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Abstract

The evaluation of mathematical reasoning ca-001
pabilities constitutes a critical pathway toward002
achieving Artificial General Intelligence (AGI).003
Prevailing benchmarks including MATH and004
AIME mainly feature single-instantiation prob-005
lems with fixed numbers, permitting pattern006
matching instead of principled deductive rea-007
soning and leaving generalization on isomor-008
phic problem variants untested. To address009
these limitations, we propose the UTMath010
Benchmark, employing rigorous unit testing011
methodology that simultaneously quantifies so-012
lution accuracy and solution space generality.013
It comprises 1,053 problems spanning 9 mathe-014
matical domains, each accompanied by an av-015
erage of 68 varied test cases. With 107 answer016
possibilities per problem on average, UTMath017
sets new standards for robust reasoning while018
preventing memorization. UTMath is highly019
challenging, with the best-performing model,020
o1-mini, solving only 32.57% of the problems,021
followed by o1-preview at 27.16%, and GPT-4o022
at 26.93%. We further propose Reasoning-to-023
Code Thoughts (RCoT), a prompting strategy024
that decouples symbolic reasoning from code025
synthesis. RCoT guides LLMs to first derive026
formal reasoning structures before generating027
executable code, producing generalizable so-028
lutions rather than situation-specific answers.029
To help the community push mathematical rea-030
soning further, we release UTMath-Train (70k031
samples), a companion training set generated032
under the same protocol. Our benchmark can033
be accessed via the following link: UTMath034

1 Introduction035

The pursuit of AGI necessitates strong mathemat-036

ical reasoning capabilities, making the evaluation037

of such abilities a crucial area of research (Zhou038

et al., 2024a). Recent advancements in LLMs039

have demonstrated remarkable proficiency in solv-040

ing complex mathematical problems, achieving041

amazing performance on various datasets of Math042

How many non-congruent isosceles 
triangles exist which have a 
perimeter of {n=10} and integer side 
lengths?

Question

Ground Truth: 2

Let x be the measure of …
There are $\\boxed{2}$ integers 
strictly between 2.5 and 5.

2

2

Test 1: a(1) = 1

Test 2: a(2) = 3

Test 3: a(3) = 10

…

Test n: a(20) = 2177832612120

Evaluation in most existing math benchmarks

The definition of a(n) is the number 
of ways to dissect a convex (n+2)-
gon into triangles and quadrilaterals 
using nonintersecting diagonals

Question

To analyze the sequence problem, 
we need to … (< Reasoning Step >)

Turn 1: < Reasoning Instruction >

def solution(x: int) -> int: ... 

(< Coding Step >)

Turn 2: < Coding Instruction >

<>

Evaluation in our UTMath

The Same Question with {n=10000}

Question

Ground Truth: 2499

…, so there are 2500 non-
congruent isosceles triangles with a 
perimeter of 10,000 and integer side 
lengths.

2500

2500

However, GPT-4o is wrong with another n …

Figure 1: Comparison of UTMath with other bench-
marks. On the left, GPT-4o successfully solved the
original problem, but failed to generalize when the in-
put was modified by merely changing a single numeric
value. On the right, UTMath is shown, where each
problem includes multiple test cases, and a solution is
deemed correct only if all are passed by the code gener-
ated by the model. We also propose a new prompting
method RCoT in which the LLM first reasons through
the problem and then generates code.

Word Problems (MWPs), such as GSM8K (Cobbe 043

et al., 2021), MATH (Hendrycks et al., 2021), The- 044

oremQA (Chen et al., 2023). 045

However, conventional benchmarks present sev- 046

eral intrinsic limitations that hinder the precise and 047

comprehensive assessment of these models’ math- 048

ematical reasoning capabilities (Ahn et al., 2024). 049

First, these benchmarks predominantly assess mod- 050

els using narrowly defined problem formats with 051

fixed numerical instantiations, thereby constrain- 052

ing their ability to evaluate generalization across 053

structurally analogous but variationally distinct sce- 054

narios, as illustrated in Fig. 1. Second, the evalua- 055

tion protocols often depend on rule-based match- 056

ing or the LLM-as-a-Judge paradigm ( (Dubois 057

et al., 2024; Zheng et al., 2023)) both of which are 058

vulnerable to inconsistencies due to the stochastic 059

nature of LLM outputs. For example, in datasets 060
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Dataset Size Level Multi-test Efficiency Metric Output

College Math 2,818 University ✗ ✗ Accuracy Text
GSM8K 1,319 Elementary school ✗ ✗ Accuracy Text
MATH 5,000 High school ✗ ✗ Accuracy Text
RobustMath 300 High school ✗ ✗ Accuracy Text
OlympiadBench 8,476 Competition ✗ ✗ Accuracy Text
TheoremQA 800 University ✗ ✗ Accuracy Text

UTMath(ours) 1,053 Cutting-edge ✓ ✓ Pass Rate Code

Table 1: Comparison between UTMath and other benchmarks. UTMath offers a cutting-edge benchmark with a
comprehensive set of 1,053 problems across multiple mathematical domains, providing a more accurate evaluation
of LLMs’ mathematical reasoning capabilities.

such as GSM8K, TheoremQA, and MATH, a cor-061

rect solution must be extracted in a form that ex-062

actly matches the reference answer, which fails063

to accommodate semantically equivalent but syn-064

tactically divergent responses. While recent work065

has made great progress in developing new bench-066

marks, many of these approaches still fall short067

of addressing the fundamental limitations of ear-068

lier datasets. For instance, benchmarks like GSM-069

HARD (Gao et al., 2023), GSM-IC (Shi et al.,070

2023), GSM-Plus (Li et al., 2024a), MetaMath (Yu071

et al., 2023) build upon GSM8K or MATH by intro-072

ducing perturbations—including value substitution,073

input reversal, and distractor insertion. While these074

augmentations provide incremental improvements,075

they are often constrained by limited coverage and076

incur substantial human and computational costs.077

Against this backdrop, our work aims to fill these078

critical gaps by constructing a principled and ro-079

bust benchmark capable of rigorously evaluating080

the mathematical reasoning abilities of LLMs.081

Inspired by evaluation paradigms in software en-082

gineering, we adopt a unit testing-based framework083

to assess the soundness of LLMs’ reasoning pro-084

cesses. In this framework, a solution that passes all085

unit tests is considered to reflect reliable and consis-086

tent reasoning. To this end, we introduce UTMath,087

a novel benchmark derived from the On-Line Ency-088

clopedia of Integer Sequences (OEIS) (OEIS Foun-089

dation Inc., 2024). As shown in 1, the benchmark090

consists of 1,053 cutting-edge problems spanning091

9 mathematical domains, such as Number Theory092

and Geometry. Each problem is accompanied by093

more than 68 test cases, each consisting of concrete094

input-output pairs that enable precise evaluation of095

generalization and correctness.096

UTMath employs a unit-test-driven framework097

to evaluate mathematical reasoning through gen-098

eralizable code solutions that must pass multi-099

ple test cases per problem class. Unlike bench- 100

marks focused on numerical answers, this de- 101

sign explicitly requires executable implementa- 102

tions, testing both conceptual understanding and 103

code-generation rigor—an advantage aligning with 104

real-world problem-solving where precision and 105

adaptability are critical. When testing Program-of- 106

Thoughts (PoT) (Chen et al., 2022), we observed 107

that models’ coding limitations directly hindered 108

performance. To address this issue, we decou- 109

ple reasoning and coding, and propose Reasoning- 110

to-Code of Thoughts (RCoT), which requires the 111

LLM to first perform mathematical reasoning in the 112

initial turn, and then generate code based on that 113

reasoning in the subsequent turn. Our experiments 114

demonstrate that RCoT encourages more thorough 115

reasoning before code generation, leading to more 116

efficient and targeted solutions. 117

UTMath is highly challenging, we conducted a 118

comprehensive study with 8 LLMs. Some of our 119

key findings are summarized as follows: (1) with 120

the best-performing model, o1-mini, solving only 121

32.57% of the problems, followed by o1-preview 122

at 27.16%, and GPT-4o at 26.93%, these results 123

demonstrate the difficulty of UTMath. (2) Mod- 124

ern LLMs perform poorly in Graph Theory, Group 125

Theory, Geometry and Topology (Fig. 5). (3) With 126

RCoT, all evaluated LLMs generated more effi- 127

cient solutions, with most models achieving higher 128

scores (Fig. 3). (4) RCoT can improve the pass@k 129

performance of LLMs (§ 5.4). (5) Both reasoning 130

and coding capabilities substantially influence over- 131

all performance. By leveraging the modular design 132

of RCoT, we can disentangle their individual con- 133

tributions (§ 5.5). More interesting findings can be 134

found in § 5. We hope our findings contribute to a 135

deeper understanding of current reasoning ability 136

of LLMs and the further development of models. 137
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2 Related Work138

2.1 Benchmarks139

With the rapid development of LLMs, evaluating140

and exploring the intelligence and limitations of141

these models has emerged as an urgent issue to142

address (Chang et al., 2024). Reasoning abil-143

ity, as a crucial component of general intelligence,144

has garnered widespread attention since the advent145

of LLMs (Patel et al., 2021; Cobbe et al., 2021;146

Valmeekam et al., 2022; Perez et al., 2022; Gupta147

et al., 2022; Shakarian et al., 2023). Mathemat-148

ical reasoning, due to its complex mathematical149

characteristics and rigorous logical relationships,150

is considered an abstract and high-difficulty task,151

playing a pivotal role in demonstrating a model’s152

reasoning capabilities.153

To this end, researchers have proposed various154

benchmarks focused on mathematical reasoning.155

A natural and mainstream approach is to evaluate156

LLMs as humans would take math exams, catego-157

rized by required knowledge levels. Examples in-158

clude GSM8K at elementary school level, Math and159

GaokaoBench-Math (Zhang et al., 2023) at high160

school level , College Math (Tang et al., 2024),161

TheoremQA (Chen et al., 2023), ARB (Sawada162

et al., 2023) at university level, and Olympiad-163

Bench (He et al., 2024), AGIeval-Math (Zhong164

et al., 2023) at competition level.165

Besides, researchers have also introduced many166

others focused on evaluating various aspects of167

LLMs like the robustness. These include GSM8K-168

based variants: GSM-8K-Adv (Anantheswaran169

et al., 2024), GSM-Hard (Gao et al., 2023), GSM-170

Plus (Li et al., 2024a), GSM-IC (Shi et al., 2023),171

and several independent benchmarks: RobustMath172

(Zhou et al., 2024b), MetaMathQA (Yu et al.,173

2023), PROBLEMATHIC (Anantheswaran et al.,174

2024), MATHCHECK (Zhou et al., 2024a), as175

well as other benchmarks (Li et al., 2024b, 2023).176

The distinctions between our proposed bench-177

mark and existing ones are as follows. (1) Multiple178

Case Validation. Instead of using single cases that179

can be memorized, our questions are sequence-180

based, allowing numerous cases for validating true181

understanding. (2) General Solutions. UTMath182

requires large models to solve problems by gener-183

ating code, aiming for general solutions rather than184

problem-specific ones, reflecting a closer alignment185

with intelligence.186

2.2 Building Methods 187

Constructing effective, high-quality datasets is a 188

complex and labor-intensive process. The advent of 189

LLMs offers an opportunity to change this scenario 190

(Valmeekam et al., 2022; Drori et al., 2023; Perez 191

et al., 2022; Chiang and Lee, 2023; Liu et al., 2023; 192

Fu et al., 2023; Kocmi and Federmann, 2023; Li 193

et al., 2024b). For instance, (Almoubayyed et al., 194

2023) employed GPT-4o to rewrite mathematics 195

problems based on MATHia (Ritter et al., 2007) to 196

aid students in improving their math performance. 197

These efforts provide a reliable foundation for uti- 198

lizing LLMs in data processing. 199

In our study, we utilized GPT-4o to help us deal 200

with data, such as by providing necessary back- 201

ground knowledge for questions and making them 202

more understandable, with more information about 203

the prompts used shown in the Appendix C. Sub- 204

sequently, human verification was performed to 205

ensure consistency before and after LLM usage. 206

2.3 Prompting Methods 207

Considering the attributes of large models, they 208

exhibit significant sensitivity to prompts, rendering 209

prompt engineering a critical area of study. 210

The Chain-of-Thought (Wei et al., 2022) prompt- 211

ing technique encourages models to express rea- 212

soning steps in natural language before conclud- 213

ing. Similarly, the approach by (Kojima et al., 214

2022) uses the phrase "Let’s think step by step" to 215

effectively guide large language models through 216

their reasoning. Inspired by CoT, several effec- 217

tive prompting methods have been developed, such 218

as Tree-of-Thoughts (Yao et al., 2024), Graph-of- 219

Thoughts (Besta et al., 2024). Program-of-Thought 220

prompting (Chen et al., 2022): PoT generates pro- 221

grams as the intermediate steps and integrates exter- 222

nal tools like a Python interpreter for precise calcu- 223

lations, as well as other prompting methods (Wang 224

et al., 2023; Gao et al., 2023; Xu et al., 2024b; Qian 225

et al., 2023). 226

Our RCoT method stands out by dividing rea- 227

soning into two steps: reasoning and implementing 228

based on reasoning. The advantages can be sum- 229

marized as follows. (1) Modularity. By separating 230

reasoning from implementation, the influence of 231

coding on reasoning can be eliminated, providing a 232

new paradigm for evaluating the reasoning ability 233

through the code generated by the model. (2) En- 234

hanced Reasoning. Emphasizing reasoning allows 235

large models to focus more on improving the qual- 236
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Data

Case 1: a(1) =2 

Case 2: a(2) =5

…

Hard Case 1: a(61833) =78971
Hard Case 2: a(61834) =78972
…

OEIS

370,000

Sequences 1,053

Sequences

23,238

Sequences
UTMath

1,053 Problems

Data Crawling
Download 
Principal Sequences

Data Cleaning
With Rules and GPT-4o

The definition of a(n) is: Number n 
such that the sum of the divisors of 
x (denoted as 𝜎 𝑥 ) equals n has no 
solution.

After Standardize

Standardize Description

Add Hard Cases

Figure 2: UTMath generation pipeline. After downloading 23,238 Principle Sequences from OEIS and cleaning the
data, 1,053 usable sequences were obtained. Descriptions were standardized by adding background information and
improving readability (highlighted in green, also shown in Appendix B.2). Hard cases were introduced to enhance
discriminative capability, including terms from later positions to prevent simplistic algorithms from passing.

ity of reasoning, thereby delivering higher-quality237

and more efficient solutions.238

3 UTMath Benchmark239

3.1 Introduction for OEIS.240

The OEIS was established to document integer se-241

quences of interest to both professional and am-242

ateur mathematicians, and it has become widely243

cited in the community. Most sequences are de-244

rived or updated from academic papers, contribut-245

ing to their cutting-edge level of difficulty (Al-246

louche and Shallit, 2003). As of February 2024, it247

contains over 370,000 sequences (OEIS Founda-248

tion Inc., 2024). Each sequence is accompanied249

by an identification number, a brief description,250

some sample integers, links to relevant literature,251

and, where possible, program code for computing252

the sequences. An example sequence is shown in253

Appendix A.254

3.2 Benchmark Construction.255

UTMath is a cutting-edge and expansive bench-256

mark designed to more accurately assess the math-257

ematical reasoning abilities of LLMs. It consists258

of 1053 math problems, with each problem hav-259

ing an average of 68 test cases. The benchmark260

covers 9 mathematical domains, including not only261

common topics like number theory but also graph262

theory, group theory, topology, and geometry. The263

difficulty of UTMath is considered Cutting-Edge,264

with the majority of the sequences that form the265

problems having been studied in academic papers.266

UTMath was obtained as follow (see also Fig.2).267

Data Crawling. OEIS provides users with a list268

of principal sequences 1, which are most impor-269

tant sequences defined by OEIS. OEIS categorizes270

1https://oeis.org/wiki/Index_to_OEIS

these sequences into sections based on the first 2-3 271

letters of their content themes. By scraping the 272

category tags within each section and the AIDs of 273

their subordinate sequences, we obtained 23,238 274

principal sequences’ AIDs. OEIS provides an inter- 275

face to request the JSON data of the HTML page 276

for each sequence using its AID 2. By passing the 277

sequence AIDs to this interface, we acquired the 278

JSON data for these 23,238 sequences. 279

Data Cleaning. We found that some of the se- 280

quences we collected did not meet our criteria and 281

should be removed, with further details provided in 282

the Appendix B. Here are several main situations. 283

• Hard to solve, few terms are discoverable. 284

A portion of the sequences retrieved are marked 285

as “hard” in the keyword field of their entries in 286

OEIS. According to OEIS, “Any sequence which 287

can be extended only by new ideas, rather than 288

more computation deserves keyword: hard. Simi- 289

larly, if computing a term of the sequence would 290

probably merit a paper in a peer-reviewed jour- 291

nal (discussing the result, the algorithm, etc.)” 3 292

Another related keyword attribute is "fin" (finite), 293

indicating sequences with limited length. For our 294

purposes, sequences should be infinitely derivable. 295

• Difficult to Generate Programmatically. In 296

OEIS, most sequences are provided with fields such 297

as Mathematica, program, or formula, but not all 298

sequences include these details. We assume that 299

the sequences without these fields may be difficult 300

to generate programmatically. 301

• Simple Sequences. Some sequences are too 302

simple to require any reasoning. We use GPT-4o 303

to determine if a sequence requires reasoning or 304

just implementation; if mostly implementation, it’s 305

2https://oeis.org/wiki/JSON_Format
3https://oeis.org/wiki/User:Charles_R_

Greathouse_IV/Keywords/difficulty
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excluded. For instance, A0001784: ’Superfacto-306

rials: product of the first n factorials,’ a sequence307

requiring only implementation, will be excluded.308

After addressing the aforementioned issues, we309

ultimately obtained 1053 sequences.310

Standardization of Question Statements. As311

a academic database in the field of mathematics,312

OEIS provides a wealth of useful information for313

each sequence. However, we have found that some314

sequences cannot be directly used with the descrip-315

tions provided by OEIS as problem statements, pri-316

marily for the following reasons: (1) Specialized317

Terminology. Some sequence descriptions use com-318

plex math terms that need examples or explanations319

to be clear. Using them directly as problems might320

test mathematical knowledge rather than reasoning321

skills. So, it is important to explain key concepts322

to focus on reasoning and reduce the extra knowl-323

edge needed. (2) Brevity and Ambiguity. Some324

sequence descriptions are excessively brief and lack325

a clear definition of what a(n) is. We used GPT-326

4o to standardize these by adding background info327

and making the language smoother. The prompts328

we used are provided in the Appendix C and an329

example is shown in Appendix B.2.330

Hard Test Cases Mining. The primary goal331

of this paper is to evaluate the reasoning ability332

of LLMs. Generally, more efficient solutions to333

a problem imply stronger reasoning capabilities.334

Therefore, we aim for our evaluation to distinguish335

whether a solution is efficient. However, in the336

OEIS, each sequence only lists the first few n terms,337

normally n<100, which can be obtained without338

requiring particularly efficient methods. This limi-339

tation prevents the evaluation from effectively dis-340

tinguishing between efficient and inefficient solu-341

tions. An obvious fact is that the difficulty of com-342

puting the first 10 terms of a sequence within a343

time limit is significantly different from computing344

terms starting from the 106th term. Therefore, we345

aim to create more challenging test data to better346

assess the reasoning capabilities of LLMs.347

Fortunately, many OEIS sequences include cor-348

responding Mathematica code that can be regarded349

as the ground-truth solution for each problem.350

We extract this Mathematica code for each se-351

quence, formalizing it to compute the first N terms,352

A1, ..., AN , of the sequence. We determine the353

maximum value of Nmax for which the code can354

4https://oeis.org/A000178

Category # of Problems

Number Theory 159
Graph Theory 79
Group Theory 65
Discrete Mathematics 158
Combinatorial Mathematics 158
Geometry and Topology 70
Poly. and Series Expan. 151
Special Numbers 157
Formal Languages 56

Total 1053

Table 2: Categories and distribution of problems.

compute the sequence within 10 seconds, where we 355

set 106 as the upper bound. Finally, we add the last 356

10 terms ANmax−9 , ..., ANmax into our benchmark 357

as the hard test cases to evaluate the complexity 358

of a solution. Our experiments demonstrate that 359

these cases precisely differentiate more efficient 360

and intelligent solutions. 361

3.3 Evaluation Metrics 362

We adopt the metric pass@k to evaluate the per- 363

formance of LLMs. The metric pass@k is a clas- 364

sic metric in code generation, where a problem is 365

solved if any of the k generated samples passes the 366

unit tests. We use the stable method of calculation 367

proposed by (Chen et al., 2021): 368

pass@k := EProblems

[
1−

(
n− c

k

)/(n
k

)]
(1) 369

3.4 Dataset Statistics 370

The main statistics of UTMath are shown in Tab. 1. 371

To gain a deeper understanding of the composi- 372

tion of the UTMath Benchmark, we identified nine 373

mathematical fields and used GPT-4o to categorize 374

each problem to these fields as shown in Tab. 2. 375

Our analysis reveals that only 10 out of 1,053 prob- 376

lems have no references. The reference years span 377

from 1950 to 2024, with the maximum number of 378

references exceeding 6,000. These findings under- 379

score the cutting-edge nature of our benchmark. 380

More details can be found in Appendix B. 381

As noted in (Xu et al., 2024a), digit length plays 382

a critical role in the performance of CoT-based 383

LLMs. UTMath includes 61,582 easy cases, with 384

a median digit length of 2 and a maximum of 18. 385

It also contains 10,530 hard cases, with a median 386

digit length of 8 and a maximum of 712. 387
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Model Pass@1 (%) ↑ Pass@5(%) ↑ Avg. Run Time (s) ↓
PoT RCoT PoT RCoT PoT RCoT Efficiency

closed-source models
o1-mini 29.34 32.57 (+3.23) —— —— 5.58 3.76 +32.62%
o1-preview 23.74 27.16 (+3.42) —— —— 4.66 3.96 +15.02%
GPT-4o 25.53 26.93 (+1.40) 32.67 35.90 (+3.23) 6.98 6.23 +12.04%
Gemini-1.5-Pro 19.70 19.43 (−0.27) 31.24 33.14 (+1.90) 6.30 6.22 +1.28%
Claude-3.5-Sonnet 18.58 19.11 (+0.53) 27.83 31.34 (+3.51) 6.44 5.32 +21.05%
GPT-3.5-Turbo 11.68 6.82 (−4.86) 17.09 13.30 (−3.79) 5.42 5.06 +7.11%

open-source models
Qwen2.5-72B 23.48 22.17 (−1.31) 31.05 33.33 (+2.28) 5.88 4.31 +36.42%
DeepSeek-V2.5-236B 20.95 21.63 (+0.68) 30.10 31.72 (+1.62) 6.64 5.44 +22.06%
Qwen2.5-Math-72B 19.72 20.53 (+0.81) 26.69 28.11 (+1.42) 5.04 3.81 +24.40%
Qwen2.5-Coder-32B 18.71 20.23 (+1.52) 26.88 35.04 (+8.16) 8.33 6.83 +18.01%
LLaMA-3.1-405B 15.76 16.09 (+0.33) 25.26 27.35 (+2.09) 5.73 5.12 +11.91%

Table 3: Pass Rate and Average Run Time of LLMs on UTMath. We listed the performance of 11 large models by
the PoT or the RCoT methods across a range of metrics. For o1-mini and o1-preview only Pass@1 data is currently
available due to resource constraints. The average run time is calculated based on the problems solved by both
the PoT and the RCoT methods. The efficiency is calculated as: (Avg.Runtime(PoT) - Avg.Runtime(RCoT)) /
Avg.Runtime(RCoT). Two qualitative cases are shown in Appendix D.

4 Reasoning-to-Code Thoughts388

Compared to methods that simply check whether389

the outputs generated by LLMs are identical, the390

code-based evaluation approach enables more ac-391

curate assessment by using multiple test cases.392

Initially, we adopted the Program of Thought393

(PoT) method, where the LLM was required to394

perform reasoning and code implementation in a395

single step. However, we observed that the model’s396

code generation capability also influenced its per-397

formance on UTMath. To address this, we propose398

the Reasoning-to-Code of Thoughts (RCoT) frame-399

work, which decouples reasoning and coding into400

two separate rounds of interaction.401

In the first round, the model is tasked solely402

with mathematical reasoning, without generating403

any code. In the second round, the model gener-404

ates code based on the reasoning process from the405

first round. We can either use the same model for406

both rounds to observe its overall performance on407

UTMath, or isolate the reasoning capability by fix-408

ing the second-round model to a dedicated coding409

model. The latter setting enables a more accurate410

evaluation of the model’s reasoning ability.411

Moreover, we find that by separating reasoning412

from code generation, RCoT allows the LLM to413

generate a step-by-step, detailed reasoning chain414

that includes relevant theorems, formulas, and415

mathematical properties. Such deeper reasoning416

leads to the development of more efficient algo-417

rithms with lower time complexity. We present418

qualitative cases in Appendix D.419

H
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Figure 3: RCoT improves the effectiveness of the solu-
tion and significantly enhances its efficiency. It indicates
that our RCoT proves to be more effective, suggesting
that it encourages the model to reason critically and find
more efficient solutions.

5 Experiment 420

5.1 Experimental Setup 421

Here, we consider the closed-source models, 422

i.e., GPT-3.5-Turbo, GPT-4o, o1-mini and o1- 423

preview from OpenAI (OpenAI, 2024), Claude- 424

3.5-Sonnet (Claude, 2024), Gemini-1.5-Pro (Reid 425

et al., 2024), as well as the open-source models, i.e., 426

LLaMA-3.1 (Dubey et al., 2024), Qwen2.5 (Qwen, 427

2024a), Qwen2.5-Math (Qwen, 2024b), Qen2.5- 428

Coder (Hui et al., 2024), DeepSeek-V2.5 (Bi et al., 429

2024). The metric pass@1 is calculated as the aver- 430

age result over 5 run times. We run all evaluations 431

in a laptop with CPU Intel(R) Core(TM) i7-10750H 432

CPU @ 2.60GHz. 433
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Figure 4: Performance comparison of models across PoT and RCoT tasks at different pass@k levels.

5.2 Evaluation on UTMath434

Here we evaluate both open-source and closed-435

source models using RCoT and PoT in Tab. 3. The436

experimental results shows that all tested models437

performed poorly on our benchmark. The best438

model, o1-mini, only solves 32.57% problem in439

our benchmark, followed by o1-preview at 27.16%440

and GPT-4o at 26.93%. Since our problems are441

sourced from the OEIS, they consist of sequences442

and solutions proposed by various mathematicians443

in the context of cutting-edge research. This sug-444

gests that our benchmark is challenging enough to445

help guide future directions for improving LLMs.446

Compared to PoT, our method RCoT demon-447

strates superiority in two aspects. First, prompting448

with RCoT achieves higher pass@5 performance449

across 8 LLMs, with the best results observed450

on GPT-4o. Second, the solutions generated by451

RCoT for all LLMs demonstrate more efficient per-452

formance, particularly Qwen2.5-72B, where the453

RCoT approach achieves an efficiency improve-454

ment of over 36.42% compared to PoT, as shown in455

Tab. 3 and Fig. 3. It indicates that, RCoT prompting456

enables the model to engage in deeper reasoning,457

enhancing solution performance and significantly458

reducing solution complexity.459

However, some models experienced a decrease460

in pass@1 with RCoT . Specifically, the accuracies461

of Gemini-1.5-Pro, GPT-3.5-Turbo, and Qwen2.5-462

72B slightly dropped. Notably, while Gemini-463

1.5-Pro and Qwen2.5-72B experienced a drop in464

pass@1, their pass@5 performance improved. It465

indicates that RCoT brings more room in multiple466

inference times. The observed decrease in perfor-467

mance may stem from the fact that formulating468

Model Easy Easy & Hard

cl
os

ed

GPT-4o 34.95 26.93
Gemini-1.5-Pro 23.84 19.43
Claude-3.5-Sonnet 24.86 19.11
GPT-3.5-Turbo 8.72 6.82

op
en

Qwen2.5-72B 28.96 22.17
DeepSeek-V2.5 27.52 21.63
Qwen2.5-Math-72B 24.60 20.53
LLaMA-3.1-405B 22.09 16.09

Table 4: Performance (%) of different models on easy
and hard test cases. Easy cases: The initial terms in
OEIS. Hard cases: mined hard test cases (§ 3.2).

more efficient solutions often requires higher-level 469

reasoning, which can increase the difficulty of the 470

task and make these models more susceptible to er- 471

rors when attempting more sophisticated solutions. 472

5.3 The Effectiveness of Hard Test Cases 473

As noted in § 3.2, OEIS sequences typically list 474

only initial terms, which we treat as “easy test 475

cases.” To evaluate models under more challenging 476

conditions, we test their ability to predict much 477

later values (e.g., at position 106). These values 478

are less likely to appear in pre-training data, reduc- 479

ing the risk of contamination, and are harder to 480

compute within time limits, requiring more precise 481

and efficient implementations. As shown in Tab. 4, 482

model performance drops notably on these cases, 483

suggesting their effectiveness in filtering out sim- 484

plistic or brute-force solutions and enhancing the 485

benchmark’s discriminative power. 486

5.4 Scaling of the Inference Times 487

We compared the performance difference between 488

running the LLMs five times and reported the met- 489
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Model NT Graph T. Group T. DM CM GT PSE SN FL pass@1
closed-source models

o1-mini 52.83 7.59 15.38 42.41 32.27 7.14 23.84 40.13 37.50 32.57
o1-preview 47.17 6.33 13.85 34.17 25.32 2.86 23.18 29.94 33.93 27.16
GPT-4o 43.90 2.78 11.69 38.23 24.94 3.43 16.42 33.89 42.50 26.93
Gemini-1.5-Pro 31.70 1.27 8.92 27.47 15.19 5.71 15.23 27.39 17.86 19.43
Claude-3.5-Sonnet 33.58 1.52 8.00 29.49 12.91 5.43 11.52 26.62 20.36 19.11
GPT-3.5-Turbo 13.08 0.00 1.85 11.39 3.29 0.29 2.78 10.96 8.93 6.82

open source models
Qwen2.5-72B 36.86 2.53 12.00 30.63 15.95 6.00 18.15 29.43 24.29 22.17
DeepSeek-V2.5 38.24 1.27 8.92 33.16 17.34 2.29 12.45 31.08 20.00 21.63
Qwen2.5-Math-72B 35.35 1.27 8.62 28.73 14.81 4.00 17.48 28.15 20.00 20.53
Qwen2.5-Coder-32B 27.04 8.86 7.69 29.75 16.46 5.71 21.19 26.75 26.79 20.23
LLaMA-3.1-405B 29.56 0.76 4.92 25.44 9.62 2.00 9.54 22.55 21.43 16.09

Table 5: Performance (%) on different problem categories. Categories are represented by abbreviations. NT: Number
Theory; T.: Theory; DM: Discrete Mathematics; CM: Combinatorial Mathematics; GT: Geometry and Topology;
PSE: Polynomial and Series Expansions; SN: Special Numbers; FL: Formal Languages.
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Figure 5: Performance comparison between self-
reasoning and using GPT-4o reasoning for coding across
different models.

ric of pass@k. As shown in Fig. 4, all models490

improved their performance with an increasing491

number of inference times. For Qwen2.5-72B and492

Gemini-1.5-Pro, RCoT was slightly weaker than493

PoT in pass@1 but quickly approached and sur-494

passed PoT in subsequent run times. We observed495

that with an increasing number of inference time,496

RCoT consistently demonstrated a growing advan-497

tage in performance across almost all models, ex-498

cept for GPT-3.5. However, it is worth noting that499

GPT-3.5 exhibited the lowest pass rate. This sug-500

gests that RCoT may perform better in models with501

stronger reasoning capabilities.502

5.5 Disentangling the Impact of Reasoning503

and Code Generation504

We performed cross-model evaluations by pairing505

different models for the reasoning and code gener-506

ation stages, as illustrated in Fig. 5. The findings507

suggest that both reasoning and coding capabilities508

substantially influence overall performance. By509

leveraging the modular design of RCoT, we can510

disentangle their individual contributions; for ex-511

ample, the light green configurations highlight the 512

relative strengths of each model’s reasoning ability. 513

5.6 Performance on Different Categories 514

Our benchmark comprehensively evaluates the 515

LLMs’ ability across various categories of math 516

problems. GPT-4o achieved the highest score in the 517

formal language domain, while o1-mini achieved 518

the best scores in the remaining eight domains. All 519

models performed poorly in the categories of Graph 520

Theory and Geometry and Topology, with accuracy 521

rates below 9%, highlighting the need for further 522

exploration in these areas. 523

6 Conclusion 524

In this work, we investigate how to more accu- 525

rately and effectively evaluate the mathematical 526

reasoning capabilities of LLMs. We propose a 527

cutting-edge benchmark, UTMath, which com- 528

prises 1,053 problems spanning nine mathemat- 529

ical domains, with an average of 68 test cases 530

per problem. This benchmark presents challenges: 531

o1-mini, the best-performing model, successfully 532

solves only 32.57% of the problems, followed by 533

o1- preview at 27.16%, and GPT-4o at 26.93%. 534

Additionally, we introduce RCoT (Reasoning-to- 535

Code of Thought). Our study finds that, compared 536

to PoT, RCoT improves pass rates and significantly 537

enhances algorithmic efficiency of most models. 538

Overall, this research contributes to a deeper un- 539

derstanding of the current capabilities of LLMs in 540

mathematical reasoning and lays the groundwork 541

for the development of more advanced models in 542

the future. 543
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Limitation544

The primary limitation of UTMath lies in the eval-545

uation metrics: the performance of the evaluation546

machine affects the runtime of the generated code,547

making the absolute numerical results incompa-548

rable across different machines. We utilized an549

i7-10750H processor to execute the reference solu-550

tions and conduct evaluations, and we recommend551

using the same machine for testing and replication.552

There are two main limitations of RCoT. First, we553

only installed a set of common packages, such as554

sympy, in the standard testing environment. This555

avoids allowing LLMs to call highly integrated556

packages while also preventing the generation of557

potentially harmful code that could damage the558

evaluation system. Second, while our experiments559

demonstrate the critical role of reasoning quality560

in determining success rates, we have not further561

explored methods for enhancing reasoning quality,562

which remains an area for future investigation.563

Ethics Statements564

The UTMath Benchmark is designed to advance565

the evaluation of mathematical reasoning in LLMs.566

We recognize the potential ethical concerns asso-567

ciated with this work, particularly the risk of data568

misuse. To mitigate this, we strictly adhere to us-569

age guidelines and licensing terms for the UTMath-570

Train dataset, which is intended solely for academic571

and research purposes. While the UTMath Bench-572

mark evaluates model performance in terms of ac-573

curacy and generality, automated evaluations may574

introduce biases due to the nature of the datasets575

and evaluation algorithms. Additionally, while UT-576

Math covers a wide range of mathematical domains,577

it may not fully represent diverse cultural or edu-578

cational perspectives. We encourage further devel-579

opment of benchmarks that incorporate a broader580

array of reasoning styles to ensure more inclusive581

evaluations. By releasing UTMath, we aim to fos-582

ter responsible AI development, promoting better,583

more generalizable mathematical reasoning sys-584

tems.585
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A An Example Sequence in OEIS840

Figure 6: Sequence A007369 in OEIS. Its description: "Numbers n such that sigma(x) = n has no solution." (Clearly,
without specific background knowledge, we cannot fully understand what the function sigma() represents, which
is one of the reasons we perform standardization. §B.2) Next, OEIS shows the first 67 terms of this sequence,
which we classify as easy cases. Below that, additional metadata is provided, including comments, references, links,
formulas, examples, programs, author, status, and more. It is evident that this sequence has garnered significant
attention from researchers, reflecting the Cutting-Edge difficulty of our benchmark. We used the Mathematica
program included in the metadata to generate Hard cases, with detailed procedures provided in § 3.2. As a scientific
database, each sequence submitted to OEIS undergoes a review process, and the status "approve" indicates that the
sequence has been validated and approved by OEIS administrators.
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B Dataset Construction Details841

This section primarily presents some details on the842

construction of UTMath. B.1 discusses the issues843

encountered when observing data crawled from844

OEIS, along with the corresponding cleaning rules.845

UTMath applies all 14 rules. Additionally, we846

crawled all sequences from OEIS and, for conve-847

nience, applied only the first 12 rules to create UT-848

Math_Train, which contains over 70k sequences.849

B.2 outlines the process followed for standardizing850

the descriptions of problems in UTMath, while B.3851

explains the referencing of sequences within UT-852

Math, highlighting both the Cutting-Edge difficulty853

level of UTMath and its scalability.854

B.1 Rules for Data Cleaning855

856 1. Issues: The sequence is too difficult, requiring857
extensive background knowledge, or only a858
limited number of terms are found.859
Method: Remove sequences with keywords860
containing ‘hard’, ‘fin’ (finite).861

2. Issues: The sequence is hard to generate with862
a program.863
Method: Check if it contains program, for-864
mula, or Mathematica fields in the sequence’s865
json data.866

3. Issues: The sequence is too simple with an867
explicit recurrence or closed formula.868
Method: Search if the description includes869
‘a(n) =’.870

4. Issues: Solving the sequence requires infor-871
mation from other OEIS sequences.872
Method: Search if the sequence’s description873
contains the AID of other sequences (‘A’ +874
six-digit number with leading zeros).875

5. Issues: The sequence is decimal expansion of876
a certain number.877
Method: Search if the description includes878
‘decimal’.879

6. Issues: The sequence consists of repetitions880
or a constant value.881
Method: Search if the description includes882
both ’repeat’ and ’period’ or ’constant se-883
quence’.884

7. Issues: The description is too vague.885
Method: Search if the description includes886
‘related to’.887

8. Issues: Another version of a concept.888
Method: Search if the title includes ‘another889
version’, ‘second kind’, etc.890

9. Issues: The sequence is formed by taking mod891
of a constant.892
Method: Search if the description includes893
‘module’.894

10. Issues: The values in the sequence are too895
large, which might cause LLM tokenization896
errors.897
Method: Check if any term’s length exceeds898
18 digits(i.e., greater than 1e18), remove it.899

11. Issues: Coefficient triangles or ‘read by row’ 900
topics. 901
Method: Search if the sequence’s description 902
includes ‘read by row’, ‘triangle of coeffi- 903
cient’. 904

12. Issues: The description is too short, either 905
purely implementation or lacks necessary in- 906
formation. 907
Method: Check if the title length is below 5. 908

13. Issues: More like a reasoning puzzle. 909
Method: Use GPT-4o to judge, with the 910
prompt outlined in the Appendix C. 911

14. Issues: Non-mathematical topics. 912
Method: Use GPT-4o to judge, with the 913
prompt outlined in the Appendix C. 914

B.2 Standardization of Problems’ Description 915

Numbers n such that σ(x) = n has no 
solution.

Original Description

The definition of a(n) is: Numbers n such 
that the sum of the divisors of x (denoted 
as σ(x)) equals n has no solution.

After Standardize
Standardized by LLM

Figure 7: Comparison between original and standard-
ized problem description. The standardized version in-
cludes hints and explains the specific meaning of σ(x).

B.3 Dataset Statistics 916

To demonstrate that our benchmark is of cutting- 917

edge level, we have analyzed the distribution of the 918

publication years and the number of references in- 919

cluded in the problems of the benchmark as shown 920

in Fig. 8. Additionally, OEIS is a dynamic database. 921

Over the past five years, more than 35,000 se- 922

quences in UTMath_Train have been further re- 923

searched, and over 2,000 new sequences have been 924

added. This ongoing development makes it pos- 925

sible to continuously update UTMath_Train and 926

UTMath, helping to address the challenges posed 927

by data leakage. 928
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Figure 8: Distribution of references in UTMath.
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C Prompts929

--------------- Turn 1: < Reasoning Instruction > ---------------

Please analyze the following sequence problem and provide a detailed 

reasoning process for the sequence. You need to follow these 

requirements:

1. Use the solution with the lowest time complexity.

2. Not to implement the solution.

Question Statements:
{The statement of the question}

Examples:
a(1) == 𝑎1
a(2) == 𝑎𝟐
a(3) == 𝑎𝟑

---------------Turn 2: < Coding Instruction > ---------------
Please implement the above solution using Python code, adhering to the 

following requirements:

1. The code must be written in Python.

2. Use the function signature def solution(x: int), and ensure the code 

portion is in markdown format.

3. To ensure the code is runnable, please import any necessary 

libraries.

4. You do not need to provide any explanations or examples, just the 

implementation code.

5. test contains multiple test cases, each of which will call the solution 

function.

Examples:
Solution(1) == 𝑎1
Solution(2) == 𝑎𝟐
Solution(3) == 𝑎𝟑

Prompt 2: the prompt for Reasoning-to-Coding of Thoughts

Please reason through the following sequence problem and implement 
your reasoning using code. You need to follow these requirements:

1. The code must use the Python language.

2. Use the function signature def solution(x: int), and make sure the 

code part is in markdown format.

3. To ensure the code is runnable, please import any necessary 

libraries.

4. Provide the reasoning process first.

5. Use the solution with the lowest time complexity.

Question Statements:
{The statement of the question}

Examples:
Solution(1) == 𝑎1
Solution(2) == 𝑎𝟐
Solution(3) == 𝑎𝟑
 

Prompt 1: the prompt for Program-of-Thoughts

This is a description of a sequence. Please judge whether solving this 
sequence requires more reasoning or implementation. You need to 
follow these rules:

1. If the problem statement already has a clear recurrence relation or 
explicit formula, the question should be considered an 
implementation question.

2. If the problem does not include a direct calculation formula and 
requires reasoning to derive it, the question should be considered a 
reasoning question.

3. Implementation questions usually just require translating the 
problem requirements directly into code without designing 
complex algorithms or using advanced data structures.

4. If the question requires more reasoning, answer "reasoning 
question"; otherwise, answer "implementation question.“

5. Your answer should be in italics.

Question Statements: 
{The statement of the question}

This is information about a sequence from OEIS (The On-Line 
Encyclopedia of Integer Sequences) and contains four types of 
information: 'name’, 'data’, 'comment’ and 'formula’. Please use this 
information and your knowledge to judge the domain to which the 
sequence belongs. Please follow these rules:

1. Your response should only contain the answer, without any other 
explanations or examples. 

2. Your answer can only be selected from these five options: {'math 
question’, 'physics question’, 'chemistry question’, 'biology 
question’, 'other question’}

3. Your answer should be in italics

Question Statements:
{The statement of the question}

Data:
{The items of the sequence}

Comment:
{The comment of the question}

Formula:
{The formula of the question}

Prompt 4: the prompt used to determine whether the 
question belongs to the field of mathematics：

I want to create a math problem based on a sequence from the OEIS. 
The output should be the first n terms of the sequence, but the original 
problem statement for the sequence may be vague or difficult to 
understand or might require additional background knowledge. I will 
provide you with the original problem statement and other information. 
Please use this information and your knowledge to complete the 
original problem statement without revealing the sequence's reasoning 
method or content, and you need to follow these rules:

1. If the original problem statement is sufficient to deduce the entire 
sequence, no additional information is needed.

2. You should retain as much of the original problem statement as 
possible.

3. The completed problem statement should include necessary 
background knowledge.

4. The completed problem statement should maintain the same 
meaning as the original.

5. The completed problem statement should not contain direct 
recurrence relations or explicit formulas.

6. The completed problem statement should remain in English.
7. The completed problem statement should begin with "The 

definition of a(n) is".
8. Your response should only include the completed problem 

statement without any explanations or examples.

Question Statements: 
{The statement of the question}

Other information: 
{The information about the question}

Prompt 5: the prompt used to standardize question 
statements

Prompt 3: the prompt used to determine reasoning or 
implementation questions

Figure 9: The main prompts we used.
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D Case Studies 931

To analyze the sequence problem, we need to determine the least number (m) such that either (2m + 1) or (2m − 1) is divisible by 
(4𝑛 + 1). Let's break down the problem and find a solution with the lowest time complexity.

Understanding the Divisibility Condition:
We need to find the smallest ( m ) such that either  2m + 1 ≡ 0 (𝑚𝑜𝑑 4𝑛 + 1) or 2m − 1 ≡ 0 (𝑚𝑜𝑑 4𝑛 + 1) .
This means 2m ≡ −1 𝑚𝑜𝑑 4𝑛 + 1  or 2m ≡ 1 (𝑚𝑜𝑑 4𝑛 + 1).

Order of 2 Modulo 𝟒𝐧 + 𝟏  :
• The order of 2 modulo 𝟒𝐧 + 𝟏  is the smallest positive integer (𝐦) such that 𝟐𝒎 ≡ 𝟏 (𝐦𝐨𝐝 𝟒𝐧 + 𝟏).
• If 𝟐𝐦 ≡ −𝟏 𝐦𝐨𝐝 𝟒𝐧 + 𝟏  , then 𝟐𝟐𝐦 ≡ 𝟏 𝐦𝐨𝐝 𝟒𝐧 + 𝟏  and (𝐦) is half the order of 2 modulo (𝟒𝐧 + 𝟏).

Efficient Calculation :
• To find the order of 2 modulo (4n + 1), we can use the fact that the order must divide φ 4n + 1 where φ is Euler's totient function.
• Calculate 𝛗 𝟒𝐧 + 𝟏 and check divisors of this value to find the smallest (𝐦) such that 𝟐𝐦 ≡ 𝟏 (𝐦𝐨𝐝 𝟒𝐧 + 𝟏) or 𝟐𝐦 ≡ −𝟏 (

)
𝐦𝐨𝐝 𝟒𝐧 +

𝟏  .

Steps to Solve :
1. Compute 𝟒𝐧 + 𝟏  : For a given (𝑛), compute (4𝑛 + 1).
2. Calculate 𝛗 𝟒𝐧 + 𝟏 : Use the prime factorization of 𝟒𝐧 + 𝟏  to compute 𝛗 𝟒𝐧 + 𝟏 .
3. Find the Order of 2:  Check each divisor 𝑑 of φ 4𝑛 + 1 to see if 2d ≡ 1 (𝑚𝑜𝑑 4𝑛 + 1) or 2d ≡ −1 (𝑚𝑜𝑑 4𝑛 + 1).
The smallest such 𝑑 is the desired 𝑚 .

Time Complexity
• Prime Factorization: The time complexity for factorizing 4𝑛 + 1  is O 4𝑛 + 1  
• Checking Divisors: For each divisor 𝑑 of φ 4𝑛 + 1 , compute 2d 𝑚𝑜𝑑 (4𝑛 + 1) using fast exponentiation, which is O log 𝑑 . 
• Overall Complexity: The overall complexity is dominated by the factorization step, making it O 4𝑛 + 1  .
This approach efficiently finds the least (m) with the lowest time complexity by leveraging number theory concepts such as modular 
arithmetic and Euler's totient function.

-------------------------- Turn 1: < Reasoning > -------------------------

-------------------------- Turn 2: < Coding > -------------------------

def solution(x: int) -> int:

  import math

  def euler_totient(n):

    result = n

    p = 2

    while p * p <= n:

      if n % p == 0:

        while n % p == 0:

          n //= p

        result -= result // p

      p += 1

    if n > 1:

      result -= result // n

    return result

  def order_of_2_modulo(n):

    phi = euler_totient(n)

    for d in range(1, phi + 1):

      if phi % d == 0:

        if pow(2, d, n) == 1 or pow(2, d, n) == n - 1:

          return d

    return phi

  mod = 4 * x + 1

  return order_of_2_modulo(mod)

Associative Euler function

Task_Id: UTMath_948
OEIS_Id: A019567
Main_Category: Special Numbers

Problem Statement: 
The definition of a(n) is the least number m for which 
either 2m + 1 or 2m − 1 is divisible by 4n + 1, where n 
represents the number of pairs of cards in a Mongean 
shuffle.

Case 1 : a(0) = 1
Case 2 : a(1) = 2
…

Hard Case 1 : a(1882) = 941
Hard Case 2 : a(1883) = 810
…
Hard Case 10 : a(1891) = 88

The Responses of GPT-4o by Reasoning-To-Coding Thoughts of Thought Methods

         To solve this problem, we need to find the smallest integer 
(m) such that either 2m + 1 or 2m − 1 is divisible by (4𝑛 + 1). 
This means we need to check for the smallest (m) where:
    1. 2m + 1 ≡ 0 (𝑚𝑜𝑑 4𝑛 + 1) or
    2. 2m − 1 ≡ 0 𝑚𝑜𝑑 4𝑛 + 1

Given the examples:
• For n = 0, 4𝑛 + 1 = 1. The smallest (m) is 1 because 21 − 1 =
1 which is divisible by 1.
• For n = 1, 4𝑛 + 1 = 5. The smallest (m) is 2 because 22 − 1 =
3 and 22 + 1 = 5 , and 5 is divisible by 5.
• For n = 2, 4𝑛 + 1 = 9. The smallest (m) is 3 because 23 + 1 =
9, and 9 is divisible by 9.

The approach is to iterate over increasing values of (m) starting 
from 1, and for each (m) check the divisibility conditions. The 
first (m) that satisfies either condition is the answer.
Here's the implementation in Python:

This code iterates over possible values of ( m ) starting from 1, 
checking the divisibility conditions for each ( m ). It returns the 
first ( m ) that satisfies either condition, ensuring the solution is 
found with the lowest time complexity possible given the 
problem constraints.

def solution(x: int) -> int:

  n = x

  divisor = 4 * n + 1

  

  m = 1

  while True:

    if (2**m + 1) % divisor == 0 or (2**m 

- 1) % divisor == 0:

      return m

    m += 1

The Responses of GPT-4o by Program of Thought Methods

Case merging after classification discussion

Figure 10: GPT-4o solves UTMath_948 by the PoT method, by the RCoT method, respectively. The input prompt
is omitted here but can be found in Appendix C. PoT simply performs brute-force solving, while RCoT involves
deeper reasoning through Case merging after a classification discussion and the application of Euler’s formula,
providing a solution with lower time complexity.

To analyze the sequence problem where a(n) is defined as the sum of the fourth powers of the first n odd numbers, we need to 
derive a formula or method to compute a(n) efficiently.

Step-by-Step Analysis:
Understanding the Sequence: The sequence involves summing the fourth powers of the first n odd numbers. The first n odd 
numbers are：

1, 3, 5, 7, … , (2𝑛 − 1)

Expressing the Sequence: The nth odd number can be expressed as (2𝑘 − 1) for 𝑘 =  1 to 𝑛.Therefore:
𝑎(𝑛)  =  (14)  + (34)  + (54)  + … + ((2𝑛 − 1)4)

General Term: The general term for the kth odd number is (2𝑘 − 1).The fourth power of this term is: 
（2𝑘 − 1)4

Summation: We need to compute the sum: 

𝑎(𝑛)  =  

𝑘=1

𝑛

(2𝑘 − 1)4

Simplifying the Expression: Expand (𝟐𝒌 − 𝟏)𝟒 using the binomial theorem: 
（𝟐𝒌 − 𝟏)𝟒 =  (𝟏𝟔𝒌^𝟒 −  𝟑𝟐𝒌^𝟑 +  𝟐𝟒𝒌^𝟐 −  𝟖𝒌 +  𝟏) 

Therefore, the sum becomes: 

 𝑎(𝑛)  =  

𝑘=1

𝑛

(16𝑘4 − 32𝑘3 + 24𝑘2 − 8𝑘 + 1)

Separate the Summation: Break down the summation into individual components:

 
𝑎(𝑛)  = 16 

𝑘=1

𝑛

𝑘4 − 32 

𝑘=1

𝑛

𝑘3 + 24 

𝑘=1

𝑛

𝑘2 − 8 

𝑘=1

𝑛

𝑘 + 

𝑘=1

𝑛

1

Use Known Summation Formulas: Use the formulas for the sum of powers of integers:

 σ𝑘=1
𝑛 𝑘 =

𝑛(𝑛+1)

2
, σ𝑘=1

𝑛 𝑘2 =
𝑛(𝑛+1)(2𝑛+1)

6
 , σ𝑘=1

𝑛 𝑘3 = (
𝑛(𝑛+1)

2
)2 , σ𝑘=1

𝑛 𝑘4 =
𝑛(𝑛+1)(2𝑛+1)(3𝑛2+3𝑛+1)

30
 

Substitute and Simplify: Substitute these formulas into the expression for a(n) and simplify to get a closed-form expression.
Time Complexity: The derived formula will allow us to compute a(n) in constant time, 𝑂(1), since it involves only arithmetic 
operations on n. By following these steps, we can derive a closed-form expression for a(n) that allows us to compute the sum of the 
fourth powers of the first n odd numbers efficiently, without iterating through each term. This approach ensures the lowest time 
complexity, O(1), for computing the sequence.

-------------------------- Turn 1: < Reasoning > -------------------------

Task_Id: UTMath_629
OEIS_Id: A002309
Main_Category:  Polynomial and Series Expansions

Problem Statement: 
The definition of a(n) is the sum of the fourth powers of the 
first n odd numbers.

Case 1 : a(1) = 1
Case 2 : a(2) = 82
…

Hard Case 1 : a(63647) = 3342255666620196206703263
Hard Case 2 : a(63648) = 3342518236787942696553888
…
Hard Case 10 : a(64656) = 3344619392264074754875880

The Responses of GPT-4o by Reasoning-To-Coding Thoughts of Thought Methods

         To solve the problem of finding the sum of the fourth 
powers of the first n odd numbers, we need to follow these 
steps:

Identify the Sequence of Odd Numbers: The sequence of the 
first n odd numbers is 1, 3, 5, 7, … , up to the n-th odd number. 
The k-th odd number can be expressed as 2𝑘 −  1.

Calculate the Fourth Power: For each odd number in the 
sequence, calculate its fourth power. The fourth power of a 
number x is 𝑥4.

Sum the Fourth Powers: Sum up all the fourth powers 
calculated in the previous step to get the result for a(n).

Optimize the Calculation: Instead of recalculating the odd 
numbers each time, we can directly compute the sum of the 
fourth powers using a loop that iterates n times, 
calculating 2𝑘 −  1 4 for each k from 1 to n.

The time complexity of this approach is 𝑂(𝑛) because we are 
iterating through the first 𝑛 odd numbers and performing a 
constant amount of work (raising to the fourth power and 
summing) for each.

Here is the implementation in Python:

The Responses of GPT-4o by Program of Thought Methods

-------------------------- Turn 2: < Coding > -------------------------

def solution(x: int) -> int:

  # Using the derived formula for the sum of fourth powers of the first n odd numbers

  n = x

  sum_k = n * (n + 1) // 2

  sum_k2 = n * (n + 1) * (2 * n + 1) // 6

  sum_k3 = (n * (n + 1) // 2) ** 2

  sum_k4 = n * (n + 1) * (2 * n + 1) * (3 * n**2 + 3 * n - 1) // 30

  

  result = 16 * sum_k4 - 32 * sum_k3 + 24 * sum_k2 - 8 * sum_k + n

  return result

def solution(x: int) -> int:

  total_sum = 0

  for k in range(1, x + 1):

    odd_number = 2 * k - 1

    total_sum += odd_number ** 4

  return total_sum

Associative binomial theorem

Consider the power sum formula

Figure 11: GPT-4o solves UTMath_629 by the PoT method, by the RCoT method, respectively. The input prompt is
omitted here but can be found in Appendix C. PoT only performs brute-force traversal, whereas RCoT engages in
deeper reasoning by associating the problem with the binomial theorem and using the power sum formula, yielding
a closed-form expression with lower time complexity from O(n) to O(1).
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