
Adaptive World Models: Learning Behaviors
by Latent Imagination Under Non-Stationarity

Emiliyan Gospodinov1∗ Vaisakh Shaj1 Philipp Becker1 Stefan Geyer2

Gerhard Neumann1
1Karlsruhe Institute of Technology (KIT), Germany

2Institute for Artificial Intelligence, Stuttgart, Germany

Abstract

Developing foundational world models is a key research direction for embod-
ied intelligence, with the ability to adapt to non-stationary environments
being a crucial criterion. In this work, we introduce a new formalism, Hidden
Parameter-POMDP, designed for control with adaptive world models. We
demonstrate that this approach enables learning robust behaviors across
a variety of non-stationary RL benchmarks. Additionally, this formalism
effectively learns task abstractions in an unsupervised manner, resulting in
structured, task-aware latent spaces.

1 Introduction

Recent advances in foundational models have achieved remarkable success in NLP and vision
tasks [18, 19]. Still, they fall short in addressing the complexities faced by embodied agents
in dynamic, real-world environments. For embodied intelligence, we argue that it is essential
to develop foundational world models [7, 21] that capture the causal nature of the world we
live in and can make counterfactual predictions. Furthermore, these models should adapt
dynamically to non-stationary environments.
Current state-of-the-art approaches for Model-Based Reinforcement Learning (MBRL) [8, 9,
13] often use probabilistic state-space models [17, 2, 22] as a backbone. They learn behaviors
by making counterfactual predictions in the latent space of world models. Often these
approaches focus on agents mastering a specific, narrow task. Throughout this work, a
"task" refers to a particular schema of environment dynamics or a specific reward function.
In real-world settings, however, tasks are frequently non-stationary and subject to change
over time. Thus, a truly intelligent agent must (1) understand the current task and (2)
dynamically adapt its perception, model, and behavior to new tasks with minimal interaction.
We identified a gap in the literature regarding MBRL in latent spaces that address multitask
learning and adaptation under non-stationarity. This work makes two key contributions: (1)
highlighting the limitations of current state-of-the-art model-based agents in non-stationary
settings, and (2) proposing a new formalism that models non-stationarity as an additional
causal latent variable, resulting in robust policies.

∗Corresponding author. Email to <gospodinov.emilian@gmail.com>

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

2 Non-Stationary RL Formalisms In Latent Spaces

2.1 POMDP formalism

Existing state-of-the-art MBRL agents [8, 9, 11, 13, 15] that learn in latent spaces typically rely
on the partially observable Markov decision process (POMDP) formalism. In this framework,
incoming sensory signals are used to update the agent’s belief about the hidden state of the
environment, enabling the agent to make decisions under uncertainty. Theoretically, the
POMDP formalism could handle non-stationarity by treating slowly changing, unobserved
tasks as part of the latent states [31]. Here the assumption is that the underlying environment
is assumed to be stationary, but the agent has an incomplete view of it [16]. Consequently,
single-task frameworks that rely on latent dynamics models for learning should, in theory, be
applicable in streaming settings. However, an unstructured latent state, without inductive
biases, may hinder the learning of sample-efficient adaptive policies.

2.2 HiP-POMDP formalism

A complementary but more popular view in literature for non-stationary RL is that the
components of the RL (transition, reward, observation functions, action space, etc.) may
depend upon time [16]. We build our formalism, the HiP-POMDP, upon this non-stationary
function view [5, 32, 31, 23, 4, 24]. We start by providing a formal definition of a HiP-
POMDP and demonstrate that this simple modification, along with a scalable variational
inference scheme, enables learning adaptive policies across a wide range of non-stationary
scenarios where the changing tasks are unknown to the agent.
Definition 2.1. A HiP-POMDP is given by a tuple

{S,A,O, C,L, ps(st+1|at, st, l), po(ot|st, l), r(st,at, l), pc(Cl|l)},

where S, A, and O are the standard state, action and observation spaces. Additionally, we
introduce a space of latent task variables L, where l ∈ L, and a space of context observations
C, where Cl ∈ C. Context observations Cl are generated from l according to p(Cl|l). Finally,
the transition model ps, observation model po, and the reward function r all depend on the
latent task l.

This general definition does not specify how exactly the context can be observed. Throughout
this work, we assume Cl = {(o,a, r,o′)n}N

n=1, i.e., a set of N recent transitions. However,
more expressive Cl including temporal embeddings, task metadata, or any other available
information about the task could be used in the future. In a HiP-POMDP, the agent’s
objective is to infer a latent task distribution p(l | Cl) based on the context observations
Cl and learn a latent task conditional policy π(at | st, l) that maximizes the expected
cumulative discounted reward, Eπ

[∑T −1
t=0 γtrt+1

]
, where T is the total number of time steps

and γ ∈ [0, 1] is the discount factor.

3 Adaptive Latent Space Models for HiP-POMDPs

In line with standard practices in model-based reinforcement learning (MBRL), we alternate
between representation learning, behavior learning, and environment interactions to learn
policies in the latent space of a world model. However, unlike existing approaches, we make
each of these stages adaptive by conditioning them on an inferred task representation or
abstraction. Thus, our work goes in the direction of building foundational multi-task world
models and subsequent behavior policies. For efficient learning and inference, we adopt a
two-phase approach, where we first infer the latent task, which we then use to condition the
model, actor, and critic.

3.1 Inferring Latent Task Abstractions via Aggregation

As stated, throughout this work, we choose Cl to be a collection of N recently observed
transition tuples {(o,a, r,o′)n}N

n=1, practically implemented as a FIFO buffer. Note that

2

Deep Set
Encoder

Bayesian
Aggregation

Context Set Buffer

Figure 1: Given a set of N transitions, the deep set encoder emits a latent representation for
each of the observations and their corresponding uncertainty. The set of latent representations
is then aggregated via Bayesian aggregation to infer p (l | Cl).

we chose these tuples of observations, actions, rewards, and next observations because they
worked well in practice, capturing sufficient task-relevant statistics as shown in Section 4.
Now, to form the posterior belief over the latent task variable l, we first extract encoded
representations xn with associated variances σn from each transition tuple in the context set
using a set encoder network with shared parameters. We assume the latent representation is
distributed according to N (xn | l, diag (σl)). This assumption allows us to form Gaussian
beliefs N (µl,σl) over l using Bayes rule. As shown in [30, 23], the beliefs over l can be
computed in closed form, given a Gaussian prior p0(l). The update rules and their properties
are detailed in Appendix B.

3.2 Learning Adaptive Representations

In this stage, we learn representations of generative world models that can make counter-
factual predictions of the world states based on imagined actions. We make these learned
representations adaptive to the task at hand based on the generative model shown in Figure
2. We achieve this by maximizing the conditional data log-likelihood and subsequently
deriving an evidence lower bound, as in Equation 1. A detailed derivation can be found in
Appendix A.

ln p (o1:T , r1:T | a1:T ,Cl) ≥
T∑

t=1
Ep(l|Cl)q(st|o≤t,a<t,l) [ln p (ot, rt | st, l)]︸ ︷︷ ︸

Reconstruction Term

+ Ep(l|Cl)q(st−1|o≤t−1,a<t−1,l) [DKL (q (st | o≤t,a<t, l) ∥ p (st | st−1,at−1, l))]︸ ︷︷ ︸
Regularization Term

(1)

h1 h2 h3

s1 s2 s3

o1, r1 o2, r2 o3, r3

a1 a2 a3

l

Cl

Figure 2: Hidden Parameter RSSM:
The latent task variable is inferred
from context Cl via Bayesian aggre-
gation. Solid lines indicate the gen-
erative process and dashed lines the
inference model. Modifications from
[8] are shown in red.

The outer expectation can be estimated using a
reparameterized sample from the latent task pos-
terior p (l | Cl). The practical implementation of
this builds upon the RSSMs used in the popular
Dreamer series of models [8, 9, 11, 12], where an
additional deterministic path (using a GRU) is used
in addition to the stochastic SSM for long-term pre-
dictions. The subsequent Hidden Parameter-RSSM
generative model is shown in Figure 2.

Discussion: Though we use the generative model
from [8, 9], the HiP-POMDP formalism can be used
in conjunction with any model-based RL framework
in latent spaces [1, 11–14, 20] for multitask learning.

3.3 Learning Adaptive Behaviors

The agent optimizes long-term rewards using a
context-sensitive actor-critic approach [25, 8], con-
ditioning both actor and critic on the latent task
representation l. The actor πϕ(at | st, l) selects
actions to maximize expected values along imag-
ined trajectories, while the critic vψ(sτ , l) regresses

3

those estimates:

max
ϕ

Eqθ,πϕ

(
t+H∑
τ=t

Vλ(sτ , l)
)

, min
ψ

Eqθ,πϕ

(
t+H∑
τ=t

1
2 ∥vψ(sτ , l)−Vλ(sτ , l)∥2

)
.

Here, Vλ(sτ , l) is the λ-return [25, 8], a smoothed estimate of the cumulative reward that
balances short- and long-term returns using the discount factor λ. We compute analytic
gradients through the learned dynamics to optimize the actor via stochastic backpropagation
through time.
Discussion As shown in Figure 2, during a short imagination rollout the latent task l
remains fixed. This is a reasonable assumption for such short horizons. However, during
environment interaction, the context buffer is updated continuously. This enables the agent
to re-infer the task and adapt to both inter and intra-episodic task changes.

4 Evaluation

In this section, we evaluate the performance of two competing formalisms—POMDP and
HiP-POMDP—in handling non-stationarity within an episodic evaluation setting. We focus
on three broad categories of non-stationarity: (1) changing transition functions, (2) changing
rewards, and (3) a combination of both. For each category, we further consider two scenarios:

• Inter-Episodic Non-Stationarity: Changes remain fixed within an episode but
vary between episodes.

• Intra-Episodic Non-Stationarity: Non-stationary changes can occur within a
single episode.

A more detailed description of these scenarios is provided in Appendix C. In all experiments,
proprioceptive sensors are used as the source of observations.

Algorithms Compared: We use the Dreamer [8] as our baseline for the POMDP formalism.
For the HiP-POMDP, we modify Dreamer by incorporating latent task abstractions, ensuring
a fair comparison between the two approaches. Additionally, we include an "Oracle" baseline
where the task is assumed to be directly observed. In this setup, the known task replaces
the inferred latent task variable l, serving as an upper bound on performance. This helps
illustrate the potential gains if perfect task information were available.
We evaluate the agents in all experiments by calculating the mean return from 10 trajectories
every 25 epochs, each with randomly sampled environmental changes. The performance
curves are computed by averaging the results over 10 different random seeds. Our evaluation
answers the following questions:

Can HiP-POMDP agents handle changing dynamics? To evaluate the effectiveness
of HiP-POMDP formalism under changing dynamics, here we introduce two tasks: 1) We
modify the standard HalfCheetah agent by adding joint perturbations of varying magnitudes
randomly, and 2) the Hopper agent by randomly changing the body mass and inertia for
random number of body parts. Additional evaluation is introduced in Appendix C.3.
As seen in Figure 3 HiP-POMDP agent results in robust performance gains, especially under
challenging intra-episodic changes and even competing with the Oracle.

Can HiP-POMDP agents handle changing objectives? To create non-stationarity
with changing reward functions/objectives, we modify the standard HalfCheetah such that a
target velocity needs to be reached which changes randomly. Additionally, we evaluate the
agents on custom-designed multi-task benchmarks using pre-defined tasks from [15], where
each task requires the agent to perform different skills (e.g., standing, running, flip) in various
directions. As such multi-skill objective changes are more challenging, the experiments are
run over 5M steps.
As seen in Figure 4 the vanilla POMDP agent fails to deal with objective changes in all cases.
On the other hand side, the HiP-POMDP agent with inferred task abstractions resolves the

4

0 0.2M 0.4M 0.6M 0.8M 1M

0

1000

2000

3000

4000

5000

0 0.2M 0.4M 0.6M 0.8M 1M

0

1000

2000

3000

4000

5000

0 0.2M 0.4M 0.6M 0.8M 1M

0

1000

2000

3000

4000

5000

0 0.2M 0.4M 0.6M 0.8M 1M

0

1000

2000

3000

4000

5000

Task Inference Dreamer Vanilla Dreamer Oracle Dreamer
Steps Steps Steps Steps

M
ea

n
Re

tu
rn

HalfCheetah Inter-Episodic HalfCheetah Intra-Episodic Hopper Inter-Episodic Hopper Intra-Episodic

Figure 3: Performance of HalfCheetah and Hopper agents under changing dynamics caused
by joint perturbations and body mass inertia variations, respectively.

0 1M

−4000
−3500
−3000
−2500
−2000
−1500
−1000

−500
0

0 1M

−4000

−3000

−2000

−1000

0

0 1M 2M 3M 4M 5M
0

100
200
300
400
500
600
700
800
900

0 1M 2M 3M 4M 5M

0

200

400

600

800

Task Inference Dreamer Vanilla Dreamer Oracle Dreamer
Steps Steps Steps Steps

M
ea

n
Re

tu
rn

HalfCheetah Target Velocity Walker Target Velocity Cheetah DMC Multi-Task Walker DMC Multi-Task

Figure 4: Performance comparison of Half Cheetah and Walker agents under different
changing reward scenarios (changing target velocities and skills).

issue to a large extent. Further investigation as well as evaluation under combined changes
can be found in Appendix C.4 and C.5 respectively.

Task Inference Dreamer
Latent Task Space

Task Inference Dreamer
Latent State Space

Vanilla Dreamer
Latent State Space

Oracle Dreamer
Latent State Space

Figure 5: 2d projections of learned latent state spaces on DMC Cheetah learning 4 skills,
Table 1.

Does the HiP-POMDP agents learn meaningful latent representations? Finally,
we compared the learned state-space representations (the concatenation of st and ht) of the
world model (RSSM) in both POMDP and HiP-POMDP settings. As shown in Figure 5, the
task abstractions in HiP-POMDP shape a more structured and disentangled latent space
that aligns with the inferred tasks, unlike the POMDP setting. This disentanglement was
also observed in the latent task space representation (l) within the HiP-POMDP setup.

5 Conclusion

In this work, we introduced the HiP-POMDP formalism to learn adaptive world models
and behavior policies in latent state spaces. The formalism resulted in algorithms that
learn meaningful task abstractions and improved performance on a variety of non-stationary
benchmarks. Future work would extend these models to more high-dimensional sensory
inputs like images and point clouds.

5

Acknowledgments

The authors acknowledge support by the state of Baden-Württemberg through bwHPC, as
well as the HoreKa supercomputer funded by the Ministry of Science, Research and the Arts
Baden-Württemberg and by the German Federal Ministry of Education and Research.

References
[1] P. Becker and G. Neumann. On uncertainty in deep state space models for model-based

reinforcement learning. arXiv preprint arXiv:2210.09256, 2022.

[2] P. Becker, H. Pandya, G. Gebhardt, C. Zhao, C. J. Taylor, and G. Neumann. Recurrent
kalman networks: Factorized inference in high-dimensional deep feature spaces. In
International conference on machine learning, pages 544–552. PMLR, 2019.

[3] C. Benjamins, T. Eimer, F. Schubert, A. Mohan, S. Döhler, A. Biedenkapp, B. Rosen-
hahn, F. Hutter, and M. Lindauer. Contextualize me - the case for context in reinforce-
ment learning. 2023.

[4] C. Costen, M. Rigter, B. Lacerda, and N. Hawes. Planning with hidden parameter
polynomial mdps. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 11963–11971, 2023.

[5] F. Doshi-Velez and G. Konidaris. Hidden parameter markov decision processes: A
semiparametric regression approach for discovering latent task parametrizations. In
IJCAI: proceedings of the conference, volume 2016, page 1432. NIH Public Access, 2016.

[6] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and
T. Hester. An empirical investigation of the challenges of real-world reinforcement
learning. 2020.

[7] T. Gupta, W. Gong, C. Ma, N. Pawlowski, A. Hilmkil, M. Scetbon, A. Famoti, A. J.
Llorens, J. Gao, S. Bauer, et al. The essential role of causality in foundation world
models for embodied ai. arXiv preprint arXiv:2402.06665, 2024.

[8] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors
by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

[9] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning
latent dynamics for planning from pixels. In International conference on machine
learning, pages 2555–2565. PMLR, 2019.

[10] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors
by latent imagination. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1lOTC4tDS.

[11] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete
world models. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=0oabwyZbOu.

[12] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through
world models, 2024. URL https://arxiv.org/abs/2301.04104.

[13] N. Hansen, X. Wang, and H. Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

[14] N. Hansen, H. Su, and X. Wang. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv:2310.16828, 2023.

[15] N. Hansen, H. Su, and X. Wang. TD-MPC2: Scalable, robust world models for continuous
control. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=Oxh5CstDJU.

6

https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=0oabwyZbOu
https://arxiv.org/abs/2301.04104
https://openreview.net/forum?id=Oxh5CstDJU

[16] K. Khetarpal, M. Riemer, I. Rish, and D. Precup. Towards continual reinforcement
learning: A review and perspectives. Journal of Artificial Intelligence Research, 75:
1401–1476, 2022.

[17] R. G. Krishnan, U. Shalit, and D. Sontag. Deep kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

[18] OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

[19] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution
image synthesis with latent diffusion models, 2022. URL https://arxiv.org/abs/
2112.10752.

[20] M. R. Samsami, A. Zholus, J. Rajendran, and S. Chandar. Mastering memory tasks
with world models. arXiv preprint arXiv:2403.04253, 2024.

[21] V. Shaj. Learning world models with hierarchical temporal abstractions: A probabilistic
perspective. arXiv preprint arXiv:2404.16078, 2024.

[22] V. Shaj, P. Becker, D. Büchler, H. Pandya, N. van Duijkeren, C. J. Taylor, M. Hanheide,
and G. Neumann. Action-conditional recurrent kalman networks for forward and inverse
dynamics learning. In Conference on Robot Learning, pages 765–781. PMLR, 2021.

[23] V. Shaj, D. Buchler, R. Sonker, P. Becker, and G. Neumann. Hidden parameter
recurrent state space models for changing dynamics scenarios. International Conference
On Learning Representations, 2022.

[24] V. Shaj Kumar, S. Gholam Zadeh, O. Demir, L. Douat, and G. Neumann. Multi
time scale world models. Advances in Neural Information Processing Systems, 36:
26764–26775, 2023.

[25] R. S. Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

[26] M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. De Cola, T. Deleu, M. Goulão,
A. Kallinteris, M. Krimmel, A. KG, et al. Gymnasium: A standard interface for
reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

[27] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, N. H. Tim-
othy Lillicrap, and Y. Tassa. dm_control: Software and tasks for continuous control. Soft-
ware Impacts, 6:100022, 2020. doi: https://doi.org/10.1016/j.simpa.2020.100022. URL
https://www.sciencedirect.com/science/article/pii/S2665963820300099.

[28] L. van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of Ma-
chine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

[29] A. Vaswani. Attention is all you need. Advances in Neural Information Processing
Systems, 2017.

[30] M. Volpp, F. Flürenbrock, L. Grossberger, C. Daniel, and G. Neumann. Bayesian
context aggregation for neural processes. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=ufZN2-aehFa.

[31] A. Xie, J. Harrison, and C. Finn. Deep reinforcement learning amidst lifelong non-
stationarity. arXiv preprint arXiv:2006.10701, 2020.

[32] A. Zhang, S. Sodhani, K. Khetarpal, and J. Pineau. Learning robust state abstractions
for hidden-parameter block mdps. arXiv preprint arXiv:2007.07206, 2020.

7

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://www.sciencedirect.com/science/article/pii/S2665963820300099
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://openreview.net/forum?id=ufZN2-aehFa

A Objective Derivation

ln p (o1:T , r1:T | a1:T ,Cl)
= ln E

p(l|Cl)
[p (o1:T , r1:T | a1:T , l)] (Data aggregation for latent task inference given the context Cl)

= ln E
p(l|Cl)

[
E

p(s1:T |a1:T ,l)
[p (o1:T , r1:T | s1:T , l)]

]
(Posterior predictive log-likelihood
using Latent Variable Model)

= ln E
p(l|Cl)

[∫
p (s1:T | a1:T , l) p (o1:T , r1:T | s1:T , l) ds1:T

]
(Expectation definition)

= ln E
p(l|Cl)

[∫ T∏
t=1

p (st | st−1, at−1, l) p (ot, rt | st, l) ds1:T

]
(Factorization due to Markov property)

= ln E
p(l|Cl)

[∫ T∏
t=1

q (st | o≤t,a<t, l)
q (st | o≤t,a<t, l)

p (st | st−1,at−1, l) p (ot, rt | st, l) ds1:T

]
(Variational approximate
posterior)

= ln E
p(l|Cl)

[
E

q(s1:T |o1:T ,a1:T ,l)

[
T∏

t=1

p (ot, rt | st, l) p (st | st−1,at−1, l)
q (st | o≤t,a<t, l)

]] (Expectation w.r.t approximate
posterior + exchange order
of nominator factors)

≥ E
p(l|Cl)

[
ln E

q(s1:T |o1:T ,a1:T .l)

[
T∏

t=1

p (ot, rt | st, l) p (st | st−1,at−1, l)
q (st | o≤t,a<t, l)

]]
(Jensen’s inequality
w.r.t. outer expectation)

≥ E
p(l|Cl)

[
E

q(s1:T |o1:T ,a1:T ,l)

[
ln

T∏
t=1

p (ot, rt | st, l) p (st | st−1,at−1, l)
q (st | o≤t,a<t, l)

]]
(Jensen’s inequality
w.r.t. inner expectation)

= E
p(l|Cl)

[
E

q(s1:T |o1:T ,a1:T ,l)

[
T∑

t=1
ln p (ot, rt | st, l) p (st | st−1,at−1, l)

q (st | o≤t,a<t, l)

]]
(Product rule of logarithms)

= E
p(l|Cl)

[
E

q(s1:T |o1:T ,a1:T ,l)

[
T∑

t=1
ln p (ot, rt | st, l) p (st | st−1,at−1, l)− ln q (st | o≤t,a<t, l)

]] (Quotient
logarithm
rule)

= E
p(l|Cl)

[
E

q(s1:T |o1:T ,a1:T ,l)

[
T∑

t=1
ln p (ot, rt | st, l) + ln p (st | st−1,at−1, l)− ln q (st | o≤t,a<t, l)

]] (Product
logarithm
rule)

=
T∑

t=1
E

p(l|Cl)

[
E

q(st|o≤t,a<t,l)
[ln p (ot, rt | st, l) + ln p (st | st−1,at−1, l)− ln q (st | o≤t,a<t, l)]

]
(Linearity
of expectation)

=
T∑

t=1
E

p(l|Cl)

[
E

q(st|o≤t,a<t,l)
[ln p (ot, rt | st, l)]

]
+

E
p(l|Cl)

[
E

q(st|o≤t,a<t,l)
[ln p (st | st−1,at−1, l)− ln q (st | o≤t,a<t, l)]

]
(Linearity of expectation)

=
T∑

t=1
E

p(l|Cl)

[
E

q(st|o≤t,a<t,l)
[ln p (ot, rt | st, l)]

]
+

E
p(l|Cl)

 E
q(st−1|o≤t−1,a<t−1,l)

q(st|o≤t,a<t,l)

[ln p (st | st−1,at−1, l)− ln q (st | o≤t,a<t, l)]

 (Expectation
is constant
for t ̸∈ {t, t− 1})

=
T∑

t=1
E

p(l|Cl)

[
E

q(st|o≤t,a<t,l)
[ln p (ot, rt | st, l)]

]
+

8

E
p(l|Cl)

[
E

q(st−1|o≤t−1,a<t−1,l)

[
E

q(st|o≤t,a<t,l)
[ln p (st | st−1,at−1, l)− ln q (st | o≤t,a<t, l)]

]]
(Expectation
split)

=
T∑

t=1
E

p(l|Cl)

[
E

q(st|o≤t,a<t,l)
[ln p (ot, rt | st, l)]

]
+

E
p(l|Cl)

[
E

q(st−1|o≤t−1,a<t−1,l)

[
E

q(st|o≤t,a<t,l)

[
ln p (st | st−1,at−1, l)

q (st | o≤t,a<t, l)

]]]
(Quotient rule
for logarithms)

=
T∑

t=1
E

p(l|Cl)

[
E

q(st|o≤t,a<t,l)
[ln p (ot, rt | st, l)]

]
+

E
p(l|Cl)

[
E

q(st−1|o≤t−1,a<t−1,l)
[DKL (q (st | o≤t,a<t, l) ∥ p (st | st−1,at−1, l))]

]
(KL-Divergence
definition)

=
T∑

t=1
E

p(l|Cl),

q(st|o≤t,a<t,l)

[ln p (ot, rt | st, l)]

︸ ︷︷ ︸
Reconstruction

+ E
p(l|Cl),

q(st−1|o≤t−1,a<t−1,l)

[DKL (q (st | o≤t,a<t, l) ∥ p (st | st−1,at−1, l))]

︸ ︷︷ ︸
Regularization︸ ︷︷ ︸

Context-dependent Evidence Lower Bound

B Algorithm and Implementation Details

B.1 Task Abstractions Via Bayesian Aggregation

xl
n

anon rn

n = {1..N}

o
′

n

l

Figure 6: Generative model for
the abstract latent task l. The
hollow arrows are deterministic
transformations leading to im-
plicit distribution xl

n using a set
encoder.

Given a set of encoded interaction tuples and their
corresponding variances {xl

n,σl
n}N

n=1, using the prior
and observation model assumptions in Section 3.1 of
the main paper, we infer the latent task abstraction
p (l | Cl) = N (µl,Σl) = N (µl, diag(σl)) as a Bayesian
aggregation [30] of these using the following closed-form
equations:

σ2
l =

((
σ2

0
)⊖ +

N∑
n=1

((
σln
)2)⊖

)⊖

,

µl = µ0 + σ2
l ⊙

N∑
n=1

(
xln − µ0

)
⊘
(
σln
)2

where ⊖, ⊙, and ⊘ denote element-wise inversion, product,
and division, respectively.

Discussion: This closed-form solution represents Bayesian aggregation, which can be
interpreted as a form of probabilistic attention. The uncertainty σln about each transition
in the set encoder functions as attention weights, assigning higher weights to the most
informative transitions. The derived update equations have only a linear computational
complexity of O(N), while similar deep set operations (self-attention) in transformers [29]
have a complexity of O(N2).

9

B.2 HiP-Dreamer

Algorithm 1 Hidden Parameter Dreamer (HiP-Dreamer)
Require:

Hyperparameters Model Parameters
Seed episodes: S Context set encoder: pθ (l | Cl) with
Collect interval: C Cl = {(o,a, r,o′)t}N

t=1
Batch size: B Representation: pθ (st | st−1,at−1,ot, l)
Context size: N Observation: qθ (ot | st, l)
Sequence length: L Transition: qθ (st | st−1,at−1, l)
Imagination horizon: H Reward: qθ (rt | st, l)
Learning rate: α Actor: πϕ (at | st, l)
Trajectory length: T Critic: vψ (st, l)
Training epochs: E
Action Repeat: R

1: Initialize dataset D with S random seed episodes.
2: Initialize neural network parameters θ, ϕ, ψ randomly.
3: while not converged do
4: for update step c = 1 to C do
5: // Dynamics learning
6: Draw B data sequences {(o,a, r,o′)t}

k+L
t=k ∼ D uniformly at random from

7: the dataset D, with random start index k within an episode.
8: Draw B consecutive context chunks Cl = {(o,a, r,o′)t}

k−1
t=k−N

∼ D
9: of previous N interaction transitions.

10: Infer latent task posterior pθ (l | Cl) and sample l using reparameterization.
11: Use the same latent task sample l for the entire sequence length L.
12: Compute model states st ∼ pθ(st | st−1,at−1,ot, l).
13: Update model parameters using derived objective in Section 3.2.
14: // Behavior learning
15: Imagine trajectories {(sτ ,aτ)}t+H

τ=t from each st conditioned on derived task l.
16: Use the same latent task samples l for the entire imagine horizon H.
17: Predict rewards E [qθ (rτ | sτ , l)] and values vψ (sτ , l).
18: Compute value estimates Vλ(sτ , l) via Equation 6 from [10].
19: Update actor parameters ϕ← ϕ+ α∇ϕ

∑t+H
τ=t Vλ(sτ , l).

20: Update critic parameters ψ ← ψ − α∇ψ
∑t+H

τ=t
1
2∥vψ(sτ , l)− Vλ(sτ , l)∥2.

21: end for
22: // Environment interaction
23: o1 ← env.reset().
24: Collect initial context chunk Cl1 using random actions.
25: for time step t = 1 to T

R do
26: Infer latent task posterior pθ (lt | Clt) and sample lt ∼ pθ (lt | Clt).
27: Compute st ∼ pθ (st | st−1,at−1,ot, lt) from history.
28: Compute at ∼ πϕ (at | st, lt) with the action model.
29: Add exploration noise to action at.
30: for action repeat k = 1..R do
31: rt,k,ot,k+1 ← env.step(at)
32: end for
33: rt,ot+1 ←

∑R
k=1 γk−1rt,k,ot,R+1

34: Add experience to dataset D ← D ∪ {(ot,at, rt,ot+1)}.
35: Update context chunk Clt in a sliding-window manner using {(ot,at, rt,ot+1)}.
36: end for
37: // Agent evaluation
38: if T mod E == 0 then:
39: Evaluate agent by calculating the expected return from X episodes.
40: end if
41: end while

10

The HiP-Dreamer algorithm operates in four stages:
1. Dynamics learning phase (Lines 6-14): Batch of B consecutive trajectory data chunks
{(o,a, r,o′)t}

k+L
t=k ∼ D is sampled uniformly at random from the replay buffer and used

to train the world model, where k indicates a random start index uniformly sampled at
random within the episode and is clipped to not exceed the episode length minus the training
sequence length. Concurrently, B consecutive context chunks of N previous interaction
transitions are drawn Cl = {(o,a, r,o′)t}

k−1
t=k−N

∼ D. If fewer than N previous transitions
are available, the context is zero-padded at the beginning. The context chunk Cl is used
to infer the latent task posterior distribution pθ (l | Cl) in closed form using Equation 8
from [30]. To approximate the outer context-dependent expectation of the objective from
Section 3.2, a reparameterized sample from the inferred latent task posterior distribution
l ∼ pθ (l | Cl) is used, allowing gradients to flow through the sampling process. The latent
task posterior pθ (l | Cl) is inferred once at the start of each training iteration and used for
the entire sequence length L. All model components (including the context set encoder) are
trained end-to-end using Backpropagation-Through-Time (BPTT).
2. Behavior learning phase (Lines 16-21): The actor chooses actions to predict imagined
sequences of compact model states, while the critic accumulates the future predicted rewards
beyond the planning horizon. Both actor and critic use learned model states, benefiting
from the world model’s representations. Each posterior state inferred during model training
serves as an initial state for the actor’s latent trajectory imagination. The latent task
posterior pθ (l | Cl) remains consistent across the entire horizon length H = 15, a reasonable
assumption for such short horizons. The actor aims to output actions that maximize the
prediction of long-term future rewards made by the critic. The critic model is trained to
regress the λ− returns, computed as in Equation 8 from [10]. The world model (including
the set encoder) is fixed during behavior learning, so the actor and critic gradients do not
affect its representations.
3. Environment interaction phase (Lines 24-37): Initial context sequence chunk Cl1
is collected using random actions and updated in a sliding window manner, incorporating
every new collected transition (o,a, r,o′)t to adapt to environmental changes as fast as
possible. At each point in time, the context chunk Clt is used to infer the latent task
posterior lt ∼ pθ (lt | Clt) and sample lt, followed by inferring an approximate latent state
posterior st ∼ pθ(st | st−1,at−1,ot, lt). An action trajectory is generated by conditioning
the actor on the inferred latent state st and latent task lt, repeating the chosen action R
times.
4. Evaluation phase (Lines 39-43): Every E epoch the agent’s performance is assessed
over X episodes to estimate the mean return. Unlike data collection, the evaluation phase
uses the mean µlt of the latent task distribution pθ (lt | Clt) enabling deterministic behavior,
followed by approximating the latent state posterior pθ (st | st−1,at−1,ot,µlt), repeating
the chosen action R times.

11

B.3 Hyperparameters.

This section details only those hyperparameter values that differ from the original architec-
tures or correspond to new architectural components, such as the set encoder. For additional
hyperparameters related to all algorithm stages not explicitly mentioned here, we refer to
[10].

Set encoder. The set encoder includes a shared fully connected layer with 240 units,
followed by two separate fully connected layers of 240 units each. One layer computes the
latent task observation xln, while the other computes the latent task variance σln. All set
encoder layers use the ELU activation function. The latent task posterior pθ (l | Cl) is
modelled as a multivariate Gaussian with 20 dimensions. Due to computational and time
constraints, extensive hyperparameter optimization was not conducted.

Learning updates. To train the world model, we use batches of 50 sequences of length
50, as in [8]. For the context data, we sample batches of 50 sequences from the replay
buffer, each consisting of 20 prior interaction transitions. If fewer than 20 prior transitions
are available, we use zero-padding to fill the context data before concatenating it with any
available transition data. The set encoder updates use the same learning rate as the world
model.

Objective and Critic. In our objective we use the KL-Balancing technique introduced
in [11], which we found essential for stabilizing learning when using proprioceptive inputs.
Additionally, we experienced instability problems w.r.t. critic network in many environments.
To stabilize the critic training further, we use target network to calculate the critic targets,
using a soft-update, realized as θt+1 = τθt + (1− τ)θt−1 with τ = 0.05 for Gymnasium-based
environments. For DMC multi-task benchmarks, we use a hard update, copying the critic’s
weights every 100 gradient steps.

C Evaluation Details

Despite the prevalence of non-stationarity in real-world environments and the existence of
some non-stationary benchmarks such as [3] and [6], a detailed categorization of environmental
changes remains absent, along with analyses of model-based reinforcement learning agent’s
adaptability across various non-stationary scenarios.
We categorize environmental changes into three primary types based on the temporal and
structural aspects of the environment’s evolution:

• Dynamical Changes: Alterations affecting the robot’s system or the physical
properties of the environment.

• Objective Changes: Modifications of objectives, such as changes in target velocity
or task requirements.

• Combined Changes: Concurrent occurrences of multiple dynamical changes or a
combination of dynamical and objective changes.

Each category of change can occur either inter-episodically (between episodes) or intra-
episodically (within episodes). The temporal dimension specifies when changes occur, while
the structural dimension identifies which environmental aspects are affected. Addressing
these types of changes enables the design of robust model-based reinforcement learning
agents capable of adapting to a broad range of environmental dynamics.

C.1 Dynamical Changes

We implemented various dynamical changes by modifying Gymnasium [26] and DMC Control
Suite [27] environments, particularly focusing on Half Cheetah, Walker, and Hopper robots.
The dynamical change values were chosen to ensure that MuJoCo’s models remained valid
while still challenging pre-trained model-free and model-based agents.

12

In environments with dynamical changes, the Oracle agent is conditioned on a vector that
fully describes the changes. For instance, wind friction on Half Cheetah is represented by
a vector of Cartesian forces acting on each body part. Joint perturbations are similarly
represented, while actuator masking is indicated by a one-hot vector. In Hopper and Walker,
the Oracle receives vectors representing body masses, inertia, and contact friction coefficients,
respectively. Details for each environment are provided below:

Half Cheetah

• Wind Friction: Random 3D Cartesian forces are applied at the center of mass of
each body part, directed either with or against the agent’s movement, sampled from
the range [−10, 10]N .

• Joint Perturbation: Random torques are added to joint torques resulting from
the agent’s actions, sampled from the range [−20, 20]Nm.

• Actuator Deactivation: One of the six actuators is randomly deactivated, meaning
the agent’s actions do not affect that actuator.

Hopper

• Body Mass Inertia: A random number of body parts is chosen that will be affected
by the change and a random scaling factor from [0.1, 2.5] is applied to both mass
and inertia, resulting in varying weights and inertia for each affected part.

Walker

• Contact Friction: Friction coefficients at ground contact points are modified by
randomly selecting new values from [0.1, 3.9]. The default feet friction coefficient is
1.9.

The environmental changing values are sampled always randomly from the predefined value
ranges. For these types of dynamic changes, a vanilla agent may still adapt because the
optimal behavior’s state region remains the same, what changes is how the agent reaches it.

13

C.2 Objective changes

Half Cheetah, Hopper, and Walker

• Target Velocity: A target velocity is randomly chosen within the range [−6, 6] m
s .

In these environments, the Oracle agent receives the target velocity as a scalar.

DMC Multi-Task Benchmarks

• Objective Change: At the beginning of each episode, a new objective is selected,
requiring the agent to acquire multiple skills within the same domain.

We implement these multi-task benchmarks using pre-defined tasks from [15], creating a
variety of benchmarks across different domains and categorizing them by task count, as
shown in Table 1.
In all DMC multitask environments, the Oracle agent receives a unique one-hot vector
corresponding to each environment.

Table 1: Multi-task benchmarks based on Cheetah, Walker, Ball-In-Cup, and Pendulum
models.

Cheetah Tasks Walker Tasks Cup Tasks Pendulum Tasks
Stand Front Walk Backwards Catch Swingup
Stand Back Run Backwards Spin Spin
Run Front Walk
Run Back Run
Run Backwards Walk Backwards
Stand Front Arabesque
Stand Back Lie Down
Jump Legs Up
Run Front Head Stand
Run Back Walk
Lie Down Flip
Legs Up Backflip
Flip
Flip Backwards

14

C.3 Further Evaluation Under Dynamical Changes

This section presents additional evaluations of environments with both inter-episodic and
intra-episodic dynamical changes.

0 0.2M 0.4M 0.6M 0.8M 1M

0

1000

2000

3000

0 0.2M 0.4M 0.6M 0.8M 1M

0
1000
2000
3000
4000
5000
6000

0 0.2M 0.4M 0.6M 0.8M 1M

0

2000

4000

6000

8000

0 0.2M 0.4M 0.6M 0.8M 1M

0

1000

2000

3000

0 0.2M 0.4M 0.6M 0.8M 1M

0
1000
2000
3000
4000
5000
6000

0 0.2M 0.4M 0.6M 0.8M 1M

0

2000

4000

6000

8000

Task Inference Dreamer Vanilla Dreamer Oracle Dreamer

Steps Steps Steps

M
ea

n
Re

tu
rn

M
ea

n
Re

tu
rn

Inter-Episodic Actuator Masking Inter-Episodic Wind Friction Inter-Episodic Contact Friction

Intra-Episodic Actuator Masking Intra-Episodic Wind Friction Intra-Episodic Contact Friction

Figure 7: Dynamical changes on HalfCheetah and Walker. The first row shows inter-episodic
dynamical changes, whereas the second row shows intra-episodic dynamical changes with a
frequency of 200 environmental steps.

Figure 7 illustrates additional experiments involving dynamical changes in the environ-
ment. Across both inter- and intra-episodic changes, task-conditioned agents exhibit similar
performance to the vanilla agent, with only minor differences observed.
On one hand, this result suggests that the vanilla agent is capable of adapting to various
dynamic changes, indicating that approaches based on the POMDP formalism can indeed
learn representations that support adaptive behavior. On the other hand, the HiP-POMDP
formalism generally performs comparably or slightly better, highlighting the benefits and
expressiveness of a learned latent task representation.
Interestingly, in some cases, the task-inference agent even outperforms the Oracle agent,
despite the former having to learn and utilize a task representation for each task, while the
Oracle agent is directly provided with task change information. This advantage may be due
to the learned task representation capturing additional task-relevant information beyond the
task changes alone, or it could suggest that the ground-truth task representation provided
to the Oracle agent is not optimally structured for adaptation. This observation warrants
further investigation in future work.

15

C.4 Further Evaluation Under Objective Changes

In this section, we conduct additional experiments under various reward/objective changes
and identify the points at which different algorithms begin to fail.

0 0.2M 0.4M 0.6M 0.8M 1M

−4000
−3500
−3000
−2500
−2000
−1500
−1000
−500

0

Task Inference Dreamer Vanilla Dreamer Oracle Dreamer

Steps

Inter-Episodic Target Velocity

Figure 8: Inter-Episodic target velocity change on Hopper.

Figure 8 provides further empirical evidence that the vanilla agent struggles to handle
objective changes, while task-conditioned agents demonstrate adaptive behavior, consistent
with the results shown in Figure 4.

0 0.2M 0.4M 0.6M 0.8M 1M

−4000

−3500

−3000

−2500

−2000

Reward Scale 1x Reward Scale 10x Reward Scale 20x

Steps

Inter-Episodic Target Velocity Reward Scaling

Figure 9: Vanilla Dreamer agent under inter-episodic reward change on Half Cheetah with
different reward loss scaling factors.

Breaking point of Vanilla Dreamer under objective changes. To investigate the
vanilla agent’s failures under target reward-changing experiments, we adjust the reconstruc-
tion loss by giving more weight to reward reconstruction to offset potential higher loss weights
from the multi-dimensional observations. Figure 9 illustrates the effect of scaling the reward
reconstruction loss differently.
Our observations show that increasing the reward reconstruction weight factor also raises
the KL divergence between the prior and posterior distributions over the latent state,
along with an increased observation reconstruction loss, ultimately degrading performance.
These findings suggest the optimization process struggles to balance reconstruction and
regularization loss terms, possibly leading to overfitting to specific rewards within each
mini-batch.

16

0 0.2M 0.4M 0.6M 0.8M 1M

−4000

−3000

−2000

−1000

0

0 0.2M 0.4M 0.6M 0.8M 1M

−4000

−3000

−2000

−1000

0

0 0.2M 0.4M 0.6M 0.8M 1M

−4000

−3000

−2000

−1000

0

Task Inference Dreamer Vanilla Dreamer Oracle Dreamer

Steps Steps Steps

M
ea

n
Re

tu
rn

Target Velocity Change Every 200 Target Velocity Change Every 333 Target Velocity Change Every 500

Figure 10: Intra-episodic target velocity change on Half Cheetah. The change frequency is
reduced from left to right.

Breaking point of Task-inference Dreamer under objective changes. Figure 10
highlights a breaking point in the latent task inference mechanism when the target velocity
changes every 200 environmental steps. We hypothesize that the standard latent task
aggregation requires more time to infer a new task belief accurately, a necessity for effective
adaptation, especially when target velocity undergoes drastic changes near boundary values.
To address this, we are currently experimenting with a modified latent task update mechanism
that reduces the influence of older transitions, introducing a “forgetting” effect that could
help the agent adapt more rapidly to abrupt task shifts.

DMC-Multitask benchmarks We also assess all agents under more complex objective
change settings, where each agent must learn multiple skills simultaneously. Figure 11 shows
results on a variety of different custom-designed multi-task benchmarks.

0 1M 2M 3M 4M 5M
0

100
200
300
400
500
600
700
800
900

0 1M 2M 3M 4M 5M

100
200
300
400
500
600
700
800

0 1M 2M 3M 4M 5M

0

200

400

600

800

1000

0 1M 2M 3M 4M 5M

0

200

400

600

800

0 1M 2M 3M 4M 5M

0

200

400

600

800

0 1M 2M 3M 4M 5M
0

200

400

600

800

1000

Task Inference Dreamer Vanilla Dreamer Oracle Dreamer

Steps Steps Steps

M
ea

n
Re

tu
rn

M
ea

n
Re

tu
rn

Cheetah DMC Multi-Task 4 Cheetah DMC Multi-Task 10 Cup DMC Multi-Task 2

Walker DMC Multi-Task 4 Walker DMC Multi-Task 8 Pendulum DMC Multi-Task 2

Figure 11: Inter-episodic objective changes on DMC Multi-task benchmarks on Half Cheetah,
Walker, Cup, and Pendulum domains. Each number indicates the number of tasks in each
experiment.

The vanilla agent struggles to learn multiple skills simultaneously. We hypothesize this
limitation arises from multiple interferences in the learned latent state, resulting in a task-
independent latent space structure. In such cases, the reward predictor cannot estimate

17

rewards accurately, leading to suboptimal performance. However, providing task informa-
tion enables better multi-skill learning across all benchmarks, potentially creating a more
structured latent space. Additional evidence for these hypotheses is presented in Appendix
C.6.

C.5 Evaluation under Combined Environmental Changes

In this section, we evaluate all agents in the most challenging setting, involving both multiple
dynamical changes and combined dynamical and objective changes. Figure 12 illustrates
the evaluation results for all agents on the Half Cheetah task, where changes evolve in an
inter-episodic manner.

0 0.2M 0.4M 0.6M 0.8M 1M

−4000
−3500
−3000
−2500
−2000
−1500
−1000

−500

0 0.2M 0.4M 0.6M 0.8M 1M
−4500
−4000
−3500
−3000
−2500
−2000
−1500
−1000

−500
0

0 0.2M 0.4M 0.6M 0.8M 1M
−4500
−4000
−3500
−3000
−2500
−2000
−1500
−1000

−500

0 0.2M 0.4M 0.6M 0.8M 1M

0

1000

2000

3000

4000

0 0.2M 0.4M 0.6M 0.8M 1M
−1000

0

1000

2000

3000

4000

5000

6000

Task Inference Dreamer Vanilla Dreamer Oracle Dreamer

Steps Steps Steps

Steps Steps

M
ea

n
Re

tu
rn

M
ea

n
Re

tu
rn

Actuator Masking + Target Velocity Joint Perturbation + Target Velocity Wind Friction + Target Velocity

Actuator Masking + Wind Friction Joint Perturbation + Wind Friction

Figure 12: Multiple changes on HalfCheetah. The first row shows combined dynamical and
objective changes, whereas the second row shows combined dynamical changes.

As seen in Figure 12, the vanilla agent demonstrates adaptability under multi-modal dynam-
ical changes, however, it struggles with combined dynamical and objective changes, largely
due to its limited ability to handle shifts in objectives.
Introducing a task representation notably enhances performance, as both the task-inference
and oracle agents successfully adapt across all combined change scenarios. However, under
scenarios involving only combined dynamical changes, the oracle agent exhibits slower
learning compared to the vanilla agent. This slower adaptation raises questions about the
potential influences of the task representation, warranting further investigation.

C.6 Latent Space Visualizations

This section presents 2D projections of both the world model’s latent state and the latent task
spaces. The visualizations are generated by recording trajectories of posterior latent states
(incorporating both deterministic and stochastic components) and latent task representations
during evaluations across various tasks, with a final 2D projection achieved using t-SNE [28].
The primary objective of these visualizations is to explore two key questions: (1) Does
conditioning the MBRL agent on either a ground truth or learned task representation
introduce any structural changes in the latent state space? (2) How does the structure of
the latent state space correlate with the agent’s performance?

18

C.6.1 Dynamics Changes

Figure 13 displays 2d projections of the latent state space under different dynamic environ-
mental conditions.

Task Inference Dreamer
Latent Task Space

Task Inference Dreamer
Latent State Space

Vanilla Dreamer
Latent State Space

Oracle Dreamer
Latent State Space

(a) Half Cheetah: wind friction.

(b) Half Cheetah: actuator masking.

(c) Half Cheetah: joint perturbation.

(d) Hopper: body mass and inertia.

Figure 13: Comprehensive latent state and task space visualizations across various environ-
ments experiencing inter-episodic dynamical changes.

In the visualizations, the vanilla agent—grounded in the POMDP formalism—demonstrates
task-dependent latent space structuring under different dynamic changes. Examining these
projections along with empirical results from Figure 7 reveals a positive correlation between
the structured latent space and the agent’s performance. Notably, conditioning the agent on
task representations produces an even more task-specific latent space structure.
Task conditioning appears to provide two main advantages: (1) a more structured latent
space enables enhanced data modeling, as task-specific representations minimize interferences,
thus improving data reconstruction; and (2) task conditioning helps disambiguate overlapping
latent states, especially when a state recurs across tasks. This disambiguation contributes to
better data modeling and aids in achieving adaptive behaviors.

19

C.6.2 Objective Changes

Figure 14 presents 2D projections of latent task and state spaces during evaluations in
reward-altered environments, where the objective is to reach various target velocities or
master multiple skills.

Task Inference Dreamer
Latent Task Space

Task Inference Dreamer
Latent State Space

Vanilla Dreamer
Latent State Space

Oracle Dreamer
Latent State Space

(a) Cheetah: target velocity.

(b) Walker: target velocity.

(c) Cheetah: 10 skills.

(d) Walker: 8 skills.

Figure 14: Comprehensive latent state and task space visualizations for agents learning to
adapt to varying objectives, including different target velocities or skills.

Figure 14 reveals two critical observations. When the reward’s structure changes, the vanilla
agent’s latent space does not organize itself by task, leading to substantial interference and
making it challenging for all agent’s components to infer task information, contributing to
suboptimal performance as evidenced in Figure 11 for changing rewards.
In contrast, conditioning the agent on task representations produces a latent space that is
not only more task-aware but also better suited for concurrent multi-task learning. Similarly
to the findings in Section C.6.1 under dynamics changes, a positive correlation emerges
between the structured latent space and the agent’s final performance. However, for the
most challenging skill-learning experiments, the task inference approach organizes latent
space with some tasks represented jointly, which can hinder unique task identification and
contribute to the observed performance gap in skill-learning tasks as shown in Figure 11.

20

	Introduction
	Non-Stationary RL Formalisms In Latent Spaces
	POMDP formalism
	HiP-POMDP formalism

	Adaptive Latent Space Models for HiP-POMDPs
	Inferring Latent Task Abstractions via Aggregation
	Learning Adaptive Representations
	Learning Adaptive Behaviors

	Evaluation
	Conclusion
	Objective Derivation
	Algorithm and Implementation Details
	Task Abstractions Via Bayesian Aggregation
	HiP-Dreamer
	Hyperparameters.

	Evaluation Details
	Dynamical Changes
	Objective changes
	Further Evaluation Under Dynamical Changes
	Further Evaluation Under Objective Changes
	Evaluation under Combined Environmental Changes
	Latent Space Visualizations
	Dynamics Changes
	Objective Changes

