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ABSTRACT

Despite widespread success in language understanding and generation, large lan-
guage models (LLMs) exhibit unclear and often inconsistent behavior when faced
with tasks that require probabilistic reasoning. In this work, we present the first
comprehensive study of the reasoning capabilities of LLMs over explicit discrete
probability distributions. Given observations from a probability distribution, we
evaluate models on three carefully designed tasks—mode identification, maximum
likelihood estimation, and sample generation—by prompting them to provide re-
sponses to queries about either the joint distribution or its conditionals. These tasks
thus probe a range of probabilistic skills, including frequency analysis, marginaliza-
tion, and generative behavior. Through comprehensive empirical evaluations, we
demonstrate that there exists a clear performance gap between smaller and larger
models, with the latter demonstrating stronger inference and surprising capabilities
in sample generation. Furthermore, our investigations reveal notable limitations,
including sensitivity to variations in the notation utilized to represent probabilistic
outcomes and performance degradation of over 60% as context length increases.
Together, our results provide a detailed understanding of the probabilistic reasoning
abilities of LLMs and identify key directions for future improvement.

1 INTRODUCTION

Large Language Models (LLMs) have achieved impressive performance across a wide range of Natu-
ral Language Processing (NLP) tasks, including question answering, summarization, and language
understanding (Devlin et al., 2019; Raffel et al., 2020; Chowdhery et al., 2023; Joshi et al., 2017).
Despite these advances, LLMs continue to show notable limitations in probabilistic reasoning, as
highlighted by several studies (Freedman & Toni, 2025; Gu et al., 2024; Ball et al., 2024). Existing
research has largely examined LLMs’ abilities in logical reasoning, numerical problem-solving, and
Bayesian inference (Chen et al., 2022; Ozturkler et al., 2022; Nafar et al., 2023; 2025; Qiu et al.,
2025), but their ability to understand probability distributions has received far less attention (Gu et al.,
2024; Paruchuri et al., 2024). Exploring this capability is crucial, as reasoning over distributions lies
at the core of many tasks involving uncertainty, prediction, and decision-making (Jia et al., 2024; Liu
et al., 2024a; Schrader et al., 2024). This gap leads to an important question: when provided with
samples drawn from a distribution, can an LLM identify its structure, estimate its parameters, and
produce responses consistent with that distribution?

To address this, we develop a structured framework that prompts models with observations drawn from
the joint probability distribution of discrete random variables and evaluates their responses to queries
about joint and conditional distributions. Our evaluation suite consists of three complementary tasks,
mode identification, maximum likelihood estimation, and sample generation. Together, these tasks
probe distinct but interconnected skills: recognizing the most likely outcomes, estimating underlying
probabilities, and producing samples that align with the target distribution. By covering both joint
and conditional settings, our study provides a broad view of how well LLMs can approximate key
features of probability distributions without requiring finetuning on probabilistic datasets.

Our experiments reveal several important trends. Larger models, and those distilled from them,
significantly outperform smaller ones in most settings. Across all three tasks, models perform better
on joint distributions than on conditional ones, which demand deeper reasoning and additional
computation. Some models show surprising strengths in sampling, generating outcomes that closely
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match the expected distribution. On the other hand, we identify persistent weaknesses. Performance
is highly sensitive to how outcomes of the distributions are represented in the prompt, suggesting
that even superficial variations in notation can significantly influence reasoning. Counting also
remains a fundamental challenge: as the number of samples in the context grows, models lose track
of frequencies, leading to inaccurate estimates. Conditional reasoning is particularly challenging in
zero-shot settings, but providing a simple in-context example improves the performance significantly.
More broadly, while LLMs can often handle probabilistic tasks using their background knowledge,
they struggle as the tasks become more complex. In these cases, they need additional support, whether
through external tools like a code interpreter or in-context examples, to achieve reliable results.

In summary, this work makes the following contributions:

• We present the first large-scale evaluation of LLMs’ ability to understand discrete probability
distributions across a variety of settings.

• We introduce a suite of complementary tasks—mode identification, maximum likelihood
estimation, and sampling—that capture distinct aspects of probabilistic reasoning.

• We systematically compare a broad range of LLMs, revealing substantial performance gaps
across model sizes and unexpected strengths in sampling.

• We highlight key limitations, including sensitivity to notation of probabilistic outcomes,
difficulties with counting, and challenges with long-context reasoning.

2 RELATED WORK

In-Context Learning: After the discovery of in-context learning (ICL) capabilities in large language
models (LLMs), there has been a surge of interest in enhancing inference in zero-shot and few-shot
settings. This paradigm enables models to perform tasks by conditioning on input examples without
explicit parameter updates. Foundational studies have explored the mechanisms and effectiveness of
ICL in various contexts (Brown et al., 2020; Min et al., 2022; Xie et al., 2021; Dai et al., 2022; Kojima
et al., 2022; Wang et al., 2022). Building upon ICL, follow-up work has introduced methods such as
Chain-of-Thought (CoT) and Tree-of-Thoughts (ToT) (Yao et al., 2023; Wei et al., 2022), which aim
to extend LLMs’ reasoning capabilities and improve performance on more complex problems.

Probabilistic Reasoning: Despite these advances, probabilistic reasoning and handling uncertainty
remain challenging for LLMs (Nafar et al., 2023; Kadavath et al., 2022). Recent evaluations
(Freedman & Toni, 2025) found that current models frequently violate basic probability rules such
as complementarity and monotonicity, and (Ozturkler et al., 2022) proposed a structured approach,
ThinkSum, decomposing probabilistic reasoning into distinct retrieval and aggregation stages. Other
studies show that while LLMs understand probability concepts, they struggle to generate samples
aligning with specified distributions (Gu et al., 2024). Bayesian reasoning has also emerged as
a promising direction. The BLInD dataset was introduced to evaluate LLMs’ ability to perform
Bayesian inference (Nafar et al., 2025), and training LLMs to imitate an optimal Bayesian model has
been shown to improve their probabilistic reasoning capabilities (Qiu et al., 2025).

Numerical Reasoning: Another important area of study is LLMs’ quantitative reasoning. Several
works have shown that numerical reasoning skills can be effectively enhanced through automated
data generation and targeted training (Geva et al., 2020; Lewkowycz et al., 2022). The Program of
Thoughts (PoT) approach expresses numerical reasoning as executable programs, enabling models to
solve complex calculations (Chen et al., 2022). While some studies have shown that large models can
reason about continuous distributions when properly guided (Paruchuri et al., 2024), others highlight
that LLMs struggle to infer probabilities from raw data or tables without special training (Liu et al.,
2024b), and their probability estimates can be biased or unreliable (Wang et al., 2025). Counting tasks
also proved to be challenging (Fu et al., 2024; Ball et al., 2024), with difficulties partly attributed to
architectural constraints and tokenization issues inherent to transformers (Zhang et al., 2024; Vaswani
et al., 2017).

In summary, while LLMs have shown promising capabilities in probabilistic reasoning and Bayesian
inference, their ability to understand discrete probability distributions, especially joint and conditional
relationships, remains largely unexplored. This gap motivates our work, where we provide a focused
and extensive study of LLMs’ understanding of discrete joint and conditional probability distributions.
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Prompt Sample

Consider 2 discrete random variables X, Y, 
where X can take outcomes from {A, B}, Y can 
take outcomes from {C, D}. In 10 independent 
samples drawn from their joint distribution 
P(X, Y), the observed samples/frequencies are:

Frequency of Observed Samples

Raw Observed Samples

(A, C) (B, C) (A, D) (B, C) (A, D) 
(A, D) (B, C) (B, C) (A, C) (B, D)

(A, C): 2   (A, D): 3

(B, C): 4   (B, D): 1

Raw Observed Samples
or

Frequency of Observed Samples

Observations

TaskTask:

Identify the mode (most probable outcome) of 
the joint distribution P(X, Y)

Joint Mode

Predict the maximum likelihood estimation 
(MLE) of the joint probability distribution P(X, Y) 
based on these 10 samples.

Joint MLE

Generate EXACTLY 28 random samples from 
the joint distribution P(X, Y)

Joint Sampling

Identify the mode (most probable outcome) of 
the conditional distribution P(Y| X=A)

Conditional Mode

Conditional MLE

Conditional Sampling

Joint / Conditional
Mode / MLE / Sampling

Instructions:
• Do not write code or pseudocode. 
• Strictly follow the output format below.

Output Format that you should strictly follow:

[Output Format]

Output Format examples

Mode = (, , )

Final probabilities should be listed as:
P(A, C) = [value]
 ... 
P(B, D) = [value]

Most probable value of Y given X=A is

Predict the maximum likelihood estimation of 
the conditional distribution P(Y|X=A) based on 
these 10 samples.

Generate EXACTLY 28 random samples from 
the conditional distribution P(Y|X=A)

Figure 1: Prompt structure for evaluating LLMs on probabilistic reasoning tasks: each prompt
includes definitions of the random variables, observed samples or frequencies, a task specification
(e.g., mode, MLE, sample generation), and output formatting instructions.

3 PROBABILISTIC REASONING FRAMEWORK

In this section, we present our framework for evaluating LLMs’ capability to understand probability
distributions. We begin with the mathematical preliminaries and describe the prompt format used in
our experiments. Then, we formalize the three structured tasks that form the core of our evaluation,
and finally present our comprehensive evaluation pipeline. In this work, we decided to focus on
discrete probability distributions, as methods and evaluation strategies for continuous distributions
differ enough that addressing both types in one paper would risk superficial coverage.

3.1 PRELIMINARIES ON DISCRETE PROBABILITY DISTRIBUTIONS

We formalize the probabilistic setup used in our study, wherein we assess whether LLMs can
understand discrete probability distributions by evaluating their performance across several tasks.
Let X = (X1, X2, . . . , XN ) denote a tuple of N categorical random variables, where each Xi takes
values in a finite label set Li. We refer to the elements of Li as the possible labels of Xi. An outcome
of the joint random variable X is denoted by x = (x1, x2, . . . , xN ), where xi ∈ Li for all i ∈ [N ].
Let L = L1 × L2 × · · · × LN denote the set of all possible joint outcomes. The size of the joint
outcome space is then given by

|L| =
N∏
i=1

|Li|.

To grant the LLM access to a distribution, we provide a set of K independent observations drawn
from the joint distribution. Let O = {x(1),x(2), . . . ,x(K)} denote the observed samples. This
information is incorporated into the LLM’s context using one of two following formats: (1) by
providing the empirical frequency of each possible outcome x in O, or (2) by directly including
the set of observations O in the prompt.

3.2 PROMPT FORMAT

As shown in Figure 1, each prompt begins with a fixed segment that defines the random variables
X1, X2, . . . , XN , their corresponding label sets L1,L2, . . . ,LN and the joint probability distribution
P (X1, X2, . . . , XN ). This is followed by observations from the joint distribution, provided either as
empirical frequencies or raw samples. The prompt concludes with a task-specific query and clear
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instructions, explicitly discouraging code generation and specifying the expected output format. A
complete list of prompts used for each task and setting is provided in Appendix B.

3.3 TASK DEFINITION AND PERFORMANCE METRICS

In this section, we describe our three structured tasks and the metrics used to assess LLMs’ perfor-
mance on them. We consider two settings: one focused on queries about joint distributions and the
other on queries about conditional distributions.

Mode Identification: Given a set of K observations O = {x(1), . . . ,x(K)} provided to the model,
this task evaluates whether the model can identify the mode of the empirical distribution.

Joint task. We measure if the model can find the mode of the joint distribution i.e.,

x̂mode = argmax
x∈L

1

K

K∑
k=1

1[x(k) = x],

Conditional task. We condition on a random variable Xc and evaluate the mode of a query variable
Xq . Given a conditioning value Xc = xc for some xc ∈ Lc, we define:

x̂q = argmax
xq∈Lq

p̂(Xq = xq | Xc = xc),

where p̂ is the empirical conditional distribution estimated from the subset of O satisfying Xc = xc.
We report accuracy for this task, indicating whether the model correctly identifies the most likely
outcome.

Maximum Likelihood Estimation (MLE): Given the observed samples O, the model is asked to
estimate the empirical distribution over possible outcomes, either for the joint distribution or in a
conditional manner.

Joint task: The model estimates p̂(X = x) for all x ∈ L. We measure the total variation distance
(TVD) between the predicted empirical distribution p̂ and the true empirical distribution p from O, i.e.,

1

2

∑
x∈L

∣∣p(X = x)− p̂(X = x)
∣∣.

Conditional task: Given Xc = xc, the model estimates p̂(Xq = xq | Xc = xc) for all xq ∈ Lq. We
once again report the total variation distance for this task, i.e.,

1

2

∑
xq∈Lq

∣∣p(Xq = xq | Xc = xc)− p̂(Xq = xq | Xc = xc)
∣∣.

Sample Generation: In this task, the model is prompted to generate new samples from the joint or
conditional distribution based on the provided observations O. Unlike the previous tasks focused
on estimation or prediction, this task evaluates the model’s generative capability, i.e., whether it can
reproduce the empirical distribution through sampling.

Joint task: The model is prompted to generate K ′ samples based on the joint distribution provided in
the context. Let Ô be the samples generated by the LLM, and let q denote their empirical frequency
distribution. We report the total variation distance, which is defined in this setting as:

1

2

∑
x∈L

∣∣p(X = x)− q(X = x)
∣∣.

Conditional task: The model is prompted to generate K ′ samples of the random variable Xq condi-
tioned upon Xc = xc. Let q(Xq | Xc = xc) be the empirical frequency distribution over the samples
generated by the LLM. We report the total variation distance, which is defined in this setting as:

1

2

∑
xq∈Lq

∣∣p(Xq = xq | Xc = xc)− q(Xq = xq | Xc = xc)
∣∣

By evaluating models on joint and conditional distributions, we examine their ability to handle
probabilistic relationships in various settings. Each task focuses on a specific aspect, providing a com-
prehensive assessment of how well LLMs understand and process discrete probability distributions.

4
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3.4 EVALUATION SETUP

As outlined in Section 3.2, output formats are explicitly defined in the prompts to guide models
toward consistent responses. Through extensive prompt engineering, task-specific formats are
identified that models generally find easier to follow. When responses match the expected format,
final answers are extracted using regular expressions, and the corresponding evaluation metrics are
applied as mentioned above. While larger models typically follow the instructions closely, smaller
models often return answers in inconsistent or alternative formats. To handle such cases, a capable
model, Llama3.3-70B, is used as an LLM judge. It receives the task description, the expected
answer, and the model’s response, and determines whether the output reflects the correct answer. This
approach supports a robust evaluation and helps ensure the reliability of reported results. We provide
additional details regarding the usage of the LLM Judge in Appendix D due to paucity of space.

4 ROBUSTNESS ANALYSIS

In this section, we examine pertinent factors that influence LLMs’ performance on probabilistic
reasoning tasks, focusing on three key aspects: (1) how performance changes with increasing task
difficulty, (2) how sensitive models are to variations in the notation used to represent random variable
outcomes, and (3) how models behavior differs when prompts provide raw sample observations
rather than empirical frequencies. Together, these aspects highlight distinct challenges for LLMs
and provide deeper insight into their strengths and limitations.

4.1 SCALING COMPLEXITY

To examine how task complexity affects model performance, we vary the size of the outcome or
label space |L| for the joint distributions considered, which directly influences the difficulty of
all three tasks. As shown in equation 3.1, increasing either the number of random variables N or
the number of labels |Li| for each variable causes exponential or multiplicative growth of the joint
space respectively, requiring models to reason over a larger set of outcomes and their associated
probabilities. In the mode identification task, this expansion increases the number of candidates
the model must compare, making it harder to identify the most probable outcome. In the MLE
task, a larger joint space implies that the model must estimate a greater number of probabilities,
making accurate prediction more challenging. Similarly, in the sampling task, the model is expected
to generate samples that reflect a more complex distributed set of outcomes, demanding stronger
generalization and a better understanding of the underlying probabilities.

4.2 LABEL SENSITIVITY

Our experiments reveal that LLMs are highly sensitive to the choice of labels utilized in the set Li,
with performance varying significantly across different label categories. Interestingly, even when the
set of labels and frequency counts are fixed, simply changing which outcome is associated with which
frequency can lead to noticeable shifts in model performance. This behavior likely stems from biases
in the training data and the tendency of the model to interpret labels as part of the linguistic context,
rather than discrete outcomes in a probabilistic space. Additionally, sensitivity to label variation differs
across models, with smaller models generally showing greater variability. To quantify this effect, we
design a set of experiments to measure models’ robustness to superficial changes in label notation.

4.3 ESTIMATIONS USING SAMPLES-IN-CONTEXT INSTEAD OF FREQUENCIES

In this setting, we explore the effect of including the raw observations {x(1),x(2), . . . ,x(K)} in
the input prompts, rather than their empirical frequencies. By doing so, models should count the
frequencies of each outcome and solve the probabilistic tasks accordingly. This change shifts the
problem from simple frequency analysis to counting and subsequent processing of the counts so
obtained. The longer the context, the more challenging it becomes for the model to correctly interpret
the frequency of occurrences, leading to a sharp decline in performance. In the next section, we
illustrate a comparison between these two approaches and highlight the weaknesses of powerful
models in counting and managing a large number of samples.
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Table 1: Accuracy comparison on mode identification tasks across different joint sizes |L|. cond-mode
requires reasoning over conditional distributions, making it generally more challenging. While larger
models or those distilled from them maintain robust performance across all settings, smaller models
show a clear decline in accuracy as |L| increases.

Model
joint-mode cond-mode

|L| = 12 |L| = 27 |L| = 36 |L| = 54 |L| = 12 |L| = 27 |L| = 36 |L| = 54

Llama3.1-8B 0.59 0.57 0.35 0.21 0.83 0.79 0.68 0.62
Qwen2.5-7B 0.93 0.83 0.81 0.65 0.69 0.67 0.63 0.60
DeepSeek-R1-Distill-Qwen-7B 0.95 0.93 0.91 0.86 0.93 0.93 0.91 0.83
Llama3.3-70B 1.00 1.00 1.00 0.97 1.00 0.99 0.96 0.95
GPT-4o-mini 0.99 0.98 0.98 0.80 0.99 0.96 0.95 0.88
GPT-4.1-mini 1.00 1.00 0.99 0.96 1.00 1.00 1.00 1.00

5 EXPERIMENTS

This section presents the experimental setup for evaluating LLMs on probabilistic reasoning tasks. We
introduce the models evaluated, describe key implementation details, and report results for the three
core tasks. We then present additional analyses that explore factors influencing model performance.

5.1 MODEL SELECTION

In this study, we evaluate several instruction-finetuned LLMs, selected to represent a wide range
of model sizes and capabilities. The models evaluated include Llama3.1-8B, Llama3.3-70B
(Grattafiori et al., 2024), Qwen2.5-7B (Yang et al., 2024), DeepSeek-R1-Distill-Qwen-7B
(Guo et al., 2025), GPT-4o-mini (Hurst et al., 2024), and GPT-4.1-mini (OpenAI, 2025).
These models span a broad spectrum of parameter sizes, from 7B to 70B, offering a comprehensive
comparison of how different architectures handle various settings.

5.2 EXPERIMENTAL SETUP

In our experiments, we follow the standard naming convention for random variables, using names such
as X,Y, Z and use English letters for the outcomes of the random variables . We set K := 5× |L|,
meaning the number of observations is five times larger than the joint space. We then select |L|
values that sum to K, as frequencies, and randomly assign them to different joint outcomes. However,
as discussed in Section 4.2, models are sensitive to how these frequencies are linked to specific
outcomes, even when both the set of labels and frequency values are unchanged. To reduce the
impact of this sensitivity, we create ten different ways of assigning frequencies to joint outcomes and
generate ten prompts for each assignment, resulting in 100 prompts per task. This helps ensure that
variations in outcome-frequency mapping minimally impacts the evaluation results. For larger |L|,
we carefully select the frequency values to generate a distribution with entropy comparable to that of
the simpler distributions, ensuring consistency across experiments. Given the models’ constraints in
handling raw samples in the input, we incorporate the empirical frequency of observed samples in
most experiments and analyze the comparison between the two approaches in Section 5.4.2.

5.3 TASK-SPECIFIC EXPERIMENTAL RESULTS

This section presents a detailed analysis of the experimental results for each task. To evaluate
performance on conditional queries, one random variable Xc and one of its possible outcomes xc are
randomly selected as evidence. Another variable is then chosen as the query variable Xq and the model
is asked to solve one of the tasks based on the conditional distribution P (Xq | Xc = xc). For all tasks,
each model is prompted 100 times using 10 different prompts, and the outputs are parsed to extract
the final answer for each query. The details of different distributions can be found in Appendix C.

Mode Identification: In this task, models are asked to identify the mode of either the joint distribution
(joint-mode) or a conditional distribution (cond-mode). The joint-mode task requires selecting the
outcome with the highest overall frequency, without additional computation. In contrast, the cond-
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Table 2: Average TVD across 100 prompts for maximum likelihood estimation tasks at varying
joint sizes |L|. joint-MLE is consistently easier with near-zero TVD, while cond-MLE seems more
challenging and highlights a clear gap between models.

Model
joint-MLE cond-MLE

|L| = 12 |L| = 27 |L| = 36 |L| = 54 |L| = 12 |L| = 27 |L| = 36 |L| = 54

Llama3.1-8B 1e-05 0.001 0.003 0.02 0.089 0.115 0.151 0.198
Qwen2.5-7B 0 2e-05 4e-04 0.006 0.077 0.106 0.140 0.177
DeepSeek-R1Distill-Qwen-7B 0 5e-04 0.001 0.02 0.038 0.048 0.069 0.100
Llama3.3-70B 0 0 0 4e-04 0.009 0.003 0.017 0.084
GPT-4o-mini 0 2e-05 7e-04 1e-04 0 0.008 0.017 0.084
GPT-4.1-mini 0 0 1e-05 1e-04 0 5e-06 5e-05 0.016

mode task involves identifying the most frequent outcome given a specified condition, requiring
models to filter and reason over a subset of the distribution. Table 1 reports model accuracy as the joint
space size |L| increases. Although cond-mode involves fewer possible outputs, its added conditional
reasoning makes it more challenging, leading to slightly lower accuracy than joint-mode. While
Llama3.3-70B and GPT4.1-mini remain near-perfect, smaller models degrade as the joint size
grows. Overall, although models can handle simpler instances of these tasks using their pretraining
knowledge, their accuracy drops noticeably as tasks become more complicated. To mitigate this,
we conducted additional experiments using one-shot prompting instead of the default zero-shot
setting. The results show a substantial improvement in performance, underscoring the effectiveness
of few-shot learning for these tasks. The details of these experiments can be found in Appendix E.

Maximum Likelihood Estimation: In this task, models are asked to predict either the probability
of all joint outcomes (joint-MLE) or the conditional probabilities P (Xq = xq | Xc = xc) for each
xq ∈ Lq (cond-MLE). For evaluation, the TVD is computed for each prompt, and the average is
reported over 100 prompts. As shown in Table 2, the joint-MLE task is relatively straightforward for all
models, with even smaller models achieving acceptable TVD values across all joint sizes. In contrast,
the cond-MLE task is more challenging, as it requires models to derive conditional probabilities from
the joint distribution, leading to consistently higher TVD values and a clear gap between smaller
and larger models. To mitigate this challenge, we also ran one-shot prompting experiments, which
significantly reduced TVD values, showing that even a simple example can boost performance on
probabilistic reasoning tasks. Full details of these experiments are provided in Appendix E.

Sample Generation: This task evaluates the generative abilities of LLMs by requiring them to
generate K ′ samples from either the joint distribution (joint-sampling) or a conditional distribution
(cond-sampling). We set K ′ := 7 × |L| to ensure that the generated samples are sufficient to
approximate the target distribution. Since it is inherently difficult to reproduce a target empirical
distribution with a finite number of samples, we also compute the TVD between K ′ samples drawn
from Python’s random library and the true distribution and use it as a baseline to compare the
quality of samples generated by the models. As shown in Figure 2, TVD in the joint-sampling
task increases with |L|. Interestingly, Llama3.3-70B and GPT4.1-mini achieve TVD values
even lower than those from Python’s random sampler, which includes sampling noise, suggesting
that the underlying distribution of their generated samples is remarkably close to the target. In
contrast, all models struggle with the cond-sampling task, as it implicitly requires the models
to first estimate the conditional probabilities and then generate samples that align with the
resulting distribution. Surprisingly, even though no model reaches an acceptable performance,
DeepSeek-R1-Distill-Qwen, designed for reasoning tasks, outperforms other strong models.

Beyond distributional evaluation, we also examined whether model-generated samples were truly
independent. Using the Durbin–Watson statistic and transition matrix entropy (Durbin & Watson,
1951; Shannon, 1948), we found correlations in all models’ outputs. In a related experiment,
when GPT-4.1-mini was prompted to generate one sample per prompt, it strongly favored high-
frequency outcomes while rarely producing rare ones. These results suggest that while capable
LLMs can generate samples that closely match target empirical probabilities, they struggle to produce
independent samples, consistent with the autoregressive nature of LLMs. To further validate our
findings, we repeated all six task configurations on a highly-skewed subset of the Mushroom dataset
(mus, 1981), with results aligning closely to those from synthetic data (see Appendices F, G).
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Figure 2: Average TVD across 100 prompts for joint-sampling (left) and cond-sampling (right) tasks,
with models queried to generate 7 × |L| samples. Here, the sampling baseline is computed as the
TVD between K ′ samples generated by Python’s random function and the true distribution.

5.4 ROBUSTNESS ANALYSIS RESULTS

This section presents the analysis of two key aspects: the sensitivity of models to variations in
outcomes of the random variables, and the effect of providing raw samples in the prompt instead of
their empirical frequencies. These analyses shed light on how superficial changes and input formats
can significantly affect performance.

5.4.1 LABEL SENSITIVITY RESULTS

To investigate the impact of label choice on model performance, a targeted set of experiments is con-
ducted on three models: the two top-performing models, Llama3.3-70B and GPT-4.1-mini,
and a smaller model, Qwen2.5-7B. All three are evaluated on the joint-mode task, which they
handle reliably under standard conditions, using joint space size of |L| = 54 and ten distinct label
categories. These categories span a broad range of semantics, including computer science terms,
human names, US states, countries, fruits, universities, majors, car brands, neurology terms, and
food. By systematically varying the labels used to represent the outcomes of the random variables,
we aimed to assess how surface-level changes in label representation influence model behavior.

Figure 3 (right) presents the accuracy of each model across the different label categories.
GPT-4.1-mini shows remarkable consistency, with minimal variation across labels, indicating
strong robustness. Llama3.3-70B performs well overall but exhibits moderate sensitivity, with
performance varying more noticeably across label sets. In contrast, Qwen2.5-7B is highly sensitive
to label changes, suffering sharp drops in accuracy depending on the category. These findings suggest
that while larger models or those distilled from them can generalize well across prompt variations,
smaller models are significantly vulnerable to the way information is presented, even when the
underlying task remains unchanged.

5.4.2 SAMPLES-IN-CONTEXT RESULTS

Next, we investigate how model performance is affected when raw observed samples are provided
in the prompt instead of their empirical frequencies. This setting is evaluated using the two
best-performing models, Llama3.3-70B and GPT-4.1-mini, as smaller models consistently
fail under these conditions. We repeat the joint-mode task across different joint space sizes, but
rather than supplying frequency counts for each outcome, we provide the raw samples directly as
mentioned. This forces the models to perform implicit counting, first identifying the frequency of
each outcome from the raw data, and then determining the mode based on that.
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Figure 3: (Left) Accuracy comparison on the joint-mode task when models are given either raw
samples or frequency counts. Accuracy sharply declines with increasing joint space size when
raw samples are used, revealing the difficulty of reasoning over longer contexts without explicit
frequency information. GPT-4.1-mini shows greater robustness than Llama3.3-70B in this
setting. (Right) Accuracy of models across ten different label categories in the joint-mode task.
GPT-4.1-mini remains consistently robust across categories, while Qwen2.5-7B exhibits sig-
nificant sensitivity.

The empirical evaluations reveal a sharp decline in performance. Both models, which had previously
achieved near-perfect accuracy with explicit frequencies, struggle significantly in this setting. As the
joint space size |L| increases and the input grows longer, their ability to track counts and identify
the correct outcome diminishes rapidly. Figure 3 (left) illustrates this trend, showing an almost
linear decrease in accuracy with increasing joint size. Among the two, GPT-4.1-mini consistently
outperforms Llama3.3-70B, indicating greater robustness to the added complexity and input
length. Further evidence from Appendix H shows that even when the joint space size is fixed at
|L| = 12, increasing the number of observed samples K results in further degradation of accuracy.
This suggests that the challenge is not only tied to task complexity but also to the models’ limited
capacity for reasoning over long sequences.

To explore potential mitigation strategies, we conducted an additional experiment with
GPT-4.1-mini where the model was given access to a code interpreter. In this setup, the model
was encouraged to write Python code to count frequencies before solving the task. This hybrid ap-
proach substantially improved performance, nearly matching the results from the frequency-provided
setting. The detailed results of these experiments are reported in Appendix I.

6 CONCLUSION

This work presents the first comprehensive evaluation of large language models’ abilities to understand
discrete probability distributions. Through a set of structured tasks, mode identification, maximum
likelihood estimation, and sample generation, we reveal clear differences in performance across
models. Larger models, or those distilled from them, generally perform well, with sample generation
emerging as a surprising strength, where in some cases, generated samples align with the target
distribution even more closely than those from a true random sampler. Yet, notable weaknesses
remain. Performance consistently declines when tasks involve conditional distributions rather than
joint distributions, reflecting the difficulty of conditional reasoning. Models also show sensitivity to
superficial changes in the outcomes of the random variables and struggle when asked to reason over
long contexts or to infer probabilities directly from raw samples. Taken together, these findings suggest
that while pretraining knowledge enables LLMs to handle probabilistic tasks, their performance
declines as the complexity of the problems grows. In such cases, providing additional support, such
as in-context examples or external tools like a code interpreter, can help boost the performance.
Addressing these challenges is a key step toward developing LLMs capable of robust reasoning under
uncertainty. Additional discussion of limitations and considerations is provided in Appendix A.
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APPENDIX

This section provides additional details, prompts, and results that supplement the main text, beginning
with a discussion of limitations and future directions. Section B presents complete prompt examples
for each task, while Section C lists the exact frequency distributions used for different joint space
sizes. Section D describes the LLM judge prompt template employed to evaluate outputs. Section E
explores one-shot prompting, including examples and results, and Section F examines whether
samples generated by LLMs are independent. Section G reports evaluations on a real-world dataset
to assess generalizability, Section H provides supplemental results on the effect of sample count in
context and Section I details experiments where GPT-4.1-mini was given access to a code interpreter.

A LIMITATIONS AND FUTURE DIRECTIONS

This study can extend in many directions, each requiring substantial time, effort, and computational
resources. To maintain focus and feasibility, we limited our scope to a subset of these directions and
aimed to investigate them thoroughly. One key limitation is the scale of the joint distributions used
in our experiments. We limit the joint space size at 54 since smaller models struggled with longer
contexts, leading to unstable and unreliable performance. Scaling to larger joint spaces would further
degrade performance and reduce comparability across model sizes. Another limitation lies in our
choice of distribution types. While analyzing both discrete and continuous distributions would provide
a more complete picture of LLMs’ capabilities, we deliberately focused on discrete distributions. We
identified a significant gap in understanding LLMs’ reasoning over discrete distributions, and we
believe this gap deserves focused attention as a foundational problem that presents distinct challenges
from continuous distributions. Finally, we restricted our exploration to a limited subset of distributions
due to the substantial effort and time required to evaluate a broader range. Future work is needed to
explore and uncover these remaining directions.
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B TASK PROMPTS

Each task is evaluated with two prompt variants: one for reasoning over joint distributions and one
for conditional distributions. We designed three structured tasks to evaluate different aspects of
probabilistic reasoning. Below are the representative prompts used for each task.

B.1 MODE IDENTIFICATION

Below, is an example of a prompt used for joint-mode task for |L| = 12:

Consider 3 discrete random variables X, Y, Z, where X can take outcomes from A, B, Y can take
outcomes from C, D, Z can take outcomes from E, F, G. In 60 independent samples drawn from
their joint distribution P(X, Y, Z), the observed frequencies are:

- (A, C, E): 5
- (A, C, F): 7
- (A, C, G): 3
- (A, D, E): 10
- (A, D, F): 2
- (A, D, G): 3
- (B, C, E): 6
- (B, C, F): 8
- (B, C, G): 2
- (B, D, E): 3
- (B, D, F): 3
- (B, D, G): 8

Task: Identify the mode (most probable outcome) of the joint distribution P(X, Y, Z).

Instructions:

1. Do not write any code or pseudocode.
2. Strictly follow the output format below.
3. You may explain your reasoning, but the final answer should be explicitly summarized at the
end. You get negative penalty for not following the output format.

Output Format that you should strictly follow:

Mode = (, , )
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Below is a variation of the above prompt that requires solving the task on a conditional distribution
(cond-mode).

Consider 3 discrete random variables X, Y, Z, where X can take outcomes from A, B, Y can take
outcomes from C, D, Z can take outcomes from E, F, G. In 60 independent samples drawn from
their joint distribution P(X, Y, Z), the observed frequencies are:

- (A, C, E): 5
- (A, C, F): 7
- (A, C, G): 3
- (A, D, E): 10
- (A, D, F): 2
- (A, D, G): 3
- (B, C, E): 6
- (B, C, F): 8
- (B, C, G): 2
- (B, D, E): 3
- (B, D, F): 3
- (B, D, G): 8

Task: Identify the mode (most probable outcome) of the conditional distribution P(Z | X = A).

Instructions:

1. Do not write any code or pseudocode.
2. Strictly follow the output format below.
3. You may explain your reasoning, but the final answer should be explicitly summarized at the
end. You get negative penalty for not following the output format.

Output Format that you should strictly follow:

Most probable value of Z given X=A is
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B.2 MAXIMUM LIKELIHOOD ESTIMATION

The model is asked to estimate the probabilities of the joint distributions using maximum likelihood
estimates from observed frequencies.

A prompt sample for joint-MLE task for |L| = 12:

Consider 3 discrete random variables X, Y, Z, where X can take outcomes from A, B, Y can take
outcomes from C, D, Z can take outcomes from E, F, G. In 60 independent samples drawn from
their joint distribution P(X, Y, Z), the observed frequencies are:

- (A, C, E): 5
- (A, C, F): 7
- (A, C, G): 3
- (A, D, E): 10
- (A, D, F): 2
- (A, D, G): 3
- (B, C, E): 6
- (B, C, F): 8
- (B, C, G): 2
- (B, D, E): 3
- (B, D, F): 3
- (B, D, G): 8

Task: Predict the maximum likelihood estimation (MLE) of the joint probability distribution P(X,
Y, Z) based on these 60 samples.

Instructions:

1. Think step by step and solve this mathematically using probability theory - do not write any
code or pseudocodes as you get negative penalty for that.

2. Clearly state the final estimated probabilities for each (X, Y, Z) outcome. Output probabilities
should be expressed as float numbers with up to four decimal points.

3. You may explain your reasoning, but the final answer should be explicitly summarized at the
end. only your final answer will be graded.

Output Format:

- Final probabilities as float numbers should be listed as:

P(A, C, E) = [value]
P(A, C, F) = [value]
P(A, C, G) = [value]
P(A, D, E) = [value]
...
P(B, D, F) = [value]
P(B, D, G) = [value]
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Below is a variation of the above prompt that requires solving the task on a conditional distribution
(cond-MLE).

Consider 3 discrete random variables X, Y, Z, where X can take outcomes from A, B, Y can take
outcomes from C, D, Z can take outcomes from E, F, G. In 60 independent samples drawn from
their joint distribution P(X, Y, Z), the observed frequencies are:

- (A, C, E): 5
- (A, C, F): 7
- (A, C, G): 3
- (A, D, E): 10
- (A, D, F): 2
- (A, D, G): 3
- (B, C, E): 6
- (B, C, F): 8
- (B, C, G): 2
- (B, D, E): 3
- (B, D, F): 3
- (B, D, G): 8

Task: Predict the maximum likelihood estimation (MLE) of the conditional distribution P(X | Z =
E).

Instructions:

1. Think step by step and solve this mathematically using probability theory - do not write any
code or pseudocodes as you get negative penalty for that.

2. Clearly state the final estimated probabilities as float numbers with up to four decimal points.

3. You may explain your reasoning, but the final answer should be explicitly summarized at the
end.

Output Format:

- Final probabilities as float numbers should be listed as:

P(X=A | Z=E) = [value]
P(X=B | Z=E) = [value]
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B.3 SAMPLE GENERATION

In this task, the model is asked to generate samples either from the joint distribution or from a
conditional distribution, and we compare the empirical distribution of generated samples with the
true distribution.

A prompt sample for joint-sampling task for |L| = 12:

Consider 3 discrete random variables X, Y, Z, where X can take outcomes from A, B, Y can take
outcomes from C, D, Z can take outcomes from E, F, G. In 60 independent samples drawn from
their joint distribution P(X, Y, Z), the observed frequencies are:

- (A, C, E): 5
- (A, C, F): 7
- (A, C, G): 3
- (A, D, E): 10
- (A, D, F): 2
- (A, D, G): 3
- (B, C, E): 6
- (B, C, F): 8
- (B, C, G): 2
- (B, D, E): 3
- (B, D, F): 3
- (B, D, G): 8

Task: Generate EXACTLY 84 random samples from the joint distribution P(X, Y, Z).

Instructions:

1. OUTPUT MUST BEGIN with ### Output on a new line.
2. List EXACTLY 84 samples numbered 1 to 84.
3. Do not write any code or pseudocode.
4. Strictly follow the output format below.
5. You will be penalized for writing codes or not following the output format.

Output Format that you should strictly follow:

### Output
1. (X, Y, Z)
2. (X, Y, Z)
...
84. (X, Y, Z)

Where X can take outcomes from A, B, Y can take outcomes from C, D, Z can take outcomes
from E, F, G.
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Below is a variation of the above prompt that requires solving the task on a conditional distribution
(cond-sampling).

Consider 3 discrete random variables X, Y, Z, where X can take outcomes from A, B, Y can take
outcomes from C, D, Z can take outcomes from E, F, G. In 60 independent samples drawn from
their joint distribution P(X, Y, Z), the observed frequencies are:

- (A, C, E): 5
- (A, C, F): 7
- (A, C, G): 3
- (A, D, E): 10
- (A, D, F): 2
- (A, D, G): 3
- (B, C, E): 6
- (B, C, F): 8
- (B, C, G): 2
- (B, D, E): 3
- (B, D, F): 3
- (B, D, G): 8

Task: Generate EXACTLY 84 random samples from the conditional distribution P(Z | X=A).

Instructions:

1. OUTPUT MUST BEGIN with ### Output on a new line.
2. List EXACTLY 84 samples numbered 1 to 84.
3. Do not write any code or pseudocodes.
4. Strictly follow the output format below.
5. You will be penalized for writing codes or not following the output format.

Output Format that you should strictly follow:

### Output
1. Z
2. Z
...
84. Z
Where Z can take outcomes from E, G, F.
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C DISTRIBUTIONS USED FOR EACH JOINT SPACE SIZE

Distribution used for |L| = 4

("A", "C"): 6, ("A", "D"): 4, ("B", "C"): 8, ("B", "D"): 2

Distribution used for |L| = 6

("A", "C"): 7, ("A", "D"): 2, ("A", "E"): 4, ("B", "C"): 9, ("B", "D"): 2, ("B", "E"): 6

Distribution used for |L| = 8

("A", "C", "E"): 7, ("A", "C", "F"): 4, ("A", "D", "E"): 9, ("A", "D", "F"): 2,
("B", "C", "E"): 4, ("B", "C", "F"): 3, ("B", "D", "E"): 6, ("B", "D", "F"): 5

Distribution used for |L| = 9

("A", "D"): 6, ("A" , "E"): 3, ("A", "F"): 4, ("B", "D"): 9, ("B", "E"): 2, ("B", "F"): 5, ("C", "D"):
4, ("C", "E"): 3, ("C", "F"): 4

Distribution used for |L| = 12

("A", "C", "E"): 8, ("A", "C", "F"): 2, ("A", "C", "G"): 7, ("A", "D", "E"): 3,
("A", "D", "F"): 3, ("A", "D", "G"): 3, ("B", "C", "E"): 6, ("B", "C", "F"): 10,
("B", "C", "G"): 2, ("B", "D", "E"): 8, ("B", "D", "F"): 5, ("B", "D", "G"): 3,

Distribution used for |L| = 27

("A", "D", "G"): 8, ("A", "D", "H"): 4, ("A", "D", "I"): 2, ("A", "E", "G"): 3, ("A", "E", "H"): 4,
("A", "E", "I"): 5, ("A", "F", "G"): 6, ("A", "F", "H"): 3, ("A", "F", "I"): 6, ("B", "D", "G"): 10,
("B", "D", "H"): 6, ("B", "D", "I"): 1, ("B", "E", "G"): 7, ("B", "E", "H"): 2, ("B", "E", "I"): 4,
("B", "F", "G"): 6, ("B", "F", "H"): 6, ("B", "F", "I"): 3, ("C", "D", "G"): 4, ("C", "D", "H"): 5,
("C", "D", "I"): 6, ("C", "E", "G"): 7, ("C", "E", "H"): 4, ("C", "E", "I"): 2, ("C", "F", "G"): 3,
("C", "F", "H"): 8, ("C", "F", "I"): 5 ,

Distribution used for |L| = 36

("A", "E", "H"): 6, ("A", "E", "I"): 8, ("A", "E", "J"): 13, ("A", "F", "H"): 9, ("A", "F", "I"): 1,
("A", "F", "J"): 2,("A", "G", "H"): 11, ("A", "G", "I"): 2, ("A", "G", "J"): 1, ("B", "E", "H"): 15,
("B", "E", "I"): 4, ("B", "E", "J"): 8, ("B", "F", "H"): 1, ("B", "F", "I"): 5, ("B", "F", "J"): 5,
("B", "G", "H"): 1, ("B", "G", "I"): 7, ("B", "G", "J"): 2, ("C", "E", "H"): 4, ("C", "E", "I"): 5,
("C", "E", "J"): 12, ("C", "F", "H"): 3, ("C", "F", "I"): 2, ("C", "F", "J"): 2, ("C", "G", "H"): 4,
("C", "G", "I"): 8, ("C", "G", "J"): 12, ("D", "E", "H"): 2, ("D", "E", "I"): 4, ("D", "E", "J"): 2,
("D", "F", "H"): 1, ("D", "F", "I"): 2, ("D", "F", "J"): 2, ("D", "G", "H"): 9, ("D", "G", "I"): 2,
("D", "G", "J"): 3

Distribution used for |L| = 54

("A", "D", "F", "I"): 1, ("A", "D", "F", "J"): 5, ("A", "D", "F", "K"): 9, ("A", "D", "G", "I"): 1,
("A", "D", "G", "J"): 10, ("A", "D", "G", "K"): 2, ("A", "D", "H", "I"): 3, ("A", "D", "H", "J"): 2,
("A", "D", "H", "K"): 5, ("A", "E", "F", "I"): 1, ("A", "E", "F", "J"): 1, ("A", "E", "F", "K"): 5,
("A", "E", "G", "I"): 5, ("A", "E", "G", "J"): 12, ("A", "E", "G", "K"): 2, ("A", "E", "H", "I"): 6,
("A", "E", "H", "J"): 4, ("A", "E", "H", "K"): 2, ("B", "D", "F", "I"): 10, ("B", "D", "F", "J"): 2,
("B", "D", "F", "K"): 1, ("B", "D", "G", "I"): 7, ("B", "D", "G", "J"): 2, ("B", "D", "G", "K"): 3,
("B", "D", "H", "I"): 8, ("B", "D", "H", "J"): 2, ("B", "D", "H", "K"): 7, ("B", "E", "F", "I"): 2,
("B", "E", "F", "J"): 2, ("B", "E", "F", "K"): 3, ("B", "E", "G", "I"): 4, ("B", "E", "G", "J"): 5,
("B", "E", "G", "K"): 13, ("B", "E", "H", "I"): 2, ("B", "E", "H", "J"): 4, ("B", "E", "H", "K"): 12,
("C", "D", "F", "I"): 12, ("C", "D", "F", "J"): 1, ("C", "D", "F", "K"): 3, ("C", "D", "G", "I"): 1,
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("C", "D", "G", "J"): 15, ("C", "D", "G", "K"): 9, ("C", "D", "H", "I"): 11, ("C", "D", "H", "J"): 1,
("C", "D", "H", "K"): 4, ("C", "E", "F", "I"): 1, ("C", "E", "F", "J"): 5, ("C", "E", "F", "K"): 3,
("C", "E", "G", "I"): 11, ("C", "E", "G", "J"): 13, ("C", "E", "G", "K"): 3, ("C", "E", "H", "I"): 7,
("C", "E", "H", "J"): 4, ("C", "E", "H", "K"): 1
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D LLM JUDGE PROMPT

We used the LLM judge only for the mode identification task, where model responses were often
difficult to evaluate using rule-based methods. Many responses implied an answer but did not state
it clearly or follow a consistent format, making extraction with regular expressions unreliable. For
the other two tasks—MLE and sampling—models typically followed the expected output format, or
when they did not, their responses clearly lacked an answer, making them easy to discard.

To ensure the judge’s reliability, we compared its decisions with human judgments on 100 randomly
selected responses. The judge matched human decisions in 99 cases, indicating its reliable judgments.

To automate evaluation, the judge model receives the task, expected output, and model response, and
decides whether the response is correct.

Below, is the system prompt used for our judge LLM, Llama3.3-70B

You are an expert evaluator assessing the correctness of responses. Your task is to judge whether
a response is correct based on an expected answer. If the response correctly conveys the intended
meaning, mark it Correct. Otherwise, mark it Incorrect.

The template of the user prompt that is provided to the judge model is given below:

Given the following question, expected answer, and response, judge whether the response is
correct. Clearly state your judgment as "Judgment: Correct." or "Judgment: Incorrect.".

Question: [question]

Expected Answer: [expected]

Response to Evaluate: [response]

Judgment (Correct/Incorrect):
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Table 3: Performance comparison of different models in zero-shot vs one-shot settings across four
tasks with |L| = 54. Mode identification tasks are evaluated using accuracy, while MLE tasks are
evaluated using total variation distance (TVD).

joint-mode cond-mode joint-MLE cond-MLE

Model zero-shot one-shot zero-shot one-shot zero-shot one-shot zero-shot one-shot

Llama3.1-8B 0.21 0.88 0.62 0.93 0.02 0 0.198 0.082
Qwen2.5-7B 0.65 0.98 0.60 0.87 0.006 6e-05 0.177 0.041
DeepSeek-R1Distill-Qwen-7B 0.86 0.9 0.83 0.95 0.02 0.001 0.100 0.09
Llama3.3-70B 0.97 1.0 0.95 1.0 4e-04 0 0.084 0.004
GPT-4o-mini 0.80 1.0 0.88 1.0 1e-04 0 0.084 0.003
GPT-4.1-mini 0.96 1.0 1.0 1.0 1e-04 0 0.016 3e-04

E ONE-SHOT PROMPTING

As illustrated in Tables 1 and 2, models tend to struggle on the more complex tasks when relying
solely on their pretraining knowledge. To address this, we designed a set of experiments in which
each prompt was augmented with a single, simpler example of the task. Specifically, we included an
example with |L| = 12 along with its step-by-step solution, followed by the target, more challenging
task with |L| = 54, and asked the model to solve it.

As shown in Table 3, this one-shot prompting strategy substantially improved the models’ accuracy,
highlighting the impact of providing minimal guidance on solving the harder problems. Interestingly,
we observed that the performance of smaller models with just one in-context example closely matched
the zero-shot performance of much larger models, underscoring the strength of in-context learning as
a way to compensate for smaller model size.

An example of the one-shot prompt used in our experiments is provided below.

Task Definition: Consider the joint probability distribution of a set of discrete random variables.
You will be provided with the frequencies of each outcome of the joint distribution in a set of
independently drawn samples. Your task is to identify the mode (the most probable outcome) of a
specific conditional distribution.

— EXAMPLE with Solution—

Consider discrete random variables X, Y, Z with joint distribution P(X, Y, Z) where X
can take outcomes from A, B, Y can take outcomes from C, D, Z can take outcomes from E, F, G.
In 60 independent samples drawn from the joint distribution P(X, Y, Z), the observed frequencies
are:
- (A, C, E): 5
- (A, C, F): 7
- (A, C, G): 3
- (A, D, E): 10
- (A, D, F): 2
- (A, D, G): 3
- (B, C, E): 6
- (B, C, F): 8
- (B, C, G): 2
- (B, D, E): 3
- (B, D, F): 3
- (B, D, G): 8

Example Task (solved): Identify the mode (most probable outcome) of the conditional
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distribution P(Z | X = A).

Step-by-step solution:

1. Extract rows where X = A:
(A,C,E):5, (A,C,F):7, (A,C,G):3, (A,D,E):10, (A,D,F):2, (A,D,G):3.

2. Aggregate counts by Z among those rows:
- Count(Z = E | X = A) = 5 + 10 = 15.
- Count(Z = F | X = A) = 7 + 2 = 9.
- Count(Z = G | X = A) = 3 + 3 = 6.

3. Total samples with X = A = 15 + 9 + 6 = 30.

4. Compute empirical conditional probabilities.
- P(Z = E | X = A) = 15 / 30 = 0.5
- P(Z = F | X = A) = 9 / 30 = 0.3
- P(Z = G | X = A) = 6 / 30 = 0.2

5. Identify the mode: Z = E (highest probability 0.5).

Final Answer:
Most probable value of Z given X=A is E
— END EXAMPLE —

Main Task:
Consider 4 discrete random variables X, Y, Z, T, where X can take outcomes from A, B, C, Y can
take outcomes from D, E, Z can take outcomes from F, G, H, T can take outcomes from I, J, K.
In 270 independent samples drawn from their joint distribution P(X, Y, Z, T), the observed
frequencies are:

- (A, D, F, I): 6
- (A, D, F, J): 3
...
- (C, E, H, I): 4
- (C, E, H, J): 2
- (C, E, H, K): 1

Main Task (to solve): Identify the mode (most probable outcome) of the conditional distribution
P(X | Y = E).

Instructions:
1. Do not write any code or pseudocodes.
2. Strictly follow the output format below.
3. You may explain your reasoning, but the final answer should be explicitly summarized at the
end. You get negative penalty for not following the output format.

Output Format that you should strictly follow:
Most probable value of X given Y=E is
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Table 4: Independence analysis of generated samples by each model. Reported values include
the Durbin–Watson (DW) statistic and transition matrix entropy. Samples are classified as non-
independent if DW < 1.5 or > 2.5, or if the entropy ratio < 0.8.

Model (DW) statistic entropy-ratio Is independent?

Llama-3.1-8B-Instruct 0.118 0.245 No
Qwen2.5-7B-Instruct-1M 0.002 0.209 No
DeepSeek-R1-Distill-Qwen-7B 0.002 0.195 No
Llama3.3-70B 0.153 0.323 No
GPT-4o-mini 0.636 0.608 No
GPT-4.1-mini 0.149 0.336 No

F INDEPENDENCE OF GENERATED SAMPLES

In our observations, LLM-generated samples are not fully independent and often follow or-
dering patterns similar to those in the input prompt. For example, as illustrated below,
DeepSeek-R1-Distill-Qwen explicitly acknowledges the need to shuffle the samples. How-
ever, due to the lack of access to a code interpreter or true randomness, it prioritizes matching target
frequencies over enforcing independence:

"So, the final step is to create a list of 84 triplets, where each triplet is repeated according to its count,
and then the list is shuffled to randomize the order. But since I can’t perform the shuffling here, I’ll
have to present the triplet counts and note that the actual output would be a shuffled list"

To investigate this phenomenon more systematically, we conducted additional analyses using two
statistical methods: (1) the Durbin–Watson (DW) statistic (Durbin & Watson, 1951) to detect
autocorrelation, and (2) transition matrix entropy (Shannon, 1948) to evaluate diversity in transition
patterns. Samples are classified as non-independent based on the aggregated results of these two
measures. Table 4 reports the corresponding statistics for samples generated by each model.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 5: Frequencies of joint distribution outcomes for the selected subset of the Mushroom dataset.
Each column corresponds to one outcome of the joint distribution, along with its frequency in 80
samples. The distribution is highly skewed, with several outcomes having zero frequency.

Mushroom Feature Labels

gill-attachment f f f f f f f f a a a a a a a a
gill-size b b b b n n n n b b b b n n n n
gill-color k g p o k g p o k g p o k g p o

Frequency 13 17 34 0 2 0 9 0 0 0 0 0 0 0 0 0

Table 6: Performance of different models across all six task configurations on the Mushroom dataset.
Mode identification tasks are evaluated using accuracy, while MLE and sampling tasks are evaluated
using total variation distance (TVD).

Model joint-mode cond-mode joint-MLE cond-MLE joint-samp cond-samp

Llama-3.1-8B-Instruct 80 78 0.011 0.111 0.465 0.414
Qwen2.5-7B-Instruct-1M 95 75 0.003 0.131 0.544 0.441
DeepSeek-R1-Distill-Qwen-7B 96 96 0.002 0.100 0.237 0.173
Llama3.3-70B 100 100 0.0 0.005 0.111 0.089
GPT-4o-mini 100 91 0.0 0.028 0.287 0.352
GPT-4.1-mini 100 100 0.0 0.0 0.193 0.218

G EVALUATION ON REAL-WORLD DATA

To validate our findings on real-world data, we conducted experiments on the Mushroom dataset
(mus, 1981), focusing on three categorical features and a subset of 80 samples. The resulting joint
distribution is highly skewed, with a large proportion of zero-frequency outcomes, making the task
particularly challenging. Table 5 summarizes the observed outcomes and their frequencies in this
subset. The experimental results, detailed in Table 6, show that larger models, as well as distilled
variants, consistently outperform smaller models across all task configurations.
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Figure 4: Accuracy on joint-mode task with fixed joint space size |L| = 12 as the number of observed
in-context samples increases.

H EFFECT OF SAMPLE COUNT IN CONTEXT

To investigate the impact of input length independently from task complexity, we fixed the joint space
size at |L| = 12 and varied the number of observed samples K provided in the prompt. As shown
in Figure 4, increasing the number of in-context samples leads to a clear drop in accuracy for both
models. This degradation suggests that the challenge stems not just from the probabilistic reasoning
task itself, but also from the models’ limited capacity to process and reason over longer contexts.
This highlights a core limitation in current LLMs and points to context scaling as a key direction for
future improvement.
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Table 7: Accuracy of GPT-4.1-mini on the joint-mode task under three configurations across
different joint sizes. Results show that accuracy in the samples-in-context setting with access to code
interpreter closely matches the frequencies-provided case.

Setting |L| = 12 |L| = 27 |L| = 36 |L| = 54

Frequencies in context 1.0 1.0 0.99 0.96
Raw samples in context 0.87 0.71 0.55 0.28
Raw samples + code interpreter 1.0 1.0 0.99 0.97

I ACCESS TO CODE INTERPRETER

In the frequency-based setting, both Llama3.3-70B and GPT-4.1-mini achieved near-perfect
accuracy, but their performance degraded sharply when asked to infer frequencies directly from
raw samples due to limited counting abilities. To explore mitigation strategies, we conducted an
additional set of experiments with GPT-4.1-mini augmented with access to a code interpreter. In
this setup, prompts encouraged the model to write Python code to count outcome frequencies before
solving the joint-mode task. This hybrid approach led to a substantial performance gain. As shown in
Table 7, accuracy levels were restored to nearly those observed in the frequency-provided condition,
demonstrating that the main limitation lies in the models’ ability to perform reliable counting over
long contexts rather than in reasoning about the task itself.
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