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Abstract
Document Visual Question Answering (VQA) de-
mands robust integration of text detection, recog-
nition, and spatial reasoning to interpret com-
plex document layouts. In this work, we intro-
duce DLaVA, a novel, training-free pipeline that
leverages Multimodal Large Language Models
(MLLMs) for zero-shot answer localization in
order to improve trustworthiness, interpretabil-
ity, and explainability. By leveraging an inno-
vative OCR-free approach that organizes text re-
gions with unique bounding box IDs, the pro-
posed method preserves spatial contexts without
relying on iterative OCR or chain-of-thought rea-
soning, thus substantially reducing the computa-
tional complexity. We further enhance the eval-
uation protocol by integrating Intersection over
Union (IoU) metrics alongside Average Normal-
ized Levenshtein Similarity (ANLS), thereby en-
suring that not only textual accuracy is consid-
ered, but spatial accuracy is taken into account,
ultimately reducing the risks of AI hallucinations
and improving trustworthiness. Experiments on
benchmark datasets demonstrate competitive per-
formance compared to state-of-the-art techniques,
with significantly lower computational complex-
ity and enhanced accuracies and reliability for
high-stakes applications. The code and datasets
utilized in this study for DLaVA are accessible at:
https://github.com/ahmad-shirazi/AnnotMLLM.

1. Introduction
Document Visual Question Answering (VQA) stands at the
intersection of computer vision and natural language pro-
cessing, aiming to answer questions based on the content
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Figure 1. Examples of visual information extraction on images
from the CORD dataset (Park et al., 2019): questions are displayed
at the top in colored fonts, with the corresponding answers high-
lighted by matching colored boundary boxes.

of a document image. This task is inherently challenging
due to the need for a model to not only accurately recog-
nize and interpret textual information within complex visual
layouts but also to reason about the spatial relationships
and semantics of the content. Effective solutions require a
harmonious integration of text detection, recognition, and
contextual understanding to bridge the gap between visual
data and linguistic queries (Ishmam et al., 2024). Figure 1
presents some examples of visual information extraction,
showcasing document annotations from the CORD dataset
(see Appendix A and B for more details).

Existing approaches, such as LayoutLMv3 (Huang et al.,
2022), LayoutLLM (Luo et al., 2024), LayTextLLM (Lu
et al., 2024), and DocLayLLM (Liao et al., 2024), have
made significant progress in visual question answering and
layout analysis. However, these methods come with sev-
eral limitations. They often rely on chain-of-thought (CoT)
reasoning or iterative OCR processes for spatial grounding,
which incur high computational costs and require extensive
fine-tuning. Furthermore, these methods are evaluated on
metrics like Average Normalized Levenshtein Similarity
(ANLS) (Yujian & Bo, 2007) that focus primarily on textual
accuracy while overlooking the spatial correctness of the pre-
dicted answers. As a result, these approaches typically lack
precise answer localization, thereby limiting interpretability
and explainability—challenges that are particularly criti-
cal in high-stakes applications such as legal, medical, and
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Figure 2. DLaVA Model Architecture. This diagram illustrates our final single-pipeline design. In the text detection step, detected text
regions generate two outputs: a series of cropped images that are reorganized into a “constructed image” with unique bounding box
identifiers (e.g., BB1, BB2, BB3, etc.) and their corresponding bounding box coordinates (e.g., BB1 [10, 10, 60, 30], BB2 [70, 10, 140,
30], etc.). The approach then leverages a two-stage MLLM pipeline. In Stage 1, the original image and the user’s question are provided
to the MLLM to derive an initial textual answer. In Stage 2, the constructed image—comprising all cropped images with their BB
IDs—along with the recorded bounding box coordinates and the initial QA pair are fed back into the MLLM to refine spatial localization.
This integrated design eliminates the need for iterative OCR and reduces computational overhead, culminating in a final annotation
module that delivers the final answer along with precise bounding box annotations. Numbered circles denote sequential processing steps
(see Section 3 for more details).

financial document analysis (Huang et al., 2024).

Motivated by these challenges, we propose a novel, zero-
shot (training-free) OCR-free pipeline that harnesses the
inherent visual understanding of MLLMs to directly ex-
tract and localize answers from document images. Unlike
conventional OCR-dependent methods ((Mohammadshirazi
et al., 2024))—which often suffer from cascading errors and
high computational complexity—our approach bypasses the
need for iterative OCR by constructing a single image that
comprises detected text regions with unique bounding box
identifiers, thereby preserving essential spatial relationships
while significantly reducing computational overhead.

The proposed design is driven by several key motivations:
firstly, by consolidating text information into a single con-
structed image rather than sending all recognized text as
prompts, typical in OCR-dependent methods, we reduce the
token count, which is crucial for avoiding context window
overflow (e.g., the 128k token limit for Pixtral) and ensur-
ing that the MLLM can process the input effectively; sec-
ondly, the constructed image approach bypasses the iterative
OCR processing required for each cropped image, thereby
streamlining the pipeline and reducing computational over-
head; and finally, instead of processing multiple separate
cropped images—which may exceed the MLLM’s input lim-
itations—we combine them into a single constructed image,
making the model more efficient and suitable for spatial
reasoning. We demonstrate the effectiveness of our model
by comparing it with an OCR-dependent baseline, and em-
pirical evaluations confirm that our model not only attains
state-of-the-art (SoTA) textual accuracy but also achieves ro-

bust spatial grounding, establishing its potential as a viable
alternative to CoT or OCR-dependent solutions. Building
on this foundation, our contributions are threefold:

1. Zero-shot spatial grounding for MLLMs. A training-
free pipeline that equips off-the-shelf MLLMs with an-
swer localization in document images, reducing com-
plexity versus CoT or fine-tuning approaches.

2. Constructed-image architecture. A novel design that
integrates text detection into a compact “constructed
image,” eliminating external OCR and preserving layout
context for superior efficiency and accuracy.

3. Unified ANLS + IoU evaluation. A rigorous framework
combining ANLS and IoU (Rezatofighi et al., 2019) to
measure both textual and spatial accuracy, enhancing
interpretability and mitigating hallucinations.

2. Related Work
Information extraction systems initially relied on statisti-
cal and topic-based classifiers 2020 before transitioning
to layout- and vision-aware architectures. Recent multi-
modal document processing research spans four key ar-
eas. Text detection has advanced through differentiable
binarization (DBNet (Liao et al., 2020)), irregular-shape
handling (FAST (Chen et al., 2021)) and receptive-field fu-
sion (MixNet (Zeng et al., 2023)). Recognition evolved
from sequence-and-attention models (CRNN (Shi et al.,
2016), SAR (Li et al., 2019), MASTER (Lu et al., 2021))
to transformer-based approaches (ViTSTR (Atienza, 2021),
PARSeq (Bautista & Atienza, 2022), MaskOCR (Lyu et al.,
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2022), TrOCR (Li et al., 2023), DTrOCR (Fujitake, 2024)).
Information extraction leverages both OCR-free architec-
tures (Donut (Kim et al., 2022), UDOP (Tang et al., 2023),
OmniParser (Wan et al., 2024)) and OCR-dependent models
that incorporate positional cues (ICL-D3IE (He et al., 2023),
LATIN-Prompt (Wang et al., 2023), Cream (Kim et al.,
2023), InstructDoc (Tanaka et al., 2024)). Layout-aware
methods (LayoutLLM (Luo et al., 2024), DocLayLLM
(Liao et al., 2024), LayTextLLM (Lu et al., 2024)) further in-
tegrate spatial structure, but typically rely on separate OCR
steps or extra encoders, increasing complexity and inference
time. In contrast, our unified MLLM merges text recog-
nition and spatial reasoning in a single end-to-end model,
improving both efficiency and localization precision.

3. DLaVA
This section describes our proposed DLaVA approach for
zero-shot, OCR-free information extraction from docu-
ments, as illustrated in Figure 2. By harnessing the power
of MLLM, our method directly extracts and localizes infor-
mation from document images without relying on iterative
OCR processing, thereby achieving robust structural accu-
racy while balancing computational efficiency with precise
spatial grounding. The DLaVA approach is comprised of
the following steps: (1) Text Detection Module: The orig-
inal document image I is processed using a text detection
model—DB-ResNet-50 (Liao et al., 2020), as shown in
step 1 in Figure 2 as its real-time differentiable binarization
method delivers superior boundary localization with high
computational efficiency—a critical balance for structured
data extraction in document images that is not as effectively
achieved by FAST’s emphasis on irregular text shapes or
MixNet’s complexity in handling intricate scenes. This
model outputs bounding boxes for each text segment in the
image. The detected bounding boxes are represented as:

BB = {BB1, BB2, . . . , BBn}

where each BBi is a bounding box coordinate
[xi1, yi1, xi2, yi2], labeled as step 2 in Figure 2. Each
bounding box BBi is used to crop a segment of the image
I , isolating individual words or phrases. The cropped image
for BBi is denoted by: Ci = I[BBi]

(2) Constructed Image Creation: Instead of performing
OCR on each cropped image, the bounding box images
are arranged to form a “constructed image,” illustrated in
step 3 of Figure 2. Each bounding box BBi is assigned a
unique ID for easy reference. The constructed image, IC ,
is an assembly where each line contains a cropped image,
followed by its corresponding bounding box ID:

IC = {(C1, BB1), (C2, BB2), . . . , (Cn, Bn)}

For example, if the document contains sentences like “THE
STATE OF TEXAS...”, after text detection, we obtain

cropped images of individual words such as ”THE” (C1),
“STATE” (C2), “OF” (C3), and “TEXAS” (C4). In the con-
structed image IC , each line would display the words with
their bounding box IDs in sequence (e.g., the first line shows
“THE (BB1)”, the second line “STATE (BB2)”, etc.).

(3) Information Extraction Model: In parallel, the MLLM
- Pixtral-12B model (Agrawal et al., 2024) receives the input
image I and the query Q (step 4) to generate the answer
text A. The generated answers, together with their corre-
sponding questions (Q+A), are passed as an input to the
final MLLM.

(4) Final MLLM Processing: In the final step (step 5), the
Pixtral-12B model utilizes the bounding box coordinates
from step 2, the constructed image IC from step 3, and the
question-answer pair from step 4 to generate the answer’s
bounding box BA and return it along with the answer A.
Subsequently, post-processing scripts are applied to anno-
tate the returned answer based on the coordinates of BA.

Handling Cascading Errors: Our approach avoids cas-
cading errors by eliminating the explicit text recognition
(OCR) step entirely. In traditional OCR-based systems,
any misrecognition of text in the initial OCR stage propa-
gates through subsequent stages, leading to errors in answer
extraction and localization. In contrast, our method lever-
ages an MLLM to directly extract and localize information
from document images. We first detect text regions and
then create a “constructed image” that consolidates these
regions along with their unique bounding box identifiers and
corresponding coordinates. This unified representation is
processed in one go—first to generate an initial answer and
later to refine spatial localization—thereby bypassing the
need for iterative OCR and preventing errors from accumu-
lating. Furthermore, any inaccuracies introduced during the
text detection phase are mitigated by the final MLLM (step
5), which leverages the overall contextual information to
correct inconsistencies (Liu et al., 2024). This streamlined
pipeline not only enhances accuracy but also improves com-
putational efficiency and robustness in answer localization.

4. Experiments
4.1. Datasets and Experimental Setup

We evaluated our proposed model on several well-
established, text-rich document datasets commonly used
for VIE and Document VQA tasks. For VIE-related ques-
tion answering, we utilized the FUNSD (Jaume et al.,
2019), CORD (Park et al., 2019), and SROIE (Huang
et al., 2019) datasets. In the domain of Document VQA,
we assessed performance using the DocVQA (Mathew
et al., 2021), RICO (Deka et al., 2017) datasets, and
Scene Text+Evidence Visual Question Answering (STE-
VQA) (Wang et al., 2020). All experiments run on a single
NVIDIA A100 GPU (80 GB) for fair comparison.
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Table 1. Comparison of DLaVA with SoTA models on benchmark datasets using ANLS evaluation metric

Model Category Models Document VQA QA for VIE

DocVQA STE-VQA RICO FUNSD CORD SROIE

Text Llama2-7B-Chat (Touvron et al., 2023) 64.99 52.14 59.49 48.20 47.70 68.97
Llama3-8B-Instruct (Dubey et al., 2024) 51.79 54.65 58.81 68.57 52.31 61.24

Text + BBox LayTextLLM (Llama2-7B) (Lu et al., 2024) 72.83 - - 78.65 70.81 83.27

Text + BBox + Image

LayoutLLM-7B CoT (Llama2-7B) (Luo et al., 2024) 74.25 - - 78.65 62.21 70.97
LayoutLLM-7B CoT (Vicuna-1.5-7B) (Luo et al., 2024) 74.27 - - 79.98 63.10 72.12
DocLayLLM (Llama2-7B) (Liao et al., 2024) 72.83 - - 78.65 70.81 83.27
DocLayLLM (Llama3-7B) (Liao et al., 2024) 78.40 - - 84.12 71.34 84.36

Image

Phi4-14B (Abdin et al., 2024) 79.84 60.22 68.49 77.64 77.03 80.12
Llama3.2-11B (Dubey et al., 2024) 78.4 48.14 53.47 65.02 42.96 61.42
Pixtral-12B (Agrawal et al., 2024) 80.71 61.67 70.31 78.26 79.08 82.24
LLaVA-NeXT-13B (Liu et al., 2023) 51.01 13.77 25.12 19.71 33.5 13.41
LLaVA-OneVision-7B (Li et al., 2024) 47.59 22.39 19.54 22.82 32.43 12.10
Qwen2.5-VL-7B (Bai et al., 2025) 68.54 61.41 56.42 58.44 39.01 56.37
InternVL2-8B (Chen et al., 2024b) 71.26 59.74 44.81 57.58 55.88 81.55

Image + BBox DLaVA (Pixtral-12B) 85.91 66.96 76.34 87.57 82.08 91.42

We report the ANLS (Yujian & Bo, 2007), and the
mean Average Precision at IoU thresholds 0.50–0.95
(mAP@IoU[0.50:0.95]) (Rezatofighi et al., 2019) for eval-
uating our model against baselines. Hyperparameters and
prompt formats are detailed in Appendices C and D.

4.2. Baseline Models
To evaluate the effectiveness of our proposed approach, we
compare it against a diverse set of state-of-the-art baselines
spanning both OCR-free and OCR-dependent paradigms.
The OCR-free baselines include Phi4-14B (Abdin et al.,
2024), PixTral-12B (Agrawal et al., 2024), InternVL v2-
8B (Chen et al., 2023; 2024a), Qwen2.5-VL 7B (Bai et al.,
2025), LLaVA-OneVision 7B (Li et al., 2024), LLaVA-
NeXT-13B (Liu et al., 2023), and LLaMA 3.2-11B (Dubey
et al., 2024). For OCR-dependent models, we include
LLaMA 2-7B-Chat (Touvron et al., 2023), LLaMA 3-
8B-Instruct (Dubey et al., 2024), LayoutLLM-7B (Luo
et al., 2024), DocLayLLM (Liao et al., 2024), and Lay-
TextLLM (Lu et al., 2024). These baselines allow for com-
prehensive comparison in both textual accuracy and spatial
localization.

It is to be noted that STE-VQA and RICO entries are omit-
ted for Text+BBox and Text+BBox+Image models due to
lack of publicly available implementation and inference
support for these datasets at the time of writing. See Ap-
pendix E.1 for a detailed justification of baseline selection
and categorization.

5. Results and Discussion
We benchmark DLaVA against leading baselines on six
datasets using ANLS (Table 1), and it’s evident that DLaVA

outperforms the strongest competing model by +11.6 pp
on DocVQA and +7.1 pp on SROIE, with average gains
of +8.5 pp across all six ANLS benchmarks. These results
underscore how our zero-shot OCR-free, constructed-image
pipeline elevates both multilingual text understanding and
layout-aware reasoning.

Appendix E presents three ablations—(1) adding raw image
input, (2) removing the information extraction module, and
(3) using an OCR-dependent variant—demonstrating that
both bounding-box fusion and the two-stage design each
contribute 2–5 pp improvements in ANLS and IoU.

By collapsing multiple stages into a single zero-shot MLLM
call, DLaVA greatly simplifies the system architecture, cut-
ting inference latency and memory footprint, making it a
streamlined, resource-efficient design that minimize com-
pute, time, memory, bandwidth, and energy requirements.

6. Conclusion
In this paper, we introduce DLaVA, a unified, zero-
shot OCR-free document VQA model built on a two-
stage MLLM pipeline that removes the separate OCR
step—reducing token overhead and error cascades—while
directly injecting spatial context for precise localization.
Our approach achieves SoTA ANLS and IoU on bench-
marks like DocVQA and VIE, demonstrating both superior
textual accuracy and robust bounding-box alignment. Cru-
cially, explicit spatial annotations enhance interpretability
and trustworthiness by enabling users to verify each answer
against its source region. DLaVA’s streamlined, resource-
efficient design thus sets a new standard for reliable and
transparent document understanding.
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Appendix

A. Examples of Ground Truth Answer
Annotations

Appendix A presents some examples of ground truth annota-
tions from the CORD and FUNSD datasets. These examples
illustrate how document understanding tasks handle diverse
document formats and content types.

Figure 3a depicts a document example from the FUNSD
dataset, showcasing the structured layout of annotated key-
value pairs in a form-like document. It highlights the ability
to capture complex relationships between fields, such as
dates, phone numbers, and textual descriptions.

Figure 3b displays a receipt example from the CORD
dataset, emphasizing the annotation of essential receipt com-
ponents like item quantity, unit price, total amount, and item
names. This example underscores the importance of anno-
tating critical transactional information typically found in
unstructured receipt data.

Figure 3c demonstrates another similar receipt from the
CORD dataset.

B. Examples of Predicted Answer Annotations
Appendix B presents the answers and annotations generated
by our proposed model, DLaVa (OCR-Free), for the same
documents discussed in Appendix C. These examples
provide insights into the model’s ability to handle diverse
document formats, such as structured forms and unstruc-
tured receipts, without relying on OCR. The illustrations
highlight how DLaVa identifies key information and maps
it to corresponding document regions, showcasing both
its strengths and limitations. For example, the model
demonstrates high semantic accuracy in extracting answers,
as reflected in high ANLS scores, but sometimes struggles
with precise spatial alignment, leading to lower IoU scores
in some cases. By comparing these predictions with the
ground truth annotations in Appendix A, readers can
better understand the model’s performance and areas for
improvement.

Figure 3c shows a sample document where both the answers
and their locations were identified with high precision by
our model (as shown in Figure 4c). This resulted in an
ANLS score of 100% and an IoU nearly 100%, as the
model accurately captured the ground truth information.

Analysis for low IoU score between predicted and ground
truth annotations for some cases:

1. First, let us analyze a sample from FUNSD dataset.
Figure 3a shows the ground truth answers for this sam-
ple along with their annotations, and Figure 4a shows
the answers and annotations returned by our model
DLaVa (OCR-Free) for the same document.
The IoU score for the “Message” field of this document
was observed to be 5.89%, despite achieving a high
ANLS score of 70.73%. This discrepancy can be at-
tributed to the differing interpretation of the message’s
spatial extent between the ground truth (Figure 3a) and
the predicted annotations (Figure 4a).
In the ground truth annotation, the bounding box in-
cludes the specific textual region containing the date
component (“Jan 12, 1999”) within the broader mes-
sage context, towards the end of the box. However,
our model’s prediction restricts the bounding box to
the “Message” content, omitting the date. This mis-
alignment results in a smaller predicted bounding box
compared to the ground truth, thereby reducing the
overlap and, consequently, the IoU score.
This outcome highlights a common challenge in
document understanding tasks, where predicted
annotations may fail to encapsulate all semantically
relevant content included in the ground truth. The low
IoU score does not necessarily imply poor semantic
accuracy but instead reflects a divergence in bounding
box definitions.

2. Let us analyze another sample from the CORD dataset.
Figure 3b shows the ground truth answers for this sam-
ple along with their annotations, and Figure 4b shows
the answers and annotations returned by our model
DLaVa (OCR-Free) for the same document.
Here, in the task of extracting the “Total Price of Menu”
from receipt images, we observed that the IoU score
was 0%, despite achieving a perfect ANLS score of
100%. This mismatch highlights an important limi-
tation in the spatial alignment of predicted bounding
boxes with the ground truth.
In this instance, the value “11,000” appears multiple
times in the document, corresponding to different se-
mantic fields (e.g., item price, subtotal, total price).
While the model successfully identified the correct
value for the “Total Price of Menu,” it incorrectly an-
notated a bounding box around the “11,000” value
associated with the total price of receipt rather than
the ground truth location of the “11,000” value corre-
sponding to the total price of the menu. This resulted
in no overlap between the predicted and ground truth
bounding boxes, leading to an IoU score of 0%.
This case illustrates a common challenge in structured
document understanding tasks where identical values
appear in different semantic contexts. Resolving
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such issues requires incorporating additional con-
textual understanding into the model to ensure that
annotations are correctly aligned with the intended
semantic field. As a part of the future work, we plan
to explore incorporating positional priors, cross-field
dependencies, or explicit disambiguation mechanisms
to improve alignment between predictions and ground
truth annotations.

C. Hyperparameter Details
We set the hyperparameters for each component in our
framework to achieve an optimal balance between model
efficiency and accuracy. After rigorous experiments with
various hyperparameter ranges, we determined the following
combinations to be optimal for our model. The configura-
tions for each module are as follows:

• Pixtral-12B Model Hyperparameters:

- We set max tokens to 128k to avoid truncation
for large multi-modal prompts; this parameter can
be adjusted within the range of 8k to 128k.

- The temperature is fixed at 0.1, which lies
within the permissible range of 0.0 to 1.0.

- We use a top-p value of 1.0 to enforce greedy
selection under these constraints, with the value
allowed to vary between 0.0 and 1.0.

• DB Resnet-50:

- The binarization threshold (bin thresh) is set
to 0.3, which is within the acceptable range of 0.1
to 0.9.

- The box threshold is fixed at 0.1, and it may vary
between 0.1 and 0.9.

• PARSeq:

- The maximum sequence length for positional em-
beddings (max length) is set to 32, and it can
be adjusted between 16 and 256.

- All other hyperparameters for PARSeq remain at
their default values.

• Hyperparameter Optimization: We employed Op-
tuna for hyperparameter optimization, and the final
values were selected based on the best performance on
the validation set to ensure a robust balance between
computational efficiency and model accuracy.

D. Model Prompting Details
The model is prompted using the following inputs:

1. A set of questions.

2. The original input image where the answers to the
questions are located.

3. A JSON file containing the Bounding Box IDs (e.g.,
BB0, BB1, etc.) along with their corresponding bound-
ing box coordinates for each word in the original input
image.

4. A second image displaying all words from the original
input image along with their associated Bounding Box
IDs.

The prompt provided to the model is structured as follows:

Q u e s t i o n s :
{ u s e r q u e r i e s }

Bounding Box IDs and Bounding Box
C o o r d i n a t e s f o r each word :

{ b o u n d i n g b o x e s }

When f i n d i n g answer s t o t h e q u e s t i o n s ,
you a r e STRICTLY a l l o w e d t o answer
on ly u s i n g words p r e s e n t i n t h e
image . So , j u s t r e t u r n t h e words
from t h e image (AND no d e s c r i p t i o n
o f f u l l s e n t e n c e s ) .

J u s t match t h e words t h a t answer t h e
q u e s t i o n .

Your t a s k i s t o f i n d t h e answer t o
t h e s e q u e s t i o n s from t h e 1 s t image ,

and i d e n t i f y t h e Bounding Box
C o o r d i n a t e s f o r each answer .

Re tu rn a JSON i n t h e f o r m a t s p e c i f i e d
below . (NO A d d i t i o n a l I n f o r m a t i o n .
JUST JSON i n t h e f o l l o w i n g f o r m a t )

F i n a l Answer : <answer>

where <answer> s t r i c t l y a d h e r e s t o t h e
f o l l o w i n g s t r u c t u r e :

− <answer> s h o u l d be i n JSON f o r m a t .
− Each q u e s t i o n from t h e q u e s t i o n −

answer p a i r s w i l l be a key .
− For each q u e s t i o n :

− ” v a l u e ” : The answer t e x t (
c o n t a i n i n g on ly words found i n
t h e i n p u t image ; a v o i d p o i n t −
wise o r l i s t − s t y l e answer s ) .

− ” bound ing box ” : [ [ 0 . 3 0 3 7 ,
0 . 4 8 6 3 ] , [ 0 . 3 2 5 7 , 0 . 5 0 2 ] ] ( The

2
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(a) Document Example from FUNSD Dataset (b) Receipt from CORD Dataset

(c) Another receipt from the CORD Dataset

Figure 3. Illustrative Examples of Ground Truth Answer Annotations in Documents from the CORD and FUNSD Datasets
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(a) FUNSD – high ANLS, low IoU (b) CORD – high ANLS, low IoU

(c) CORD – high ANLS, high IoU

Figure 4. Examples of Predicted Answer Annotations in Documents from the CORD and FUNSD Datasets
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Table 2. Selecting best model for Text Recognition based on ANLS (for Ablation 3)

Models DocVQA STE-VQA RICO FUNSD CORD SROIE

PARSeq (Bautista & Atienza, 2022) 68.22 58.89 65.91 76.23 77.21 84.90
MaskOCR (Lyu et al., 2022) 66.83 55.18 59.99 75.42 77.65 83.38
TrOCR (Li et al., 2023) 64.86 59.11 63.43 75.01 76.59 81.92
DTrOCR (Fujitake, 2024) 67.93 60.08 63.77 76.11 77.19 85.33

bounding box c o o r d i n a t e s i n
t h i s e x a c t s t r u c t u r e ) .

( Ensure on ly n u m e r i c a l d i g i t s , no
NULL or empty v a l u e s , and

each c o o r d i n a t e i s s e p a r a t e d
by commas ) .

I f t h e answer c o n s i s t s o f m u l t i p l e
words :

− Use t h e f o l l o w i n g f o r m a t f o r ”
bound ing box ” :
” v a l u e ” : ”1 BLACK SAKURA”
” bound ing box ” : [

[ [ 0 . 0 9 7 1 6 7 9 6 8 7 5 , 0 . 4 5 8 9 8 4 3 7 5 ] ,
[ 0 . 2 2 3 1 4 4 5 3 1 2 5 ,
0 . 4 9 2 1 8 7 5 ] ] ,

[ [ 0 . 2 3 4 8 6 3 2 8 1 2 5 , 0 . 4 6 2 8 9 0 6 2 5 ] ,
[ 0 . 3 7 5 4 8 8 2 8 1 2 5 ,
0 . 4 8 7 3 0 4 6 8 7 5 ] ] ,

[ [ 0 . 3 8 7 2 0 7 0 3 1 2 5 , 0 . 4 6 1 9 1 4 0 6 2 5 ] ,
[ 0 . 5 5 5 6 6 4 0 6 2 5 ,

0 . 4 8 7 3 0 4 6 8 7 5 ] ]
]

A d d i t i o n a l I n s t r u c t i o n s :
− Ensure c o r r e c t p a i r i n g and match ing

of b r a c k e t s ( i . e . , ( ) , \{\} , [ ] ) .
− Each ” bound ing box ” must c o n t a i n

e x a c t l y f o u r n u m e r i c a l v a l u e s
f o r m a t t e d as two s e t s o f
c o o r d i n a t e s w i t h i n s q u a r e b r a c k e t s .

E. Ablation Study
We conduct the following ablation experiments to assess
the contributions of different components in our OCR-Free
pipeline (Ablation 1 and 2) and also compare it with an
OCR-dependent approach (Ablation 3):

• Ablation 1 - Additional Image Input: In this experi-
ment, we provide the original input image I as an extra
input to the final MLLM model (step 5 in Figure 2)
along with the other input components. This helps
us evaluate the impact of the full visual context on
the model’s performance in extracting and localizing

answers.

• Ablation 2 - Removal of Information Extraction:
Here, we remove the information extraction step (step
4) entirely, relying solely on the final MLLM (step 5)
for both question-answering and generating the corre-
sponding bounding boxes. This experiment isolates the
contribution of the dedicated information extraction
module and demonstrates its role in refining spatial
localization and answer accuracy.

• Ablation 3 - OCR-Dependent Approach: For com-
parison, we consider an OCR-dependent model that
incorporates a text recognition module (PARSeq
(Bautista & Atienza, 2022)) to convert cropped images
into text. Table 2 compares the text recognition accu-
racy of several cutting-edge OCR models (PARSeq,
MaskOCR, TrOCR, and DTrOCR) across multiple
benchmark datasets, and we observe that PARSeq
achieves overall higher accuracy, making it the pre-
ferred module for our experiments. In this approach,
a text detection model (DB-ResNet-50) is first used to
obtain the detected cropped images (step 3) along with
their corresponding bounding box coordinates (step
2). The cropped images are then passed to the text
recognition module (step 3*) to generate textual rep-
resentations, and the outputs from the text recognition
step—together with the bounding box information and
the input question—are fed into the final MLLM (step
5) to generate the answer A and its bounding box BBA.
Figure 5 shows the architecture of the OCR-dependent
model. This ablation serves as a baseline to highlight
the benefits of our unified OCR-free approach over tra-
ditional methods that rely on separate text recognition.

Table 3. Ablation Study Results: Comparison of DLaVA and its
ablation variants using ANLS metric on Doc. VQA & QA for VIE
Models DocVQA EST-VQA RICO FUNSD CORD SROIE

DLaVA 85.91 66.96 76.34 87.57 84.41 91.42
Ablation 1 83.55 64.01 69.41 83.28 79.08 85.36
Ablation 2 82.26 62.51 73.86 84.35 81.91 86.02
Ablation 3 74.02 62.70 71.99 79.57 82.08 90.45
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Multimodal Large Language Model (MLLM)
BBox: [321, 133, 507, 153]

Answer: "SCIENCE & TECHNOLOGY"

Q: "What is the
DEPARTMENT NAME?"

Text Detection

  [10, 10, 60, 30]

Cropped Image

2

Text Recognition

4

3*

Bounding Box

1 3

Intermediate Steps

Final MLLM Inputs

MLLM

5

Figure 5. Architecture of OCR-Dependent Model (Ablation 3)

E.1. Ablation Study Results

We evaluate our proposed DLaVA model alongside three
ablation variants (Ablation 1, Ablation 2, and Ablation 3 as
described in the previous Section) on Document VQA and
VIE tasks using the ANLS metric (see Table 3). DLaVA
achieves the highest ANLS scores across all evaluated
datasets, demonstrating its ability to accurately extract and
interpret text information without reliance on iterative OCR.
In contrast, Ablation 1 and Ablation 2—where either the
original image was added as input or the information extrac-
tion step is removed—show reduced ANLS performance,
underscoring the importance of both components for boost-
ing textual accuracy and overall model effectiveness. Abla-
tion 3, which incorporates an OCR-dependent process, also
exhibits lower ANLS scores, indicating that our zero-shot
OCR-free design is more robust to potential errors intro-
duced by text recognition.

Table 4. Ablation Study Results: Comparison of DLaVA and its
ablation variants using IoU (mAP@IOU[0.50:0.95]) metric on
Document VQA and QA for VIE

Models DocVQA EST-VQA RICO FUNSD CORD

DLaVA 46.22 33.65 38.13 45.52 57.86
Ablation 1 44.01 28.08 29.88 32.71 45.45
Ablation 2 39.41 30.49 33.56 37.12 46.69
Ablation 3 34.93 31.37 32.66 31.98 48.01

Table 4 reports the IoU scores for the same set of abla-
tion experiments, focusing on bounding box localization.
DLaVA again outperforms all ablation variants, reflecting
its stronger spatial grounding capabilities. In particular,
removing the dedicated information extraction step or ex-
cluding the original image input leads to noticeably lower
IoU scores, highlighting how these design choices facilitate
more precise bounding box predictions. Meanwhile, Abla-
tion 3’s reliance on an external OCR stage can introduce

cascading localization errors, resulting in lower IoU.

Taken together, the ANLS and IoU metrics offer a holistic
perspective—capturing both answer quality and localization
precision. Compared to rule-driven or handcrafted classi-
fiers (Guha Neogi & Goswami, 2021), DLaVA’s unified
MLLM pipeline offers better generalization with less tun-
ing, as it eliminates the need for task-specific components
like custom matchers or segmenters. This makes DLaVA
especially effective in diverse, zero-shot document VQA
settings.

Appendix F: Justification for Baseline
Selection
To ensure a fair and comprehensive evaluation of DLaVA,
we carefully selected baselines that span the full spectrum
of document VQA paradigms:

1. OCR-Free Multimodal Baselines: We include state-of-
the-art vision-language models such as Phi4-14B, PixTral-
12B, InternVL2-8B, Qwen2.5-VL-7B, LLaVA-OneVision,
and LLaVA-NeXT. These models directly process images
and questions without relying on OCR, allowing us to bench-
mark against the latest zero-shot visual language models.
These models also highlight limitations in spatial reasoning
when explicit grounding is not enforced.

2. OCR-Dependent LLM Baselines: We benchmark
against OCR-enhanced models like LayoutLLM, Do-
cLayLLM, LayTextLLM, LLaMA2-7B-Chat, and LLaMA3-
8B-Instruct, which leverage textual prompts or positional
information extracted through OCR. These represent strong
traditional baselines in document understanding that rely
heavily on pre-extracted text and bounding boxes, show-
casing the trade-off between interpretability and pipeline
complexity.
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3. Layout-Aware LLMs: To specifically test layout rea-
soning, we include models that interleave text and spatial
signals, such as DocLayLLM and LayoutLLM. These pro-
vide insight into how structured layout-aware processing
compares to our constructed image approach in both accu-
racy and spatial grounding.

This comprehensive mix ensures our evaluation spans across
(i) visual-only, (ii) OCR-based, and (iii) layout-enhanced
models—allowing us to isolate the benefits of DLaVA’s
zero-shot, OCR-free, and spatially grounded design.
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