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Abstract

Conditional inference on arbitrary subsets of variables is a core problem in proba-
bilistic inference with important applications such as masked language modeling
and image inpainting. In recent years, the family of Any-Order Autoregressive
Models (AO-ARMs) – closely related to popular models such as BERT and XL-
Net – has shown breakthrough performance in arbitrary conditional tasks across a
sweeping range of domains. But, in spite of their success, in this paper we identify
significant improvements to be made to previous formulations of AO-ARMs. First,
we show that AO-ARMs suffer from redundancy in their probabilistic model, i.e.,
they define the same distribution in multiple different ways. We alleviate this re-
dundancy by training on a smaller set of univariate conditionals that still maintains
support for efficient arbitrary conditional inference. Second, we upweight the
training loss for univariate conditionals that are evaluated more frequently during
inference. Our method leads to improved performance with no compromises on
tractability, giving state-of-the-art likelihoods in arbitrary conditional modeling on
text (Text8), image (CIFAR10, ImageNet32), and continuous tabular data domains.

1 Introduction

Generative modeling has seen tremendous progress in building highly expressive models [2, 31], but
relatively little effort has been put into supporting efficient probabilistic inference. Most existing
models with deep neural architectures do not admit efficient inference on conditional queries of
the form p(xu|xv), where u and v are disjoint subsets of the variables of the joint distribution.
Such queries, however, have many important applications such as masked language modeling [42],
image inpainting [43], and more. For example, multi-modal models learn a joint distribution over
all data modalities, and at test time may only be presented with some subset (unknown in advance)
of modalities [41, 20]. In robot shared-autonomy, an operator at test time may choose to provide a
subset of the action inputs, leaving the model to fill in the remaining action dimensions [8, 23].

Evidently, expressive generative models that can support efficient conditional inference can bring
progress to many applications. Towards this end, the family of Any-Order Autoregressive Models
(AO-ARMs) [37, 42, 35, 14] has shown surprising success. AO-ARMs are built on the following
insights. An autoregressive model defines an ensemble of univariate conditionals p(xt|x<t) that
leads to efficient inference on certain conditional queries: ones whose variables form a prefix of the
ordering (Fig. 1a). However, in standard autoregressive models, all other conditionals are defined
only implicitly through Bayes’ rule, and hence do not admit efficient inference routines. To fix this,
consider training another autoregressive model on the reverse ordering, which now defines a larger
set of univariate conditionals that can answer queries of either the prefix or the suffix of the ordering
(Fig. 1b). AO-ARMs take this insight to the extreme by training on all possible orderings, enabling
efficient inference on all possible conditionals. Remarkably, recent efforts in scaling up AO-ARMs
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Figure 1: (a) An autoregressive model defines N univariate conditionals p(xt|x<t), allowing for
efficient conditional inference when variable subsets form a prefix of the ordering, e.g., p(x1:3). (b)
Learning an additional autoregressive model on the reverse ordering x4, x3, x2, x1 enables efficient
inference on more queries: when variables form suffixes, e.g., p(x2:4). However, this leads to
redundancy in the probabilistic model, as the joint distribution p(x1:4) is now defined in two different
ways. This redundancy is exacerbated in AO-ARMs as a result of learning on all possible orders.

have worked extremely well, with breakthrough performance in masked language modeling [42],
image inpainting [14], and more [35].

However, in spite of their already strong empirical results, we identify significant improvements that
can be made to AO-ARMs. We begin by showing that previous formulations of AO-ARMs suffer from
redundancy in their probabilistic model. Consider again the example of training two autoregressive
models on the lexicographical and reverse ordering (Fig. 1b). This already unnecessarily defines the
same joint distribution in two different ways, as there are two paths to the node p(x1:4) corresponding
to two distinct factorizations. By scaling up to all possible orderings, AO-ARMs inadvertently model
the same distribution with a huge amount of redundancy. Such redundancy makes training inefficient
and, much more importantly, leads to worse asymptotic performance. Due to finite capacity of the
model, attempting to learn too many univariate conditionals can lead to a poor fit on individual ones.

In this paper, we present MAC – Mask-tuned Arbitrary Conditional Models – which proposes two key
insights for reducing redundancy and improving model performance. The first insight is that arbitrary
conditional inference can still be computed efficiently without relying on all possible univariate
conditionals. For example in Fig. 1b, omitting the edge p(x1|x2, x3, x4) still maintains efficient
inference for all the nodes in the graph, since there is another path for computing p(x1:4). Based
on this observation, we reduce redundancy of AO-ARMs by training on a smaller set of univariate
conditionals that still supports tractable arbitrary conditional inference. The second insight is that
some univariate conditionals are evaluated much more often than others during inference. Therefore,
we upweight the training loss for the more frequently occurring univariate conditionals, thereby
aligning the training and inference objectives more closely.

Combining these insights, MAC leads to a strictly-improved formulation of AO-ARMs that, amaz-
ingly, gives better arbitrary conditional and joint likelihoods with no compromises on tractability. We
achieve state-of-the-art likelihoods for arbitrary conditional modeling across multiple domains such
as text (Text8), image (CIFAR10, ImageNet32), and continuous tabular data. Finally, we conclude by
demonstrating a novel application of AO-ARMs to robot shared-autonomy.

2 Background

Problem definition Marginal and conditional inference are important queries for handling partial
evidence on arbitrary subsets of variables, which is relevant for tasks such as masked language
modeling or image inpainting. We let a mask e be a subset of variables, and its cardinality |e| be
the number of elements in the subset. A masked input xe is a partial instantiation on the variable
subset e using the values taken on by input x. Marginal inference refers to queries of the form
p(xe) =

∫
p(xexq)dxq, where q = X \ e and xexq denotes the union of the partial instantiations.

Conditional inference queries p(xu|xe) = p(xuxe)/p(xe) are similar and can be computed as a
ratio of two marginals, so we will refer to marginals and conditionals interchangeably. To evaluate
model performance on marginal inference queries over a test dataset Xtest, we assume a test mask
distribution M over the 2N possible masks. We sample masks e from M independently from data,
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and use the negative marginal log-likelihood of the masked input xe as the loss.

LM = −
∑

x∈Xtest

Ee∼M log p(xe) (1)

Computing arbitrary marginals and conditionals has been a long-standing challenge in probabilistic
inference, with a rich history of techniques [28, 26, 15, 5, 40] ranging from belief propagation,
variational inference, to MCMC. Such queries are inherently difficult in high-dimensions: given
access to joint likelihoods p(x), naïve computation of marginal likelihoods p(xe) requires integration
over the missing N − |e| dimensions. As a result, most traditional approaches model the joint
distribution using non-neural architectures that admit efficient inference but are less expressive [18].

Autoregressive Models Autoregressive models are an influential family of generative models that
represents complex high-dimensional distributions by modeling a single dimension at a time. They
parameterize a joint distribution p(x) over N dimensions by factorizing it into univariate conditionals∏N
t=1 p(xσ(t)|xσ(<t);σ) via chain rule (Fig. 1a), using an ordering σ of the N variables. We write

σ(t) and σ(< t) to denote the masks corresponding to the t-th element and the first t− 1 elements of
the ordering, respectively.

The univariate conditionals can be learned via a weight-tied neural network, and composing them
together leads to highly expressive architectures in practice, such as PixelCNN [38, 32] or Transform-
ers [39]. Autoregressive models support efficient inference on the joint distribution, and on a specific
type of marginal query: ones where the mask forms a prefix of the variable order, i.e., σ(≤ |e|) = e
(Fig. 1a). We will call such a mask e and ordering σ compatible.

However, autoregressive models cannot support efficient arbitrary marginal inference in general.
Next, we present AO-ARMs, which extend autoregressive models in a way that does support arbitrary
marginal inference.

2.1 Any-Order Autoregressive Models (AO-ARMs)

AO-ARMs [37, 35, 14] learn a single model that can generate the joint distribution autoregressively
using any ordering of the N variables, by modeling

∏N
t=1 p(xσ(t)|xσ(<t);σ) for all orderings σ.

Even though there are N ! different orderings, their chain-rule factorization is built from univariate
conditionals, of which there are “only” N2N−1. Therefore, an AO-ARM is a model that defines the
N2N−1 distinct univariate conditionals p(xj |xe\j), where j ∈ e.
To answer a marginal inference query p(xe) with an AO-ARM, we choose an order σ that is
compatible with e, so that σ(≤ |e|) = e. Then, we simply evaluate each of the univariate conditionals
p(xe) =

∏|e|
t=1 p(xσ(t)|xσ(<t);σ) in the autoregressive factorization of xe.

Training AO-ARMs Architecturally, an AO-ARM models all univariate conditionals via a weight-
tied neural network, by using a special (so-called “absorbing-state” [1, 14]) token for variables that
are not present in the evidence set. To enable parallel optimization, the AO-ARM architecture is
designed so that given evidence xe, the model can predict the univariate conditionals p(xi|xe) for all
i ∈ X \ e at once. Importantly, this parallelization works on non-causal architectures, opening the
doors to architectures similar in flexibility to diffusion models [33, 34, 13].

In previous works [37, 35, 14], AO-ARMs are trained to maximize the joint likelihood of a datapoint
x under the expectation over the uniform distribution Uσ of orders.

log p(x) = logEσ∼Uσ
N∑

t=1

p(xσ(t)|xσ(<t);σ) ≥ Eσ∼Uσ
N∑

t=1

log p(xσ(t)|xσ(<t);σ) (2)

This objective can be simplified by treating t as a random variable with a uniform distribution Ut over
cardinalities 1 to N . We let Mcard-edge be the distribution over the tuple (σ(t), σ(< t)) where σ ∼ Uσ
and t ∼ Ut, giving the following loss function for an AO-ARM parameterized by θ.

L(θ) = −Eσ∼Uσ
N∑

t=1

log pθ(xσ(t)|xσ(<t);σ) = −N · Ei,e∼Mcard-edge log pθ(xi|xe) (3)
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In practice, due to parallel optimization, we write the objective in the following equivalent form.

L(θ) = −N · E−,e∼Mcard-edge

1

N − |e|
∑

i∈X\e
log pθ(xi|xe) (4)

Compared to other arbitrary conditional models, AO-ARMs consistently give state-of-the-art perfor-
mance on benchmarks across a range of domains [37, 35, 14]. Besides good empirical performance,
they also serve as a conceptual unification between autoregressive models and diffusion models [14, 1],
showing promise for both practical and theoretical advancements.

3 Improving Any-Order Autoregressive Models with MAC

Despite the success of AO-ARMs, in this section we identify two key deficiencies in previous
formulations of AO-ARMs. We propose solutions to them by re-interpreting AO-ARMs from the
perspective of recursive decomposition over marginals. Our resulting method MAC leads to consistent
improvements and state-of-the-art likelihoods across a range of domains in Sec. 4.

(A) The first deficiency is that of redundancy. While being order-agnostic is exactly what
enables arbitrary conditionals, learning the same distribution with multiple orderings makes
training inefficient. More importantly, since the model has limited capacity (especially with the
weight-tied architecture), learning orderings redundantly hurts asymptotic performance.

(B) The second deficiency stems from the AO-ARM training objective in Eq. 2. This objec-
tive focuses only on the joint likelihood, leading to a mismatch with the marginal likelihood
evaluation objective in Eq. 1, even though computing marginals is the key feature of AO-ARMs.

When viewing AO-ARMs as autoregressive models that generate using all orders, it is not obvious
how to fix the above two deficiencies. For example, if we try to omit certain orders to address (A),
we may lose the ability to efficiently answer marginals, e.g., queries that are prefixes of the orders we
removed. Similarly for (B), it is unclear how to choose a distribution of orderings to best account for
arbitrary conditional inference. To solve these issues, we re-interpret AO-ARMs from the perspective
of computing arbitrary conditional probabilities via recursive decomposition over masks.

3.1 Re-interpreting AO-ARMs as recursive decomposition on a binary lattice

A mask e is associated with the set of marginal inference queries of the form p(xe). We will refer to
this set of queries as the corresponding task for mask e. We represent these masks/tasks as nodes in
Fig. 1. Supporting efficient computation of each task, therefore, implies efficient arbitrary marginal
inference. However, for masks with high cardinality, the corresponding task involves learning a
high-dimensional distribution.

Fortunately, these masks do not actually form standalone tasks, but are subproblems of one an-
other. In particular, given non-empty mask e and a single variable j ∈ e, we can write p(xe) as
p(xe\j)p(xj |xe\j). Then, we delegate the computation of p(xe\j) to the task associated with mask
e \ j, and are only left with estimating the univariate conditional p(xj |xe\j).
From this perspective, we can view AO-ARMs as solving an ensemble of intertwined tasks, one for
each of the 2N possible masks. We visualize this as a binary lattice in Fig. 2a over N = 4 variables,
where we have 24 = 16 nodes representing the possible masks/tasks, with an edge connecting nodes
e′ and e if e′ = e \ j for some singleton variable j ∈ e. To answer a marginal query p(xe), we
choose an element j ∈ e and compute p(xe) = p(xe\j)p(xj |xe\j), which corresponds to moving
along the edge from node e to node e \ j in the lattice. We proceed recursively on p(xe\j) until we
reach p(x∅) = 1.

Under this recursive decomposition framework, two key concepts are the decomposition protocol,
which dictate how edges are chosen, and the mask/edge distributions, which specify the probability
that different marginals and univariate conditionals are evaluated.

Definition 1 A decomposition protocol w defines, for each non-empty mask e, a probability distri-
bution we over the elements in e. In other words,

∑
j∈e we(j) = 1 and we(j) ≥ 0 for e 6= ∅.
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Figure 2: (a) For N = 4, marginal queries can take on one of 24 = 16 possible masks, represented as
square nodes. These masks are related to one another through univariate conditionals (edges), since
p(xe) = p(xe\j)p(xj |xe\j). For example, given p(x1), to compute p(x1,3) we only need to learn
the univariate conditional p(x3|x1), shown as the green edge. (b) We don’t need to learn all univariate
conditionals (edges) to compute arbitrary marginals (nodes). It suffices to learn one left-going edge
for every node besides the ∅ node. (c) Given a marginal query at a node, we recursively decompose it
by following red edges until we reach the ∅ node. Hence, some edges / nodes will be traversed more
often, so we should train on them more often.

A decomposition protocol w specifies a process for answering marginal inference queries. Given a
marginal query at node e, we sample an element j ∼ we and compute p(xe) = p(xe\j)p(xj |xe\j).
We proceed recursively on p(xe\j) until we reach p(x∅) = 1.

Definition 2 A mask distribution is a probability distribution over the 2N possible variable subsets
for marginals. An edge distribution is a probability distribution over the N2N−1 possible variable
subsets for univariate conditionals.

Mask and edge distributions are relevant for specifying the test mask distribution (Eq. 1) of the
problem domain, and the training edge distribution for the AO-ARM. When viewed under this
recursive decomposition interpretation, previous formulations of AO-ARMs use a random decompo-
sition protocol w-RND where w-RNDe(j) = 1/|e|. Moreover, they use a training edge distribution
Mcard-edge (Eq. 3), which unfortunately neglects to take into account the test mask distribution M .

3.2 MAC: Mask-tuned Arbitrary Conditional Model

We can now describe our method MAC. MAC improves upon previous AO-ARMs by choosing a
custom decomposition protocol and deriving a training edge distribution that aligns with the test mask
distribution M .

(A) Reducing edge redundancy To answer arbitrary marginals, we don’t need to learn to generate
using all possible orderings. Rather, it suffices to decompose each task into any one of its children
tasks. This constraint corresponds to learning a single (red) incoming edge for each node besides the
∅ node. We show an example in Fig. 2b, where we connect each node to its leftward parent obtained
by removing the greatest element of the node’s mask. This is precisely the decomposition protocol
that we use for MAC: w-MACe(j) = 1 if j is the greatest element in e.

(B) Matching edge distribution When presented with a marginal query e, the decomposition
protocol w traverses a path from node e to node ∅, evaluating the univariate conditionals along the
way. Simulating w on masks e ∼ M leads to an induced edge distribution DM,w that represents
how frequently different univariate conditionals are evaluated during the inference process, which
we depict in Fig. 2c using red edges with different thicknesses. We can see, for example, that
under the protocol w-MAC, univariate conditionals such as p(x1|x∅) are evaluated highly frequently
because it appears as a subproblem to many marginal queries. Therefore, we should tune our training
distribution on univariate conditionals to match this induced edge distribution DM,w given by the
downstream test mask distribution M and the decomposition protocol w-MAC.
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Abstractly, let π ∼ w(e) denote the probability that w chooses a path of edges π = {(it, et)}|e|t=1
when decomposing e. In particular, e1 = ∅, and it is a variable in e \ et, and et+1 = it ∪ et. Then
we can write the marginal inference objective as follows, where C is the constant Ei,e∼DM,w |e|.

Ee∼M [log p(xe)] = Ee∼MEπ∼w(e)

|e|∑

t=1

log p(xit |xet) (5)

= C · Ei,e∼DM,w log p(xi|xe) (6)

Eq. 5 leads to the following algorithms for training MAC (Alg. 1). We sample a marginal query p(xe)
by independently sampling a mask e ∼M and an input x ∼ X . Then, we simulate the path taken on
the lattice by the decomposition protocol w by iteratively sampling an element j ∼ we and updating
e to be e \ j. Throughout this process, we optimize our model on the edges (univariate conditionals)
traversed on this path. During testing (Alg. 2), we similarly step through the decomposition protocol
and add together the univariate conditional likelihoods along the path.

Algorithm 1: Training MAC
Input: Test mask distribution M ,

decomposition protocol w, training
data distribution X , model θ

1 while training do
2 e ∼M,x ∼ X
3 while e 6= ∅ do
4 j ∼ we
5 θ ← θ +∇θ log pθ(xj |xe\j)
6 e← e \ j

Algorithm 2: Testing MAC
Input: Mask e, decomposition protocol w,

test data x, model θ
Output: Marginal log-likelihood log pθ(xe)

1 r ← 0
2 while e 6= ∅ do
3 j ∼ we
4 r ← r + log pθ(xj |xe\j)
5 e← e \ j

Return: r

In practice, since the decomposition protocol w-MAC deterministically removes the greatest element,
there is an efficient way to directly sample from DM,w-MAC in batch (Eq. 6), without having to
simulate w-MAC as in Alg. 1. We describe these details in the Appendix. Finally, to conclude this
section, we discuss two important design choices and practical considerations for w and DM,w.

Parallel training As noted in Section 2, the architecture of AO-ARMs enables training on univariate
conditionals of the form p(xi|xe) for i ∈ X \ e in parallel. Therefore, rather than dealing with a
training distribution over univariate conditionals DM,w(i, e), we instead work with one over masks
DM,w(e). To a close approximation, we will simply let DM,w(e) ∝

∑
iDM,w(i, e), visualized as

shaded nodes in Fig. 2c.

Cardinality Reweighting (heuristic) We present one additional technique for tuning the training
mask distribution, with ablations and further discussion in later sections. To foster generalization
of our weight-tied neural network, we reweigh the probability of a mask based on its cardinality e,
by using a final training distribution of DCR

M,w(e) ∝ (1 + |e|)DM,w(e), which we sample using SIR
(Sampling-Importance-Resampling).

With parallelism and cardinality reweighting, the final objective for MAC is the following:

LM (θ) := −Ee∼DCR
M,w-MAC

1

N − |e|
∑

i∈X\e
log pθ(xi|xe) (7)

The decomposition protocol w-MAC recursively removes the greatest element of a mask, where
comparison between two elements j1 > j2 is determined by a global canonical ordering (e.g.
lexicographical ordering).

4 Experiments

We evaluate MAC on high-dimensional language and image domains, and on a set of continuous
tabular benchmarks. We focus on two metrics: joint likelihood and marginal likelihood of the test set.
On both metrics, MAC shows state-of-the-art performance among arbitrary conditional models on the
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majority of benchmarks. We conclude by demonstrating a novel application of arbitrary conditional
models on a simulated robot shared-autonomy task, where we learn a conditional policy in a 9-DoF
action space through implicit behavioral cloning with MAC.

Note on computation Each run was done on a single NVIDIA A40. For the language and image
experiments, we trained each model for approximately two weeks. Although this was not enough to
match the total number of epochs trained by the baseline ARDM1, we were still able to show state-of-
the-art performance for arbitrary conditional models on 2 out of the 3 language/image benchmarks,
and beat the baselines on all 3 benchmarks when compared under the same number of training epochs.

Table 1: Character-level modeling of the Text8
dataset (without additional context), in bpd.

joint marginal

Joint Models
from literature

Transformer [39] 1.35 –

Arb. Cond. Models
from literature

OA-Transformer [14, 42] 1.64 –
D3PM [1] 1.47 –
ARDM [14] (14000 epochs) 1.43 –

our experiments
ARDM (3000 epochs) 1.48 1.12
MAC (3000 epochs) 1.40 1.09

Figure 3: Ablation on choices of training mask
distribution. The best performing mask distribu-
tion DCR

M,w-MAC uses the w-MAC decomposition
protocol with cardinality reweighing.

4.1 Language

We learn a character-level model on chunks of 250 characters using the Text8 dataset [24], which
consists of 100M characters. We follow the setup from previous work in modeling the chunked
text segments without any additional context, and use the same 12-layer Transformer architecture as
ARDM and D3PM [14, 1]. We report the joint and marginal likelihoods in terms of bpd (lower is
better), where the marginal bpd is computed w.r.t. to the test mask distributionMcard-mask(e) ∝ 1/

(
N
|e|
)

as used in [35]2. In Tab. 1 we see that MAC outperforms all existing arbitrary conditional models
in joint likelihood and comes close to a standard Transformer trained only to model in one variable
order, even when trained only on a fraction of the total number of epochs by baselines in literature.
Similarly, MAC also gets better marginal bpd compared to ARDM.

Ablations In Fig. 3 we present ablation studies on different choices of the training mask distribution.
The baseline method (ARDM) trains on the Mcard-mask mask distribution (grey). Using only insight
(A) from Sec. 3 with a deterministic decomposition protocol but no edge-weighting gives slight
improvements DM,w-ablateA (light purple). Using only insight (B) from Sec. 3 with edge-weighting
but random decomposition protocol also leads to slight improvements DM,w-RND (light blue). Using
both insights (A) and (B) gives the w-MAC protocol which leads to more improvements DM,w-MAC
(light orange). Lastly, the cardinality reweighing heuristic improves both methods even more (dark
blue/orange). The best performance is given by DCR

M,w-MAC in dark orange, which is the setting we
use for MAC in all our other experiments.

4.2 Images

We evaluate MAC on CIFAR10 [19] and ImageNet32 [4, 6], both of which consist of images of
dimension 3072. Again, we follow all experimental settings from previous work [1, 14, 17], using a U-
Net with 32 ResNet Blocks interleaved with attention layers, and use rotation/flip data augmentation.
In Tab. 2&3 we see that MAC outperforms ARDM on joint bpd and marginal bpd, evaluated on the

1Previous works were unable to share checkpoints of baseline methods.
2Mcard-mask effectively samples a cardinality c, and then samples uniformly among masks with cardinality c.
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Mcard-mask mask distribution. Surprisingly, MAC even gives the best joint bpd on ImageNet32 when
compared to joint models that do not support arbitrary conditionals.

Table 2: Pixel modeling of the ImageNet32
dataset (with no data augmentation), in bpd.

joint marginal

Joint Models
from literature

Image Transformer [27] 3.77 –
VDM [17] 3.72 –

Arb. Cond. Models
our experiments

ARDM (16 epochs) 3.60 2.10
MAC (16 epochs) 3.58 2.08

Table 3: Pixel modeling of the CIFAR10 dataset
(with rotation/flip data augmentation), in bpd.

joint marginal

Joint Models
from literature

PixelCNN++ [32] 2.88
Sparse Transformer [3, 16] 2.56 –
VDM [17] 2.49 –

Arb. Cond. Models
from literature

D3PM [1] 3.44 –
ARDM [14] (3000 epochs) 2.69 –

our experiments
ARDM (1200 epochs) 2.86 1.84
MAC (1200 epochs) 2.81 1.81

4.3 Continuous Tabular Data

Next, we consider a tabular domain with variables taking on continuous values [35]. The main
challenge with continuous values for AO-ARMs is the parameterization of the univariate conditionals,
since 1-D Gaussians or even mixtures of Gaussians have limited expressiveness. To this end, ACE [35]
proposes to parameterize the 1-D conditionals as EBMs. We build MAC on top of ACE, keeping all
hyperparameters and experimental setup the same, modifying only the training mask distribution.
In Tab. 4&5, we see that MAC gives better marginal and conditional likelihoods than ACE on most
settings, and outperforms other arbitrary conditional models such as SPNs [30, 25] and ACFlow [22].

Table 4: Marginal log-likelihood on 5 continuous tabular benchmarks (higher is better). The mask
cardinality settings kept consistent with the ones reported in [35].

power gas hepmass miniboone bsds

Mask cardinality 3 5 6 3 5 8 3 5 10 3 5 10 3 5 10

SPFlow [25] -0.63 1.01 -0.12 0.68 1.88 4.81 -4.01 -6.58 -13.38 -2.21 -4.31 -9.85 -2.87 -4.42 -8.15
ACFlow [22] -0.57 1.34 0.42 0.78 3.01 10.13 -4.03 -6.19 -11.58 -2.76 -5.31 -10.36 5.06 9.26 19.60
ACE [35] -0.56 1.42 0.58 1.31 4.31 12.20 -4.00 -5.91 -10.72 -2.13 -3.80 -7.94 5.10 9.37 20.31
MAC -0.55 1.43 0.61 1.59 4.98 13.02 -4.00 -5.90 -10.69 -2.12 -3.76 -7.76 5.10 9.37 20.33

Table 5: Conditional log-likelihood on 5 continuous tabular
benchmarks.

power gas hepmass miniboone bsds

SPFlow [25] -1.03 4.30 -12.78 -18.34 -24.15
ACFlow [22] 0.56 8.09 -8.20 -0.97 81.83
ACE [35] 0.63 9.64 -3.86 0.31 86.70
MAC 0.65 9.77 -3.05 0.07 86.05

Table 6: Shared autonomy on
FrankaKitchen with BC operator
policy. Full autonomy baseline
(IBC) [10]: 2.15 ± 0.06

Conditional Policy Reward

BC 1.81 ± 0.08
MAC 2.00 ± 0.05

4.4 Shared Autonomy on FrankaKitchen

Finally, we demonstrate an application of arbitrary conditional models on the task of
shared autonomy in robotic manipulation. In shared autonomy settings, an operator
aims to control a policy in a complicated action space, but is allowed to delegate
partial control to an AI model for easier manipulation. We focus on the simulated
FrankaKitchen environment [12, 11], where the goal is to control a 9-DoF robotic
arm to move objects around a kitchen.

We train a base policy with behavioral cloning (BC) [29] and an arbitrary conditional
policy with MAC to solve the Kitchen-mixed0 task. To simulate shared autonomy, we evaluate
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a hybrid policy where at each state, the operator policy (BC) outputs 4 out of the 9 dimensions of
the action space, and a conditional policy fills in the remaining 5 action dimensions. In Tab. 6 we
see that conditioning using MAC improves shared autonomy as compared to conditioning using an
independent BC policy, and comes close to the full autonomy performance [10].

5 Discussion

Table 7: Monte-Carlo simulation of induced mask
distributions for N = 12, taking 1e6 samples. For
brevity we only display a few selected rows.

Mask M DM,w-RND DM,w-MAC D
CR
M,w-MAC

011111111110 1261 222 650 1827
100000000000 7037 14803 76381 41441
100000000101 407 521 0 0
100000001000 1288 1975 536 430
111111111110 6956 433 6935 21094

Entropy 7.21 5.74 4.44 5.51

Sharpen mask distribution Intuitively, we
should choose a protocol w such that DM,w

has low entropy so that our model has a greater
chance of revisiting similar masks. To investi-
gate the differences in choices of decomposition
protocol, in Tab. 7 we present Monte-Carlo sim-
ulations of the induced mask distributions with
respect to the test mask distribution Mcard-mask.
As expected, using w-MAC leads to lower em-
pirical entropy than using w-RND.

Mask generalization (and why we do Cardi-
nality Reweighting) The success of AO-ARMs depends on generalization to unseen masks, since
there are exponentially many masks. Training on many masks improves generalization, and can be
viewed as a form of data augmentation that allows AO-ARMs to sometimes even outperform standard
autoregressive models on joint likelihoods.

In light of this, a decomposition protocol w that skews the mask distribution may have the unfortunate
side-effect of hurting generalization. In particular, the mask distribution DM,w-MAC puts much
more weight on low-cardinality masks. This is problematic since training on cardinality-1 masks
is not conducive to generalization: there are only N possible cardinality-1 masks, whereas higher
cardinalities have exponentially more masks. As such, we proposed DCR

M,w-MAC (Tab. 7) with the
hypothesis that focusing less on low-cardinality masks will lead to better generalization. Our ablation
study supports this hypothesis, as cardinality reweighting indeed improves performance (Fig. 3).

Parallel training To account for parallel training, we proposed to train on the mask distribution
DM,w(e) ∝

∑
i∈X\eDM,w(i, e). However, each pass of DM,w(e) trains on all of {p(xi|xe) : i ∈

X \ e}, which overtrains neighboring edges and leads to a minor distributional mismatch. Aligning
this training distribution more closely may lead to improvements, but requires better techniques for
parallelization and sampling of masks. We leave this for future investigation.

5.1 Related Work

The idea of training AO-ARMs as autoregressive models on all possible orderings was first introduced
in NADE [37, 36], and has been seen more recently in models such as ARDM [14] for image / text /
audio and ACE [35] for continuous domains. AO-ARMs are also closely related to non-autoregressive
language models such as BERT [7] and XLNet [42]. Our method, MAC, proposes improved training
and inference techniques for AO-ARMs.

Other techniques have also been proposed for non-autoregressive generation. For example, IN-
TRUS [9] models sequences as consecutive insertion operations, as opposed to AO-ARMs which
model sequences as consecutive unmasking operations. This also enables arbitrary order of genera-
tion, but prevents INTRUS from computing marginal likelihoods on subsets of variables. Another
work [44] casts the problem of non-autoregressive generation as a GFlowNet, taking on a reinforce-
ment learning framework with states, actions, and rewards. However, this approach currently does
not scale as well as AO-ARMs.

Lastly, some works have studied the problem of learning a single generation order [21]. Although
learning orderings is not applicable to vanilla AO-ARMs (since they train on all possible orders
uniformly), it is applicable to MAC, which uses decomposition protocols that can be learned. For
example, we can learn different canonical orderings of the variable indices in the binary lattice.
Though we did not explore this direction thoroughly, we noticed that a strided canonical ordering (0,
32, 64, ..., 1, 33, ...) often did better than the standard lexicographical ordering for images, suggesting
promise for learning even better canonical orderings, or learning better protocols in general.
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5.2 Limitations

In practice, likelihood evaluations of standard AO-ARMs are done by sampling a finite number
of orders (typically just a single order), leading to unbiased but approximate estimates of joint
likelihoods. Moreover, evaluating marginal p(xe) and conditional likelihoods p(xu|xe) is trickier
and has additional tradeoffs. Since AO-ARMs evaluate marginal and conditional likelihoods using
only compatible orderings, they are implicitly discarding away all the models in the N ! ensemble
with incompatible orderings. This can give biased estimates for marginal and conditional likelihoods.

For conditional likelihoods specifically, there are two potential methods for evaluation. First, we can
evaluate log p(xu|xe) as log p(xuxe)− log p(xe) and estimate two marginal likelihoods. However,
since the marginal likelihoods are approximate, this can lead to invalid conditional probability
estimates where p(xu|xe) > 1 (for discrete domains). Second, we can decompose xu directly
and evaluate log p(xu|xe) as

∑|u|
i=1 log p(xu:i

|xui:xe), where the ordering of variables within xu is
sampled randomly. This corresponds to evaluating random path that goes from node e to node u ∪ e
in the binary lattice. Though this leads to valid probability estimates, the estimates may be more
biased because paths that go to node u ∪ e without passing through node e are not considered.

MAC shares similar limitations as standard AO-ARMs, where marginal likelihoods estimates may be
biased. Evaluating conditional likelihoods as two marginal likelihoods can lead to invalid (greater
than 1) estimates, and evaluating them by tracing paths through the lattice from node e to node u ∪ e
may be more biased.

Nonetheless, both marginal and conditional likelihood estimates (using Method 2) for MAC and
standard AO-ARMs are valid in the sense that

∑
xu
p(xu) = 1 and

∑
xu
p(xu|xe) = 1 for any u and

e. Training MAC to optimize for marginal likelihoods (Tab. 1,2,3) or for both marginal/conditional
likelihoods (Tab. 4,5) still gives good empirical performance despite these limitations.

6 Conclusion

We present MAC, an improved method of training and inference on AO-ARMs. MAC trains on a
carefully designed distribution of univariate conditionals that (A) reduces modeling redundancy of
AO-ARMs and (B) aligns the training objective of AO-ARMs with arbitrary conditional queries. Our
method leads to better joint and arbitrary conditional likelihoods with no sacrifices on tractability.
We show state-of-the-art results in arbitrary conditional modeling on text, image, continuous data
domains, and present a novel application of arbitrary conditional models to robot shared-autonomy.
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