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ABSTRACT

In this paper, we argue that gradient descent is one of the reasons that make com-
positionality learning hard during neural network optimization. We find that the
optimization process imposes a bias toward non-compositional solutions. This is
caused by gradient descent, trying to use all available and redundant information
from input, violating the conditional independence property of compositional-
ity. Based on this finding, we suggest that compositionality learning approaches
considering only model architecture design are unlikely to achieve complete com-
positionality. This is the first work to investigate the relation between compositional
learning and gradient descent. We hope this study provides novel insights into
compositional generalization, and forms a basis for new research directions to
equip machine learning models with such skills for human-level intelligence. The
source code is included in supplementary material.

1 INTRODUCTION

Compositional generalization is the algebraic capacity to understand and produce many novel
combinations from known components (Chomsky, 1957; Montague, 1970), and it is a key element
of human intelligence (Minsky, 1986; Lake et al., 2017) to recognize the world efficiently and
create imagination. Broadly speaking, compositional generalization is a class of out-of-distribution
generalization (Bengio, 2017), where the training and test distributions are different. A sample
in such a setting is a combination of several components, and the generalization is enabled by
recombining the seen components of the unseen combination during inference. For example, in the
image domain, an object is a combination of multiple parts or properties. In the language domain, a
sentence is a combination of syntax and semantics. Each component of an output depends only on the
corresponding input component, but not on other variables. We call this the conditional independence
property, and will formally introduce in Section 3.

People hope to design machine learning algorithms with compositional generalization skills. However,
conventional neural network models generally lack such ability. There have been many attempts to
equip models with compositionality (Fodor & Pylyshyn, 1988; Bahdanau et al., 2019), and most
efforts focus on designing neural network architectures (Graves et al., 2014; Andreas et al., 2016;
Henaff et al., 2016; Shazeer et al., 2017; Li et al., 2018; Santoro et al., 2018; Kirsch et al., 2018;
Rosenbaum et al., 2019; Goyal et al., 2019). Recently, multiple approaches showed progress in
specific tasks (Li et al., 2019; 2020; Lake, 2019; Russin et al., 2019), but we still do not know why
standard approaches seldom achieve good compositionality in general.

In this paper, we argue that there is a bias to prevent parameters from reaching compositional
solutions, when we use gradient descent in optimization (please see Figure 1 for illustrations). This
is because gradient seeks the steepest direction, so that it uses all possible and redundant input
information, which contradicts to the conditional independence property of compositionality. This
problem is not due to how gradient is computed, such as back propagation, but caused by the essential
property of gradient. We derive theoretical relation between gradient descent and compositionality
with information theory. We also provide examples and visualization to show the detailed process
of how gradient resists compositionality. Based on the finding, we propose that compositionality
learning approaches with model structure design (manual or searching) alone are not likely to achieve
complete compositionality.
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Figure 1: Conceptual illustration of compositionality and the impact of gradient descent. X1, X2 are
entangled input, and Ŷ1, Ŷ2 are entangled output. Ŷi aligns withXi, for i = 1, 2. (Left) Compositional
solution with θA. (Middle) Non-compositional solution with θB . (Right) In parameter space, gradient
descent encourages parameters closer to θB , than θA, hence resisting compositionality.

We hope this research provides new insights and forms a basis for new research directions in
compositional generalization, and helps to improve machine intelligence towards human-level. The
contributions of this paper can be summarized as follows.

• The novelty of this work is to find the relation between compositional learning and gradient
descent in optimization process, i.e., gradient descent resists compositionality.

• We theoretically derive the result and explain why standard approaches with architecture
design alone do not address compositionality.

2 RELATED WORK

Compositionality Humans learn language and recognize the world in a flexible way by leveraging
systematic compositionality. The compositional generalization is critical in human cognition (Minsky,
1986; Lake et al., 2017), and it helps humans to connect limited amount of learned concepts for
unseen combinations. Though deep learning has many achievements in recent years (LeCun et al.,
2015; Krizhevsky et al., 2012; Yu & Deng, 2012; He et al., 2016; Wu & et al, 2016), compositional
generalization has not been well addressed (Fodor & Pylyshyn, 1988; Marcus, 1998; Fodor & Lepore,
2002; Marcus, 2003; Calvo & Symons, 2014).

There are observations that current neural network models do not learn compositionality (Bahdanau
et al., 2019). Most recently, multiple approaches are proposed to address compositionality in neural
networks (Li et al., 2019; 2020; Lake, 2019; Russin et al., 2019) for specific tasks. However, we are
still not sure why compositionality is hard to achieve in general cases, and this work discusses about
this problem from optimization perspective.

Another line of related work is independent disentangled representation learning (Higgins et al.,
2017; Locatello et al., 2019). Its main assumption is that the expected components are statistically
independent in training data. This setting does not have transferring problem in test, because all
combinations have positive joint probabilities in training (please refer to Section 3).

Compositionality is applied in different areas such as continual learning (Jin et al., 2020; Li et al.,
2020), question answering (Andreas et al., 2016; Hudson & Manning, 2019; Keysers et al., 2020),
and reasoning (Talmor et al., 2020).

Gradient Descent Gradient descent is a powerful and general purpose optimization tool for solving
large scale problems in deep neural networks. It is usually used in a stochastic way (Stochastic
Gradient Descent) with mini-batches, and has many variations such as Momentum (Rumelhart et al.,
1986), averaging (Polyak & Juditsky, 1992), AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
RMSProp (Tieleman & Hinton, 2012), Adam (Kingma & Ba, 2014).

Most of the previous work focus on faster reduction of loss and theoretical convergence analysis of
SGD (Bottou et al., 2018; Luo, 1991; Reddi et al., 2018; Chen et al., 2018; Zhou et al., 2018; Zou &
Shen, 2018; De et al., 2018; Zou et al., 2018; Ward et al., 2018; Barakat & Bianchi, 2019). In particular,
this work focuses on investigating why standard neural network training only achieves limited level
of compositionality by studying the relationship between gradient descent and compositionality.
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3 CONCEPTS FOR COMPOSITIONALITY AND GRADIENT DESCENT

We first formulate compositionality using the conditional independence property, and define composi-
tional generalization. We then review properties of gradient for the derivation in the next section.

Conditional Independence Property for Compositionality When multiple hidden variables live
in the same representation, and cannot be separated by simply splitting the representation, then these
variables are entangled in the representation. For example, color and shape are two hidden variables
and they share the same representation of image. Also, syntax and semantics are two hidden variables
and they share the same representation of sentence. When we extract the hidden variables from their
shared representation, we disentangle them.

We then consider a prediction problem, where input X and output Y have multiple entangled
components that are not labeled in data, and they are aligned. For example in machine translation,
X1 is input syntax, and X2 is input semantics. Y1 is output syntax, and Y2 is output semantics. The
syntax of output Y1 depends only on the syntax of input X1, and the semantics of output Y2 depends
only on the semantics of X2. We can formalize the alignments as conditional independence property:
Yi depends only on Xi.

∀i : P (Yi|X1, . . . , XK , Y1, . . . , Yi−1, Yi+1, . . . , YK) = P (Yi|Xi).

When a model fits this property, we say it has compositionality. Note that this can be understood as a
kind of sparseness property (Bengio, 2017), because it restricts effective connection between input
and output components.

Compositional Generalization In compositional generalization, each sample in either training
or test is a combination of several components. A test sample has a combination that does not
appear in training, but each component of the test sample appears in training. We need to recombine
the seen components to generalize to the test sample. We can define compositional generalization
probabilistically as follows.

In train, In test,
∀i : P (Xi) > 0, P (X1, . . . , XK) = 0, P (X1, . . . , XK) > 0,

∀i : P (Yi|Xi) is high. P (Y1, . . . , YK |X1, . . . , XK) is predicted high.

Compositionality bridges the gap between training and test distributions to achieve compositional
generalization. We first apply chain rule, and then use compositionality as follows.

P (Y1, . . . , YK |X1, . . . , XK) =

K∏
i=1

P (Yi|X1, . . . , XK , Y1, . . . , Yi−1) =

K∏
i=1

P (Yi|Xi).

When P (Yi|Xi) are all high, their product should also be high. Therefore, a model with
compositionality—satisfying this conditional independence property—addresses compositional gen-
eralization.

Property of Gradient For a function f(x1, . . . , xK), the gradient∇f is the steepest direction to
change the function’s value. Generally, gradient descent methods estimate ∇f using low-order local
estimation. By definition, it is the vector of partial derivatives with respective to the inputs.

∇f =
∂f

∂x1
, . . . ,

∂f

∂xK

We will use the following definition in later arguments.

Definition 1 (Partial derivative). Partial derivative for an input is the derivative assuming other
inputs are constant.

∀i = 1, . . . ,K :
∂f(x1, . . . , xK)

∂xi
=
df(c1, . . . , xi, . . . , cK)

dxi
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Figure 2: Extended neural network structure. Middle part is original model structure (one input and
one output). Extending with X,X1, . . . , XK (left) corresponds to entangled input. Extending with
Ŷ , Ŷ1, . . . , ŶK (right) corresponds to entangled output.

4 GRADIENT DESCENT RESISTS COMPOSITIONALITY

We focus on the early phase of training to show that gradient descent causes a model to use the
redundant information to compute output when it has information to reduce the loss. We develop the
arguments step by step. We first analyze the influence of the input on an output variable. We then
consider the case of entangled inputs and one output. Finally, we discuss the case with entangled
inputs and entangled outputs.

The gradient is used to reduce loss, so we aim to relate loss reduction and the influence from input to
output. To do that, we use mutual information to describe the influence, and use knowledge from
information theory (Definition 2, Theorem 1 and Theorem 2). We also study the impact of gradient
descent to the influence, so we relate mutual information with gradient with Proposition 1.

Definition 2 (Markov chain (Cover, 1999) p.34). Random variables X, Y, Z are said to form a Markov
chain in that order (denoted by X → Y → Z) if the conditional distribution of Z depends only on Y
and is conditionally independent of X .

Theorem 1 (Data-processing inequality (Cover, 1999) p.34). If X → Y → Z, then I(X;Y ) ≥
I(X;Z).

Theorem 2 (Chain rule for information (Cover, 1999) p.24). For random variables X,Y, Z,
I(X,Y ;Z) = I(Y ;Z|X) + I(X;Z).

Proposition 1. When ∂Y
∂X is defined, I(X;Y ) > 0 ⇐⇒ ∂Y

∂X 6= 0

Proof. I(X;Y ) > 0 means X and Y are not independent, which means Y is not invariant to X .

4.1 ONE INPUT AND ONE OUTPUT

We first consider a basic setting that the data has a single input X and output Y . A model f with
parameters θ has input X and output Ŷ (Figure 2 middle). We optimize a loss function L. Applying
the gradient ∇θL(Y, Ŷ ) reduces L(Y, Ŷ ), bringing Y and Ŷ closer. Since Y changes according to
X , Ŷ is encouraged to change according to X . We look into details as follows.

In the common supervised learning setting, givenX , the ground truth Y does not depend on prediction
Ŷ , which means they form a Markov chain Ŷ → X → Y . We do not require specific form of the loss
function, L, but we assume that when it is reduced, Ŷ moves closer to Y , and increases the mutual
information I(Ŷ , Y ). Many widely used loss functions encourage increased mutual information
between model output and dataset labels. Also, training algorithms are designed to reduce loss when
the input has information to do so. These assumptions are likely to hold especially in the early part
of training. We also use local linear approximation when discussing gradients, i.e. dx = ∆x. We
derive the proof by studying relations between random variables, and show that gradient descent
increases the lower bound of mutual information between model input and output, hence the output is
dependent on the input.

Proposition 2. If a small change of parameters ∆θ increases I(Y ; Ŷθ), then I(X; Ŷθ+∆θ) is positive
with parameters θ + ∆θ. ∀∆θ : ∆I(Y ; Ŷθ) > 0 =⇒ I(X; Ŷθ+∆θ) > 0.
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Proof. Since Y and Ŷ are conditionally independent given X , i.e., Ŷ → X → Y , with data-
processing inequality (Theorem 1), I(Ŷ ;X) ≥ I(Ŷ ;Y ). So I(Y ; Ŷθ+∆θ) is a lower bound of
I(X; Ŷθ+∆θ). By definition, ∆I(Y ; Ŷθ) = I(Y ; Ŷθ+∆θ) − I(Y ; Ŷθ), so that I(Y ; Ŷθ+∆θ) =

I(Y ; Ŷθ) + ∆I(Y ; Ŷθ). We also have I(Y ; Ŷθ) ≥ 0 by definition. Therefore I(Y ; Ŷθ+∆θ) > 0.

I(X; Ŷθ+∆θ) ≥ I(Y ; Ŷθ+∆θ) = I(Y ; Ŷθ) + ∆I(Y ; Ŷθ) > 0

Proposition 3. If X has information to reduce loss L(Y, Ŷ ), ∂Ŷ∂X 6= 0 for updated parameters.

Proof. Since training algorithm reduces loss, with local linear approximation, gradient descent
reduces loss. This increases mutual information, so that Proposition 2 applies. So we have
I(X; Ŷθ+∆θ) > 0. With Proposition 1, we have ∂Ŷ

∂X 6= 0 for the updated parameters θ + ∆θ.

4.2 ENTANGLED INPUT AND ONE OUTPUT

Then, we study the case where input X is entanglement of multiple hidden input components
X1, . . . , XK , and output is a single variable Ŷ that depends only on Xi. We hope to make Ŷ
invariant to Xj ,∀j 6= i. For example, in a parsing task (Li & Eisner, 2019), output parse tree Y
depends only on the input syntax X1, but not on input semantics X2.

For the convenience of analysis, we assume we have a fixed differentiable oracle encoder network g
and decoder network g−1. g−1 maps X to X1, . . . , XK , and g maps them back.

X = g(X1, . . . , XK) X1, . . . , XK = g−1(X)

We extend the model structure with g and g−1 and use the input to g−1 as model input (Figure 2 left
and middle).

Ŷ = fθ ◦ g ◦ g−1(X)

This model is exactly the same as the original one, because there is no additional trainable parameters,
and g ◦ g−1 does not change X .

Proposition 4. If Xi has information to reduce loss L(Y, Ŷ ), ∂Ŷ
∂Xi
6= 0 for updated parameters.

Proof. With the property of gradient (Definition 1), we can regard Xj ,∀j 6= i as constant values
when computing the gradient w.r.t. Xi. So, with linear approximation, Proposition 3 applies.

4.3 ENTANGLED INPUT AND ENTANGLED OUTPUT

We then discuss the case that output Y is also the entanglement of Y1, . . . , YK . Yi depends only on
Xi for all i = 1, . . . ,K. This corresponds to the example of machine translation.

We assume we have a fixed differentiable oracle encoder network h and decoder network h−1. h
takes Ŷ as input and produce K outputs Ŷ1, . . . , ŶK = h(Ŷ ), and h maps them back. We extend the
model structure with h and h−1 (Figure 2).

Ŷ = h ◦ h−1 ◦ fθ ◦ g ◦ g−1(X)

This model is the same as the original one, because there is no additional trainable parameters and
h ◦ h−1 does not change Ŷ . We derive proof with this extended model. The intuitive idea is that the
reduction of loss will make each Yi contain more information of Y , and for each Yi, we can apply
previous discussion. We denote Ŷ6=i = Ŷ1, . . . , Ŷi−1, Ŷi+1, . . . , ŶK .

Proposition 5. If Xj has information to reduce loss L(Y, Ŷ ) through the change of Ŷi, then ∂Ŷi

∂Xj
6=

0,∀j 6= i for updated parameters.

Proof. We first use chain rule of gradient to separate the gradient to sum ofK terms, each correspond-
ing to a Ŷi: ∂L∂θ =

∑K
i=1

∂Ŷi

∂θ
∂L
∂Ŷi

. We look at a term for ∂Ŷi

∂θ
∂L
∂Ŷi

. Ŷ6=i are constant when computing
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(a) Image classification experiment.
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(b) Language learning experiment.

Figure 3: Results for both the first (Train/Test A) and second (Train/Test B) settings. In the first
setting, the training performance increases rapidly (blue), but the test performance (cyan) is not
close to the training one. In the second setting, the training (red) and test (brown) performances are
close. This means that the gradient descent uses the second input to accelerate training, but it lacks
compositionality.

∂L
∂Ŷi

(Definition 1), and Ŷ6=i are not included in ∂Ŷi

∂θ , so that we can treat Ŷ6=i as constant for this term.

We then look at the conditional mutual information I(Ŷi;Y |Ŷ6=i) for this term. With chain rule for
information (Theorem 2), we have I(Ŷ ;Y ) = I(Ŷi;Y |Ŷ6=i) + I(Ŷ6=i;Y ). Since Y and Ŷ6=i are both
fixed, I(Ŷ6=i;Y ) is fixed. So the change of I(Ŷ ;Y ) equals to the change of I(Ŷi;Y |Ŷ6=i). Therefore,
the reduction of loss L increases the mutual information for the component. We can then apply
Proposition 4. With linear approximation, the change of parameters (∆θ) computed with gradient
descent is the sum of changes of parameters (∆θi) for each term, i.e., ∆θ =

∑K
i=1 ∆θi. It is unlikely

that a ∆θi can be cancelled by the sum of other ∆θj , j 6= i, because each component corresponds to
different underlying factors, and they are not contradictory. Hence, this proposition holds.

In Proposition 4 and Proposition 5, the gradient is not zero, so an output depends on redundant input
(Proposition 2) in both cases. Therefore, gradient descent resists conditional independence property
of compositionality.

5 EXAMPLES

In this section, we show example cases to emphasize that the theoretical result occurs practically. We
focus on the conditional independence property, and we design the experiments in the following way.
To test the compositionality, we use different training and test distributions, and the test prediction
requires compositional generalization. We measure training and test accuracy to evaluate the ability
for compositional generalization.

We use two settings in each experiment. In the first setting (A), we use both X1 and X2 as input to
the model. In the second setting (B), we only use X1, and remove information of X2 by setting it
to be a random input. The model architecture and other settings are the same. By comparing the
test performance in the two settings, we show that a model can be trained faster with X2, but it does
not hold compositionality. We run experiments for 5 times, and plot the mean and variance at each
training step.

5.1 IMAGE CLASSIFICATION

We use MNIST dataset (LeCun et al., 1998) in this experiment. The dataset contains pairs of input
image and output label. An image is gray scale with fixed size, and a label is in the set of ten possible
values {0, 1, . . . , 9}. We use two original samples (X1, Y1), (X2, Y2) to make one sample (X,Y ).
X is the horizontal concatenation of X1 and X2, and Y = Y1. Note that a generated sample does not
directly use the label of the second sample Y2.
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jump JUMP
walk before run left WALK LTURN RUN
look left twice and run opposite right LTURN LOOK LTURN LOOK RTURN RTURN RUN
jump twice before walk JUMP JUMP WALK
turn right after jump twice JUMP JUMP RTURN
jump left twice after jump right RTURN JUMP LTURN JUMP LTURN JUMP

Table 1: SCAN input commands (left) and output action sequences (right) for Jump task. Upper
section is for training, and lower section is for testing. In training, “jump” only appears as a single
command. In test, it appears with other words.

We have two different settings in the experiment. In the first setting, we have the following data
distribution. In training, the data are generated from the original training dataset. The samples are
chosen uniformly at random in the corresponding conditions. Y1 is chosen from all possible labels,
and X1 with the label is chosen. Y2 is chosen from {Y, Y + 1} (we use modular for labels), and X2

with the label is chosen. In test, the data are generated from the original test dataset. Y1, X1 are chosen
in the same way as in training, but Y2 is chosen from the other eight classes {Y +2, Y +3, . . . , Y +9},
and then X2 with the label is chosen. This means, in training, X2 contains a part of information for
Y , and X1 contain all information for Y . This is because Y2 is Y with half chance, and Y1 is always
Y . We hope the model is trained to make Y not dependent on X2.

The second setting has the same test distribution as the first setting, but the training distributions are
different. In training of the second setting, Y2 is chosen from all possible labels, so that X2 does not
have information for Y .

For both the first and second settings, we use a standard convolutional neural network model with
three convolution layers and two fully-connected layers. The details of model design and optimization
can be found in Appendix A.

The results are shown in Figure 3a. The training accuracy improves faster in the first setting than in the
second one, indicating that X2 helps to train the model quickly. In the first setting, the gap of training
and test accuracy is significantly larger than that in the second setting, meaning the model does
not learn compositionality in the first setting. Therefore, this experiment shows that the redundant
information X2 is used to help training model quickly, but the model does not learn compositionality.

5.2 LANGUAGE LEARNING

We also run an experiment of instruction language learning with SCAN dataset (Lake & Baroni, 2018).
We focus on Jump task, the most difficult task in the dataset. The input is a command instruction,
and the output is a corresponding action sequence. The training data include a one-word command
“jump”, but other training data do not contain the word. In test data, the word “jump” appears in a
multiple-words sentence with other words. Please see Table 1 for examples.

In this task, syntax and semantics are two entangled components, and it requires compositional
generalization to new combinations. Syntax is the way the actions are organized, and semantic is the
mapping from word to action. We also design two settings in this experiment. In the first setting, we
use the original training and test data, which are from different distributions. In the second setting,
we remove the dependency of input semantics to output syntax by using action words uniformly at
random, but we still keep the correspondence between input words and output actions.

We use a standard sequence-to-sequence model with LSTM and attention. More details can be
found in Appendix B. Following previous works on SCAN dataset, we use sentence accuracy as the
evaluation metric. The results are shown in Figure 3b. We can observe that the training accuracy
increases faster during the early training (steps 10-25) in the first setting than in the second setting.
Also, the gap of training and test accuracy is significantly larger in the first setting than in the second
setting, so the model does not learn compositionality in the first setting.
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(a) Training (b) Test

Figure 4: Data distribution for binary classification problem for Y1 output. Horizontal axis is X1

and vertical axis is X2. Blue circle points are positive samples (Y1 = 1). Orange triangle points are
negative samples (Y1 = 0).

6 DISCUSSION

We use a simple case to visualize the process for better understanding. We consider two random
variables Y1, Y2 ∈ {0, 1}. In training, their joint distribution is uniform on combinations (Y1, Y2) ∈
{(0, 0), (0, 1), (1, 0)}, and zero on (1, 1). In test, (Y1, Y2) = (1, 1). We use uniform noises with
range of 1, by subtracting them from the values (Figure 4).

X1 = Y1 − U [0, 1] X2 = Y2 − U [0, 1]

We study a prediction problem with two inputs X1, X2 and one output Y1. This problem has a
property that X1 contains entire information of Y1, but X2 only contains part of information of Y1.
Y1 can be predicted from X1 alone, and X2 is redundant for Y1. We want to train a model f with
parameters θ. f has X1, X2 as input and Ŷ as output: Ŷ = f(X1, X2; θ).

This problem requires compositional generalization, and the model needs to have compositionality.
The model has three fully-connected hidden layers with ReLU activations, and each hidden layer has
eight nodes. More details can be found in Appendix C.

0 1 2 4 8 16 32 1024

Figure 5: Change of decision boundary for each training step in a binary classification task. In the first
training step, X2 (vertical) is helpful for training (step 0), so that the model is updated to cover a part
of upper right region as negative (step 1). In the following steps, the loss signals do not completely
remove the negative cover in this region, so that the influence remains in the trained model.

Figure 5 shows the decision boundary for each training step. We see that the initialized parameters at
step 0 output wrong predictions for samples in the upper left area, so that the samples in this area are
useful to reduce loss, and they push the updated boundary in step 1 to the middle of upper right area.
In the following steps, the loss is low and do not change much, so that the boundary remains stable.
Therefore, the trained model does not have good compositionality. Note that there can be different
solutions for this problem. We use different random seeds, and show that the trained model do not
have compositionality (Figure 6).

This visualization shows an example of process for how the gradient descent makes the model to be
non-compositional.

7 CONCLUSIONS

In this paper, we investigate why standard neural network training seldom achieves compositional
generalization by studying the relation between compositionality learning and gradient descent during
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(a) (b) (c) (d)

Figure 6: Decision boundaries after 1024 training steps with different random seeds.

training. We find that the optimization process poses a bias towards non-compositional solutions, and
this is caused by gradient descent. It tends to use all possible and redundant information from input,
so that it violates conditional independence property of compositionality. Based on this study, we
suggest that if only model structure design is considered in compositionality learning, it is hard to
achieve good compositionality. We hope this finding provides new understanding of compositional
generalization mechanisms and helps to improve machine learning algorithms for higher level of
artificial intelligence.
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A IMAGE CLASSIFICATION

The model is a convolutional neural network with the following layers. The input is a gray scale
image with width 56 (two times of the original width) and height 28. The first hidden layer is a two
dimensional convolutional layer with kernel size 3× 3, depth 32, and ReLU activation. The second
hidden layer is a two dimensional max pooling layer with kernel size 2× 2. The third hidden layer is
a two dimensional convolutional layer with kernel size 3× 3, depth 64 and ReLU activation. Then
the representation is flatten to a one vector. The fourth hidden layer is fully connected layer with 64
nodes and ReLU activation. The Fifth hidden layer is another fully connected layer with 64 nodes
and ReLU activation. The output layer is a fully connected layer with 10 nodes and linear activation.

We use mini-batch size of 64, and we run 200 steps in training. We use hinge loss, Adam opti-
mizer (Kingma & Ba, 2014) with learning rate of 0.001. We use TensorFlow (Abadi et al., 2015) for
implementation.

B LANGUAGE LEARNING

We use a standard sequence to sequence architecture. It has embedding layer, bidirectional LSTM
encoder, and unidirectional LSTM with attention decoder. The first and last states of encoder are
concatenated as initial state of decoder. The embedding size is 32. The state size is 16 for encoder,
and 64 for decoder. We run experiment on Jump task in SCAN dataset. The task contains 14,670
training and 7,706 test samples. In the first setting, we use the original dataset. In the second setting,
we changed ’jump’ to other action word and corresponding output symbol uniformly at random.

We use Adam for optimization, with cross entropy loss. We ran 2,000 training steps. Each step has a
mini-batch of 256 samples randomly and uniformly selected from training data with replacement.
Initial learning rate is 0.01 and it exponentially decays by a factor of 0.96 every 100 steps. We use
TensorFlow for implementation.

C VISUALIZATION

The model is a fully-connected neural network, with two input nodes and two output nodes. It
has three hidden layers with ReLU activations, and each hidden layer has eight nodes. We use
mini-batch size of 10, and we run 1024 steps in training with learning rate 0.1. Please see the original
work (Smilkov & Carter, 2016) for more information.
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