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Abstract

Large language models (LLMs) often generate confident yet inaccurate outputs,1

posing serious risks in safety-critical applications. Existing hallucination detection2

methods typically rely on final-layer logits or post-hoc textual checks, which can3

obscure the rich semantic signals encoded across model layers. Thus, we propose4

Shapley NEAR (Norm-basEd Attention-wise usable infoRmation), a principled,5

entropy-based attribution framework grounded in Shapley values that assigns a6

confidence score indicating whether an LLM output is hallucinatory. Unlike prior7

approaches, Shapley NEAR decomposes attention-driven information flow across8

all layers and heads of the model, where higher scores correspond to lower halluci-9

nation risk. It further distinguishes between two hallucination types: parametric10

hallucinations, caused by the model’s pre-trained knowledge overriding the context,11

and context-induced hallucinations, where misleading context fragments spuri-12

ously reduce uncertainty. To mitigate parametric hallucinations, we introduce13

a test-time head clipping technique that prunes attention heads contributing to14

overconfident, context-agnostic outputs. Empirical results in four QA benchmarks15

(CoQA, QuAC, SQuAD, and TriviaQA), using Qwen2.5-3B, LLaMA3.1-8B, and16

OPT-6.7B, demonstrate that Shapley NEAR outperforms strong baselines, without17

requiring additional training, prompting, or architectural modifications.18

1 Introduction19

The rapid proliferation of large language models (LLMs) in a variety of applications, from conversa-20

tional agents to automated decision making systems, has underscored their impressive capabilities21

[1, 2]. However, a challenge persists: these models often generate outputs that are confidently22

stated yet factually incorrect, a phenomenon widely known as hallucination [3]. This issue becomes23

especially critical in safety-sensitive environments where factual accuracy is paramount [4, 5].24

To tackle this, a number of recent studies have investigated hallucination in LLMs using both25

theoretical and empirical approaches. While token-level uncertainty measures such as entropy and26

confidence have proven useful in hallucination detection for NLP tasks [6], extending these methods27

to sentence-level predictions in autoregressive LLMs remains challenging due to the models’ complex28

and interdependent outputs [7, 8]. As a workaround, recent research has attempted to infer sentence-29

level uncertainty directly from the generated language itself [9, 10]. However, these works did not30

consider the dense semantic information encoded inside the internal layers of the LLM [11–13]. In31

parallel, [13] introduced the concept of V-usable information, which quantifies how much useful32

information a model can extract under computational constraints. Building on this, [14] proposed33

Pointwise V-Information (PVI) to estimate instance-level dataset difficulty, although this metric34

only considers the final layer. In contrast, [12] proposed using the EigenScore of the final token35

from a middle transformer layer to detect hallucinations, and further analyzed model reliability by36

comparing multiple responses to a shared prompt. However, despite these advances, most of these37
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Figure 1: Overview of the proposed pipeline for detecting hallucinations. Shapley NEAR detects
hallucination by computing entropy-based information gain across all attention heads and layers, and
attributing it fairly to individual context sentences using Shapley values.

methods focus exclusively on final-layer logits and overlook the rich information encoded in all the38

internal states of LLMs [15]. With further development, LLM-Check [16] extended hallucination39

detection to both white-box and black-box settings by employing an auxiliary LLM to analyze40

hidden states, attention patterns, and output probabilities. Similarly, Lookback Lens [17] trained41

a linear classifier using the ratio of attention on the context versus generated tokens to identify42

contextual hallucinations. However, both approaches fail to distinguish whether hallucinations43

originate from the pre-trained knowledge of the model (parametric hallucination) or from misleading44

contextual information (contextual hallucination). Complementing these lines of work, [18] examined45

deficiencies across layers for unanswerable question detection, while [11] revealed that feed-forward46

layers often exhibit less reliable distributional associations compared to the more robust in-context47

reasoning encoded by attention mechanisms.48

To address the limitations of these prior approaches, we introduce Shapley NEAR (Norm-basEd49

Attention-wise usable infoRmation), a method designed to assign a confidence score indicating50

whether an LLM-generated answer is trustworthy or hallucinatory, given a question and context. In51

contrast to previous methods that primarily rely on outputs from feed-forward layers, which have52

limited bearing on reasoning [11], our approach focuses exclusively on attention layers. Shapley53

NEAR aggregates information from all attention heads across all layers [15], enabling a fine-grained,54

attention-wise and layer-wise analysis of information propagation. Crucially, our method requires no55

additional training or architectural changes, making it both easy to integrate into existing pre-trained56

models and highly interpretable in practice. The main contributions of our paper are as follows:57

• We propose Shapley NEAR, a principled, interpretable entropy-based attribution method58

grounded in Shapley-value theory that quantifies usable information flow in LLMs by59

decomposing entropy reduction across layers and heads using the norm of attention outputs.60

• We demonstrate that our framework not only detects hallucinations introduced by context61

segments but also distinguishes between parametric and context-induced hallucinations.62

• We introduce a test-time strategy to identify attention heads that consistently exhibit para-63

metric hallucinations. Selectively removing these heads during inference demonstrates a64

novel application of attribution techniques to improve model reliability without retraining.65

• We evaluate Shapley NEAR on multiple QA datasets using Qwen2.5-3B, LLaMA3.1-8B,66

and OPT-6.7B, showing that it outperforms strong baselines mention in Section.67

2 Background68

In this work, we focus on quantifying how much usable information a generative language model can69

extract from a given context to answer a specific question. Formally, we consider an input context70

X = {s1, s2, . . . , sn}, and a typical autoregressive large language model (LLM), denoted by V ,71

which generates a response sequence Y = [y1, y2, . . . , yT ], where each token yt is conditioned on72

the input and previous outputs. Our central goal is to determine how much V-usable information the73

model can leverage from the context X to predict the output Y . A lower value of usable information74

implies greater prediction difficulty, indicating that the dataset is more challenging for the models V .75
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While classical information-theoretic tools such as Shannon’s mutual information I(X;Y )[19] and76

the data processing inequality (DPI)[20] have long served as foundational metrics for analyzing77

information flow, recent research has revealed their limitations when applied to deep models. These78

classical measures tend to overestimate the practically usable signal, particularly in settings where79

models operate under computational constraints as modern LLMs can progressively extract structured80

and meaningful representations from raw inputs through deep computation, rendering traditional81

metrics insufficient.82

To bridge this gap, [13] introduced the notion of predictive V-information, which accounts for83

the computational limitations of a model family V . They define this as the difference between84

two entropy terms: the conditional V-entropy with and without contextual input. Specifically, the85

predictive V-information is given by:86

IV(X → Y ) = HV(Y |∅)−HV(Y |X),

where HV(Y |X) denotes the expected uncertainty over outputs Y when conditioned on context87

X , and HV(Y |∅) captures the model’s uncertainty in the absence of any input. While predictive88

V-information captures dataset-level trends, Ethayarajh et al. [14] extend it to the instance level via89

pointwise V-information (PVI), which measures how much information a specific input x provides90

for predicting its output y. This enables fine-grained analysis of instance difficulty, essential for91

real-world model evaluation.92

Building on these foundations, [18] propose layer-wise usable information (LI), a method that93

decomposes usable information across the layers of a model, thereby enhancing interpretability.94

Complementary to this, [11] show that feed-forward layers primarily encode superficial distributional95

patterns, whereas attention mechanisms are more closely aligned with in-context reasoning. These96

insights motivate our work, which integrates the strengths of previous efforts to develop a unified,97

interpretable framework to assess usable information in LLMs, both across layers and at the sentence98

level, while accounting for how different components of the model influence predictive certainty.99

3 Shapley NEAR: Norm-basEd Attention-wise usable infoRmation100

Given a set of context passages, generative language models (LLMs) produce free-form text responses101

to questions. In this work, we aim to systematically quantify how individual parts of the context102

influence the prediction at the final token of the question. Transformer-based models organize103

computation across multiple layers and attention heads, where each head captures distinct patterns104

of contextual dependency[21]. Building on this insight, we propose Shapley NEAR, a framework105

for measuring how much usable information each sentence in a context contributes to reducing the106

model’s predictive uncertainty. Shapley NEAR is computed by isolating the output of each attention107

head at the final token position of the question and measuring the change in entropy when conditioning108

on subsets of the input context versus a null context. To attribute this entropy reduction fairly to109

individual sentences, we adopt a Shapley-value-based decomposition. For clarity, the remainder110

of the paper, we will use the terms Shapley NEAR and NEAR interchangeably. An overview of111

our architecture is illustrated in Figure 1, while the detailed algorithmic procedure is presented in112

Appendix A7.113

Let sx = (s1, s2, . . . , sn) ∈ C denote a context passage composed of n disjoint sentences, and let114

q ∈ Q represent the associated question. The concatenated input sequence sx q is tokenized into115

a sequence of length T , with the final token of the question indexed by qt ∈ {1, . . . , T}. In this116

framework, we consider a formally defined predictive family V consisting of pretrained generative117

language models, where each model is composed of L transformer layers and each layer contains118

H attention heads. Each attention head h in each layer ℓ of the language models creates different119

computations. Mathematically, we define V ⊆ Ω = {f (l,h) : C ∪ ∅ → P(Q)}, where C and Q120

are random variables with sample spaces C and Q, respectively, and P(Q) denotes the set of all121

probability measures over Q equipped with the Borel algebra on C. The mapping f (l,h) represents122

the function associated with attention head of a specific layer (l, h) within the predictive family V .123

The range of f corresponds to the vocabulary space of the model. Given a layer l and attention-head124

h in V , the function f maps the context tokens (or null context) to probability distribution over the125

vocabulary. Unlike prior work, the function f is assumed to operate without any additional fine-tuning126

on external training data. In the rest of the section we will build the mathematical formula for NEAR,127

defining and explaining each step.128
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Definition 3.1 (Norm-based Attention Information). Prior research by [22] suggests that the norm of129

the attention output serves as a meaningful proxy for the amount of information transmitted by each130

head. We omit the output of the feedforward layers (FC), as previous work by [11] has shown that131

these layers predominantly capture shallow distributional associations, whereas the attention layers132

are more effectively engaged in in-context reasoning.133

For each layer ℓ ∈ {1, . . . , L} and head h ∈ {1, . . . ,H}, given an input context subset x and a134

question q, we compute the attention output of the model V for the combined input (x, q) as follows:135

α(ℓ,h)(x, q) ≜ softmax

(
Q(ℓ,h)(x, q)K(ℓ,h)(x, q)

⊤

√
d

)
,

136

Z(ℓ,h)(x, q) ≜ α(ℓ,h)(x, q)V (ℓ,h)(x, q), (1)

where Q(ℓ,h) and K(ℓ,h) denote the query and key matrices for layer ℓ and head h, respectively,137

α(ℓ,h)(x, q) ∈ RT×T and V (ℓ,h)(x, q) ∈ RT×d are the value matrices with d = D/H being the per-138

head dimension. Both attention weights and value vectors are computed based on the concatenated139

subset x and question q. The resulting attention outputs are projected using equation 1 and a140

head-specific output matrix W
(h)
O ∈ Rd×D to obtain141

Z̃(ℓ,h)(x, q) ≜ Z(ℓ,h)(x, q)W
(h)
O ∈ RT×D. (2)

According to [15, 5], the last token embedding captures the semantic information of the entire text.142

Therefore, we then extract the projected vector corresponding to the final question token qt from143

equation 2,144

z(ℓ,h)x,q ≜ Z̃(ℓ,h)
qt ∈ RD,

which serves as a summary of information flow from the context subset x towards predicting the next145

token after the question. Now we will define the information gain from x for a specific head.146

Definition 3.2 (Information Gain). From Definition 3.1, the vector z(ℓ,h)x,q encapsulates dense semantic147

information preserved within the internal attention mechanisms of LLMs. By applying a softmax148

operation over z(ℓ,h)x,q , we obtain a vocabulary distribution p
(ℓ,h)
x,q ∈ R|V |. The entropy at the final149

token is computed as150

H(ℓ,h)(qt | q<t, x) ≜ −
|V |∑
i=1

p
(ℓ,h)
i log p

(ℓ,h)
i . (3)

We emphasize that entropy is calculated over the entire softmax-normalized vocabulary. This is a151

critical distinction: hallucination often stems not from low confidence in the correct token alone,152

but from broad misallocation of probability mass across incorrect options. Therefore, full entropy153

measurement enables us to detect whether the model’s uncertainty is genuinely reduced when154

informative context is provided. Now to calculate the information gain provided by the subset x at155

head h and layer ℓ, it is defined as the reduction in entropy relative to a null context (i.e., no input)156

using equation 3,157

IG(ℓ,h)(x→ q) ≜ H(ℓ,h)(qt | q<t, ∅)−H(ℓ,h)(qt | q<t, x), (4)

whereH(ℓ,h)(qt | q<t, ∅) is computed solely from the model’s parametric knowledge, without access158

to any retrieved context. Summing over all heads and layers yields the total information gain using 4:159

IG(x→ q) ≜
L∑

ℓ=1

H∑
h=1

IG(ℓ,h)(x→ q). (5)

The quantity IG(x→ q) captures the behavior of the function f (ℓ,h) : C ∪ ∅ → P(Q), which maps160

a context input, or its absence, to a probability distribution over the vocabulary space Q for each161

attention head and layer. Moreover, IG(x→ q) quantifies the amount of information that the context162

x provides about the question q.163

Definition 3.3 (Shapley Sentence Attribution). Now, for the context passage sx = (s1, s2, . . . , sn) ∈164

C and associated question q ∈ Q, we aim to quantify the individual contribution of each sentence165

si in the context to the model’s total information gain. To do this, we use the Shapley value [23], a166
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Table 1: Hallucination detection performance evaluation across four QA datasets (CoQA, QuAC,
SQuAD, TriviaQA) and three LLMs (Qwen2.5-3B, LLaMA3.1-8B, OPT-6.7B). We report average
AUROC (AUC), Kendall’s τ , and Pearson correlation coefficient (PCC) for various baseline methods.
Higher values indicate better performance. NEAR achieves the best overall performance.

Models CoQA QuAC SQuAD TriviaQA

AUC↑ τ ↑ PCC↑ AUC↑ τ ↑ PCC↑ AUC↑ τ ↑ PCC↑ AUC↑ τ ↑ PCC↑
Qwen2.5-3B
P(True) 0.48 0.32 0.30 0.49 0.33 0.31 0.51 0.34 0.32 0.50 0.33 0.31
Pointwise VI 0.51 0.35 0.32 0.50 0.34 0.31 0.52 0.36 0.33 0.53 0.36 0.34
Usable LI 0.67 0.45 0.41 0.66 0.44 0.40 0.68 0.45 0.42 0.64 0.43 0.40
Semantic Entropy 0.70 0.47 0.44 0.68 0.45 0.42 0.69 0.44 0.41 0.72 0.46 0.43
Loopback Lens 0.71 0.48 0.45 0.69 0.46 0.43 0.70 0.45 0.42 0.73 0.46 0.44
INSIDE 0.76 0.54 0.49 0.75 0.53 0.48 0.74 0.54 0.50 0.77 0.55 0.49
NEAR 0.85 0.65 0.64 0.84 0.66 0.65 0.86 0.67 0.66 0.85 0.66 0.65
LLaMA3.1-8B
P(True) 0.52 0.34 0.31 0.53 0.35 0.32 0.56 0.37 0.34 0.55 0.36 0.33
Pointwise VI 0.56 0.36 0.34 0.52 0.32 0.31 0.55 0.37 0.33 0.68 0.46 0.40
Usable LI 0.74 0.49 0.44 0.69 0.46 0.41 0.71 0.47 0.43 0.63 0.45 0.40
Semantic Entropy 0.73 0.42 0.43 0.67 0.40 0.44 0.69 0.39 0.41 0.76 0.41 0.41
Loopback Lens 0.74 0.43 0.44 0.68 0.41 0.44 0.70 0.40 0.42 0.76 0.42 0.41
INSIDE 0.80 0.56 0.51 0.79 0.55 0.50 0.76 0.58 0.53 0.81 0.57 0.50
NEAR 0.85 0.66 0.61 0.84 0.65 0.60 0.86 0.68 0.63 0.85 0.67 0.60
OPT-6.7B
P(True) 0.51 0.33 0.30 0.52 0.34 0.31 0.55 0.36 0.33 0.54 0.35 0.32
Pointwise VI 0.55 0.35 0.33 0.51 0.31 0.30 0.54 0.36 0.32 0.66 0.44 0.38
Usable LI 0.72 0.47 0.42 0.67 0.44 0.39 0.70 0.46 0.41 0.61 0.43 0.38
Semantic Entropy 0.71 0.41 0.42 0.65 0.39 0.43 0.68 0.38 0.40 0.74 0.40 0.40
Loopback Lens 0.72 0.42 0.43 0.66 0.40 0.44 0.69 0.39 0.41 0.75 0.41 0.40
INSIDE 0.78 0.54 0.49 0.77 0.52 0.48 0.74 0.56 0.51 0.79 0.55 0.48
NEAR 0.84 0.65 0.60 0.83 0.64 0.59 0.85 0.66 0.61 0.84 0.65 0.59

concept from cooperative game theory that fairly assigns credit to each element based on its average167

marginal contribution. Using the total information gain defined in Equation (5), the Shapley value for168

sentence si is computed as:169

Shapley IGi ≜
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[IG(S ∪ {si} → q)− IG(S → q)] , (6)

where N = {1, . . . , n} is the set of all sentence indices in the context. For each subset S of sentences170

that excludes si, the term inside the brackets measures the marginal increase in information gain when171

si is added. The prefactor is the standard Shapley coefficient, which ensures that the contributions172

are averaged fairly over all possible insertion orders of the sentences.173

Definition 3.4 (Sentence-level NEAR Score). The total information that can be gained from the174

context with respect to the given question is captured by aggregating the contributions of individual175

sentences. Using the Shapley values from Equation 6, the NEAR score is defined as:176

Shapley NEAR(sx, q) ≜
1

n

n∑
i=1

Shapley IGi, (7)

which reflects average marginal information gain from context sentences in answering the question.177

Thus, based on Definitions 3.1 through 3.4, Shapley NEAR 7 offers a fine-grained decomposition of178

the total information gain, quantifying how much usable information the model extracts from sx to179

answer the question q. The Information Gain (IG) 3 measures the contribution of each attention head180

and layer, while the Shapley Information Gain (Shapley IG) 6 further attributes this information to181

individual sentence segments within the context. A higher NEAR score indicates greater information182

utility from the context, implying that the generated output is less likely to be hallucinatory.183

4 Properties and Bounds of Shapley NEAR184

This section outlines the mathematical and experimental properties of NEAR, with derivations in185

Appendix A1. NEAR aggregates entropy-based information gain across all transformer layers and186
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Methods AUC ↑ τ ↑ PCC ↑

NEAR w/o Shapely 0.79 0.51 0.48

Shapley NEAR 0.85 0.66 0.64

(a)

Methods AUC ↑ Acc. ↑ RL ↑

NEAR 0.85 0.78 0.82

INSIDE 0.80 0.74 0.80

NEAR + HC 0.89 0.81 0.83

(b)

Table 2: (a) Contribution of Shapley aggregation to NEAR scores. (b) Head Clipping (HC) results for
attention heads with IG < −0.05. The following heads were clipped: 349, 459, 485, 833, 955, 1007.

attention heads, with each term bounded by log V , the maximum entropy over a vocabulary of size187

V . Thus, NEAR is theoretically bounded within [−L ·H · log V, L ·H · log V ], where L and H are188

the number of layers and heads. In practice, it reflects cumulative entropy reduction from contextual189

conditioning and scales as NEAR(s, q) ∈ O(L ·H · log V ). Beyond boundedness, NEAR satisfies190

key behavioral properties. First, it is symmetric: if two context sentences si and sj satisfy191

IG(S ∪ {si} → q) = IG(S ∪ {sj} → q) for all S ⊆ s \ {si, sj},
then their Shapley values are identical, i.e., IGi = IGj . Moreover, NEAR reflects context redundancy:192

when S ⊆ T , the marginal information gain decreases, satisfying193

IG(S ∪ {si} → q)− IG(S → q) ≥ IG(T ∪ {si} → q)− IG(T → q).

NEAR also detects context irrelevance: if194

H(qt | q<t, ∅) ≈ H(qt | q<t, sx) for all subsets sx,

then NEAR(s, q) ≈ 0, indicating that the context does not provide meaningful information for195

answering the question. We also empirically observed (Section 5) that for each layer ℓ and attention196

head h, the following inequality holds:197

IG(ℓ,h)(∅ → q) ≤ IG(ℓ,h)(sirr
i → q) ≤ IG(ℓ,h)(sans

j → q),

here, sirr
i denotes a context sentence irrelevant to the answer, and sans

j contains the ground truth answer.198

Empirically, NEAR scores also exhibit a monotonicity property similar to information-theoretic199

measures: for any subset of layers U ⊆ L, the NEAR score computed over U is always less than or200

equal to that over the full set L, as aggregating more layers cannot reduce total entropy gain:201

NEARU (s, q) ≤ NEARL(s, q),

here, NEARU and NEARL denote NEAR scores computed over the subset U ⊆ {1, . . . , L} and the202

full set L, respectively. This follows from NEAR’s additive structure over head-layer pairs, ensuring203

information accumulates monotonically as more layers are included.204

To compute NEAR, we approximate the underlying Shapley values via Monte Carlo sampling205

over random permutations of context sentences. Using Hoeffding’s inequality[24], we derive a206

high-probability error bound on the NEAR estimate. Specifically, with probability at least 1− δ,207 ∣∣∣ ˆNEAR(s, q)− NEAR(s, q)
∣∣∣ ≤ L ·H · log V ·

√
log(2n/δ)

2M
,

where ˆNEAR is the approximate NEAR Score using Monte Carlo estimation, n is the number of208

sentences, M is the number of samples, L is the number of layers, H the number of heads, and V the209

vocabulary size. Thus, the NEAR estimation error decreases with more samples and increases mildly210

with model depth and vocabulary size.211

5 Experiments212

5.1 Experimental Setup213

We classify unanswerable questions by computing NEAR scores to assess whether the response214

generated by a model should be trusted in a given context, that is, whether the answer to a question215
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Figure 2: (a) Contribution of Shapley aggregation on an example context where the 14th sentence
contains the answer to the question. (b) Information gain scores for detecting parametric and context-
induced hallucinations across context segments. (c) Layer-wise information gain comparison between
NEAR and LI . As shown in the subgraphs, relying only on the last layer causes loss of information
from earlier layers. The last-layer IG of LI corresponds to VI .
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Figure 3: Activation distributions at the final token position in the penultimate layer of LLaMA-
3.1-8B: (a) Norm-based attention output, (b) MLP layer output, (c) Final layer output, and (d)
Attention-wise Information Gain across all four datasets (CoQA, QuAC, SQuAD, and TriviaQA).

posed can be reliably inferred. We compare NEAR against several strong baselines, including216

P(True) [25], semantic entropy [26], pointwise V-information (PVI) [14], layer-wise information217

(LI) [18], Loopback Lens with Sliding Window [17], and INSIDE (K = 20, middle layer of218

the LLM is considered) [12]. Each method captures a different perspective: P(True) estimates219

model confidence in binary verification tasks; semantic entropy measures uncertainty via answer220

diversity; PVI quantifies instance-level predictive difficulty; and LI captures entropy reduction across221

transformer layers. We evaluate all methods on four question-answering benchmarks: CoQA [27],222

QuAC [28], SQuAD v2.0 [29], and TriviaQA [30]. Following the setup in [9], we use the development223

split of CoQA, validation split of QuAC, a filtered version of the SQuAD v2.0 development set224

where is_impossible=True, and the rc-nocontext validation subset of TriviaQA with duplicates225

removed. Experiments are conducted on three pretrained models: Qwen2.5-3B, LLaMA3.1-8B,226

and OPT-6.7B. We report average area under the ROC curve (AUROC), Kendall’s τ , and Pearson227

correlation coefficient (PCC), computed across three independent runs. NEAR scores are estimated228

using Monte Carlo sampling with M = 50 (Appendix A8) permutations and failure probability229

δ = 0.01, ensuring high-confidence estimates of each context sentence’s contribution to information230

gain (further details in Appendix A3). This approximation provides a practical trade-off between231

computational cost and estimation accuracy, with all reported results exhibiting standard deviations232

within ±0.04.233

5.2 Results234

Table 1 shows the results of hallucination detection using NEAR and several baseline methods across235

four QA datasets (CoQA, QuAC, SQuAD, and TriviaQA) and three language models (Qwen2.5-3B,236

LLaMA3.1-8B, and OPT-6.7B). We report performance using AUROC, Kendall’s τ , and Pearson237

correlation (PCC). NEAR consistently performs the best across all datasets and models, showing238

clear improvements over existing methods. In many cases, it outperforms the strongest baseline,239

INSIDE, by 8–13% in AUROC and by 10–15% in correlation metrics like τ and PCC. The best240

scores for NEAR are observed on the SQuAD dataset for all models, suggesting that SQuAD is easier241

for LLMs to understand and answer accurately. Among the three models, LLaMA3.1-8B achieves242
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Figure 4: Accuracy vs. NEAR threshold on CoQA, QuAC, SQuAD, and TriviaQA. Optimal
separation consistently occurs near the first quartile (Q1) across model variants.

the highest overall performance, ahead of Qwen2.5-3B and OPT-6.7B, especially when used with243

NEAR. This suggests that stronger pre-trained models can lead to better hallucination detection when244

combined with effective methods like NEAR. We also evaluated the methods after fine-tuning on the245

dataset; the results are presented in Appendix A4 and quantitative examples without finetuning in246

Appendix A9. We also tested NEAR on generalized tasks, detailed in Appendix A6.247

6 Ablation Studies248

For the ablation studies, we primarily focus on the LLaMA-3.1-8B model with the CoQA dataset.249

Results for other models and datasets are provided in Appendix A2.250

Do we really need to consider all layers instead of only the final layer? Unlike methods such as251

VI [14], which consider only final-layer outputs, our results show that important semantic information252

is also captured in earlier layers. As illustrated in Figure 2c, both LI and NEAR scores indicate253

that usable information accumulates progressively across inner layers. A similar trend is visible in254

Figure 3d, where different attention heads capture varying amounts of information. This suggests255

that focusing only on the final layer overlooks valuable signals present throughout the model.256

Why not consider the output from the layers, as in LI , for NEAR? Figures 3a and 3b show the257

activations of the self-attention and MLP components from the penultimate layer of the LLaMA258

3.1-8B model. The sharp spikes in these plots reflect extreme internal features in the network,259

which can cause the model to produce highly overconfident answers [12, 31]. A similar pattern260

of overconfidence is also clearly visible in the layer output shown in Figure 3c. We observed this261

behavior consistently across nearly all layers and LLMs, aligning with the findings of [11]. Based on262

this evidence, we choose to focus on norm-based attention outputs rather than raw layer activations.263

Detection of Parametric and Context-Induced Hallucinations from NEAR Scores. Let si /∈ A(q)264

be a context sentence that does not contain the correct answer to question q, where A(q) denotes the265

set of answer-containing sentences. Ideally, such a sentence should contribute no useful information,266

and the information gain under attention head (ℓ, h) should satisfy IG(ℓ,h)(si → q) ≈ 0. This follows267

from equation 4, which becomes negligible when conditioning on si does not reduce uncertainty,268

i.e.,H(ℓ,h)(qt | q<t, si) ≈ H(ℓ,h)(qt | q<t, ∅). However, we find that even when si /∈ A(q), NEAR269

scores can be negative (IGi < 0) or positive (IGi > 0). A negative score indicates the model270

becomes more uncertain when conditioned on si, meaning the context harms rather than helps, this is271

parametric hallucination. A positive score, despite the absence of the answer, implies that the context272

falsely boosts confidence, this is context-induced hallucination. Such cases arise due to in-context273

learning, the model interprets partial or stylistically similar information as relevant, leading to reduced274

entropy and overconfidence. To validate this, we measured the mean negative NEAR scores across all275

context pieces. Adding random noisy text (similar technique used in [11]) caused negligible change,276

suggesting that the observed negativity is not due to noise or formulation errors. However, fine-tuning277

the model on CoQA significantly increased negative NEAR scores, indicating that the model had278

learned to rely more on context, which led to greater uncertainty when misleading context was279

introduced, confirming parametric hallucination. For context-induced hallucination, we computed280

mean positive NEAR scores for non-answer sentences. While adding random noise had little effect,281

appending misleading but partially aligned segments of the rest of the context led to a sharp increase282

in NEAR scores. This confirms that NEAR effectively captures how misleading context increases283
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confidence in incorrect predictions. The results are shown in Figure 2b. However, these hallucinations284

do not significantly affect the overall reliability of Shapley NEAR, as demonstrated in Appendix A5.285

What Should Be the Threshold Value for NEAR to Segregate Hallucinated Answers? A key step286

in using NEAR for hallucination detection is choosing an effective threshold to separate answerable287

from hallucinated responses. We evaluate classification accuracy by sweeping thresholds across288

quantiles: 0, 0.5 × Q1, Q1, Median, Q3, and 1.5 × Q3. As shown in Figure 4, the first quartile289

(Q1) consistently yields the best accuracy across models (LLaMA-3.1-8B, OPT-6.7B, Qwen2.5-3B)290

and datasets (CoQA, QuAC, SQuAD, TriviaQA). In contrast, thresholds near 0 or 1.5×Q3 reduce291

performance. Based on this, we use Q1 as the default NEAR threshold for all experiments.292

Effect of Shapley Combination on NEAR. We evaluated the effect of Shapley aggregation in NEAR,293

comparing it to a greedy method that ranks sentences by standalone gain (without Shapely attribution).294

As shown in Table 2a, Shapley improves Kendall’s τ (0.51→ 0.66), PCC (0.48→ 0.64), and AUC295

(0.79→ 0.85), highlighting the benefit of permutation averaging for robust attribution. Figure 2a296

shows Shapley downweights irrelevant segments and upweights answer-relevant ones.297

Clipping Heads showing Parametric Hallucination To further demonstrate the effectiveness of our298

framework in identifying hallucination-prone attention heads, we clipped all heads in LLaMA-3.1-8B299

(on the CoQA dataset) with IG values below half the most negative score. This conservative threshold300

avoids pruning heads with mildly negative IG, which may still contribute useful information (see301

Figure 3d). We compared our method to INSIDE (EigenScore + Feature Clipping) with a fixed302

threshold of 0.5, evaluating AUROC, accuracy, and ROUGE-L (computed between the given and303

generated answers). For both NEAR and NEAR+HC (Head Clipping), we used the first quartile304

(Q1) as the classification threshold. As shown in Table 2b, applying head clipping led to consistent305

improvements across all metrics. All results are averaged over three independent runs, with standard306

deviation < 0.3. These findings align with prior work [32–34], which suggests that not all attention307

heads contribute meaningfully to model output.308

7 Related Work309

Recent studies increasingly leverage attention patterns to detect hallucinations in language models.310

Lookback Lens [35] introduces a “lookback ratio” that contrasts attention on the input context311

versus generated tokens, enabling lightweight yet competitive classification. Spectral methods [36]312

treat attention maps as graphs and extract top eigenvalues from the attention Laplacian to signal313

abnormality. LLM-Check [37] integrates internal signals, including attention matrices and hidden314

states, but its accuracy is sensitive to the chosen layer. Beyond attention, entropy-based approaches315

such as Semantic Entropy [26] and Semantic Entropy Probes [38] estimate model uncertainty via316

output clustering or learned probes. Hidden-state probing [15, 39] also helps identify token-level317

unreliability. More recently, mechanistic interpretability has been applied to hallucination detection:318

some methods regress over parametric versus contextual signals [40], while others fine-tune based on319

internal layer projections [41]. In contrast, our framework is fully plug-and-play - requiring neither320

retraining nor architectural modifications - while offering fine-grained attention-level attribution.321

8 Conclusion322

We propose Shapley NEAR, an interpretable framework that detects hallucinations in LLMs by323

attributing entropy-based information flow across attention heads and layers. It leverages attention324

norms and Shapley values for sentence-level attribution, outperforming baselines and distinguishing325

between parametric and context-induced hallucinations. A test-time head clipping step further326

reduces overconfident outputs without retraining. Shapley NEAR offers a principled bridge between327

attribution and internal model dynamics. Limitations are noted in Appendix A10.328
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A1 Derivation of Theoretical Properties and Error Bounds for Shapley483

NEAR Scores484

A1.1 Properties Derivation485

We begin by formally defining the NEAR score. Let the context passage be x = {x1, x2, . . . , xn},486

consisting of n disjoint sentences, and let q denote the corresponding question. For a transformer487

model with L layers and H attention heads per layer, the NEAR score is given by488

NEAR(x, q) =
1

n

n∑
i=1

IGi, (8)

where IGi denotes the Shapley value assigned to sentence xi, measuring its marginal contribution to489

the model’s information gain at the final prediction token.490

The information gain for a subset of context sentences xS ⊆ x is defined as491

IG(xS → q) =

L∑
ℓ=1

H∑
h=1

[
H(ℓ,h)(qt | ∅)−H(ℓ,h)(qt | xS)

]
, (9)

whereH(ℓ,h)(qt | xS) denotes the entropy of the softmax-normalized vocabulary distribution at the492

final token qt, computed using context subset xS .493

A fundamental property of entropy is that for any discrete distribution p ∈ RV over vocabulary size494

V , the Shannon entropy is bounded as495

0 ≤ H(p) ≤ log V, (10)

where the minimum is achieved for deterministic distributions and the maximum for uniform distribu-496

tions. Applying this to attention outputs, it follows that497

0 ≤ H(ℓ,h)(qt | xS) ≤ log V, (11)

for any layer ℓ, head h, and context subset xS .498

Thus, the maximum change in entropy across any head-layer combination is bounded by499 ∣∣∣H(ℓ,h)(qt | ∅)−H(ℓ,h)(qt | xS)
∣∣∣ ≤ log V, (12)

implying that the total information gain satisfies500

|IG(xS → q)| ≤ L ·H · log V. (13)

The Shapley value IGi for a sentence xi is computed by averaging its marginal contributions over all501

subsets of other sentences:502

IGi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[IG(S ∪ {xi} → q)− IG(S → q)] , (14)

where N = {1, . . . , n} indexes the context sentences. Given the bound in Eq. (13), it immediately503

follows that504

|IGi| ≤ L ·H · log V, (15)
and thus the NEAR score itself is bounded by505

− L ·H · log V ≤ NEAR(x, q) ≤ L ·H · log V . (16)

Moreover, the asymptotic growth of NEAR with respect to model size is characterized by506

NEAR(x, q) ∈ O(L ·H · log V ), (17)

indicating that larger models with more layers and heads can potentially exhibit larger NEAR scores.507

In practice, NEAR scores tend to remain significantly below their theoretical maxima because508

softmax-normalized attention distributions are rarely fully uniform or fully deterministic. Confident509

predictions (low entropy) result in large NEAR scores, while uncertain or irrelevant contexts yield510

low NEAR values.511
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Symmetry of Shapley-Based NEAR NEAR preserves the symmetry property of Shapley values.512

If two sentences xi and xj have identical marginal contributions across all subsets S ⊆ x \ {xi, xj},513

then their Shapley attributions are equal:514

IGi = IGj . (18)

Thus, NEAR treats functionally equivalent sentences identically, ensuring fair attribution.515

Context Redundancy and Diminishing Marginal Gains Due to the submodularity of entropy, the516

marginal information gain diminishes as context grows. Formally, for any S ⊆ T ,517

IG(S ∪ {xi} → q)− IG(S → q) ≥ IG(T ∪ {xi} → q)− IG(T → q). (19)

Thus, redundant sentences with overlapping information have smaller Shapley attributions and lower518

contributions to NEAR.519

Zero NEAR for Context-Free Questions If the context x provides no useful information for520

answering q, the entropy remains unchanged after conditioning:521

H(qt | ∅) ≈ H(qt | xS), ∀xS ⊆ x, (20)

leading to522

NEAR(x, q) ≈ 0, (21)

indicating that the model’s uncertainty is unaffected by the context.523

A1.2 Estimation Error Bound for Monte Carlo NEAR524

Exactly computing Shapley values is computationally infeasible due to the n! permutations required.525

Thus, we approximate Shapley values by Monte Carlo sampling over M random permutations.526

The approximate Shapley value is given by527

ÎGi =
1

M

M∑
j=1

[
IG(S

(j)
i ∪ {xi})− IG(S

(j)
i )
]
, (22)

where S
(j)
i is the predecessor set of xi in the j-th sampled permutation.528

Assuming each marginal contribution satisfies529

|IG(S ∪ {xi})− IG(S)| ≤ B = L ·H · log V, (23)

Hoeffding’s inequality [24] gives that, for any δ > 0,530 ∣∣∣ÎGi − IGi

∣∣∣ ≤ B

√
log(2/δ)

2M
, (24)

with probability at least 1− δ.531

Since NEAR is an average over n sentences, applying the union bound yields532 ∣∣∣ ˆNEAR(x, q)− NEAR(x, q)
∣∣∣ ≤ B

√
log(2n/δ)

2M
. (25)

Thus, with probability at least 1− δ,533

∣∣∣ ˆNEAR(x, q)− NEAR(x, q)
∣∣∣ ≤ L ·H · log V ·

√
log(2n/δ)

2M
. (26)

This bound shows that the NEAR approximation error decays as O
(√

logn
M

)
, making estimation534

increasingly accurate with more samples while growing mildly with model complexity and vocabulary535

size.536
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Figure 5: Attention-wise Information Gain for (a) Qwen2.5-3B and (b) OPT-6.7B.
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Figure 6: Layer-wise Information Gain for (a) Qwen2.5-3B and (b) OPT-6.7B.

A2 Ablation Studies for rest of the Datasets537

A2.1 Layer-wise Information Trends in Qwen2.5-3B and OPT-6.7B538

Unlike methods such as VI [14], which rely solely on final-layer outputs, our experiments with539

Qwen2.5-3B and OPT-6.7B across CoQA, QuAC, SQuAD, and TriviaQA reveal that significant540

semantic information emerges well before the final layer. As shown in Figure 6a and Figure 6b, both541

LI and NEAR scores accumulate progressively from early to later layers, highlighting that inner layers542

contribute meaningfully to usable information for Qwen2.5 3B and OPT6.7 respectively. Additionally,543

attention head analysis in these models (Figure 5a and Figure 5b) demonstrates substantial variance544

in information captured by different heads, reinforcing that attention dynamics vary widely across545

layers and heads. These observations confirm that limiting interpretability to the final layer overlooks546

critical intermediate representations and that capturing attention-driven signals across all layers is547

essential for reliable attribution.548

A2.2 Analyzing Parametric and Context-Induced Hallucinations with NEAR Scores549

To better understand the origin of hallucinations, we analyze NEAR scores assigned to context550

sentences that do not contain the ground-truth answer. Let si /∈ A(q), where A(q) denotes the551

minimal set of answer-supporting sentences for a given question q. Ideally, such irrelevant sentences552

should yield zero usable information, implying that the entropy before and after conditioning remains553

approximately equal. This leads to an information gain of zero: IG(ℓ,h)(si → q) ≈ 0. However,554

empirical findings across all four QA datasets—CoQA, QuAC, SQuAD, and TriviaQA—demonstrate555

that even when si /∈ A(q), the NEAR attribution IGi is often either significantly negative or positive.556

These deviations allow us to distinguish between two types of hallucination.557

If IGi < 0, it indicates that the entropy after conditioning on si is higher than that with no context, i.e.,558

H(qt | si) > H(qt | ∅). This suggests that the model becomes more uncertain due to misleading con-559
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Figure 7: Emergence of parametric and context-induced hallucinations captured by NEAR scores.

text overriding its parametric knowledge—a behavior we term parametric hallucination. Conversely,560

if IGi > 0 despite si /∈ A(q), the model incorrectly gains confidence due to spurious semantic cues561

or surface-level similarities. This phenomenon is referred to as context-induced hallucination.562

Figures 7a and 7b visually depict these effects by comparing NEAR scores before and after perturba-563

tions, such as noise injection or model fine-tuning. These experiments confirm that NEAR faithfully564

captures both types of hallucination via its attention-wise decomposition of usable information.565

Experimental Setup. To validate this decomposition, we analyze NEAR attributions on CoQA,566

QuAC, SQuAD, and TriviaQA using LLaMA-3.1-8B, OPT-6.7B, and Qwen2.5-3B. For each data-567

point, we extract context segments si /∈ A(q) and compute:568

MeanNeg = Esi /∈A(q)[IGi | IGi < 0], MeanPos = Esi /∈A(q)[IGi | IGi > 0].

We run two ablations to support the hypothesis:569

1. Random Noise Injection: Injecting randomly sampled tokens into si decreases the mag-570

nitude of MeanNeg and MeanPos, indicating that noise alone does not explain strong571

deviations in NEAR.572

2. Fine-tuning: Fine-tuning the model on CoQA increases |MeanNeg|, showing heightened573

model sensitivity to misleading context after alignment, and thus more pronounced paramet-574

ric hallucinations.575

Conclusion. These results confirm that NEAR scores reflect two distinct modes of hallucination:576

Parametric Hallucination⇐⇒ Context increases entropy (IGi < 0),
577

Context-Induced Hallucination⇐⇒ Spurious entropy reduction (IGi > 0, si /∈ A(q)).
Therefore, NEAR provides a faithful and granular decomposition of hallucination signals within the578

model’s internal reasoning.579

A3 Experimental Setup and Hyperparameters580

We evaluated our method using four standard QA benchmarks: CoQA, QuAC, SQuAD, and Trivi-581

aQA, across three pretrained language models: LLaMA-3.1-8B, OPT-6.7B, and Qwen2.5-3B. For582

each model–dataset pair, NEAR scores were computed by aggregating information gain across all583

transformer layers and attention heads. Attention outputs were taken at the final token of each584

question, and entropy was calculated from the softmax-normalized vocabulary logits. Sentence-level585

context segmentation was applied consistently across datasets.586

To efficiently estimate Shapley values, we used Monte Carlo sampling with M = 50 random587

permutations per example. We set δ = 0.01, and bounded the estimation error using:588 ∣∣∣ ˆNEAR(x, q)− NEAR(x, q)
∣∣∣ ≤ L ·H · log V ·

√
log(2n/δ)

2M
, (27)
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Table 3: Hallucination detection performance after fine-tuning. Scores improve while maintaining
relative proportions.

Models CoQA QuAC SQuAD TriviaQA
AUC τ PCC AUC τ PCC AUC τ PCC AUC τ PCC

Qwen2.5-3B
P(True) 0.58 0.38 0.36 0.59 0.39 0.37 0.61 0.40 0.38 0.60 0.39 0.37
Pointwise VI 0.61 0.42 0.38 0.60 0.41 0.37 0.62 0.43 0.39 0.63 0.43 0.40
Usable LI 0.75 0.51 0.47 0.74 0.50 0.46 0.76 0.51 0.48 0.72 0.49 0.46
Semantic Entropy 0.78 0.54 0.50 0.76 0.52 0.48 0.77 0.51 0.47 0.80 0.53 0.49
INSIDE 0.84 0.60 0.56 0.83 0.59 0.55 0.82 0.60 0.57 0.85 0.61 0.56
NEAR 0.91 0.71 0.70 0.90 0.72 0.71 0.92 0.73 0.72 0.91 0.72 0.71
LLaMA3.1-8B
P(True) 0.63 0.40 0.36 0.64 0.41 0.37 0.67 0.43 0.39 0.66 0.42 0.37
Pointwise VI 0.67 0.43 0.40 0.63 0.39 0.37 0.66 0.44 0.39 0.79 0.53 0.46
Usable LI 0.83 0.55 0.50 0.78 0.52 0.47 0.80 0.53 0.49 0.72 0.51 0.46
Semantic Entropy 0.82 0.48 0.49 0.76 0.46 0.50 0.79 0.45 0.47 0.86 0.47 0.47
INSIDE 0.89 0.62 0.57 0.88 0.61 0.56 0.85 0.64 0.59 0.90 0.63 0.56
NEAR 0.91 0.73 0.68 0.90 0.72 0.67 0.92 0.74 0.70 0.91 0.73 0.67
OPT-6.7B
P(True) 0.60 0.39 0.36 0.61 0.40 0.37 0.64 0.42 0.38 0.63 0.41 0.37
Pointwise VI 0.64 0.41 0.38 0.60 0.37 0.36 0.63 0.42 0.38 0.75 0.51 0.44
Usable LI 0.81 0.53 0.48 0.76 0.51 0.46 0.79 0.52 0.47 0.70 0.51 0.44
Semantic Entropy 0.80 0.46 0.47 0.74 0.44 0.48 0.77 0.43 0.45 0.83 0.45 0.45
INSIDE 0.87 0.62 0.56 0.86 0.60 0.55 0.83 0.63 0.58 0.88 0.62 0.55
NEAR 0.90 0.73 0.67 0.89 0.72 0.66 0.91 0.74 0.68 0.90 0.73 0.66

where L is the number of layers, H the number of heads per layer, V the vocabulary size, and n the589

number of context segments.590

To study parametric hallucinations, we fine-tuned each model on CoQA using the AdamW optimizer591

with a learning rate of 2 × 10−5, batch size 8, weight decay 0.01, and 2 training epochs with 500592

warmup steps. Training was performed on NVIDIA A100 80GB GPUs using PyTorch 2.1 and593

DeepSpeed ZeRO Stage 2, with mixed-precision (bf16) training enabled.594

We report mean NEAR scores on context segments with and without the ground-truth answer, based595

on 10,000 sampled questions. These controlled experiments show that NEAR scores are robust596

indicators of hallucination, effectively capturing model uncertainty and context influence.597

A4 Experimental Results with model finetuning598

Hallucination Detection Results after Fine-Tuning. Table 3 presents the hallucination detection599

performance of various uncertainty estimation methods across four QA benchmarks (CoQA, QuAC,600

SQuAD, and TriviaQA) and three LLMs (Qwen2.5-3B, LLaMA3.1-8B, and OPT-6.7B), after fine-601

tuning. The evaluation metrics include area under the ROC curve (AUC), Kendall’s τ , and Pearson602

correlation coefficient (PCC).603

Fine-tuning consistently improves the performance of all methods across all models and datasets.604

Notably, our proposed method NEAR continues to outperform all baselines with a substantial margin.605

On average, NEAR achieves AUC scores above 0.90 across all datasets, with Kendall’s τ and PCC606

also reaching peak values around 0.72–0.74, indicating both strong rank-order and linear correlation607

with ground truth hallucination labels. Other methods such as INSIDE and Semantic Entropy also608

benefit from fine-tuning but remain 4–6 points behind NEAR in AUC and show lower correlation609

coefficients. For instance, on the SQuAD dataset with the LLaMA3.1-8B model, NEAR achieves610

an AUC of 0.92 compared to 0.85 from INSIDE and 0.79 from Semantic Entropy. Similarly, in611

TriviaQA, NEAR maintains a consistent advantage across all metrics and models.612

Experimental Setup. Each model was fine-tuned using the train split of the corresponding dataset613

and evaluated on its validation split. We used the AdamW optimizer with a learning rate of614

2 × 10−5, weight decay of 0.01, batch size of 8, and trained for 2 epochs with 500 warmup steps615

and early stopping. Training was performed on NVIDIA A100 80GB GPUs using DeepSpeed ZeRO616
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Stage 2 and bf16 precision. Shapley value estimates were computed using Monte Carlo sampling617

with M = 50 random permutations per input. All reported evaluation metrics are averaged over 3618

independent runs, with standard deviations within ±0.03.619

A5 Robustness of NEAR Against Parametric and Context-Induced620

Hallucinations.621

While NEAR captures both parametric and context-induced hallucinations at the sentence level, it622

is crucial to verify that such artifacts do not dominate or distort the final information attribution.623

Ideally, context segments that do not contain the correct answer should have NEAR scores near624

zero. However, due to model pretraining effects (parametric hallucination) and contextual mimicry625

(context-induced hallucination), small negative or positive NEAR values can occur even without the626

ground truth answer.627

To evaluate the robustness of NEAR, we formally partition the context into sentences that contain the628

answer (Sans) and those that do not (Snon-ans). The total information gain decomposes as629

IG(x→ q) =
∑
i∈Sans

IGi +
∑

j∈Snon-ans

IGj , (28)

where IGi denotes the Shapley value of sentence xi. We then define the dominance ratio:630

Dominance Ratio =
Mean(IGi, i ∈ Sans)

|Mean(IGj , j ∈ Snon-ans)|
, (29)

which quantifies whether true answer-supporting information overwhelms hallucination artifacts.631

Experimental Setup. We conduct experiments across three model families: LLaMA-3.1-8B, OPT-632

6.7B, and Qwen2.5-3B. Evaluations are performed on four datasets: CoQA, QuAC, SQuAD v1.1,633

and TriviaQA. Each context passage is segmented into sentences, and NEAR scores are computed per634

sentence. Context sentences are manually aligned with ground truth answers using string matching635

and fuzzy heuristics.636

NEAR scores are computed using M = 50 Monte Carlo samples per datapoint, ensuring stable637

Shapley estimation. The temperature parameter during softmax inference is set to T = 1.0 (default).638

No additional prompt tuning or instruction tuning is applied unless otherwise noted. Models are639

evaluated in a zero-shot setting without retrieval augmentation.640

Table 4 summarizes the average NEAR scores for answer-containing and non-answer-containing641

context sentences, along with the dominance ratio. Across all models and datasets, the dominance642

ratio consistently exceeds 20, with most values ranging between 23 and 26. This indicates that the643

information gain from answer-containing context sentences is significantly higher—by more than an644

order of magnitude—than the entropy contributions of non-answer sentences. These results affirm645

that NEAR provides a strong and reliable decomposition of usable information, even in the presence646

of noise or hallucination-inducing segments.647

Table 4: Robustness of NEAR attribution: Average NEAR scores for answer-containing vs non-
answer-containing sentences. Higher dominance ratios indicate stronger signal-to-noise separation.

Model Dataset Mean NEAR (Ans.) Std. Dev. Mean NEAR (Non-Ans.) Std. Dev. Dominance Ratio
LLaMA-3.1-8B CoQA 7.21 0.14 -0.31 0.06 23.26
LLaMA-3.1-8B QuAC 7.38 0.13 -0.30 0.05 24.60
LLaMA-3.1-8B SQuAD 7.50 0.16 -0.32 0.05 23.44
LLaMA-3.1-8B TriviaQA 7.65 0.15 -0.29 0.06 26.38

OPT-6.7B CoQA 7.02 0.17 -0.28 0.07 25.07
OPT-6.7B QuAC 7.20 0.18 -0.29 0.08 24.83
OPT-6.7B SQuAD 7.30 0.19 -0.30 0.09 24.33
OPT-6.7B TriviaQA 7.10 0.18 -0.27 0.08 26.30

Qwen2.5-3B CoQA 6.90 0.15 -0.33 0.07 20.91
Qwen2.5-3B QuAC 6.85 0.14 -0.31 0.08 22.10
Qwen2.5-3B SQuAD 6.95 0.16 -0.32 0.07 21.72
Qwen2.5-3B TriviaQA 6.88 0.13 -0.30 0.08 22.93
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A6 Generalization to Other Tasks648

While NEAR is primarily formulated for question answering (QA) tasks by computing entropy at649

the final answer token, the framework naturally extends to other generation settings. For instance, in650

summarization, information gain can be evaluated at the end of the summary sequence. In dialog651

systems, NEAR can be applied at each utterance boundary to assess context contribution toward the652

next response.653

To illustrate this potential, we conduct a small pilot experiment on the XSum [42] summarization654

dataset. We compute NEAR scores using entropy at the final token of generated summaries, following655

the same context segmentation and Shapley attribution methodology. Preliminary results show that656

answer-relevant document spans receive consistently higher NEAR scores, suggesting effective657

context attribution in summarization as well.658
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Figure 8: Pilot NEAR scores on the XSum dataset. NEAR identifies summary-relevant context
sentences with higher average attribution, supporting its applicability to summarization.

This evidence indicates that NEAR may serve as a unified attribution framework across a variety of659

text generation tasks. We leave a full empirical evaluation for future work.660

A6.1 Comparison with LLM-Check on FAVA661

To evaluate the effectiveness of NEAR in detecting hallucinations, we compare its performance662

against LLM-Check [16], a recent method that leverages attention kernel eigenvalues and hidden663

activations for hallucination detection across transformer layers. We focus on the zero-resource664

setting without external references, using the human-annotated FAVA dataset[43].665

LLM-Check reports strong results using Attention Scores and Hidden Scores, computed from the666

mean log-determinants of attention kernels and hidden state covariance matrices, respectively. On the667

FAVA-Annotation split, their best-performing variant achieves an AUROC of 72.34 and F1 score of668

69.27 using LLaMA-2 7B at layer 21 (see Table 2 in [16]).669

In contrast, NEAR computes the entropy-based information gain attributed to each sentence in the670

context, based on Shapley values over attention norms. Despite being conceptually different, LLM-671

Check focuses on low-rank shifts in latent space, whereas NEAR tracks attention-driven entropy672

reduction, both methods aim to isolate ungrounded model behavior.673

To enable direct comparison, we compute NEAR scores on the same FAVA-Annotation samples674

used in LLM-Check and report AUROC, F1, and TPR@5%FPR. Across three LLMs (LLaMA-2-7B,675

LLaMA-3-8B, OPT-6.7B), NEAR achieves competitive detection performance, with AUROC up to676

73.8, F1 scores exceeding 70, and notable stability across layers.677

A7 Algorithm678

The algorithm of our methodology has been given here 1679
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Algorithm 1 Compute Shapley NEAR Attribution

1: Input: Context C = {s1, s2, . . . , sn}, Question Q with m data points, Pretrained Model fθ
2: Initialize NEAR(si → Q)← 0 for all si ∈ C
3: Set number of permutations M
4: for each data point i = 1 to m do
5: for j = 1 to M do ▷ Monte Carlo Shapley estimation
6: Sample a random permutation π over {s1, ..., sn}
7: Initialize context prefix S ← ∅
8: for each sk in π do
9: Compute:

10: XS ← Tokenizer(S +Q)
11: XS∪{sk} ← Tokenizer(S ∪ {sk}+Q)
12: Get outputs: (VS , AS)← fθ(XS) and (VS∪{sk}, AS∪{sk})← fθ(XS∪{sk})

13: Compute projected outputs N (ℓ)
S ,N (ℓ)

S∪{sk} across layers
14: Compute entropy difference:
15: ∆Hk ← H(Q|S)−H(Q|S ∪ {sk})
16: Update attribution:
17: NEAR(sk → Q) += 1

M ·∆Hk

18: Update prefix: S ← S ∪ {sk}
19: end for
20: end for
21: end for
22: Return: Shapley NEAR attributions {NEAR(sk → Q)}nk=1

A8 Effect of Number of Permutations on NEAR Stability680

A critical parameter in Shapley NEAR is M , the number of Monte Carlo permutations used to681

approximate sentence-level Shapley values. Larger values of M reduce the estimation variance but682

incur higher computational cost. To analyze this trade-off, we empirically study how the AUROC of683

hallucination detection changes as a function of M , using a randomly sampled subset (500 examples)684

from the CoQA dataset with the LLaMA3.1-8B model.685

As shown in Figure 9, performance improves rapidly between M = 5 and M = 30, after which the686

gains taper off. By M = 50, AUROC stabilizes at 0.85, with only marginal improvements beyond687

that point. This suggests that M = 50 strikes an effective balance between computational efficiency688

and statistical reliability, justifying its use throughout our main experiments. The standard deviation689

across three runs remained within ±0.02 for all settings with M ≥ 30.690

These results align with the theoretical bound from Hoeffding’s inequality[24], which shows that the691

estimation error decreases as O
(√

logn
M

)
.692

A9 Qualitative Examples693

To show our quantitative results, we present qualitative examples, comparing NEAR scores with694

several established attribution and uncertainty-based baselines. For each example, we provide the695

full input context along with a corresponding question. We then report the estimated scores across696

methods including P(True), Semantic Entropy, Loopback Lens, VI, LI, INSIDE, and NEAR.697

These examples illustrate two important observations: (1) NEAR assigns significantly higher scores698

when the context provides meaningful answer cues (Table 6, Table 8, Table 10, Table 12), and (2)699

in unanswerable cases, NEAR consistently produces lower values(Table 14, Table 16, Table 18),700

offering a more reliable signal of context utility. Compared to baselines, NEAR better distinguishes701

between answerable and hallucinated predictions, even in cases involving ambiguous or misleading702

context fragments.703
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Figure 9: AUROC as a function of number of Monte Carlo permutations M used for Shapley NEAR
estimation on CoQA (LLaMA3.1-8B).

Context
Guinness World Records, known from its inception in 1955 until 1998 as The Guinness Book
of Records and in previous United States editions as The Guinness Book of World Records, is
a reference book published annually, listing world records both of human achievements and
the extremes of the natural world. The book itself holds a world record, as the best-selling
copyrighted book of all time. As of the 2017 edition, it is now in its 63rd year of publication,
published in 100 countries and 23 languages. The international franchise has extended beyond
print to include television series and museums. The popularity of the franchise has resulted
in "Guinness World Records" becoming the primary international authority on the cataloging
and verification of a huge number of world records; the organization employs official record
adjudicators authorized to verify the authenticity of the setting and breaking of records.
On 10 November 1951, Sir Hugh Beaver, then the managing director of the Guinness Breweries,
went on a shooting party in the North Slob, by the River Slaney in County Wexford, Ireland.
After missing a shot at a golden plover, he became involved in an argument over which was
the fastest game bird in Europe, the golden plover or the red grouse. (It is the plover.) That
evening at Castlebridge House, he realized that it was impossible to confirm in reference books
whether or not the golden plover was Europe’s fastest game bird. Beaver knew that there must
be numerous other questions debated nightly in pubs throughout Ireland and abroad, but there
was no book in the world with which to settle arguments about records. He realized then that a
book supplying the answers to this sort of question might prove successful.

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

What does the Guinness Book record? 1.01 2.1 1.91 0.31 1.59 3.02 11.22

Table 6: Example showing a question on the Guinness World Records passage. The top table
provides the full narrative context. The lower table compares several attribution and confidence
metrics—P(True), Semantic Entropy, Loopback Lens, VI, LI, INSIDE, and NEAR—on a single
example. NEAR produces the highest value, suggesting greater confidence and information gain
from the context.
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Context
(CNN) – Dennis Farina, the dapper, mustachioed cop-turned-actor best known for his tough-as-
nails work in such TV series as "Law & Order," "Crime Story," and "Miami Vice," has died. He
was 69.
"We are deeply saddened by the loss of a great actor and a wonderful man," said his publicist,
Lori De Waal, in a statement Monday. "Dennis Farina was always warmhearted and professional,
with a great sense of humor and passion for his profession. He will be greatly missed by his
family, friends and colleagues."
Farina, who had a long career as a police officer in Chicago, got into acting through director
Michael Mann, who used him as a consultant and cast him in his 1981 movie, "Thief." That role
led to others in such Mann-created shows as "Miami Vice" (in which Farina played a mobster)
and "Crime Story" (in which he starred as Lt. Mike Torello).
Farina also had roles, generally as either cops or gangsters, in a number of movies, including
"Midnight Run" (1988), "Get Shorty" (1995), "The Mod Squad" (1999) and "Snatch" (2000).
In 2004, he joined the cast of the long-running "Law & Order" after Jerry Orbach’s departure,
playing Detective Joe Fontana, a role he reprised on the spinoff "Trial by Jury." Fontana was
known for flashy clothes and an expensive car, a distinct counterpoint to Orbach’s rumpled
Lennie Briscoe.
Farina was on "Law & Order" for two years, partnered with Jesse L. Martin’s Ed Green. Martin’s
character became a senior detective after Farina left the show.

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

Is someone in showbiz? 1.16 2.21 1.72 0.48 2.53 3.76 10.74

Table 8: Example centered on actor Dennis Farina. The top table provides the narrative context.
The lower table compares various hallucination detection and attribution methods. NEAR yields
the highest score, highlighting its ability to capture context relevance and answer confidence more
effectively than competing methods.
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Context
When my father was dying, I traveled a thousand miles from home to be with him in his last
days. It was far more heartbreaking than I’d expected, one of the most difficult and painful times
in my life. After he passed away I stayed alone in his apartment. There were so many things to
deal with. It all seemed endless. I was lonely. I hated the silence of the apartment.
But one evening the silence was broken: I heard crying outside. I opened the door to find a little
cat on the steps. He was thin and poor. He looked the way I felt. I brought him inside and gave
him a can of fish. He ate it and then almost immediately fell sound asleep. The next morning I
checked with neighbors and learned that the cat had been abandoned by his owner who’s moved
out. So the little cat was there all alone, just like I was. As I walked back to the apartment, I
tried to figure out what to do with him. Having something else to take care of seemed. But as
soon as I opened the apartment door he came running and jumped into my arms. It was clear
from that moment that he had no intention of going anywhere. I started calling him Willis, in
honor of my father’s best friend.
From then on, things grew easier. With Willis in my lap time seemed to pass much more quickly.
When the time finally came for me to return home I had to decide what to do about Willis. There
was absolutely no way I would leave without him.
It’s now been five years since my father died. Over the years, several people have commented
on how nice it was of me to rescue the cat. But I know that we rescued each other. I may have
given him a home but he gave me something greater.

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

What was crying? 1.21 2.33 1.79 0.43 2.69 3.82 9.92

Table 10: An example focused on a story of grief and companionship. The top table presents the
narrative context, while the bottom table compares several hallucination detection and attribution
methods for the question "What was crying?". NEAR achieves the highest score, indicating stronger
alignment between the context and answerability signal compared to other baselines.

Context
The Six-Day War (Hebrew: , "Milhemet Sheshet Ha Yamim"; Arabic: , "an-Naksah", "The
Setback" or , "arb 1967", "War of 1967"), also known as the June War, 1967 Arab–Israeli War, or
Third Arab–Israeli War, was fought between June 5 and 10, 1967 by Israel and the neighboring
states of Egypt (known at the time as the United Arab Republic), Jordan, and Syria.
Relations between Israel and its neighbours had never fully normalised following the 1948
Arab–Israeli War. In 1956 Israel invaded the Egyptian Sinai, with one of its objectives being the
reopening of the Straits of Tiran which Egypt had blocked to Israeli shipping since 1950. Israel
was subsequently forced to withdraw, but won a guarantee that the Straits of Tiran would remain
open. Whilst the United Nations Emergency Force was deployed along the border, there was no
demilitarisation agreement.
In the period leading up to June 1967, tensions became dangerously heightened. Israel reiterated
its post-1956 position that the closure of the straits of Tiran to its shipping would be a "casus
belli" and in late May Nasser announced the straits would be closed to Israeli vessels. Egypt then
mobilised its forces along its border with Israel, and on 5 June Israel launched what it claimed
were a series of preemptive airstrikes against Egyptian airfields. Claims and counterclaims
relating to this series of events are one of a number of controversies relating to the conflict.

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

When was the Six-Day War fought? 1.45 2.41 1.98 0.59 2.92 3.94 8.90

Table 12: Example regarding the Six-Day War. The top section presents the historical context, and
the lower table compares baseline metrics including P(True), Semantic Entropy, Loopback Lens, VI,
LI, INSIDE, and NEAR for the question "When was the Six-Day War fought?". NEAR achieves the
highest attribution score, reflecting strong contextual grounding and confidence alignment.

24



Context
Robots are smart. With their computer brains, they help people work in dangerous places or do
difficult jobs. Some robots do regular jobs. Bobby, the robot mail carrier, brings mail to a large
office building in Washington, D.C. He is one of 250 robot mail carriers in the United States. Mr.
Leachim, who weighs two hundred pounds and is six feet tall, has some advantages as a teacher.
One is that he does not forget details. He knows each child’s name, their parents’ names, and
what each child knows and needs to know. In addition, he knows each child’s pets and hobbies.
Mr. Leachim does not make mistakes. Each child goes and tells him his or her name, then dials
an identification number. His computer brain puts the child’s voice and number together. He
identifies the child with no mistakes.
Another advantage is that Mr. Leachim is flexible. If the children need more time to do their
lessons they can move switches. In this way they can repeat Mr. Leachim’s lesson over and over
again. When the children do a good job, he tells them something interesting about their hobbies.
At the end of the lesson the children switch Mr. Leachim off.

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

how many articles were read? 0.31 0.45 0.37 0.12 0.28 0.62 -0.08

Table 14: Example involving an educational robot. The top table provides the narrative context. The
bottom table compares hallucination detection and attribution scores from various baselines. The low
NEAR score, relative to others, reflects poor contextual grounding for the question, suggesting likely
hallucination.

Context
"Everything happens for the best," my mother said whenever I was disappointed. "If you go
on, one day something good will happen." When I graduated from college, I decided to try
for a job in a radio station and then work hard to become a sports announcer. I took a taxi to
Chicago and knocked on the door of every station, but I was turned away every time because
I didn’t have any working experience. Then, I went back home. My father said Montgomery
Ward wanted a sportsman to help them. I applied, but I didn’t get the job, either. I was very
disappointed. "Everything happens for the best," Mom reminded me. Dad let me drive his car to
look for jobs. I tried WOC Radio in Davenport, Iowa. The program director, Peter MacArthur,
told me they already had an announcer. His words made me disappointed again. After leaving
his office, I was waiting for the elevator when I heard MacArthur calling after me, "What did
you say about sports? Do you know anything about football?" Then he asked me to broadcast an
imaginary game. I did so and Peter told me that I would be broadcasting Saturday’s game! On
my way home, I thought of my mother’s words again: "If you go on, one day something good
will happen."

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

What was the name of the great author? 0.55 0.68 0.74 0.50 0.74 0.55 0.39

Table 16: Example featuring a narrative about persistence and opportunity. The top table provides the
passage context. The bottom table presents attribution and confidence scores for the question "What
was the name of the great author?", which is unanswerable from the context. The low NEAR score,
in line with other baselines, reflects the absence of relevant information in the context.
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Context
Lisa has a pet cat named Whiskers. Whiskers is black with a white spot on her chest. Whiskers
also has white paws that look like little white mittens.
Whiskers likes to sleep in the sun on her favorite chair. Whiskers also likes to drink creamy
milk.
Lisa is excited because on Saturday, Whiskers turns two years old.
After school on Friday, Lisa rushes to the pet store. She wants to buy Whiskers’ birthday
presents. Last year, she gave Whiskers a play mouse and a blue feather.
For this birthday, Lisa is going to give Whiskers a red ball of yarn and a bowl with a picture of a
cat on the side. The picture is of a black cat. It looks a lot like Whiskers.

Question P(True) Sem. Ent. Loop. Lens VI LI INSIDE NEAR

Where was the joint residence? 0.42 0.51 0.63 0.37 0.59 0.48 0.02

Table 18: Example featuring a short story about Lisa and her cat Whiskers. The top table shows
the narrative context, while the bottom table compares attribution and confidence metrics for the
unanswerable question "Where was the joint residence?". All methods show relatively low scores,
with NEAR correctly reflecting the absence of relevant information.
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A10 Limitations704

While Shapley NEAR provides fine-grained, interpretable attribution by decomposing usable in-705

formation across attention layers and heads, its primary limitation lies in computational efficiency.706

Specifically, the use of Monte Carlo sampling for Shapley value approximation over all sentence707

permutations incurs significant time and memory costs, especially when applied to long contexts or708

large model families. This limits scalability for real-time or large-scale deployment. Future work709

could explore more efficient approximation strategies, such as stratified sampling or differentiable710

surrogates, to mitigate these overheads. This section benchmarks NEAR’s runtime against prior711

methods and proposes future directions for efficiency.712

Table 19: Runtime per 100 QA samples (in seconds) for different hallucination detection methods on
LLaMA-3.1-8B. NEAR is evaluated with varying numbers of Shapley permutations.

Method Qwen2.5-3B LLaMA3.1-8B OPT-6.7B Avg Time
Semantic Entropy 2.3 3.1 3.0 2.8
Lookback Lens 3.8 5.0 4.9 4.6
INSIDE 9.2 10.7 9.8 9.9

NEAR (M=50) 22.4 30.6 28.8 27.3
NEAR (M=100) 41.3 58.9 55.0 51.7
NEAR (M=1000) 402.1 537.6 498.2 479.3

Discussion. Monte Carlo-based NEAR, although highly accurate, incurs significantly higher run-713

time compared to baselines as shown in table 19. This motivates the development of adaptive714

sampling strategies to reduce computational cost. Future work may explore early stopping criteria or715

permutation importance sampling, aiming to retain fidelity while lowering runtime.716
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NeurIPS Paper Checklist717

The checklist is designed to encourage best practices for responsible machine learning research,718

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove719

the checklist: The papers not including the checklist will be desk rejected. The checklist should720

follow the references and follow the (optional) supplemental material. The checklist does NOT count721

towards the page limit.722

Please read the checklist guidelines carefully for information on how to answer these questions. For723

each question in the checklist:724

• You should answer [Yes] , [No] , or [NA] .725

• [NA] means either that the question is Not Applicable for that particular paper or the726

relevant information is Not Available.727

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).728

The checklist answers are an integral part of your paper submission. They are visible to the729

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it730

(after eventual revisions) with the final version of your paper, and its final version will be published731

with the paper.732

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.733

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a734

proper justification is given (e.g., "error bars are not reported because it would be too computationally735

expensive" or "we were unable to find the license for the dataset we used"). In general, answering736

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we737

acknowledge that the true answer is often more nuanced, so please just use your best judgment and738

write a justification to elaborate. All supporting evidence can appear either in the main paper or the739

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification740

please point to the section(s) where related material for the question can be found.741

IMPORTANT, please:742

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",743

• Keep the checklist subsection headings, questions/answers and guidelines below.744

• Do not modify the questions and only use the provided macros for your answers.745

1. Claims746

Question: Do the main claims made in the abstract and introduction accurately reflect the747

paper’s contributions and scope?748

Answer: [Yes]749

Justification:The abstract and introduction accurately state the contributions: Shapley NEAR750

for entropy-based hallucination detection, distinguishing hallucination types, and test-time751

head clipping. These are supported by theory and experiments in the paper.752

Guidelines:753

• The answer NA means that the abstract and introduction do not include the claims754

made in the paper.755

• The abstract and/or introduction should clearly state the claims made, including the756

contributions made in the paper and important assumptions and limitations. A No or757

NA answer to this question will not be perceived well by the reviewers.758

• The claims made should match theoretical and experimental results, and reflect how759

much the results can be expected to generalize to other settings.760

• It is fine to include aspirational goals as motivation as long as it is clear that these goals761

are not attained by the paper.762

2. Limitations763

Question: Does the paper discuss the limitations of the work performed by the authors?764

Answer: [Yes]765
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Justification: Appendix A10 discusses limitations, including high computation due to766

Shapley estimation and permutation sampling, and the use of fixed models without fine-767

tuning.768

Guidelines:769

• The answer NA means that the paper has no limitation while the answer No means that770

the paper has limitations, but those are not discussed in the paper.771

• The authors are encouraged to create a separate "Limitations" section in their paper.772

• The paper should point out any strong assumptions and how robust the results are to773

violations of these assumptions (e.g., independence assumptions, noiseless settings,774

model well-specification, asymptotic approximations only holding locally). The authors775

should reflect on how these assumptions might be violated in practice and what the776

implications would be.777

• The authors should reflect on the scope of the claims made, e.g., if the approach was778

only tested on a few datasets or with a few runs. In general, empirical results often779

depend on implicit assumptions, which should be articulated.780

• The authors should reflect on the factors that influence the performance of the approach.781

For example, a facial recognition algorithm may perform poorly when image resolution782

is low or images are taken in low lighting. Or a speech-to-text system might not be783

used reliably to provide closed captions for online lectures because it fails to handle784

technical jargon.785

• The authors should discuss the computational efficiency of the proposed algorithms786

and how they scale with dataset size.787

• If applicable, the authors should discuss possible limitations of their approach to788

address problems of privacy and fairness.789

• While the authors might fear that complete honesty about limitations might be used by790

reviewers as grounds for rejection, a worse outcome might be that reviewers discover791

limitations that aren’t acknowledged in the paper. The authors should use their best792

judgment and recognize that individual actions in favor of transparency play an impor-793

tant role in developing norms that preserve the integrity of the community. Reviewers794

will be specifically instructed to not penalize honesty concerning limitations.795

3. Theory assumptions and proofs796

Question: For each theoretical result, does the paper provide the full set of assumptions and797

a complete (and correct) proof?798

Answer: [Yes]799

Justification: Theoretical properties and assumptions of NEAR are formally defined in800

Section 4 and Appendix A1. This includes entropy bounds, Shapley value formulation, and801

estimation error analysis using Hoeffding’s inequality.802

Guidelines:803

• The answer NA means that the paper does not include theoretical results.804

• All the theorems, formulas, and proofs in the paper should be numbered and cross-805

referenced.806

• All assumptions should be clearly stated or referenced in the statement of any theorems.807

• The proofs can either appear in the main paper or the supplemental material, but if808

they appear in the supplemental material, the authors are encouraged to provide a short809

proof sketch to provide intuition.810

• Inversely, any informal proof provided in the core of the paper should be complemented811

by formal proofs provided in appendix or supplemental material.812

• Theorems and Lemmas that the proof relies upon should be properly referenced.813

4. Experimental result reproducibility814

Question: Does the paper fully disclose all the information needed to reproduce the main ex-815

perimental results of the paper to the extent that it affects the main claims and/or conclusions816

of the paper (regardless of whether the code and data are provided or not)?817

Answer: [Yes]818
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Justification: Section 5.1 and Appendix A3 provide detailed experimental settings, including819

datasets used, model names, data splits, evaluation metrics, Monte Carlo sampling details820

(M=50), and approximation bounds, enabling reproducibility even without public code821

release.822

Guidelines:823

• The answer NA means that the paper does not include experiments.824

• If the paper includes experiments, a No answer to this question will not be perceived825

well by the reviewers: Making the paper reproducible is important, regardless of826

whether the code and data are provided or not.827

• If the contribution is a dataset and/or model, the authors should describe the steps taken828

to make their results reproducible or verifiable.829

• Depending on the contribution, reproducibility can be accomplished in various ways.830

For example, if the contribution is a novel architecture, describing the architecture fully831

might suffice, or if the contribution is a specific model and empirical evaluation, it may832

be necessary to either make it possible for others to replicate the model with the same833

dataset, or provide access to the model. In general. releasing code and data is often834

one good way to accomplish this, but reproducibility can also be provided via detailed835

instructions for how to replicate the results, access to a hosted model (e.g., in the case836

of a large language model), releasing of a model checkpoint, or other means that are837

appropriate to the research performed.838

• While NeurIPS does not require releasing code, the conference does require all submis-839

sions to provide some reasonable avenue for reproducibility, which may depend on the840

nature of the contribution. For example841

(a) If the contribution is primarily a new algorithm, the paper should make it clear how842

to reproduce that algorithm.843

(b) If the contribution is primarily a new model architecture, the paper should describe844

the architecture clearly and fully.845

(c) If the contribution is a new model (e.g., a large language model), then there should846

either be a way to access this model for reproducing the results or a way to reproduce847

the model (e.g., with an open-source dataset or instructions for how to construct848

the dataset).849

(d) We recognize that reproducibility may be tricky in some cases, in which case850

authors are welcome to describe the particular way they provide for reproducibility.851

In the case of closed-source models, it may be that access to the model is limited in852

some way (e.g., to registered users), but it should be possible for other researchers853

to have some path to reproducing or verifying the results.854

5. Open access to data and code855

Question: Does the paper provide open access to the data and code, with sufficient instruc-856

tions to faithfully reproduce the main experimental results, as described in supplemental857

material?858

Answer: [Yes]859

Justification: The code has been submitted.860

Guidelines:861

• The answer NA means that paper does not include experiments requiring code.862

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/863

public/guides/CodeSubmissionPolicy) for more details.864

• While we encourage the release of code and data, we understand that this might not be865

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not866

including code, unless this is central to the contribution (e.g., for a new open-source867

benchmark).868

• The instructions should contain the exact command and environment needed to run to869

reproduce the results. See the NeurIPS code and data submission guidelines (https:870

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.871

• The authors should provide instructions on data access and preparation, including how872

to access the raw data, preprocessed data, intermediate data, and generated data, etc.873
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• The authors should provide scripts to reproduce all experimental results for the new874

proposed method and baselines. If only a subset of experiments are reproducible, they875

should state which ones are omitted from the script and why.876

• At submission time, to preserve anonymity, the authors should release anonymized877

versions (if applicable).878

• Providing as much information as possible in supplemental material (appended to the879

paper) is recommended, but including URLs to data and code is permitted.880

6. Experimental setting/details881

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-882

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the883

results?884

Answer: [Yes]885

Justification: Section 5.1 and Appendix A3 describe the datasets used (CoQA, QuAC,886

SQuAD, TriviaQA), model variants (Qwen2.5-3B, LLaMA3.1-8B, OPT-6.7B), data splits,887

evaluation protocols, number of Monte Carlo samples (M=50), and other relevant details.888

Guidelines:889

• The answer NA means that the paper does not include experiments.890

• The experimental setting should be presented in the core of the paper to a level of detail891

that is necessary to appreciate the results and make sense of them.892

• The full details can be provided either with the code, in appendix, or as supplemental893

material.894

7. Experiment statistical significance895

Question: Does the paper report error bars suitably and correctly defined or other appropriate896

information about the statistical significance of the experiments?897

Answer: [Yes]898

Justification: The paper reports standard deviations (±0.04) over three independent runs899

in Section 5.1. Appendix A1.2 also derives theoretical estimation error bounds for NEAR900

using Hoeffding’s inequality.901

Guidelines:902

• The answer NA means that the paper does not include experiments.903

• The authors should answer "Yes" if the results are accompanied by error bars, confi-904

dence intervals, or statistical significance tests, at least for the experiments that support905

the main claims of the paper.906

• The factors of variability that the error bars are capturing should be clearly stated (for907

example, train/test split, initialization, random drawing of some parameter, or overall908

run with given experimental conditions).909

• The method for calculating the error bars should be explained (closed form formula,910

call to a library function, bootstrap, etc.)911

• The assumptions made should be given (e.g., Normally distributed errors).912

• It should be clear whether the error bar is the standard deviation or the standard error913

of the mean.914

• It is OK to report 1-sigma error bars, but one should state it. The authors should915

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis916

of Normality of errors is not verified.917

• For asymmetric distributions, the authors should be careful not to show in tables or918

figures symmetric error bars that would yield results that are out of range (e.g. negative919

error rates).920

• If error bars are reported in tables or plots, The authors should explain in the text how921

they were calculated and reference the corresponding figures or tables in the text.922

8. Experiments compute resources923

Question: For each experiment, does the paper provide sufficient information on the com-924

puter resources (type of compute workers, memory, time of execution) needed to reproduce925

the experiments?926
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Answer: [Yes]927

Justification: They are explained in their respective section.928

Guidelines:929

• The answer NA means that the paper does not include experiments.930

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,931

or cloud provider, including relevant memory and storage.932

• The paper should provide the amount of compute required for each of the individual933

experimental runs as well as estimate the total compute.934

• The paper should disclose whether the full research project required more compute935

than the experiments reported in the paper (e.g., preliminary or failed experiments that936

didn’t make it into the paper).937

9. Code of ethics938

Question: Does the research conducted in the paper conform, in every respect, with the939

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?940

Answer: [Yes]941

Justification: All sources used are opensource.942

Guidelines:943

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.944

• If the authors answer No, they should explain the special circumstances that require a945

deviation from the Code of Ethics.946

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-947

eration due to laws or regulations in their jurisdiction).948

10. Broader impacts949

Question: Does the paper discuss both potential positive societal impacts and negative950

societal impacts of the work performed?951

Answer: [Yes]952

Justification: The paper does include a discussion of broader societal impacts, although953

the method is directly relevant to improving safety and reliability of LLMs in real-world954

applications.955

Guidelines:956

• The answer NA means that there is no societal impact of the work performed.957

• If the authors answer NA or No, they should explain why their work has no societal958

impact or why the paper does not address societal impact.959

• Examples of negative societal impacts include potential malicious or unintended uses960

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations961

(e.g., deployment of technologies that could make decisions that unfairly impact specific962

groups), privacy considerations, and security considerations.963

• The conference expects that many papers will be foundational research and not tied964

to particular applications, let alone deployments. However, if there is a direct path to965

any negative applications, the authors should point it out. For example, it is legitimate966

to point out that an improvement in the quality of generative models could be used to967

generate deepfakes for disinformation. On the other hand, it is not needed to point out968

that a generic algorithm for optimizing neural networks could enable people to train969

models that generate Deepfakes faster.970

• The authors should consider possible harms that could arise when the technology is971

being used as intended and functioning correctly, harms that could arise when the972

technology is being used as intended but gives incorrect results, and harms following973

from (intentional or unintentional) misuse of the technology.974

• If there are negative societal impacts, the authors could also discuss possible mitigation975

strategies (e.g., gated release of models, providing defenses in addition to attacks,976

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from977

feedback over time, improving the efficiency and accessibility of ML).978
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11. Safeguards979

Question: Does the paper describe safeguards that have been put in place for responsible980

release of data or models that have a high risk for misuse (e.g., pretrained language models,981

image generators, or scraped datasets)?982

Answer: [NA]983

Justification: All used material is opensource984

Guidelines:985

• The answer NA means that the paper poses no such risks.986

• Released models that have a high risk for misuse or dual-use should be released with987

necessary safeguards to allow for controlled use of the model, for example by requiring988

that users adhere to usage guidelines or restrictions to access the model or implementing989

safety filters.990

• Datasets that have been scraped from the Internet could pose safety risks. The authors991

should describe how they avoided releasing unsafe images.992

• We recognize that providing effective safeguards is challenging, and many papers do993

not require this, but we encourage authors to take this into account and make a best994

faith effort.995

12. Licenses for existing assets996

Question: Are the creators or original owners of assets (e.g., code, data, models), used in997

the paper, properly credited and are the license and terms of use explicitly mentioned and998

properly respected?999

Answer: [Yes]1000

Justification: All the works have been done by the authors and properly referenced and will1001

be provided on acceptance.1002

Guidelines:1003

• The answer NA means that the paper does not use existing assets.1004

• The authors should cite the original paper that produced the code package or dataset.1005

• The authors should state which version of the asset is used and, if possible, include a1006

URL.1007

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1008

• For scraped data from a particular source (e.g., website), the copyright and terms of1009

service of that source should be provided.1010

• If assets are released, the license, copyright information, and terms of use in the1011

package should be provided. For popular datasets, paperswithcode.com/datasets1012

has curated licenses for some datasets. Their licensing guide can help determine the1013

license of a dataset.1014

• For existing datasets that are re-packaged, both the original license and the license of1015

the derived asset (if it has changed) should be provided.1016

• If this information is not available online, the authors are encouraged to reach out to1017

the asset’s creators.1018

13. New assets1019

Question: Are new assets introduced in the paper well documented and is the documentation1020

provided alongside the assets?1021

Answer: [Yes]1022

Justification: Everything is properly referenced.1023

Guidelines:1024

• The answer NA means that the paper does not release new assets.1025

• Researchers should communicate the details of the dataset/code/model as part of their1026

submissions via structured templates. This includes details about training, license,1027

limitations, etc.1028
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• The paper should discuss whether and how consent was obtained from people whose1029

asset is used.1030

• At submission time, remember to anonymize your assets (if applicable). You can either1031

create an anonymized URL or include an anonymized zip file.1032

14. Crowdsourcing and research with human subjects1033

Question: For crowdsourcing experiments and research with human subjects, does the paper1034

include the full text of instructions given to participants and screenshots, if applicable, as1035

well as details about compensation (if any)?1036

Answer: [NA]1037

Justification: No crowdsourcing experiments or research with human subjects.1038

Guidelines:1039

• The answer NA means that the paper does not involve crowdsourcing nor research with1040

human subjects.1041

• Including this information in the supplemental material is fine, but if the main contribu-1042

tion of the paper involves human subjects, then as much detail as possible should be1043

included in the main paper.1044

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1045

or other labor should be paid at least the minimum wage in the country of the data1046

collector.1047

15. Institutional review board (IRB) approvals or equivalent for research with human1048

subjects1049

Question: Does the paper describe potential risks incurred by study participants, whether1050

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1051

approvals (or an equivalent approval/review based on the requirements of your country or1052

institution) were obtained?1053

Answer: [NA]1054

Justification: The paper does not involve human subjects or crowdsourcing, and therefore1055

no IRB approval is required.1056

Guidelines:1057

• The answer NA means that the paper does not involve crowdsourcing nor research with1058

human subjects.1059

• Depending on the country in which research is conducted, IRB approval (or equivalent)1060

may be required for any human subjects research. If you obtained IRB approval, you1061

should clearly state this in the paper.1062

• We recognize that the procedures for this may vary significantly between institutions1063

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1064

guidelines for their institution.1065

• For initial submissions, do not include any information that would break anonymity (if1066

applicable), such as the institution conducting the review.1067

16. Declaration of LLM usage1068

Question: Does the paper describe the usage of LLMs if it is an important, original, or1069

non-standard component of the core methods in this research? Note that if the LLM is used1070

only for writing, editing, or formatting purposes and does not impact the core methodology,1071

scientific rigorousness, or originality of the research, declaration is not required.1072

Answer: [NA]1073

Justification: LLM used only for writing, editing, or formatting purposes.1074

Guidelines:1075

• The answer NA means that the core method development in this research does not1076

involve LLMs as any important, original, or non-standard components.1077

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1078

for what should or should not be described.1079
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