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Abstract

Optimization is at the core of modern deep learning. We propose AdaBelief1

optimizer to simultaneously achieve three goals: fast convergence as in adaptive2

methods, good generalization as in SGD, and training stability. The intuition3

for AdaBelief is to adapt the stepsize according to the "belief" in the current4

gradient direction. Viewing the exponential moving average (EMA) of the noisy5

gradient as the prediction of the gradient at the next time step, if the observed6

gradient greatly deviates from the prediction, we distrust the current observation7

and take a small step; if the observed gradient is close to the prediction, we trust it8

and take a large step. We validate AdaBelief in extensive experiments, showing9

that it outperforms other methods with fast convergence and high accuracy on10

image classification and language modeling. Specifically, on ImageNet, AdaBelief11

achieves comparable accuracy to SGD. Furthermore, in the training of a GAN12

on Cifar10, AdaBelief demonstrates high stability and improves the quality of13

generated samples compared to a well-tuned Adam optimizer.14

1 Introduction15

Modern neural networks are typically trained with first-order gradient methods, which can be broadly16

categorized into two branches: the accelerated stochastic gradient descent (SGD) family [1], such as17

Nesterov accelerated gradient (NAG) [2], SGD with momentum [3] and heavy-ball method (HB) [4];18

and the adaptive learning rate methods, such as Adagrad [5], AdaDelta [6], RMSProp [7] and Adam19

[8]. SGD methods use a global learning rate for all parameters, while adaptive methods compute an20

individual learning rate for each parameter.21

Compared to the SGD family, adaptive methods typically converge fast in the early training phases,22

but have poor generalization performance [9, 10]. Recent progress tries to combine the benefits of23

both, such as switching from Adam to SGD either with a hard schedule as in SWATS [11], or with a24

smooth transition as in AdaBound [12]. Other modifications of Adam are also proposed: AMSGrad25

[13] fixes the error in convergence analysis of Adam, Yogi [14] considers the effect of minibatch26

size, MSVAG [15] dissects Adam as sign update and magnitude scaling, RAdam [16] rectifies the27

variance of learning rate, Fromage [17] controls the distance in the function space, and AdamW [18]28

decouples weight decay from gradient descent. Although these modifications achieve better accuracy29

compared to Adam, their generalization performance is typically worse than SGD on large-scale30

datasets such as ImageNet [19]; furthermore, compared with Adam, many optimizers are empirically31

unstable when training generative adversarial networks (GAN) [20].32

To solve the problems above, we propose “AdaBelief”, which can be easily modified from Adam.33

Denote the observed gradient at step t as gt and its exponential moving average (EMA) asmt. Denote34

the EMA of g2t and (gt −mt)
2 as vt and st, respectively. mt is divided by

√
vt in Adam, while it35

is divided by
√
st in AdaBelief. Intuitively, 1√

st
is the “belief” in the observation: viewing mt as36
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the prediction of the gradient, if gt deviates much from mt, we have weak belief in gt, and take a37

small step; if gt is close to the prediction mt, we have a strong belief in gt, and take a large step. We38

validate the performance of AdaBelief with extensive experiments.39

2 Methods40

2.1 Details of AdaBelief Optimizer41

Notations By the convention in [8], we use the following notations:42

• f(θ) ∈ R, θ ∈ Rd: f is the loss function to minimize, θ is the parameter in Rd43

•
∏
F,M (y) = argminx∈F ||M1/2(x− y)||: projection of y onto a convex feasible set F44

• gt: the gradient and step t45

• mt: exponential moving average (EMA) of gt46

• vt, st: vt is the EMA of g2t , st is the EMA of (gt −mt)
247

• α, ε: α is the learning rate, default is 10−3; ε is a small number, typically set as 10−848

• β1, β2: smoothing parameters, typical values are β1 = 0.9, β2 = 0.99949

• β1t, β2t are the momentum for mt and vt respectively at step t, and typically set as constant50

(e.g. β1t = β1, β2t = β2,∀t ∈ {1, 2, ...T}51

Algorithm 1: Adam Optimizer
Initialize θ0, m0 ← 0 , v0 ← 0, t← 0
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g2t
Update

θt ←
∏
F,√vt

(
θt−1− αmt√

vt+ε

)

Algorithm 2: AdaBelief Optimizer
Initialize θ0, m0 ← 0 , s0 ← 0, t← 0
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
st ← β2st−1 + (1− β2)(gt −mt)

2

Update
θt ←

∏
F,√st

(
θt−1 − αmt√

st+ε

)
52

Comparison with Adam Adam and AdaBelief are summarized in Algo. 1 and Algo. 2, where all53

operations are element-wise, with differences marked in blue. Note that no extra parameters are54

introduced in AdaBelief. For simplicity, we omit the bias correction step. A detailed version of55

AdaBelief is in Appendix A. Specifically, in Adam, the update direction is mt/
√
vt, where vt is56

the EMA of g2t ; in AdaBelief, the update direction is mt/
√
st, where st is the EMA of (gt −mt)

2.57

Intuitively, viewing mt as the prediction of gt, AdaBelief takes a large step when observation gt is58

close to prediction mt, and a small step when the observation greatly deviates from the prediction.59

2.2 Intuitive explanation for benefits of AdaBelief60

Figure 1: An ideal optimizer considers curva-
ture of the loss function, instead of taking a large
(small) step where the gradient is large (small)

AdaBelief uses curvature information Update for-61

mulas for SGD, Adam and AdaBelief are:62

∆θSGDt = −αmt, ∆θAdamt = −αmt/
√
vt,

∆θAdaBelieft = −αmt/
√
st (1)

Note that we name α as the “learning rate” and |∆θit|63

as the “stepsize” for the ith parameter. With a 1D64

example in Fig. 1, we demonstrate that AdaBelief uses65

the curvature of loss functions to improve training, with66

a detailed description below:67

(1) In region 1 in Fig. 1, the loss function is flat, hence68

the gradient is close to 0. In this case, an ideal optimizer69

should take a large stepsize. The stepsize of SGD is70

proportional to the EMA of the gradient, hence is small71

in this case; while both Adam and AdaBelief take a large stepsize, because the denominator (
√
vt and72 √

st) is a small value.73
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(2) In region 2 , the algorithm oscillates in a “steep and narrow” valley, hence both |gt| and |gt−gt−1|74

is large. An ideal optimizer should decrease its stepsize, while SGD takes a large step (proportional75

to mt). Adam and AdaBelief take a small step because the denominator (
√
st and

√
vt) is large.76

(3) In region 3 , we demonstrate AdaBelief’s advantage over Adam in the “large gradient, small77

curvature” case. In this case, |gt| and vt are large, but |gt − gt−1| and st are small; this could happen78

because of a small learning rate α. In this case, an ideal optimizer should increase its stepsize. SGD79

uses a large stepsize (∼ α|gt|); in Adam, the denominator
√
vt is large, hence the stepsize is small; in80

AdaBelief, denominator
√
st is small, hence the stepsize is large as in an ideal optimizer.81

To sum up, AdaBelief scales the update direction by the change in gradient, which is related to the82

Hessian. Therefore, AdaBelief considers curvature information and performs better than Adam.83

AdaBelief considers the sign of gradient in denominator We show the advantages of AdaBelief84

with a 2D example in this section, which gives us more intuition for high dimensional cases. In Fig. 2,85

we consider the loss function: f(x, y) = |x|+ |y|. Note that in this simple problem, the gradient in86

each axis can only take {1,−1}. Suppose the start point is near the x−axis, e.g. y0 ≈ 0, x0 � 0.87

Optimizers will oscillate in the y direction, and keep increasing in the x direction.88

Suppose the algorithm runs for a long time (t is large), so the bias of EMA (βt1Egt) is small:89

mt = EMA(g0, g1, ...gt) ≈ E(gt), mt,x ≈ Egt,x = 1, mt,y ≈ Egt,y = 0 (2)

vt = EMA(g20 , g
2
1 , ...g

2
t ) ≈ E(g2t ), vt,x ≈ Eg2t,x = 1, vt,y ≈ Eg2t,y = 1. (3)

Step 1 2 3 4 5
gx 1 1 1 1 1
gy -1 1 -1 1 -1

Adam vx 1 1 1 1 1
vy 1 1 1 1 1

AdaBelief sx 0 0 0 0 0
sy 1 1 1 1 1

90

Figure 2: Left: Consider f(x, y) = |x|+ |y|. Blue vectors represent the gradient, and the cross represents the
optimal point. The optimizer oscillates in the y direction, and keeps moving forward in the x direction. Right:
Optimization process for the example on the left. Note that denominator√vt,x =

√
vt,y for Adam, hence the

same stepsize in x and y direction; while√st,x <
√
st,y , hence AdaBelief takes a large step in the x direction,

and a small step in the y direction.91

In practice, the bias correction step will further reduce the error between the EMA and its expectation92

if gt is a stationary process [8]. Note that:93

st = EMA
(
(g0 −m0)2, ...(gt −mt)

2
)
≈ E

[
(gt − Egt)2

]
= Vargt, st,x ≈ 0, st,y ≈ 1 (4)

An example of the analysis above is summarized in Fig. 2. From Eq. 3 and Eq. 4, note that in Adam,94

vx = vy; this is because the update of vt only uses the amplitude of gt and ignores its sign, hence95

the stepsize for the x and y direction is the same 1/
√
vt,x = 1/

√
vt,y . AdaBelief considers both the96

magnitude and sign of gt, and 1/
√
st,x � 1/

√
st,y , hence takes a large step in the x direction and a97

small step in the y direction, which matches the behaviour of an ideal optimizer.98

Update direction in Adam is close to “sign descent” in low-variance case In this section, we99

demonstrate that when the gradient has low variance, the update direction in Adam is close to “sign100

descent”, hence deviates from the gradient. This is also mentioned in [15].101

Under the following assumptions: (1) assume gt is drawn from a stationary distribution, hence after102

bias correction, Evt = (Egt)2 + Vargt. (2) low-noise assumption, assume (Egt)2 � Vargt, hence103

we have Egt/
√
Evt ≈ Egt/

√
(Egt)2 = sign(Egt). (3) low-bias assumption, assume βt1 (β1 to the104

power of t) is small, hence mt as an estimator of Egt has a small bias βt1Egt. Then105

∆θAdamt = −α mt√
vt+ε

≈ −α Egt√
(Egt)2+Vargt+ε

≈ −α Egt
||Egt|| = −α sign(Egt) (5)

In this case, Adam behaves like a “sign descent”; in 2D cases the update is ±45◦ to the axis, hence106

deviates from the true gradient direction. The “sign update” effect might cause the generalization gap107

3



(a) VGG11 on Cifar10 (b) ResNet34 on Cifar10 (c) DenseNet121 on Cifar10

(d) 1-layer LSTM (e) 2-layer LSTM (f) 3-layer LSTM

(g) FID score of WGAN. (h) FID score of WGAN-GP.
Figure 3: Top row: accuracy on Cifar10, higher is better. Middle row: perplexity on Pen-TreeBank
dataset, lower is better. Bottom row: FID score of WGAN (GP) on Cifar10, lower is better.

Table 1: Top-1 accuracy of ResNet18 on ImageNet. † is reported in [22], ‡ is reported in [16]
AdaBelief SGD AdaBound Yogi Adam MSVAG RAdam AdamW

70.08 70.23† 68.13† 68.23† 63.79† (66.54‡) 65.99 67.62‡ 67.93†

between adaptive methods and SGD (e.g. on ImageNet) [21, 9]. For AdaBelief, when the variance108

of gt is the same for all coordinates, the update direction matches the gradient direction; when the109

variance is not uniform, AdaBelief takes a small (large) step when the variance is large (small).110

3 Experiments111

We performed extensive comparisons with other optimizers, including SGD [3], AdaBound [12],112

Yogi [14], Adam [8], MSVAG [15], RAdam [16], Fromage [17] and AdamW [18]. Videos for toy113

examples are available1. The experiments include: (a) image classification on Cifar dataset [23]114

with VGG [24], ResNet [25] and DenseNet [26], and image recognition with ResNet on ImageNet115

[27]; (b) language modeling with LSTM [28] on Penn TreeBank dataset [29]; (c) wasserstein-GAN116

(WGAN) [30] on Cifar10 dataset. We emphasize (c) because prior work focuses on convergence and117

accuracy, yet neglects training stability. Results are summarized in Fig 3, and AdaBelief consistently118

outperforms other methods.119

4 Conclusion120

We propose the AdaBelief optimizer, which adaptively scales the stepsize by the difference between121

predicted gradient and observed gradient. To our knowledge, AdaBelief is the first optimizer to122

achieve three goals simultaneously: fast convergence as in adaptive methods, good generalization as123

in SGD, and training stability in complex settings such as GANs.124

1https://www.youtube.com/playlist?list=PL7KkG3n9bER6YmMLrKJ5wocjlvP7aWoOu
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266

AdaBelief Optimizer: Adapting Stepsizes by the Belief in267

Observed Gradients268

269

Abstract

Most popular optimizers for deep learning can be broadly categorized as adaptive270

methods (e.g. Adam) and accelerated schemes (e.g. stochastic gradient descent271

(SGD) with momentum). For many models such as convolutional neural networks272

(CNNs), adaptive methods typically converge faster but generalize worse compared273

to SGD; for complex settings such as generative adversarial networks (GANs),274

adaptive methods are typically the default because of their stability. We propose275

AdaBelief to simultaneously achieve three goals: fast convergence as in adaptive276

methods, good generalization as in SGD, and training stability. The intuition277

for AdaBelief is to adapt the stepsize according to the "belief" in the current278

gradient direction. Viewing the exponential moving average (EMA) of the noisy279

gradient as the prediction of the gradient at the next time step, if the observed280

gradient greatly deviates from the prediction, we distrust the current observation281

and take a small step; if the observed gradient is close to the prediction, we trust it282

and take a large step. We validate AdaBelief in extensive experiments, showing283

that it outperforms other methods with fast convergence and high accuracy on284

image classification and language modeling. Specifically, on ImageNet, AdaBelief285

achieves comparable accuracy to SGD. Furthermore, in the training of a GAN286

on Cifar10, AdaBelief demonstrates high stability and improves the quality of287

generated samples compared to a well-tuned Adam optimizer.288

1 Introduction289

Modern neural networks are typically trained with first-order gradient methods, which can be broadly290

categorized into two branches: the accelerated stochastic gradient descent (SGD) family [1], such as291

Nesterov accelerated gradient (NAG) [2], SGD with momentum [3] and heavy-ball method (HB) [4];292

and the adaptive learning rate methods, such as Adagrad [5], AdaDelta [6], RMSProp [7] and Adam293

[8]. SGD methods use a global learning rate for all parameters, while adaptive methods compute an294

individual learning rate for each parameter.295

Compared to the SGD family, adaptive methods typically converge fast in the early training phases,296

but have poor generalization performance [9, 10]. Recent progress tries to combine the benefits of297

both, such as switching from Adam to SGD either with a hard schedule as in SWATS [11], or with a298

smooth transition as in AdaBound [12]. Other modifications of Adam are also proposed: AMSGrad299

[13] fixes the error in convergence analysis of Adam, Yogi [14] considers the effect of minibatch300

size, MSVAG [15] dissects Adam as sign update and magnitude scaling, RAdam [16] rectifies the301

variance of learning rate, Fromage [17] controls the distance in the function space, and AdamW [18]302

decouples weight decay from gradient descent. Although these modifications achieve better accuracy303

compared to Adam, their generalization performance is typically worse than SGD on large-scale304

datasets such as ImageNet [19]; furthermore, compared with Adam, many optimizers are empirically305

unstable when training generative adversarial networks (GAN) [20].306

To solve the problems above, we propose “AdaBelief”, which can be easily modified from Adam.307

Denote the observed gradient at step t as gt and its exponential moving average (EMA) asmt. Denote308

the EMA of g2t and (gt −mt)
2 as vt and st, respectively. mt is divided by

√
vt in Adam, while it309

is divided by
√
st in AdaBelief. Intuitively, 1√

st
is the “belief” in the observation: viewing mt as310

the prediction of the gradient, if gt deviates much from mt, we have weak belief in gt, and take a311

small step; if gt is close to the prediction mt, we have a strong belief in gt, and take a large step.312

We validate the performance of AdaBelief with extensive experiments. Our contributions can be313

summarized as:314
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• We propose AdaBelief, which can be easily modified from Adam without extra parameters.315

AdaBelief has three properties: (1) fast convergence as in adaptive gradient methods, (2) good316

generalization as in the SGD family, and (3) training stability in complex settings such as GAN.317

• We theoretically analyze the convergence property of AdaBelief in both convex optimization and318

non-convex stochastic optimization.319

• We validate the performance of AdaBelief with extensive experiments: AdaBelief achieves fast320

convergence as Adam and good generalization as SGD in image classification tasks on CIFAR321

and ImageNet; AdaBelief outperforms other methods in language modeling; in the training of a322

W-GAN [30], compared to a well-tuned Adam optimizer, AdaBelief significantly improves the323

quality of generated images, while several recent adaptive optimizers fail the training.324

2 Methods325

2.1 Details of AdaBelief Optimizer326

Notations By the convention in [8], we use the following notations:327

• f(θ) ∈ R, θ ∈ Rd: f is the loss function to minimize, θ is the parameter in Rd328

•
∏
F,M (y) = argminx∈F ||M1/2(x− y)||: projection of y onto a convex feasible set F329

• gt: the gradient and step t330

• mt: exponential moving average (EMA) of gt331

• vt, st: vt is the EMA of g2t , st is the EMA of (gt −mt)
2332

• α, ε: α is the learning rate, default is 10−3; ε is a small number, typically set as 10−8333

• β1, β2: smoothing parameters, typical values are β1 = 0.9, β2 = 0.999334

• β1t, β2t are the momentum for mt and vt respectively at step t, and typically set as constant335

(e.g. β1t = β1, β2t = β2,∀t ∈ {1, 2, ...T}336

Algorithm 1: Adam Optimizer
Initialize θ0, m0 ← 0 , v0 ← 0, t← 0
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g2t
Update

θt ←
∏
F,√vt

(
θt−1− αmt√

vt+ε

)

Algorithm 2: AdaBelief Optimizer
Initialize θ0, m0 ← 0 , s0 ← 0, t← 0
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
st ← β2st−1 + (1− β2)(gt −mt)

2

Update
θt ←

∏
F,√st

(
θt−1 − αmt√

st+ε

)
337

Comparison with Adam Adam and AdaBelief are summarized in Algo.1 and Algo.2, where all338

operations are element-wise, with differences marked in blue. Note that no extra parameters are339

introduced in AdaBelief. For simplicity, we omit the bias correction step. A detailed version of340

AdaBelief is in Appendix A. Specifically, in Adam, the update direction is mt/
√
vt, where vt is341

the EMA of g2t ; in AdaBelief, the update direction is mt/
√
st, where st is the EMA of (gt −mt)

2.342

Intuitively, viewing mt as the prediction of gt, AdaBelief takes a large step when observation gt is343

close to prediction mt, and a small step when the observation greatly deviates from the prediction.344

2.2 Intuitive explanation for benefits of AdaBelief345

AdaBelief uses curvature information Update formulas for SGD, Adam and AdaBelief are:346

∆θSGDt = −αmt, ∆θAdamt = −αmt/
√
vt,

∆θAdaBelieft = −αmt/
√
st (1)

Note that we name α as the “learning rate” and |∆θit| as the “stepsize” for the ith parameter. With a347

1D example in Fig. 1, we demonstrate that AdaBelief uses the curvature of loss functions to improve348

training as summarized in Table 1, with a detailed description below:349

(1) In region 1 in Fig. 1, the loss function is flat, hence the gradient is close to 0. In this case, an350

ideal optimizer should take a large stepsize. The stepsize of SGD is proportional to the EMA of the351
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Table 1: Comparison of optimizers in various cases in Fig. 1. “S” and “L” represent “small” and
“large” stepsize, respectively. |∆θt|ideal is the stepsize of an ideal optimizer. Note that only AdaBelief
matches the behaviour of an ideal optimizer in all three cases.

Case 1 Case 2 Case 3
|gt|, vt S L L

|gt − gt−1|, st S L S
|∆θt|ideal L S L

|∆θt|
SGD Adam AdaBelief SGD Adam AdaBelief SGD Adam AdaBelief

S L L L S S L S L

gradient, hence is small in this case; while both Adam and AdaBelief take a large stepsize, because352

the denominator (
√
vt and

√
st) is a small value.353

Figure 1: An ideal optimizer considers curva-
ture of the loss function, instead of taking a
large (small) step where the gradient is large
(small) [31].

(2) In region 2 , the algorithm oscillates in a “steep354

and narrow” valley, hence both |gt| and |gt− gt−1| is355

large. An ideal optimizer should decrease its stepsize,356

while SGD takes a large step (proportional to mt).357

Adam and AdaBelief take a small step because the358

denominator (
√
st and

√
vt) is large.359

(3) In region 3 , we demonstrate AdaBelief’s advan-360

tage over Adam in the “large gradient, small curva-361

ture” case. In this case, |gt| and vt are large, but362

|gt − gt−1| and st are small; this could happen be-363

cause of a small learning rate α. In this case, an ideal364

optimizer should increase its stepsize. SGD uses a365

large stepsize (∼ α|gt|); in Adam, the denominator366 √
vt is large, hence the stepsize is small; in AdaBelief,367

denominator
√
st is small, hence the stepsize is large368

as in an ideal optimizer.369

To sum up, AdaBelief scales the update direction by the change in gradient, which is related to the370

Hessian. Therefore, AdaBelief considers curvature information and performs better than Adam.371

AdaBelief considers the sign of gradient in denominator We show the advantages of AdaBelief372

with a 2D example in this section, which gives us more intuition for high dimensional cases. In Fig. 2,373

we consider the loss function: f(x, y) = |x|+ |y|. Note that in this simple problem, the gradient in374

each axis can only take {1,−1}. Suppose the start point is near the x−axis, e.g. y0 ≈ 0, x0 � 0.375

Optimizers will oscillate in the y direction, and keep increasing in the x direction.376

Suppose the algorithm runs for a long time (t is large), so the bias of EMA (βt1Egt) is small:377

mt = EMA(g0, g1, ...gt) ≈ E(gt), mt,x ≈ Egt,x = 1, mt,y ≈ Egt,y = 0 (2)

vt = EMA(g20 , g
2
1 , ...g

2
t ) ≈ E(g2t ), vt,x ≈ Eg2t,x = 1, vt,y ≈ Eg2t,y = 1. (3)

Step 1 2 3 4 5
gx 1 1 1 1 1
gy -1 1 -1 1 -1

Adam vx 1 1 1 1 1
vy 1 1 1 1 1

AdaBelief sx 0 0 0 0 0
sy 1 1 1 1 1

378

Figure 2: Left: Consider f(x, y) = |x| + |y|. Blue vectors represent the gradient, and the cross
represents the optimal point. The optimizer oscillates in the y direction, and keeps moving forward
in the x direction. Right: Optimization process for the example on the left. Note that denominator√
vt,x =

√
vt,y for Adam, hence the same stepsize in x and y direction; while√st,x <

√
st,y , hence

AdaBelief takes a large step in the x direction, and a small step in the y direction.379

In practice, the bias correction step will further reduce the error between the EMA and its expectation380

if gt is a stationary process [8]. Note that:381

st = EMA
(
(g0 −m0)2, ...(gt −mt)

2
)
≈ E

[
(gt − Egt)2

]
= Vargt, st,x ≈ 0, st,y ≈ 1 (4)
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(a) loss function is
f(x, y) = |x|+ |y|

(b) f(x, y) = |x+ y|+
|x− y| / 10

(c) f(x, y) = (x + y)2 +
(x− y)2/10

(d) f(x, y) = |x|/10+ |y|
β1 = β2 = 0.3

(e) Trajectory for Beale
function in 2D.

(f) Trajectory for Beale
function in 3D.

(g) Trajectory for Rosen-
brock function in 2D.

(h) Trajectory for Rosen-
brock function in 3D.

Figure 3: Trajectories of SGD, Adam and AdaBelief. AdaBelief reaches optimal point (marked as
orange cross in 2D plots) the fastest in all cases. We refer readers to video examples.

An example of the analysis above is summarized in Fig. 2. From Eq. 3 and Eq. 4, note that in Adam,382

vx = vy; this is because the update of vt only uses the amplitude of gt and ignores its sign, hence383

the stepsize for the x and y direction is the same 1/
√
vt,x = 1/

√
vt,y . AdaBelief considers both the384

magnitude and sign of gt, and 1/
√
st,x � 1/

√
st,y , hence takes a large step in the x direction and a385

small step in the y direction, which matches the behaviour of an ideal optimizer.386

Update direction in Adam is close to “sign descent” in low-variance case In this section, we387

demonstrate that when the gradient has low variance, the update direction in Adam is close to “sign388

descent”, hence deviates from the gradient. This is also mentioned in [15].389

Under the following assumptions: (1) assume gt is drawn from a stationary distribution, hence after390

bias correction, Evt = (Egt)2 + Vargt. (2) low-noise assumption, assume (Egt)2 � Vargt, hence391

we have Egt/
√
Evt ≈ Egt/

√
(Egt)2 = sign(Egt). (3) low-bias assumption, assume βt1 (β1 to the392

power of t) is small, hence mt as an estimator of Egt has a small bias βt1Egt. Then393

∆θAdamt = −α mt√
vt+ε

≈ −α Egt√
(Egt)2+Vargt+ε

≈ −α Egt
||Egt|| = −α sign(Egt) (5)

In this case, Adam behaves like a “sign descent”; in 2D cases the update is ±45◦ to the axis, hence394

deviates from the true gradient direction. The “sign update” effect might cause the generalization gap395

between adaptive methods and SGD (e.g. on ImageNet) [21, 9]. For AdaBelief, when the variance396

of gt is the same for all coordinates, the update direction matches the gradient direction; when the397

variance is not uniform, AdaBelief takes a small (large) step when the variance is large (small).398

Numerical experiments In this section, we validate intuitions in Sec. 2.2. Examples are shown399

in Fig. 3, and we refer readers to more video examples2 for better visualization. In all examples,400

compared with SGD with momentum and Adam, AdaBelief reaches the optimal point at the fastest401

speed. Learning rate is α = 10−3 for all optimizers. For all examples except Fig. 3(d), we set the402

parameters of AdaBelief to be the same as the default in Adam [8], β1 = 0.9, β2 = 0.999, ε = 10−8,403

and set momentum as 0.9 for SGD. For Fig. 3(d), to match the assumption in Sec. 2.2, we set404

β1 = β2 = 0.3 for both Adam and AdaBelief, and set momentum as 0.3 for SGD.405

2https://www.youtube.com/playlist?list=PL7KkG3n9bER6YmMLrKJ5wocjlvP7aWoOu
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(a) Consider the loss function f(x, y) = |x| + |y| and a starting point near the x axis. This406

setting corresponds to Fig. 2. Under the same setting, AdaBelief takes a large step in the x407

direction, and a small step in the y direction, validating our analysis. More examples such408

as f(x, y) = |x|/10 + |y| are in the supplementary videos.409

(b) For an inseparable L1 loss, AdaBelief outperforms other methods under the same setting.410

(c) For an inseparable L2 loss, AdaBelief outperforms other methods under the same setting.411

(d) We set β1 = β2 = 0.3 for Adam and AdaBelief, and set momentum as 0.3 in SGD. This412

corresponds to settings of Eq. 5. For the loss f(x, y) = |x|/10 + |y|, gt is a constant for a413

large region, hence ||Egt|| � Vargt. As mentioned in [8], Emt = (1 − βt)Egt, hence a414

smaller β decreases ||mt − Egt|| faster to 0. Adam behaves like a sign descent (45◦ to the415

axis), while AdaBelief and SGD update in the direction of the gradient.416

(e)-(f) Optimization trajectory under default setting for the Beale [32] function in 2D and 3D.417

(g)-(h) Optimization trajectory under default setting for the Rosenbrock [33] function.418

Above cases occur frequently in deep learning Although the above cases are simple, they give419

hints to local behavior of optimizers in deep learning, and we expect them to occur frequently in420

deep learning. Hence, we expect AdaBelief to outperform Adam in general cases. Other works in421

the literature [13, 12] claim advantages over Adam, but are typically substantiated with carefully-422

constructed examples. Note that most deep networks use ReLU activation [34], which behaves423

like an absolute value function as in Fig. 3(a); considering the interaction between neurons, most424

networks behave like case Fig. 3(b), and typically are ill-conditioned (the weight of some parameters425

are far larger than others) as in the figure. Considering a smooth loss function such as cross426

entropy or a smooth activation, this case is similar to Fig. 3(c). The case with Fig. 3(d) requires427

|mt| ≈ |Egt| � Vargt, and this typically occurs at the late stages of training, where the learning428

rate α is decayed to a small value, and the network reaches a stable region.429

2.3 Convergence analysis in convex and non-convex optimization430

Similar to [13, 12, 35], for simplicity, we omit the de-biasing step (analysis applicable to de-biased431

version). Proof for convergence in convex and non-convex cases is in the appendix.432

Optimization problem For deterministic problems, the problem to be optimized is minθ∈Ff(θ); for433

online optimization, the problem is minθ∈F
∑T
t=1 ft(θ), where ft can be interpreted as loss of the434

model with the chosen parameters in the t-th step.435

Theorem 2.1. (Convergence in convex optimization) Let {θt} and {st} be the sequence obtained by436

AdaBelief, let 0 ≤ β2 < 1, αt = α√
t
, β11 = β1, 0 ≤ β1t ≤ β1 < 1, st ≤ st+1,∀t ∈ [T ]. Let θ ∈ F ,437

where F ⊂ Rd is a convex feasible set with bounded diameter D∞. Assume f(θ) is a convex function438

and ||gt||∞ ≤ G∞/2 (hence ||gt −mt||∞ ≤ G∞) and st,i ≥ c > 0,∀t ∈ [T ], θ ∈ F . Denote the439

optimal point as θ∗. For θt generated with AdaBelief, we have the following bound on the regret:440

T∑
t=1

[ft(θt)− ft(θ∗)] ≤
D2
∞
√
T

2α(1− β1)

d∑
i=1

s
1/2
T,i +

(1 + β1)α
√

1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1ts
1/2
t,i

αt

441

Corollary 2.1.1. Suppose β1,t = β1λ
t, 0 < λ < 1 in Theorem (2.1), then we have:442 ∑T

t=1[ft(θt)− ft(θ∗)] ≤ D2
∞
√
T

2α(1−β1)

∑d
i=1 s

1/2
T,i + (1+β1)α

√
1+log T

2
√
c(1−β1)3

∑d
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2

∞β1G∞
2(1−β1)(1−λ)2α

For the convex case, Theorem 2.1 implies the regret of AdaBelief is upper bounded by O(
√
T ).443

Conditions for Corollary 2.1.1 can be relaxed to β1,t = β1/t as in [13], which still generates O(
√
T )444

regret. Similar to Theorem 4.1 in [8] and corollary 1 in [13], where the term
∑d
i=1 v

1/2
T,i exists,445

we have
∑d
i=1 s

1/2
T,i . Without further assumption,

∑d
i=1 s

1/2
T,i < dG∞ since ||gt −mt||∞ < G∞446

as assumed in Theorem 2.1, and dG∞ is constant. The literature [8, 13, 5] exerts a stronger447

assumption that
∑d
i=1

√
Tv

1/2
T,i � dG∞

√
T . Our assumption could be similar or weaker, because448

Est = Vargt ≤ Eg2t = Evt, then we get better regret than O(
√
T ).449

Theorem 2.2. (Convergence for non-convex stochastic optimization) Under the assumptions:450

• f is differentiable; ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y; f is also lower bounded.451
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(a) VGG11 on Cifar10 (b) ResNet34 on Cifar10 (c) DenseNet121 on Cifar10

(d) VGG11 on Cifar100 (e) ResNet34 on Cifar100 (f) DenseNet121 on Cifar100

Figure 4: Test accuracy ([µ±σ]) on Cifar. Code modified from official implementation of AdaBound.

• The noisy gradient is unbiased, and has independent noise, i.e. gt = ∇f(θt) + ζt,Eζt =452

0, ζt⊥ζj , ∀t, j ∈ N, t 6= j.453

• At step t, the algorithm can access a bounded noisy gradient, and the true gradient is also bounded.454

i.e. ||∇f(θt)|| ≤ H, ||gt|| ≤ H, ∀t > 1.455

Assume minj∈[d](s1)j ≥ c > 0, noise in gradient has bounded variance, Var(gt) = σ2
t ≤ σ2,∀t ∈456

N, then the proposed algorithm satisfies:457

mint∈[T ] E
∣∣∣∣∣∣∇f(θt)

∣∣∣∣∣∣2 ≤ H√
Tα

[
C1α

2(H2+σ2)(1+log T )
c + C2

dα√
c

+ C3
dα2

c + C4

]
as in [35], C1, C2, C3 are constants independent of d and T , and C4 is a constant independent of T .458

Corollary 2.2.1. If c > C1H and assumptions for Theorem 2.2 are satisfied, we have:459

1
T

∑T
t=1 E

[
α2
t

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] ≤ 1

T
1

1
H−

C1
c

[
C1α

2σ2

c

(
1 + log T

)
+ C2

dα√
c

+ C3
dα2

c + C4

]
Theorem 2.2 implies the convergence rate for AdaBelief in the non-convex case is O(log T/

√
T ),460

which is similar to Adam-type optimizers [13, 35]. Note that regret bounds are derived in the worst461

possible case, while empirically AdaBelief outperforms Adam mainly because the cases in Sec. 2.2462

occur more frequently. It is possible that the above bounds are loose; we will try to derive a tighter463

bound in the future.464

3 Experiments465

We performed extensive comparisons with other optimizers, including SGD [3], AdaBound [12],466

Yogi [14], Adam [8], MSVAG [15], RAdam [16], Fromage [17] and AdamW [18]. The experiments467

include: (a) image classification on Cifar dataset [23] with VGG [24], ResNet [25] and DenseNet468

[26], and image recognition with ResNet on ImageNet [27]; (b) language modeling with LSTM469

[28] on Penn TreeBank dataset [29]; (c) wasserstein-GAN (WGAN) [30] on Cifar10 dataset. We470

emphasize (c) because prior work focuses on convergence and accuracy, yet neglects training stability.471

Hyperparameter tuning We performed a careful hyperparameter tuning in experiments. On image472

classification and language modeling we use the following:473
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Table 2: Top-1 accuracy of ResNet18 on ImageNet. † is reported in [22], ‡ is reported in [16]
AdaBelief SGD AdaBound Yogi Adam MSVAG RAdam AdamW

70.08 70.23† 68.13† 68.23† 63.79† (66.54‡) 65.99 67.62‡ 67.93†

Figure 5: Left to right: perplexity ([µ± σ]) on Penn Treebank for 1,2,3-layer LSTM. Lower is better.

474

• AdaBelief: We use the default parameters of Adam: β1 = 0.9, β2 = 0.999, ε = 10−8, α = 10−3.475

• SGD, Fromage: We set the momentum as 0.9, which is the default for many networks such as476

ResNet [25] and DenseNet[26]. We search learning rate among {10.0, 1.0, 0.1, 0.01, 0.001}.477

• Adam, Yogi, RAdam, MSVAG, AdaBound: We search for optimal β1 among {0.5, 0.6, 0.7, 0.8, 0.9},478

search for α as in SGD, and set other parameters as their own default values in the literature.479

• AdamW: We use the same parameter searching scheme as Adam. For other optimizers, we set the480

weight decay as 5× 10−4; for AdamW, since the optimal weight decay is typically larger [18], we481

search weight decay among {10−4, 5× 10−4, 10−3, 10−2}.482

For the training of a GAN, we set β1 = 0.5, ε = 10−12 for AdaBelief; for other methods, we search483

for β1 among {0.5, 0.6, 0.7, 0.8, 0.9}, and search for ε among {10−3, 10−5, 10−8, 10−10, 10−12}.484

We set learning rate as 2× 10−4 for all methods. Note that the recommended parameters for Adam485

[36] and for RMSProp [37] are within the search range.486

CNNs on image classification We experiment with VGG11, ResNet34 and DenseNet121 on487

Cifar10 and Cifar100 dataset. We use the official implementation of AdaBound, hence achieved an488

exact replication of [12]. For each optimizer, we search for the optimal hyperparameters, and report489

the mean and standard deviation of test-set accuracy (under optimal hyperparameters) for 3 runs with490

random initialization. As Fig. 4 shows, AdaBelief achieves fast convergence as in adaptive methods491

such as Adam while achieving better accuracy than SGD and other methods.492

We then train a ResNet18 on ImageNet, and report the accuracy on the validation set in Table. 2. Due493

to the heavy computational burden, we could not perform an extensive hyperparameter search; instead,494

we report the result of AdaBelief with the default parameters of Adam (β1 = 0.9, β2 = 0.999, ε =495

10−8) and decoupled weight decay as in [16, 18]; for other optimizers, we report the best result in496

the literature. AdaBelief outperforms other adaptive methods and achieves comparable accuracy to497

SGD (70.08 v.s. 70.23), which closes the generalization gap between adaptive methods and SGD.498

Experiments validate the fast convergence and good generalization performance of AdaBelief.499

(a) FID score of WGAN. (b) FID score of WGAN-GP.

Figure 6: FID score of WGAN and WGAN-GP on Cifar10. Lower is better. For each model, success
and failure optimizers are shown in the left and right respectively, with different ranges in y value.
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Figure 7: Left to right: real images, samples from WGAN, WGAN-GP (both trained by AdaBelief).

Table 3: Comparison of AdaBelief and Padam. Higher Acc (lower FID) is better. ‡ is from [22].
AdaBelief Padam

p=1/2 (Adam) p=2/5 p=1/4 p=1/5 p=1/8 p=1/16 p = 0 (SGD)
ImageNet Acc 70.08 63.79‡ - - - 70.07‡ - 70.23 ‡
FID (WGAN) 83.0± 4.1 96.6±4.5 97.5±2.8 426.4±49.6 401.5±33.2 328.1±37.2 362.6±43.9 469.3 ± 7.9

FID (WGAN-GP) 61.8± 7.7 73.5±8.7 87.1±6.0 155.1±23.8 167.3±27.6 203.6±18.9 228.5±25.8 244.3± 27.4

LSTM on language modeling We experiment with LSTM on the Penn TreeBank dataset [29],500

and report the perplexity (lower is better) on the test set in Fig. 5. We report the mean and standard501

deviation across 3 runs. For both 2-layer and 3-layer LSTM models, AdaBelief achieves the lowest502

perplexity, validating its fast convergence as in adaptive methods and good accuracy. For the 1-layer503

model, the performance of AdaBelief is close to other optimizers.504

Generative adversarial networks Stability of optimizers is important in practice such as training505

of GANs, yet recently proposed optimizers often lack experimental validations. The training of a506

GAN alternates between generator and discriminator in a mini-max game, and is typically unstable507

[20]; SGD often generates mode collapse, and adaptive methods such as Adam and RMSProp are508

recommended in practice [38, 37, 39]. Therefore, training of GANs is a good test for the stability of509

optimizers.510

We experiment with one of the most widely used models, the Wasserstein-GAN (WGAN) [30] and the511

improved version with gradient penalty (WGAN-GP) [37]. Using each optimizer, we train the model512

for 100 epochs, generate 64,000 fake images from noise, and compute the Frechet Inception Distance513

(FID) [40] between the fake images and real dataset (60,000 real images). FID score captures both514

the quality and diversity of generated images and is widely used to assess generative models (lower515

FID is better). For each optimizer, under its optimal hyperparameter settings, we perform 5 runs of516

experiments, and report the results in Fig. 6 and Fig. 7. AdaBelief significantly outperforms other517

optimizers, and achieves the lowest FID score.518

Remarks Recent research on optimizers tries to combine the fast convergence of adaptive methods519

with high accuracy of SGD. AdaBound [12] achieves this goal on Cifar, yet its performance on520

ImageNet is still inferior to SGD [22]. Padam [22] closes this generalization gap on ImageNet;521

writing the update as θt+1 = θt − αmt/v
p
t , SGD sets p = 0, Adam sets p = 0.5, and Padam522

searches p between 0 and 0.5 (outside this region Padam diverges [22, 41]). Intuitively, compared523

to Adam, by using a smaller p, Padam sacrifices the adaptivity for better generalization as in SGD;524

however, without good adaptivity, Padam loses training stability. As in Table 3, compared with525

Padam, AdaBelief achieves a much lower FID score in the training of GAN, meanwhile achieving526

slightly higher accuracy on ImageNet classification. Furthermore, AdaBelief has the same number of527

parameters as Adam, while Padam has one more parameter hence is harder to tune.528

4 Related works529

This work considers the update step in first-order methods. Other directions include Lookahead [42]530

which updates “fast” and “slow” weights separately, and is a wrapper that can combine with other531
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optimizers; variance reduction methods [43, 44, 45] which reduce the variance in gradient; and LARS532

[46] which uses a layer-wise learning rate scaling. AdaBelief can be combined with these methods.533

Other variants of Adam have been proposed (e.g. NosAdam [47], Sadam [48] and Adax [49]).534

Besides first-order methods, second-order methods (e.g. Newton’s method [50], Quasi-Newton535

method and Gauss-Newton method [51, 52, 51], L-BFGS [53], Natural-Gradient [54, 55], Conjugate-536

Gradient [56]) are widely used in conventional optimization. Hessian-free optimization (HFO) [57]537

uses second-order methods to train neural networks. Second-order methods typically use curvature538

information and are invariant to scaling [58] but have heavy computational burden, and hence are not539

widely used in deep learning.540

5 Conclusion541

We propose the AdaBelief optimizer, which adaptively scales the stepsize by the difference between542

predicted gradient and observed gradient. To our knowledge, AdaBelief is the first optimizer to543

achieve three goals simultaneously: fast convergence as in adaptive methods, good generalization as544

in SGD, and training stability in complex settings such as GANs. Furthermore, Adabelief has the545

same parameters as Adam, hence is easy to tune. We validate the benefits of AdaBelief with intuitive546

examples, theoretical convergence analysis in both convex and non-convex cases, and extensive547

experiments on real-world datasets.548

Broader Impact549

Optimization is at the core of modern machine learning, and numerous efforts have been put into it.550

To our knowledge, AdaBelief is the first optimizer to achieve fast speed, good generalization and551

training stability. Adabelief can be used for the training of all models that can numerically esimate552

parameter gradient. hence can boost the development and application of deep learning models; yet553

this work mainly focuses on the theory part, and the social impact is mainly determined by each554

application rather than by optimizer.555
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Appendix556

A. Detailed Algorithm of AdaBelief557

Notations By the convention in [8], we use the following notations:558

• f(θ) ∈ R, θ ∈ Rd: f is the loss function to minimize, θ is the parameter in Rd559

• gt: the gradient and step t560

• α, ε: α is the learning rate, default is 10−3; ε is a small number, typically set as 10−8561

• β1, β2: smoothing parameters, typical values are β1 = 0.9, β2 = 0.999562

• mt: exponential moving average (EMA) of gt563

• vt, st: vt is the EMA of g2t , st is the EMA of (gt −mt)
2564

•
∏
F,M (y) = argminx∈F ||M1/2(x− y)||565

Algorithm 1: AdaBelief
Initialize θ0

m0 ← 0 , s0 ← 0, t← 0
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
st ← β2st−1 + (1− β2)(gt −mt)

2

If AMSGrad
st ← max(st, st−1)

Bias Correction
m̂t ← mt/(1− βt1), ŝt ← (st+ε)/(1− βt2)

Update
θt ←

∏
F,√st

(
θt−1 − m̂t

α√
ŝt+ε

)

B. Convergence analysis in convex online learning case (Theorem 2.1 in main566

paper)567

For the ease of notation, we absorb ε into st. Equivalently, st ≥ c > 0,∀t ∈ [T ]. For simplicity, we568

omit the debiasing step in theoretical analysis as in [13]. Our analysis can be applied to the de-biased569

version as well.570

Lemma .1. [59] For any Q ∈ Sd+ and convex feasible set F ⊂ Rd, suppose u1 =571

minx∈F

∣∣∣∣∣∣Q1/2(x− z1)
∣∣∣∣∣∣ and u2 = minx∈F

∣∣∣∣∣∣Q1/2(x− z2)
∣∣∣∣∣∣, then we have

∣∣∣∣∣∣Q1/2(u1 − u2)
∣∣∣∣∣∣ ≤572 ∣∣∣∣∣∣Q1/2(z1 − z2)

∣∣∣∣∣∣.573

Theorem .2. Let {θt} and {st} be the sequence obtained by the proposed algorithm, let574

0 ≤ β2 < 1, αt = α√
t
, β11 = β1, 0 ≤ β1t ≤ β1 < 1, st−1 ≤ st,∀t ∈ [T ]. Let θ ∈ F , where575

F ⊂ Rd is a convex feasible set with bounded diameter D∞. Assume f(θ) is a convex function576

and ||gt||∞ ≤ G∞/2 (hence ||gt − mt||∞ ≤ G∞) and st,i ≥ c > 0,∀t ∈ [T ], θ ∈ F . Denote577

the optimal point as θ∗. For θt generated with Algorithm 1, we have the following bound on the regret:578

579

T∑
t=1

ft(θt)− ft(θ∗) ≤
D2
∞
√
T

2α(1− β1)

d∑
i=1

s
1/2
T,i +

(1 + β1)α
√

1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1ts
1/2
t,i

αt
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Proof:580

θt+1 =
∏
F,√st

(θt − αts−1/2t mt) = min
θ∈F

∣∣∣∣∣∣s1/4t [θ − (θt − αts−1/2t mt)]
∣∣∣∣∣∣

Note that
∏
F,√st(θ

∗) = θ∗ since θ∗ ∈ F . Use θ∗i and θt,i to denote the ith dimension of θ∗ and θt581

respectively. From lemma (.1), using u1 = θt+1 and u2 = θ∗, we have:582 ∣∣∣∣∣∣s1/4t (θt+1 − θ∗)
∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣s1/4t (θt − αts−1/2t mt − θ∗)

∣∣∣∣∣∣2
=
∣∣∣∣∣∣s1/4t (θt − θ∗)

∣∣∣∣∣∣2 + α2
t

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 − 2αt〈mt, θt − θ∗〉

=
∣∣∣∣∣∣s1/4t (θt − θ∗)

∣∣∣∣∣∣2 + α2
t

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2
− 2αt〈β1tmt−1 + (1− β1t)gt, θt − θ∗〉 (1)

Note that β1 ∈ [0, 1) and β2 ∈ [0, 1), rearranging inequality (1), we have:583

〈gt, θt − θ∗〉 ≤
1

2αt(1− β1t)

[∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣s1/4t (θt+1 − θ∗)

∣∣∣∣∣∣2]
+

αt
2(1− β1t)

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 − β1t
1− β1t

〈mt−1, θt − θ∗〉

≤ 1

2αt(1− β1t)

[∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣s1/4t (θt+1 − θ∗)

∣∣∣∣∣∣2]
+

αt
2(1− β1t)

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2
+

β1t
2(1− β1t)

αt

∣∣∣∣∣∣s−1/4t mt−1

∣∣∣∣∣∣2 +
β1t

2αt(1− β1t)

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2(

Cauchy-Schwartz and Young’s inequality: ab ≤ a2ε

2
+
b2

2ε
,∀ε > 0

)
(2)

By convexity of f , we have:584

T∑
t=1

ft(θt)− ft(θ∗) ≤
T∑
t=1

〈gt, θt − θ∗〉

≤
T∑
t=1

{ 1

2αt(1− β1t)

[∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣s1/4t (θt+1 − θ∗)

∣∣∣∣∣∣2]
+

1

2(1− β1t)
αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
β1t

2(1− β1t)
αt

∣∣∣∣∣∣s−1/4t mt−1

∣∣∣∣∣∣2
+

β1t
2αt(1− β1t)

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2}(

By formula (2)
)

≤ 1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1

+
1

2(1− β1)

T∑
t=2

[∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2

αt
−

∣∣∣∣∣∣s1/4t−1(θt − θ∗)
∣∣∣∣∣∣2

αt−1

]
+

T∑
t=1

[ 1

2(1− β1)
αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2]+

T∑
t=2

[ β1
2(1− β1)

αt−1

∣∣∣∣∣∣s−1/4t−1 mt−1

∣∣∣∣∣∣2]
+

T∑
t=1

β1t
2αt(1− β1t)

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2
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(
0 ≤ st−1 ≤ st, 0 ≤ αt ≤ αt−1, 0 ≤ β1t ≤ β1 < 1

)
≤ 1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1
+

1

2(1− β1)

T∑
t=2

∣∣∣∣∣∣θt − θ∗∣∣∣∣∣∣2[s1/2t

αt
−
s
1/2
t−1
αt−1

]
+

1 + β1
2(1− β1)

T∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2
+

T∑
t=1

β1t
2αt(1− β1t)

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2

≤ 1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1
+

1

2(1− β1)

T∑
t=2

∣∣∣∣∣∣θt − θ∗∣∣∣∣∣∣2[s1/2t

αt
−
s
1/2
t−1
αt−1

]
+

1 + β1
2(1− β1)

T∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2
+

1

2(1− β1)

T∑
t=1

β1t
αt

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2(

since 0 ≤ β1t ≤ β1 < 1
)

(3)

Now bound
∑T
t=1 αt||s

−1/4
t mt||2 in Formula (3), assuming 0 < c ≤ st,∀t ∈ [T ].585

T∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 =

T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 + αT

∣∣∣∣∣∣s−1/4T mT

∣∣∣∣∣∣2
≤
T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
αT√
c

∣∣∣∣∣∣mT

∣∣∣∣∣∣2
=

T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
α√
cT

d∑
i=1

( T∑
j=1

(1− β1,j)gj,i
T−j∏
k=1

β1,T−k+1

)2
(

since mT =

T∑
j=1

(1− β1,j)gj,i
T−j∏
k=1

β1,T−k+1

)

≤
T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
α√
cT

d∑
i=1

( T∑
j=1

gj,i

T−j∏
k=1

β1

)2
(since 0 < β1,j ≤ β1 < 1)

=

T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
α√
cT

d∑
i=1

( T∑
j=1

βT−j1 gj,i

)2
≤
T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
α√
cT

d∑
i=1

( T∑
j=1

βT−j1

)( T∑
j=1

βT−j1 g2j,i

)
(
Cauchy − Schwartz, 〈u, v〉2 ≤

∣∣∣∣∣∣u∣∣∣∣∣∣2∣∣∣∣∣∣v∣∣∣∣∣∣2, uj =

√
βT−j1 , vj =

√
βT−j1 gj,i

)
=

T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
α√
cT

d∑
i=1

1− βT1
1− β1

T∑
j=1

βT−j1 g2j,i

≤
T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
α√

c(1− β1)

d∑
i=1

T∑
j=1

βT−j1 g2j,i
1√
T
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(
since 1− βT1 < 1

)
≤ α√

c(1− β1)

d∑
i=1

T∑
t=1

t∑
j=1

βt−j1 g2j,i
1√
t(

Recursively bound each term in the sum
T∑
t=1

∗
)

=
α√

c(1− β1)

d∑
i=1

T∑
t=1

g2t,i

T∑
j=t

βj−t1√
j

≤ α√
c(1− β1)

d∑
i=1

T∑
t=1

g2t,i

T∑
j=t

βj−t1√
t

≤ α√
c(1− β1)2

d∑
i=1

T∑
t=1

g2t,i
1√
t(

since
T∑
j=t

βj−t1 =

T−t∑
j=0

βj1 =
1− βT−t+1

1

1− β1
≤ 1

1− β1

)

≤ α√
c(1− β1)2

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

√√√√ T∑
t=1

1

t(
Cauchy − Schwartz, 〈u, v〉 ≤

∣∣∣∣∣∣u∣∣∣∣∣∣∣∣∣∣∣∣v∣∣∣∣∣∣, ut = g2t,i, vt =
1√
t

)
≤ α
√

1 + log T√
c(1− β1)2

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

(
since

T∑
t=1

1

t
≤ 1 + log T

)
(4)

Apply formula (4) to (3), we have:586

T∑
t=1

ft(θt)− ft(θ∗) ≤
1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1
+

1

2(1− β1)

T∑
t=2

∣∣∣∣∣∣θt − θ∗∣∣∣∣∣∣2[s1/2t

αt
−
s
1/2
t−1
αt−1

]
+

1 + β1
2(1− β1)

T∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2
+

1

2(1− β1)

T∑
t=1

β1t
αt

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2

≤ 1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1
+

1

2(1− β1)

T∑
t=2

∣∣∣∣∣∣θt − θ∗∣∣∣∣∣∣2[s1/2t

αt
−
s
1/2
t−1
αt−1

]
+

(1 + β1)α
√

1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
1

2(1− β1)

T∑
t=1

β1t
αt

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2(

By formula (4)
)

≤ 1

2(1− β1)

d∑
i=1

s
1/2
1,i D

2
∞

α1
+

1

2(1− β1)

T∑
t=2

d∑
i=1

D2
∞

[s1/2t,i

αt
−
s
1/2
t−1,i

αt−1

]
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+
(1 + β1)α

√
1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1ts
1/2
t,i

αt(
since x ∈ F ,with bounded diameter D∞, and

s
1/2
t,i

αt
≥
s
1/2
t−1,i

αt−1
by assumption.

)
≤ D2

∞
√
T

2α(1− β1)

d∑
i=1

s
1/2
T,i +

(1 + β1)α
√

1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1ts
1/2
t,i

αt(
αt ≥ αt+1 and perform telescope sum

)
(5)

587

Corollary .2.1. Suppose β1,t = β1λ
t, 0 < λ < 1 in Theorem (.2), then we have:588

T∑
t=1

ft(θt)− ft(θ∗) ≤
D2
∞
√
T

2α(1− β1)

d∑
i=1

s
1/2
T,i +

(1 + β1)α
√

1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2
∞β1G∞

2(1− β1)(1− λ)2α
(6)

Proof: By sum of arithmetico-geometric series, we have:589

T∑
t=1

λt−1
√
t ≤

T∑
t=1

λt−1t ≤ 1

(1− λ)2
(7)

Plugging (7) into (5), we can derive the results above.590

C. Convergence analysis for non-convex stochastic optimization (Theorem 2.2591

in main paper)592

Assumptions593

• A1, f is differentiable and has L − Lipschitz gradient, ||∇f(x) − ∇f(y)|| ≤ L||x −594

y||, ∀x, y. f is also lower bounded.595

• A2, at time t, the algorithm can access a bounded noisy gradient, the true gradient is also596

bounded. i.e. ||∇f(θt)|| ≤ H, ||gt|| ≤ H, ∀t > 1.597

• A3, The noisy gradient is unbiased, and has independent noise. i.e. gt = ∇f(θt)+ζt,Eζt =598

0, ζt⊥ζj , ∀j, t ∈ N, t 6= j599

Theorem .3. [35] Suppose assumptions A1-A3 are satisfied, β1,t is chosen such that 0 ≤ β1,t+1 ≤600

β1,t < 1, 0 < β2 < 1,∀t > 0. For some constant G,
∣∣∣∣∣∣αt mt√

st

∣∣∣∣∣∣ ≤ G,∀t. Then Adam-type algorithms601

yield602

E
[ T∑
t=1

αt〈∇f(θt),∇f(θt)/
√
st〉
]
≤

E

[
C1

T∑
t=1

∣∣∣∣∣∣αtgt/√st∣∣∣∣∣∣2 + C2

T∑
t=1

∣∣∣∣∣
∣∣∣∣∣ αt√st − αt−1√

st−1

∣∣∣∣∣
∣∣∣∣∣
1

+ C3

T∑
t=1

∣∣∣∣∣
∣∣∣∣∣ αt√st − αt−1√

st−1

∣∣∣∣∣
∣∣∣∣∣
2]

+ C4 (8)

where C1, C2, C3 are constants independent of d and T , C4 is a constant independent of T , the603

expectation is taken w.r.t all randomness corresponding to {gt}.604
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Furthermore, let γt := minj∈[d] min{gi}ti=1
αi/(
√
si)j denote the minimum possible value of effective605

stepsize at time t over all possible coordinate and past gradients {gi}ti=1. The convergence rate of606

Adam-type algorithm is given by607

mint∈[T ] E

[∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] = O

(
s1(T )

s2(T )

)
(9)

where s1(T ) is defined through the upper bound of RHS of (8), and
∑T
t=1 γt = Ω(s2(T ))608

Proof: We provide the proof from [35] in next section for completeness.609

Theorem .4. Assume minj∈[d](s1)j ≥ c > 0, noise in gradient has bounded variance, Var(gt) =610

σ2
t ≤ σ2,∀t ∈ N, then the AdaBelief algorithm satisfies:611

min
t∈[T ]

E
∣∣∣∣∣∣∇f(θt)

∣∣∣∣∣∣2 ≤ H√
Tα

[C1α
2(H2 + σ2)(1 + log T )

c
+ C2

dα√
c

+ C3
dα2

c
+ C4

]
=

1√
T

(Q1 +Q2 log T )

where612

Q1 =
H

α

[C1α
2(H2 + σ2)

c
+ C2

dα√
c

+ C3
dα2

c
+ C4

]
Q2 =

HC1α(H2 + σ2)

c

Proof: We first derive an upper bound of the RHS of formula (8), then derive a lower bound of the613

LHS of (8).614

E
[ T∑
t=1

∣∣∣∣∣∣αtgt/√st∣∣∣∣∣∣2] ≤ 1

c
E
[ T∑
t=1

d∑
i=1

(αt,igt,i)
2
] (

since 0 < c ≤ st,∀t ∈ [T ]
)

=
1

c

d∑
i=1

T∑
t=1

α2
tE(gt,i)

2

=
1

c

T∑
t=1

α2
tE
[∣∣∣∣∣∣∇f(θt)

∣∣∣∣∣∣2 +
∣∣∣∣∣∣σt∣∣∣∣∣∣2] (10)

E
[ T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣
1

]
= E

[ d∑
i=1

T∑
t=1

αt−1√
st−1,i

− αt√
st, i

]
(

since αt ≤ αt−1, st,i ≥ st−1,i
)

= E
[ d∑
i=1

α1√
s1,i
− αT√

sT,i

]
≤ E

[ d∑
i=1

α1√
s1,i

]
≤ dα√

c

(
since 0 < c ≤ st, 0 ≤ αt ≤ α1 = α,∀t

)
(11)

E
[ T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣2] = E
[ T∑
t=1

d∑
i=1

( αt√
st
− αt−1√

st−1

)2
i

]
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≤ E
[ T∑
t=1

d∑
i=1

∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣
i

α√
c

]
(

Since
∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣ =
αt−1√
st−1

− αt√
st
≤ αt−1√

st−1
≤ α√

c

)
≤ dα2

c

(
By (11)

)
(12)

Next we derive the lower bound of LHS of (8).615

E
[ T∑
t=1

αt〈∇f(θt),
∇f(θt)√

st
〉
]
≥ 1

H
E
[ T∑
t=1

αt

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] ≥ α

√
T

H
min
t∈[T ]

E
∣∣∣∣∣∣∇f(θt)

∣∣∣∣∣∣2 (13)

Combining (10), (11), (12) and (13) to (8), we have:616

α
√
T

H
min
t∈[T ]

E
∣∣∣∣∣∣∇f(θt)

∣∣∣∣∣∣2 ≤ E
[ T∑
t=1

αt〈∇f(θt),
∇f(θt)√

st
〉
]

≤ E
[
C1

T∑
t=1

∣∣∣∣∣∣αtgt/√st∣∣∣∣∣∣2 + C2

T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣
1

+ C3

T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣2]+ C4

≤ C1

c

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2 + α2

t

∣∣∣∣∣∣σt∣∣∣∣∣∣2]+ C2
dα√
c

+ C3
dα2

c
+ C4 (14)

≤ C1

c

T∑
t=1

E
[
α2
t (H

2 + σ2)
]

+ C2
dα√
c

+ C3
dα2

c
+ C4

≤ C1α
2(H2 + σ2)(1 + log T )

c
+ C2

dα√
c

+ C3
dα2

c
+ C4 (15)

(
since αt =

α√
t
,

T∑
t=1

1

t
≤ 1 + log T

)
Re-arranging above inequality, we have617

min
t∈[T ]

E
∣∣∣∣∣∣∇f(θt)

∣∣∣∣∣∣2 ≤ H√
Tα

[C1α
2(H2 + σ2)(1 + log T )

c
+ C2

dα√
c

+ C3
dα2

c
+ C4

]
=

1√
T

(Q1 +Q2 log T ) (16)

where618

Q1 =
H

α

[C1α
2(H2 + σ2)

c
+ C2

dα√
c

+ C3
dα2

c
+ C4

]
(17)

Q2 =
HC1α(H2 + σ2)

c
(18)

619

Corollary .4.1. If c > C1H and assumptions for Theorem .3 are satisfied, we have:620

1

T

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] ≤ 1

T

1
1
H −

C1

c

[
C1α

2σ2

c

(
1 + log T

)
+ C2

dα√
c

+ C3
dα2

c
+ C4

]
(19)

Proof: From (13) and (14), we have621

1

H
E
[ T∑
t=1

αt

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] ≤ E

[ T∑
t=1

αt〈∇f(θt),
∇f(θt)√

st
〉
]
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≤ C1

c

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2 + α2

t

∣∣∣∣∣∣σt∣∣∣∣∣∣2]+ C2
dα√
c

+ C3
dα2

c
+ C4

(20)

By re-arranging, we have622 ( 1

H
− C1

c

) T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] ≤ C1

c

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣σt∣∣∣∣∣∣2]+ C2
dα√
c

+ C3
dα2

c
+ C4

≤ C1α
2σ2

c

(
1 + log T

)
+ C2

dα√
c

+ C3
dα2

c
+ C4 (21)

By assumption, 1
H −

C1

c > 0, then we have623

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] ≤ 1

1
H −

C1

c

[
C1α

2σ2

c

(
1 + log T

)
+ C2

dα√
c

+ C3
dα2

c
+ C4

]
(22)

624

D. Proof of Theorem .3625

Lemma .5. [35] Let θ0 , θ1 in the Algorithm, consider the sequence626

zt = θt +
β1,t

1− β1,t
(θt − θt−1),∀t ≥ 2

The following holds true:627

zt+1 − zt = −
( β1,t+1

1− β1,t+1
− β1,t

1− β1,t

)αtmt√
st

− β1,t
1− β1,t

( αt√
st
− αt−1√

st−1

)
mt−1 −

αtgt√
st
,∀t > 1 (23)

and628

z2 − z1 = −
( β1,2

1− β1,2
− β1,1

1− β1,1

)α1m1√
v1
− α1g1√

v1
(24)

Lemma .6. [35] Suppose that the conditions in Theorem (.3) hold, then629

E
[
f(zt+1 − f(zt))

]
≤

6∑
i=1

Ti (25)

where630

T1 = −E
[ t∑
i=1

〈∇f(zi),
β1,i

1− β1,i

( αi√
vi
− αi−1√

vi−1

)
mi−1〉

]
(26)

T2 = −E
[ t∑
i=1

αi〈∇f(zi),
gi√
vi
〉
]

(27)

T3 = −E
[ t∑
i=1

〈∇f(zi),
( β1,i+1

1− β1,i+1
− βi

1− βi

)αimi√
vi
〉
]

(28)

T4 = E
[ t∑
i=1

3L

2

∣∣∣∣∣∣( β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)αimi√
vi

∣∣∣∣∣∣2] (29)

T5 = E
[ t∑
i=1

3L

2

∣∣∣∣∣∣ β1,i
1− β1,i

( αi√
vi
− αi−1√

vi−1

)
mi−1

∣∣∣∣∣∣2] (30)

T6 = E
[ t∑
i=1

3L

2

∣∣∣∣∣∣αigi√
vi

∣∣∣∣∣∣2] (31)

24



Lemma .7. [35] Suppose that the condition in Theorem .3 hold, T1 in (26) can be bounded as:631

T1 = −E
[ t∑
i=1

〈∇f(zi),
β1,i

1− β1,i

( αi√
vi
− αi−1√

vi−1

)
mi−1〉

]
≤ H2 β1

1− β1
E

[
t∑
i=2

d∑
j=1

∣∣∣( αi√
vi
− αi−1√

vi−1

)
j

∣∣∣] (32)

Lemma .8. [35] Suppose the conditions in Theorem .3 are satisfied, then T3 in (28) can be bounded632

as633

T3 = −E
[ t∑
i=1

〈∇f(zi),
( β1,i+1

1− β1,i+1
− βi

1− βi

)αimi√
vi
〉
]

≤
( β1

1− β1
− β1,t+1

1− β1,t+1

)
(H2 +G2) (33)

Lemma .9. [35] Suppose assumptions in Theorem .3 are satisfied, then T4 in (29) can be bounded634

as:635

T4 = E
[ t∑
i=1

3L

2

∣∣∣∣∣∣( β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)αimi√
vi

∣∣∣∣∣∣2]
≤ 3L

2

( β1
1− β1

− β1,t+1

1− β1,t+1

)2
G2 (34)

Lemma .10. [35] Suppose the assumptions in Theorem .3 are satisfied, then T5 in (30) can be636

bounded as:637

T5 = E
[ t∑
i=1

3L

2

∣∣∣∣∣∣ β1,i
1− β1,i

( αi√
vi
− αi−1√

vi−1

)
mi−1

∣∣∣∣∣∣2]
≤ 3L

2

( β1
1− β1

)2
H2E

[
t∑
i=2

d∑
j=1

( αi√
vi
− αi−1√

vi−1

)2
j

]
(35)

Lemma .11. [35] Suppose the assumptions in Theorem 8 are satisfied, then T2 in (27) are bounded638

as:639

T2 = −E
[ t∑
i=1

αi〈∇f(zi),
gi√
vi
〉
]

≤ E
t∑
i=2

1

2

∣∣∣∣∣∣αigi√
vi

∣∣∣∣∣∣2 + L2
( β1

1− β1

)2( 1

1− β1

)2
E

[
d∑
j=1

t−1∑
i=2

(αigi√
vi

)2
j

]

+ L2H2
( β1

1− β1

)4( 1

1− β1

)2
E

[
d∑
j=1

t−1∑
i=2

( αi√
vi
− αi−1√

vi−1

)2
j

]

+ 2H2E

[
d∑
j=1

t∑
i=2

∣∣∣∣∣( αi√
vi
− αi−1√

vi−1

)
j

∣∣∣∣∣
]

+ 2H2E

[
d∑
j=1

( α1√
v1

)
j

]

− E

[
t∑
i=1

αi〈∇f(xi),∇f(xi)/
√
vi〉

]
(36)
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Proof of Theorem .3640

We provide the proof from [35] for completeness. We combine Lemma .5, .6, .7, .8, .9, .10 and .11 to641

bound the objective.642

E
[
f(zt+1)− f(zt)

]
≤

6∑
i=1

Ti

≤ H2 β1
1− β1

E

[
t∑
i=2

d∑
j=1

∣∣∣( αi√
vi
− αi−1√

vi−1

)
j

∣∣∣]

+
( β1

1− β1
− β1,t+1

1− β1,t+1

)
(H2 +G2)

+
3L

2

( β1
1− β1

− β1,t
1− β1,t

)2
G2

+
3L

2

( β1
1− β1

)2
H2E

[
t∑
i=2

d∑
j=1

( αi√
vi
− αi−1√

vi−1

)2
j

]

+ E
t∑
i=2

1

2

∣∣∣∣∣∣αigi√
vi

∣∣∣∣∣∣2 + L2
( β1

1− β1

)2( 1

1− β1

)2
E

[
d∑
j=1

t−1∑
i=2

(αigi√
vi

)2
j

]

+ L2H2
( β1

1− β1

)4( 1

1− β1

)2
E

[
d∑
j=1

t−1∑
i=2

( αi√
vi
− αi−1√

vi−1

)2
j

]

+ 2H2E

[
d∑
j=1

t∑
i=2

∣∣∣∣∣( αi√
vi
− αi−1√

vi−1

)
j

∣∣∣∣∣
]

+ 2H2E

[
d∑
j=1

( α1√
v1

)
j

]

− E

[
t∑
i=1

αi〈∇f(xi),∇f(xi)/
√
vi〉

]

≤ E
[
C1

T∑
t=1

∣∣∣∣∣∣αtgt/√st∣∣∣∣∣∣2 + C2

T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣
1

+ C3

T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣2]+ C4 (37)

The constants are defined below:643

C1 ,
3

2
L+

1

2
+ L2 β1

1− β1
( 1

1− β1
)2

(38)

C2 , H2 β1
1− β1

+ 2H2 (39)

C3 ,
[
1 + L2

( 1

1− β1
)2( β1

1− β1
)]
H2
( β1

1− β1
)2

(40)

C4 ,
( β1

1− β1
)
(H2 +G2) +

( β1
1− β1

)2
G2 + 2H2E

[
||α1/

√
v1||1

]
+ E[f(z1)− f(z∗)] (41)

644

E. Bayesian interpretation of AdaBelief645

We analyze AdaBelief from a Bayesian perspective.646
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Theorem .12. Assume the gradient follows a Gaussian prior with uniform diagonal covariance,647

g̃ ∼ N (0, σ2I); assume the observed gradient follows a Gaussian distribution, g ∼ N (g̃, C), where648

C is some covariance matrix. Then the posterior is: g̃
∣∣g, C ∼ N((I + C

σ2 )−1g, ( I
σ2 + C−1)−1

)
649

We skip the proof, which is a direct application of the Bayes rule in the Gaussian distribution case as650

in [60]. If g is averaged across a batch of size n, we can replace C with C
n .651

According to Theorem .12, the gradient descent direction with maximum expected gain is:652

E
[
g̃
∣∣g, C] = (I +

C

σ2
)−1g = σ2(σ2I + C)−1g ∝ (σ2I + C)−1g (42)

Denote ε = σ2, then adaptive optimizers update in the direction (εI + C)−1g; considering the653

noise in gt, in practice most optimizers replace gt with its EMA mt, hence the update direction is654

(εI +C)−1mt. In practice, adaptive methods such as Adam and AdaGrad replace (εI +C)−1/2(εI +655

C)−1/2mt with αI(εI + C)−1/2mt for numerical stability, where α is some predefined learning656

rate. Both Adam and AdaBelief take this form; their difference is in the estimate of C: Adam657

uses an uncentered approximation CAdam ≈ EMA diag(gtg
>
t ), while AdaBelief uses a centered658

approximation CAdaBelief ≈ EMA diag[(gt − Egt)(gt − Egt)>]. Note that the definition of C is659

the covariance hence it is centered. Note that for the ith parameter, E(git)
2 = (Egit)2 + Var(git), so660

when Var git � ||Egit||, we have CiAdaBelief < CiAdam, and AdaBelief behaves closer to the ideal661

and takes a larger step than Adam because C is in the denominator.662

From a practical perspective, ε can be interpreted as a numerical term to avoid division by 0; from the663

Bayesian perspective, ε represents our prior on gt, with a larger ε indicating a larger σ2. Note that664

as the network evolves with training, the distribution of the gradient is distorted (an example with665

Adam is shown in Fig. 2 of [16]), hence the Gaussian prior might not match the true distribution. To666

solve the mismatch between prior and the true distribution, it might be reasonable to use a weak prior667

during late stages of training (e.g., let σ2 grow at late training phases, and when σ2 →∞ reduces to668

a uniform prior). We only provide a Bayesian perspective here, and leave the detailed discussion to669

future works.670
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(a) VGG11 on Cifar10 (b) ResNet34 on Cifar10 (c) DenseNet121 on Cifar10

(d) VGG11 on Cifar10 (e) ResNet34 on Cifar10 (f) DenseNet121 on Cifar10

Figure 1: Training (top row) and test (bottom row) accuracy of CNNs on Cifar10 dataset. We report
confidence interval [µ± σ] of 3 independent runs.

F. Experimental Details671

1. Image classification with CNNs on Cifar672

We performed experiments based on the official implementation3 of AdaBound [12], and exactly673

replicated the results of AdaBound as reported in [12]. We then experimented with different optimizers674

under the same setting: for all experiments, the model is trained for 200 epochs with a batch size of675

128, and the learning rate is multiplied by 0.1 at epoch 150. We performed extensive hyperparameter676

search as described in the main paper. In the main paper we only report test accuracy; here we report677

both training and test accuracy in Fig. 1 and Fig. 2. AdaBelief not only achieves the highest test678

accuracy, but also a smaller gap between training and test accuracy compared with other optimizers679

such as Yogi.680

2. Image Classification on ImageNet681

We experimented with a ResNet18 on ImageNet classication task. For SGD, we use the same learning682

rate schedule as [25], with an initial learning rate of 0.1, and multiplied by 0.1 at epoch 30 and 60; for683

AdaBelief, we use an initial learning rate of 0.001, and decayed it at epoch 70 and 80. Weight decay684

is set as 10−4 for both cases. To match the settings in [?] and [16], we use decoupled weight decay.685

As shown in Fig. 3, AdaBelief achieves an accuracy very close to SGD, closing the generalization686

gap between adaptive methods and SGD. Meanwhile, when trained with a large learning rate (0.1 for687

SGD, 0.001 for AdaBelief), AdaBelief achieves faster convergence than SGD in the initial phase.688

3. Robustness to hyperparameters689

Robustness to ε We test the performances of AdaBelief and Adam with different values of ε varying690

from 10−4 to 10−9 in a log-scale grid. We perform experiments with a ResNet34 on Cifar10 dataset,691

and summarize the results in Fig. 4. Compared with Adam, AdaBelief is slightly more sensitive692

to the choice of ε, and achieves the highest accuracy at the default valiue ε = 10−8; AdaBelief693

achieves accuracy higher than 94% for all ε values, consistently outperforming Adam which achieves694

an accuracy around 93%.695

3https://github.com/Luolc/AdaBound
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(a) VGG11 on Cifar100 (b) ResNet34 on Cifar100 (c) DenseNet121 on Cifar100

(d) VGG11 on Cifar100 (e) ResNet34 on Cifar100 (f) DenseNet121 on Cifar100

Figure 2: Training (top row) and test (bottom row) accuracy of CNNs on Cifar10 dataset. We report
confidence interval [µ± σ] of 3 independent runs.

Figure 3: Training and test accuracy (top-1) of ResNet18 on ImageNet.

Robustness to learning rate We test the performance of AdaBelief with different learning rates.696

We experiment with a VGG11 network on Cifar10, and display the results in Fig. 5. For a large range697

of learning rates from 5× 10−4 to 3× 10−3, compared with Adam, AdaBelief generates higher test698

accuracy curve, and is more robust to the change of learning rate.699

4. Experiments with LSTM on language modeling700

We experiment with LSTM models on Penn-TreeBank dataset, and report the results in Fig. 6. Our701

experiments are based on this implementation 4. Results [µ ± σ] are measured across 3 runs with702

independent initialization. For completeness, we plot both the training and test curves.703

We use the default parameters α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8 for 2-layer and 3-layer704

models; for 1-layer model we set ε = 10−12 and set other parameters as default. For simple models705

(1-layer LSTM), AdaBelief’s perplexity is very close to other optimizers; on complicated models,706

AdaBelief achieves a significantly lower perplexity on the test set.707

4https://github.com/salesforce/awd-lstm-lm
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Figure 4: Training (top row) and test (bottom row) accuracy of ResNet34 on Cifar10, trained with
AdaBelief (left column) and Adam (right column) using different values of ε. Note that AdaBelief
achieves an accuracy above 94% for all ε values, while Adam’s accuracy is consistently below 94%.

Figure 5: Training (top row) and test (bottom row) accuracy of VGG on Cifar10, trained with
AdaBelief (left column) and Adam (right column) using different values of learning rate.
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(a) 1-layer LSTM (b) 2-layer LSTM (c) 3-layer LSTM

(d) 1-layer LSTM (e) 2-layer LSTM (f) 3-layer LSTM

Figure 6: Training (top row) and test (bottom row) perplexity on Penn-TreeBank dataset, lower is
better.

Table 1: Structure of GAN
Generator Discriminator

ConvTranspose ([inchannel = 100, outchannel = 512, kernel = 4×4, stride = 1]) Conv2D([inchannel=3, outchannel=64, kernel = 4×4, stride=2])
BN-ReLU LeakyReLU

ConvTranspose ([inchannel = 512, outchannel = 256, kernel = 4×4, stride = 2]) Conv2D([inchannel=64, outchannel=128, kernel = 4×4, stride=2])
BN-ReLU BN-LeakyReLU

ConvTranspose ([inchannel = 256, outchannel = 128, kernel = 4×4, stride = 2]) Conv2D([inchannel=128, outchannel=256, kernel = 4×4, stride=2])
BN-ReLU BN-LeakyReLU

ConvTranspose ([inchannel = 128, outchannel = 64, kernel = 4×4, stride = 2]) Conv2D([inchannel=256, outchannel=512, kernel = 4×4, stride=2])
BN-ReLU BN-LeakyReLU

ConvTranspose ([inchannel = 64, outchannel = 3, kernel = 4×4, stride = 2]) Linear(-1, 1)
Tanh

5. Experiments with GAN708

We experimented with a WGAN [30] and WGAN-GP [39]. The code is based on several public709

github repositories 5,6. We summarize network structure in Table 1. For WGAN, the weight of710

discriminator is clipped within [−0.01, 0.01]; for WGAN-GP, the weight for gradient-penalty is set as711

10.0, as recommended by the original implementation. For each optimizer, we perform 5 independent712

runs. We train the model for 100 epochs, generate 64,000 fake samples (60,000 real images in713

Cifar10), and measure the Frechet Inception Distance (FID) [40] between generated samples and real714

samples. Our implementation on FID heavily relies on an open-source implementation7. We report715

the FID scores in the main paper, and demonstrate fake samples in Fig. 7 and Fig. 8 for WGAN and716

WGAN-GP respectively.717

5https://github.com/pytorch/examples
6https://github.com/eriklindernoren/PyTorch-GAN
7https://github.com/mseitzer/pytorch-fid
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(a) AdaBelief (b) RMSProp (c) Adam

(d) RAdam (e) Yogi (f) Fromage

(g) MSVAG (h) AdaBound (i) SGD

Figure 7: Fake samples from WGAN trained with different optimizers.
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(a) AdaBelief (b) RMSProp (c) Adam

(d) RAdam (e) Yogi (f) Fromage

(g) MSVAG (h) AdaBound (i) SGD

Figure 8: Fake samples from WGAN-GP trained with different optimizers.
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