups.

As shown in Table 3, DPC is preferred for quality more times than all the compared methods. It is
noteworthy that the compared models in Table 3 represent the best published class-conditional models
on the ImageNet benchmark, including GAN, diffusion, and transformer models. The differences in
the quality test are statistically significant at the p-value level of 0.05. It also appears that DPC shows
preferred diversity compared to StyleGAN-XL and ADM+G+U.

Qualitative Evaluation In Figure 1, we show random samples from our ImageNet 512×512 DPC-
light(5) model, and from the publicly available implementations of StyleGAN-XL and ADM with
classifier guidance and upsampling. These are the same models used in the user studies. We refer to
Appendix D and the supplementary material for more comprehensive qualitative comparisons.

5 RELATED WORK

Diffusion Models The most prominent type of diffusion model that operates entirely in continuous
space is the Gaussian diffusion model (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al.,
2020; Song et al., 2021; Kingma et al., 2021; Tzen & Raginsky, 2019; Kadkhodaie & Simoncelli,
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Model NFE FID ↓ IS ↑ Pre Rec
MaskGIT 18 31.3 8.6 0.65 0.42
MaskGIT 66 23.3 9.9 0.62 0.47

DPC-full(1) 36 20.3 9.6 0.62 0.47
DPC-full(5) 180 16.3 12.1 0.59 0.50
DPC-light(5) 66 16.2 11.5 0.55 0.50

Table 4: Performance on unconditional
generation in the Places2 validation dataset
at 512×512. We include MaskGIT’s per-
formance for reference.

DPC-full (β=0.6) DPC-light (β=0.5)
C NFE FID↓ IS↑ NFE FID↓ IS↑
1 36 23.87 101.0 26 15.69 128.9
2 72 10.59 162.9 30 10.77 161.3
3 108 7.25 194.5 38 8.13 187.6
4 144 6.23 211.3 50 7.13 202.2
5 180 6.06 218.9 66 6.09 228.1
6 216 6.20 222.1 86 5.99 233.0
7 252 6.53 221.1 108 5.86 245.1

Table 5: ImageNet 512×512 performance when
varying C (corrections per timestep).

2021), which is formulated as a forward and a learned reverse process that are both parameterized
as conditional Gaussian distributions. These models have attained high quality generation results in
image and audio tasks (Dhariwal & Nichol, 2021; Ho et al., 2022; Saharia et al., 2021b;a; Nichol
et al., 2021; Ramesh et al., 2022; Chen et al., 2020b; Kong et al., 2021b; Lugmayr et al., 2022).

Discrete Diffusion Recently, D3PM (Austin et al., 2021) and OA-ARDM (Hoogeboom et al.,
2022) applied discrete diffusion (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021) to image
modeling, focusing on density estimation and compression of raw image pixels. Campbell et al.
(2022) introduce a framework to model discrete diffusion in continuous time, and demonstrate that a
combination of the denoising model and forward noising process is a valid corrector. In contrast to
Campbell et al. (2022), our learned corrector can directly target the most unlikely tokens, achieving
efficient sampling with one order of magnitude fewer steps. While these methods limit their analysis
to low-resolution images (e.g., 32×32), VQ-Diffusion (Gu et al., 2022) is the state-of-the-art discrete
diffusion model for ImageNet image synthesis, also employing a mask-and-replace diffusion strategy
to predict missing VQ-GAN tokens iteratively. Different from our model, VQ-Diffusion may still
suffer from the compounding decoding error discussed in this paper. Our results show that our model
outperforms VQ-Diffusion in both quality and efficiency on the ImageNet benchmark, while further
scaling discrete diffusion models from the 256×256 to the 512×512 resolution.

Non-autoregressive transformers for image synthesis While early works (van den Oord et al.,
2016; Salimans et al., 2017; Parmar et al., 2018; Chen et al., 2020a) modeled images directly in
pixel space, various recent works (Ramesh et al., 2021; Esser et al., 2021b;a; Ding et al., 2022) used
autoregressive transformers over the discrete latent space provided by VQVAE or VQGAN. Closest
to our work is a class of non-autoregressive transformers (Chang et al., 2022; Zhang et al., 2021;
Lezama et al., 2022; Kong et al., 2021a) which have recently demonstrated improved quality and
efficiency over conventional autoregressive transformer models like Esser et al. (2021b). There are
two major differences to these non-autoregressive transformers. First, we propose new techniques to
perform multi-step correction steps which, as shown in our experiments, are essential for achieving
a desirable quality-vs-efficiency trade-off. Second, we show that, in the ideal case, the proposed
method can correct the train/test mismatch in the distributions of intermediate states. Finally, we
further demonstrate the applicability of cascaded upsampling in the discrete latent space.

6 CONCLUSION

Parallel sampling from generative transformers dramatically improves efficiency compared to full
autoregressive sampling. However, from the perspective of discrete diffusion models, it exacerbates
deviations from the ideal sampling distribution that accumulate in the marginal distributions of
intermediate diffusion states. To mitigate this compounding decoding error, we proposed DPC, a
new discrete diffusion model based on a learned MCMC corrector kernel that refines the samples of
these intermediate states. Empirically, we demonstrated that the repeated application of the learned
corrector improves the samples of a non-autoregressive transformer, as measured on the standard
ImageNet class-conditional generation task. User preference studies showed that DPC is competitive
with state-of-the-art generative vision transformers, GANs, and continuous diffusion models.
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A LEARNING THE MASK MODEL

Let {li}i=1...N be a set of N logits, given by the output of a neural network taking x̂0, t as input,
i.e. li = liφ(x̂0, t). We perturb these logits by adding i.i.d. Gumbel noise, i.e. l̃i = li + Gi with
Gi ∼ Gumbel(0, 1), and we rank-order these perturbed logits to get a ranking c. Then the Plackett-
Luce model (Plackett, 1975) states that the probability of obtaining an ordering c is given by

p(c|x̂0) =

N∏
i=1

exp(lc
i

)∑N
j=i exp(lcj )

. (11)

If we only care about the top-k ranking ck = {c1, . . . , ck}, then the probability of that partial ranking
can be obtained as

p(ck|x̂0) =

k∏
i=1

exp(lc
i
k)∑k

j=i exp(lc
j
k) +R

, (12)

with R =
∑N
j=(k+1) exp(lc

j

).

We define our mask mt to be a vector with one boolean element mi
t for each element l̃i. If l̃i is

among the kt largest elements we set mi
t = 1, and otherwise we set mi

t = 0. Using numpy notation,
we now have np.sort(ck) = np.nonzero(mt). For sampling a mask mt we don’t care about
the exact order ck, but only about the elements in this top-k ordering. The probability of sampling a
mask mt can thus be found by summing over all the partial rankings ck that are consistent with this
mask:

p(mt|x̂0) =
∑

ck(mt)

k∏
i=1

exp(lc
i
k)∑k

j=i exp(lc
j
k) +R

(13)

= exp

 k∑
i:mi

t=1

li

 ∑
ck(mt)

k∏
i=1

1∑k
j=i exp(lc

j
k) +R

,

with R =
∑

l:ml
t=0

exp[llφ(x̂0, t)]. (14)

Evaluating the mask likelihood in (13) requires summing over all partial orderings ck consistent with
the mask mt, which is computationally expensive. Next we discuss two alternative formulations that
are more computationally efficient.

Under the Plackett-Luce model, the logits li, lj encode the relative log-odds of i ending higher than
j in the sampled ranking c. That is p(l̃i > l̃j) = σ(li − lj). (When applied to pairs of elements
like this, the Plackett-Luce model is also known as the Bradley-Terry model (Bradley & Terry, 1952;
Hunter, 2004; Huang et al., 2006).) Thus, one alternative is to consider the relative scores of masked
and unmasked elements, which yields the following objective:

Lpairwise = E
(xt,mt) ∼ q(xt,mt)

x̂0 ∼ pθ(x̂0|xt)

k∑
i:mit=1

N−k∑
j:mjt=0

− log
(
σ
(
liφ(x̂0, t)− ljφ(x̂0, t)

))
. (15)

Another, simpler loss function which we found to work well in practice, is binary cross entropy
independently applied to each mask element using pφ(mi

t = 1|x̂0, t) ≈ σ(liφ(x̂0, t)), where σ is the
sigmoid function. The reasoning here is that, if the cutoff between ending in the top-k and ending
outside of it is represented by l̄, we may reasonably approximate the probability of ending in the
top-k as p(i ∈ ck) ≈ σ(li− l̄). Furthermore, since the Plackett-Luce distribution is invariant to shifts
in the logits li, the absolute level of l̄ can be chosen at will. We therefore choose l̄ = 0, resulting in
pφ(mi

t = 1|x̂0, t) ≈ σ(liφ(x̂0, t)), which we fit against the marginal distribution of observed mask
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Model FID ↓ IS ↑ Prec ↑Rec ↑
factorized 6.41 209.5 0.78 0.45
pairwise 10.89 231.6 0.77 0.38

Table 6: Performance comparison between corrector models trained with the factorized loss (16) and
the pairwise loss (15), for the same number of training steps (200 epochs), on ImageNet 512x512. In
both cases we use the DPC-full(5) sampling schedule.

elements q(mi
t) using maximum likelihood:

Lfactorized = E
(xt,mt) ∼ q(xt,mt)

x̂0 ∼ pθ(x̂0|xt)

−
k∑
i=1

mi
t·log

(
σ
(
liφ(x̂0, t)

))
−(1−mi

t)·log
(
1− σ

(
liφ(x̂0, t)

))
.

(16)

Table 6 shows a quantitative comparison of the corrector models trained with Lpairwise and
Lfactorized. We train both models for the same number of training steps (200 epochs), and sweep
sampling hyperparameter (β) for better FID. We found the factorized loss to be more efficient and we
use this loss in all the experiments reported in the main manuscript.

B ABLATION STUDIES

In Figure 2 we show resulting FID and Inception Score when varying the parameter for the sampling
temperature β. Our observation is that the resulting sampling quality, as measured by FID and
Inception Score, is highly sensitive to the value of β, and that the optimal β value also depends on
the number of correction steps C and the refinement schedule c(t).

In Figure 3, we present an ablation study on the shape of the trapezoidal function c(t) for the DPC-
light model. We vary the starting point of the top side of the trapezoid, τ1, and its width τ2 − τ1. We
observe slightly better metrics by concentrating the trapezoid around the first steps of the decoding
process.
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Figure 2: Ablation study for sampling temperature parameter β. We show the effect of β on FID and
Inception Score for models DPC-full(5), DPC-full(3), DPC-light(5) and DPC-light(3). We notice a
high sensitivity to β and a strong correlation between the effect on FID and Inception Score.

C UPSAMPLING IN DISCRETE SPACE

We perform upsampling in the discrete latent space by learning to generate the sequence of visual
tokens corresponding to a high-resolution image xH0 , given the sequence of visual tokens from a
low-resolution downsampled version xL0 . For the experiments in the paper we use the 512×512
and 256×256 resolutions, and use the same VQ-encoder for both resolutions, yielding sequences of
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Figure 3: Ablation study for refinement schedule parameter τ1. We show the effect of varying the
location of the top left vertix of the trapezoid τ1 and its width τ2 − τ1 on FID and Inception Score,
for DPC-light(5). We observe that concentrating more refinement steps towards the begining of the
decoding process is beneficial for FID, and around the t = 4 for Inception Score. In all experiments
the number of diffusion steps is T = 18.

Masking Rate FID ↓ IS ↑ Prec ↑Rec ↑
0% 5.19 174.5 0.78 0.50
5% 5.22 173.5 0.78 0.50
10% 5.28 172.0 0.78 0.50

Table 7: Effect of random perturbation applied to the low-resolution sequence when training the
upsampling stage. The perturbation consists in masking a portion of the tokens and replacing them
with the predictions of the low-resolution denoising model. We use the one-step denoising model
(without corrector) for this experiment.

length 1024 (32×32) and 256 (16×16), respectively. The upsampling model pu is trained with the
one-step denoising objective:

Lupsampling = E
(xL0 ,x

H
0 )∼q

− log
∏
i

pu
(
xH0 (i)|xHt ,xL0 ,mt

)
, (17)

where the mask rate in mt follows a cosine scheduling function as for the denoiser model p̃θ. We
use a transformer to model the high resolution sequence, with cross-attention to the low-resolution
sequence in every layer and independent positional encodings for each resolution.

During inference, we first generate an image (sequence of visual tokens x̂L0 ) in 256×256 resolution.
We then perform 6 decoding steps with the upsampling model pu, following the cosine scheduling
function. For simplicity, when using DPC with upsampling, we only apply corrector steps in the
low resolution, and use the prediction confidence in pu to keep/reject tokens (similarly to MaskGIT
(Chang et al., 2022)) in each upsampling decoding iteration.

Following observations in cascaded continuous diffusion, where the low resolution images are
augmented with random perturbations to reduce exposure bias (Ho et al., 2022), we experimented
with randomly perturbing the low-resolution sequence. To randomly perturb the low-resolution
sequence we randomly mask a subset of tokens and ran the partially masked sequence through the
low-resolution denoiser p̃θ. Table 7 shows the results obtained for different strengths of perturbation
(masking rate). These results suggest that in the discrete case, low-resolution augmentation does
not improve the upsampling stage. Thus, for simplicity we did not use any augmentation for the
experiments in Section 4.
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Figure 4: Random samples from ImageNet 512×512 class-conditional generation for selected
classes: ‘lorikeet’, ‘wallaby’, ‘flat-coated retriever’, ‘groenendael’, ‘golfcart’ and ‘racing car’. Left:
StyleGAN-XL (NFE = 1). Center: ADM + Classifier Guidance + Upsampling (NFE = 250× 3).
Right: DPC-light(5) (NFE = 66).

D FURTHER QUALITATIVE RESULTS

ImageNet We present further 512x512 ImageNet class-conditional samples in Figure 4, comparing
the proposed DPC-light(5) to StyleGAN-XL (Sauer et al., 2022) and ADM with Guidance and
Upsampling (Dhariwal & Nichol, 2021). In Figure 5 we further show random samples of random
classes for each of the three methods. We provide further qualitative results in the Supplementary
Material.

Places2 In Figure 6 we show samples from the Places2 dataset (Zhou et al., 2017), by the proposed
DPC-light(5) (FID 16.2) and MaskGIT (FID 26.3), as well as original images from the dataset for
reference.
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Figure 5: Random samples from random classes from ImageNet 512×512 class-conditional genera-
tion for selected classes. Left: StyleGAN-XL (NFE = 1). Center: ADM + Classifier Guidance +
Upsampling (NFE = 250× 3). Right: DPC-light(5) (NFE = 66).

Figure 6: Unconditional image generation in the Places2 dataset (Zhou et al., 2017) at 512 × 512
resolution. Random samples from left: Ground Truth, center: MaskGIT (FID 23.3, NFE = 66),
right: DPC-light(5) (FID 16.2, NFE = 66).

E FURTHER IMPLEMENTATION DETAILS

All the transformers used in this work have embedding dimension 768 and hidden dimension
3,072, learnable positional embedding (Devlin et al., 2019), LayerNorm (Ba et al., 2016), and
truncated normal initialization (stddev= 0.02). The following training hyperparameters were used
for both transformers: dropout rate 0.1, Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9 and
β2 = 0.96. We used RandomResizeAndCrop for data augmentation and the denoiser is trained with
label smoothing set to 0.1.

18



Published as a conference paper at ICLR 2023

F USER PREFERENCE STUDY DETAILS

Figure 7: Screenshot for the quality user preference study.

In Figure 7 we present a screenshot for the quality user study. Users were presented with two
generated images of the same class, one sampled from our method and one from the compared
method, and were shown the following text prompt:

Here are two images generated from the same input category using different methods.
Please use the radio buttons above to choose the more realistic looking one.
It would be great if you could check both sets of images carefully, as they may contain
subtle artifacts that are not immediately obvious. Thank you so much!

In Figure 8 we show a screenshot for the diversity user preference study. Users were presented
with two grids of random samples, one for our method and one for the compared method. The grid
contained 6 images for each of 4 classes. The users were shown the following text prompt:

In each tab, we have two sets of images generated from the same input categories using
different methods.
Please use the radio buttons above to choose the image set with more diverse content,
lighting and background.
Note that you must select one in each tab before you submit.
It would be great if you could check both sets of images carefully, as they may contain
subtle differences that are not immediately obvious. Thank you so much!

Figure 8: Screenshot for the diversity user preference study.
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