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Abstract

Large language models (LLMs) often generate confident yet inaccurate outputs,
posing serious risks in safety-critical applications. Existing hallucination detection
methods typically rely on final-layer logits or post-hoc textual checks, which can
obscure the rich semantic signals encoded across model layers. Thus, we propose
Shapley NEAR (Norm-basEd Attention-wise usable infoRmation), a principled,
entropy-based attribution framework grounded in Shapley values that assigns a
confidence score indicating whether an LLM output is hallucinatory. Unlike prior
approaches, Shapley NEAR decomposes attention-driven information flow across
all layers and heads of the model, where higher scores correspond to lower halluci-
nation risk. It further distinguishes between two hallucination types: parametric
hallucinations, caused by the model’s pre-trained knowledge overriding the context,
and context-induced hallucinations, where misleading context fragments spuri-
ously reduce uncertainty. To mitigate parametric hallucinations, we introduce
a test-time head clipping technique that prunes attention heads contributing to
overconfident, context-agnostic outputs. Empirical results in four QA benchmarks
(CoQA, QuAC, SQUAD, and TriviaQA), using Qwen2.5-3B, LLaMA3.1-8B, and
OPT-6.7B, demonstrate that Shapley NEAR outperforms strong baselines, without
requiring additional training, prompting, or architectural modifications.

1 Introduction

The rapid proliferation of large language models (LLMs) in a variety of applications, from conversa-
tional agents to automated decision making systems, has underscored their impressive capabilities
[L, 2]. However, a challenge persists: these models often generate outputs that are confidently
stated yet factually incorrect, a phenomenon widely known as hallucination [3]]. This issue becomes
especially critical in safety-sensitive environments where factual accuracy is paramount [4, |5]].

To tackle this, a number of recent studies have investigated hallucination in LLMs using both
theoretical and empirical approaches. While token-level uncertainty measures such as entropy and
confidence have proven useful in hallucination detection for NLP tasks [[6], extending these methods
to sentence-level predictions in autoregressive LLMs remains challenging due to the models’ complex
and interdependent outputs [7,[8]. As a workaround, recent research has attempted to infer sentence-
level uncertainty directly from the generated language itself [9} [10]. However, these works did not
consider the dense semantic information encoded inside the internal layers of the LLM [11H13]]. In
parallel, [13] introduced the concept of V-usable information, which quantifies how much useful
information a model can extract under computational constraints. Building on this, [[14] proposed
Pointwise V-Information (PVI) to estimate instance-level dataset difficulty, although this metric
only considers the final layer. In contrast, [[12] proposed using the EigenScore of the final token
from a middle transformer layer to detect hallucinations, and further analyzed model reliability by
comparing multiple responses to a shared prompt. However, despite these advances, most of these
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Figure 1: Overview of the proposed pipeline for detecting hallucinations. Shapley NEAR detects
hallucination by computing entropy-based information gain across all attention heads and layers, and
attributing it fairly to individual context sentences using Shapley values.

methods focus exclusively on final-layer logits and overlook the rich information encoded in all the
internal states of LLMs [[15]. With further development, LLM-Check [[16] extended hallucination
detection to both white-box and black-box settings by employing an auxiliary LLM to analyze
hidden states, attention patterns, and output probabilities. Similarly, Lookback Lens [[17] trained
a linear classifier using the ratio of attention on the context versus generated tokens to identify
contextual hallucinations. However, both approaches fail to distinguish whether hallucinations
originate from the pre-trained knowledge of the model (parametric hallucination) or from misleading
contextual information (contextual hallucination). Complementing these lines of work, [[18] examined
deficiencies across layers for unanswerable question detection, while [11] revealed that feed-forward
layers often exhibit less reliable distributional associations compared to the more robust in-context
reasoning encoded by attention mechanisms.

To address the limitations of these prior approaches, we introduce Shapley NEAR (Norm-basEd
Attention-wise usable infoRmation), a method designed to assign a confidence score indicating
whether an LLM-generated answer is trustworthy or hallucinatory, given a question and context. In
contrast to previous methods that primarily rely on outputs from feed-forward layers, which have
limited bearing on reasoning [11], our approach focuses exclusively on attention layers. Shapley
NEAR aggregates information from all attention heads across all layers [15]], enabling a fine-grained,
attention-wise and layer-wise analysis of information propagation. Crucially, our method requires no
additional training or architectural changes, making it both easy to integrate into existing pre-trained
models and highly interpretable in practice. The main contributions of our paper are as follows:

* We propose Shapley NEAR, a principled, interpretable entropy-based attribution method
grounded in Shapley-value theory that quantifies usable information flow in LLMs by
decomposing entropy reduction across layers and heads using the norm of attention outputs.

* We demonstrate that our framework not only detects hallucinations introduced by context
segments but also distinguishes between parametric and context-induced hallucinations.

* We introduce a test-time strategy to identify attention heads that consistently exhibit para-
metric hallucinations. Selectively removing these heads during inference demonstrates a
novel application of attribution techniques to improve model reliability without retraining.

* We evaluate Shapley NEAR on multiple QA datasets using Qwen2.5-3B, LLaMA3.1-8B,
and OPT-6.7B, showing that it outperforms strong baselines mention in Section.

2 Background

In this work, we focus on quantifying how much usable information a generative language model can
extract from a given context to answer a specific question. Formally, we consider an input context
X = {s1,52,...,5,}, and a typical autoregressive large language model (LLM), denoted by V,
which generates a response sequence Y = [y1, ya, . . . , y1], Where each token y; is conditioned on
the input and previous outputs. Our central goal is to determine how much V-usable information the
model can leverage from the context X to predict the output Y. A lower value of usable information
implies greater prediction difficulty, indicating that the dataset is more challenging for the models V.
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While classical information-theoretic tools such as Shannon’s mutual information I(X; Y)[19] and
the data processing inequality (DPI)[20] have long served as foundational metrics for analyzing
information flow, recent research has revealed their limitations when applied to deep models. These
classical measures tend to overestimate the practically usable signal, particularly in settings where
models operate under computational constraints as modern LLMs can progressively extract structured
and meaningful representations from raw inputs through deep computation, rendering traditional
metrics insufficient.

To bridge this gap, [13] introduced the notion of predictive V-information, which accounts for
the computational limitations of a model family V. They define this as the difference between
two entropy terms: the conditional V-entropy with and without contextual input. Specifically, the
predictive V-information is given by:

(X = Y)=Hy(Y0) - Hy(Y|X),

where Hy,(Y'|X) denotes the expected uncertainty over outputs Y when conditioned on context
X, and Hy(Y|0) captures the model’s uncertainty in the absence of any input. While predictive
V-information captures dataset-level trends, Ethayarajh et al. [[14] extend it to the instance level via
pointwise V-information (PVI), which measures how much information a specific input x provides
for predicting its output y. This enables fine-grained analysis of instance difficulty, essential for
real-world model evaluation.

Building on these foundations, [18] propose layer-wise usable information (LI), a method that
decomposes usable information across the layers of a model, thereby enhancing interpretability.
Complementary to this, [[11] show that feed-forward layers primarily encode superficial distributional
patterns, whereas attention mechanisms are more closely aligned with in-context reasoning. These
insights motivate our work, which integrates the strengths of previous efforts to develop a unified,
interpretable framework to assess usable information in LLMs, both across layers and at the sentence
level, while accounting for how different components of the model influence predictive certainty.

3 Shapley NEAR: Norm-basEd Attention-wise usable infoRmation

Given a set of context passages, generative language models (LLMs) produce free-form text responses
to questions. In this work, we aim to systematically quantify how individual parts of the context
influence the prediction at the final token of the question. Transformer-based models organize
computation across multiple layers and attention heads, where each head captures distinct patterns
of contextual dependency(21]]. Building on this insight, we propose Shapley NEAR, a framework
for measuring how much usable information each sentence in a context contributes to reducing the
model’s predictive uncertainty. Shapley NEAR is computed by isolating the output of each attention
head at the final token position of the question and measuring the change in entropy when conditioning
on subsets of the input context versus a null context. To attribute this entropy reduction fairly to
individual sentences, we adopt a Shapley-value-based decomposition. For clarity, the remainder
of the paper, we will use the terms Shapley NEAR and NEAR interchangeably. An overview of
our architecture is illustrated in Figure[I] while the detailed algorithmic procedure is presented in
Appendix

Let s, = (s1,82,-..,8,) € C denote a context passage composed of n disjoint sentences, and let
g € @ represent the associated question. The concatenated input sequence s, ¢ is tokenized into
a sequence of length 7', with the final token of the question indexed by ¢; € {1,...,T}. In this
framework, we consider a formally defined predictive family V consisting of pretrained generative
language models, where each model is composed of L transformer layers and each layer contains
H attention heads. Each attention head h in each layer ¢ of the language models creates different
computations. Mathematically, we define V C Q = {f(") . Cu® — P(Q)}, where C and Q
are random variables with sample spaces C and Q, respectively, and P(Q) denotes the set of all
probability measures over Q equipped with the Borel algebra on C. The mapping f(") represents
the function associated with attention head of a specific layer (, h) within the predictive family V.
The range of f corresponds to the vocabulary space of the model. Given a layer [ and attention-head
hin V), the function f maps the context tokens (or null context) to probability distribution over the
vocabulary. Unlike prior work, the function f is assumed to operate without any additional fine-tuning
on external training data. In the rest of the section we will build the mathematical formula for NEAR,
defining and explaining each step.
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Definition 3.1 (Norm-based Attention Information). Prior research by [22] suggests that the norm of
the attention output serves as a meaningful proxy for the amount of information transmitted by each
head. We omit the output of the feedforward layers (FC), as previous work by [[11]] has shown that
these layers predominantly capture shallow distributional associations, whereas the attention layers
are more effectively engaged in in-context reasoning.

For each layer ¢ € {1,...,L} and head h € {1,..., H}, given an input context subset x and a
question ¢, we compute the attention output of the model V for the combined input (z, ¢) as follows:

(€,h) R T
a“M(z,q) £ softmax Q. q) (z.9) ,
Vd

2 (,q) & "M (2, q)V M (2, q), )

where Q(“") and K (") denote the query and key matrices for layer ¢ and head h, respectively,
al®P) (z,q) € RT*T and VM) (2, q) € RT*< are the value matrices with d = D/H being the per-
head dimension. Both attention weights and value vectors are computed based on the concatenated
subset z and question ¢. The resulting attention outputs are projected using equation [I] and a

head-specific output matrix Wéh) € R4*P to obtain
724N (2,q) £ 24 (2, WS € RTP, @)

According to [[15} 5], the last token embedding captures the semantic information of the entire text.
Therefore, we then extract the projected vector corresponding to the final question token ¢; from
equation 2]

i) £ 200 e R
which serves as a summary of information flow from the context subset « towards predicting the next
token after the question. Now we will define the information gain from x for a specific head.

Definition 3.2 (Information Gain). From Definition , the vector zg’qh) encapsulates dense semantic

information preserved within the internal attention mechanisms of LLMs. By applying a softmax
operation over z%@,h), we obtain a vocabulary distribution pgllh) € RIVI. The entropy at the final
token is computed as

V]

HEW (g, | gep,w) 2 =D " logp{*™". 3)
=1

We emphasize that entropy is calculated over the entire softmax-normalized vocabulary. This is a
critical distinction: hallucination often stems not from low confidence in the correct token alone,
but from broad misallocation of probability mass across incorrect options. Therefore, full entropy
measurement enables us to detect whether the model’s uncertainty is genuinely reduced when
informative context is provided. Now to calculate the information gain provided by the subset x at
head h and layer /, it is defined as the reduction in entropy relative to a null context (i.e., no input)
using equation

1GEM (2 — q) 2 HEM (g, | ges, 0) — HEM (g4 | gty 2), @

where H 4" (g; | g<¢, 0) is computed solely from the model’s parametric knowledge, without access
to any retrieved context. Summing over all heads and layers yields the total information gain using [}

L H

IG(z — q) = Z Z IGUM (2 — q). 5)

£=1 h=1

The quantity IG(z — ¢) captures the behavior of the function f“») : C'U () — P(Q), which maps
a context input, or its absence, to a probability distribution over the vocabulary space Q for each
attention head and layer. Moreover, IG(z — ¢) quantifies the amount of information that the context
x provides about the question q.

Definition 3.3 (Shapley Sentence Attribution). Now, for the context passage s, = (s1, S2,-.-,8n) €
C and associated question ¢ € @), we aim to quantify the individual contribution of each sentence
s; in the context to the model’s total information gain. To do this, we use the Shapley value [23]], a
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Table 1: Hallucination detection performance evaluation across four QA datasets (CoQA, QuAC,
SQuAD, TriviaQA) and three LLMs (Qwen2.5-3B, LLaMA3.1-8B, OPT-6.7B). We report average
AUROC (AUC), Kendall’s 7, and Pearson correlation coefficient (PCC) for various baseline methods.
Higher values indicate better performance. NEAR achieves the best overall performance.

Models CoQA QuAC SQuAD TriviaQA
AUCtT 71 PCCt AUCT 71 PCCT AUCtT 71 PCCt AUCT 71 PCCT

Qwen2.5-3B

P(True) 048 032 0.30 049 033 031 051 034 032 0.50 033 031

Pointwise VI 0.51 035 032 050 034 031 052 036 033 053 036 034

Usable L1 0.67 045 041 0.66 044 040 0.68 045 042 0.64 043 040

Semantic Entropy ~ 0.70  0.47  0.44 068 045 042 069 044 041 072 046 043
Loopback Lens 071 048 045 069 046 043 070 045 042 073 046 044

INSIDE 076 054 0.49 075 053 048 0.74 054 050 077 055 049
NEAR 085 0.65 0.64 084 0.66 0.65 086 0.67 0.66 085 0.66 0.65
LLaMA3.1-8B

P(True) 052 034 031 053 035 032 056 037 034 055 036 033
Pointwise VI 056 036 0.34 052 032 031 055 037 033 0.68 046 040
Usable LI 074 049 044 069 046 041 071 047 043 063 045 040

Semantic Entropy  0.73 042 043 0.67 040 044 069 039 041 076 041 041
Loopback Lens 074 043 044 0.68 041 044 070 040 042 076 042 041

INSIDE 080 056 0.51 079 055 050 076 058 0.53 0.81 057 050
NEAR 085 0.66 0.61 084 0.65 0.60 086 0.68 0.63 085 0.67 0.60
OPT-6.7B

P(True) 051 033 030 052 034 031 055 036 033 054 035 032
Pointwise VI 055 035 033 051 031 030 054 036 032 0.66 044 038
Usable L1 072 047 042 0.67 044 039 070 046 041 0.61 043 038

Semantic Entropy  0.71 041  0.42 065 039 043 0.68 038 040 0.74 040 040
Loopback Lens 072 042 043 0.66 040 0.44 069 039 041 075 041 040
INSIDE 078 0.54 049 077 052 048 0.74 056 051 079 055 048
NEAR 084 0.65 0.60 083 0.64 059 085 0.66 0.61 084 065 0.59

concept from cooperative game theory that fairly assigns credit to each element based on its average
marginal contribution. Using the total information gain defined in Equation (3}, the Shapley value for
sentence s; is computed as:

[S[H(n = |S] = 1!

Shapley IG, = Z ' [IG(SU{s;} = q) —IG(S — q)], (6)
SCN\E3) "
where N = {1,...,n} is the set of all sentence indices in the context. For each subset S of sentences

that excludes s;, the term inside the brackets measures the marginal increase in information gain when
s; is added. The prefactor is the standard Shapley coefficient, which ensures that the contributions
are averaged fairly over all possible insertion orders of the sentences.

Definition 3.4 (Sentence-level NEAR Score). The total information that can be gained from the
context with respect to the given question is captured by aggregating the contributions of individual
sentences. Using the Shapley values from Equation [6] the NEAR score is defined as:

1 n
Shapley NEAR (s, q) = — ) _ Shapley IG,, @)
i
which reflects average marginal information gain from context sentences in answering the question.

Thus, based on Definitions [3.1] through 3.4} Shapley NEAR [7]offers a fine-grained decomposition of
the total information gain, quantifying how much usable information the model extracts from s, to
answer the question ¢. The Information Gain (IG) measures the contribution of each attention head
and layer, while the Shapley Information Gain (Shapley IG) [§ further attributes this information to
individual sentence segments within the context. A higher NEAR score indicates greater information
utility from the context, implying that the generated output is less likely to be hallucinatory.

4 Properties and Bounds of Shapley NEAR

This section outlines the mathematical and experimental properties of NEAR, with derivations in
Appendix NEAR aggregates entropy-based information gain across all transformer layers and
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Methods AUCtT Ace.t RLT
Methods AUCT 711 PCCT

NEAR 0.85 0.78 0.82
INSIDE 0.80 0.74 0.80
NEAR +HC  0.89 0.81 0.83

NEAR w/o Shapely  0.79  0.51 0.48
Shapley NEAR 085 0.66 0.64

()
(b)
Table 2: (a) Contribution of Shapley aggregation to NEAR scores. (b) Head Clipping (HC) results for
attention heads with IG < —0.05. The following heads were clipped: 349, 459, 485, 833, 955, 1007.

attention heads, with each term bounded by log V, the maximum entropy over a vocabulary of size
V. Thus, NEAR is theoretically bounded within [—L - H -logV, L - H - log V], where L and H are
the number of layers and heads. In practice, it reflects cumulative entropy reduction from contextual
conditioning and scales as NEAR(s, q) € O(L - H - log V'). Beyond boundedness, NEAR satisfies
key behavioral properties. First, it is symmetric: if two context sentences s; and s; satisfy

IG(SU{s;} = q) =1IG(SU{s;} —¢q) forall SCs\{s;,s;},
then their Shapley values are identical, i.e., IG; = IG;. Moreover, NEAR reflects context redundancy:
when S C T, the marginal information gain decreases, satisfying
IG(SU{s;} = q) —IG(S — q) > IG(T'U {s;} — q) —IG(T — q).
NEAR also detects context irrelevance: if
H(gr | g<t,0) =~ H(ge | g<t,52) forall subsets sy,

then NEAR(s, ¢) ~ 0, indicating that the context does not provide meaningful information for
answering the question. We also empirically observed (Section [5)) that for each layer ¢ and attention
head h, the following inequality holds:

IGEM (0 = q) TGN (s — g) <IGHM (53 — ),

ans

here, si” denotes a context sentence irrelevant to the answer, and s : contains the ground truth answer.
Empirically, NEAR scores also exhibit a monotonicity property similar to information-theoretic
measures: for any subset of layers U« C L, the NEAR score computed over U/ is always less than or
equal to that over the full set L, as aggregating more layers cannot reduce total entropy gain:

NEARM(S7 q) < NEARL(S7 Q)7
here, NEAR;, and NEAR, denote NEAR scores computed over the subset I/ C {1,..., L} and the

full set L, respectively. This follows from NEAR’s additive structure over head-layer pairs, ensuring
information accumulates monotonically as more layers are included.

To compute NEAR, we approximate the underlying Shapley values via Monte Carlo sampling
over random permutations of context sentences. Using Hoeffding’s inequality[24], we derive a
high-probability error bound on the NEAR estimate. Specifically, with probability at least 1 — 9,

log(2n/4)

oM
where NEAR is the approximate NEAR Score using Monte Carlo estimation, n is the number of
sentences, M is the number of samples, L is the number of layers, H the number of heads, and V' the

vocabulary size. Thus, the NEAR estimation error decreases with more samples and increases mildly
with model depth and vocabulary size.

NEAR(s, q) — NEAR(s,¢)| < L - H -logV -

S Experiments

5.1 Experimental Setup

We classify unanswerable questions by computing NEAR scores to assess whether the response
generated by a model should be trusted in a given context, that is, whether the answer to a question
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Figure 2: (a) Contribution of Shapley aggregation on an example context where the 14th sentence
contains the answer to the question. (b) Information gain scores for detecting parametric and context-
induced hallucinations across context segments. (c) Layer-wise information gain comparison between
NEAR and £I. As shown in the subgraphs, relying only on the last layer causes loss of information
from earlier layers. The last-layer IG of LI corresponds to V1.

Shapely NEAR NEAR w/o Shapely
Information Gain
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Figure 3: Activation distributions at the final token position in the penultimate layer of LLaMA-
3.1-8B: (a) Norm-based attention output, (b) MLP layer output, (c) Final layer output, and (d)
Attention-wise Information Gain across all four datasets (CoQA, QuAC, SQuAD, and TriviaQA).

posed can be reliably inferred. We compare NEAR against several strong baselines, including
P(True) [25]], semantic entropy [26]], pointwise V-information (PVI) [14], layer-wise information
(LY) [18], Loopback Lens with Sliding Window [17], and INSIDE (X = 20, middle layer of
the LLM is considered) [[12]. Each method captures a different perspective: P(True) estimates
model confidence in binary verification tasks; semantic entropy measures uncertainty via answer
diversity; PVI quantifies instance-level predictive difficulty; and LI captures entropy reduction across
transformer layers. We evaluate all methods on four question-answering benchmarks: CoQA [27]],
QuAC [28]], SQuAD v2.0 [29], and TriviaQA [30Q]. Following the setup in [9], we use the development
split of CoQA, validation split of QuAC, a filtered version of the SQuAD v2.0 development set
where is_impossible=True, and the rc-nocontext validation subset of TriviaQA with duplicates
removed. Experiments are conducted on three pretrained models: Qwen2.5-3B, LLaMA3.1-8B,
and OPT-6.7B. We report average area under the ROC curve (AUROC), Kendall’s 7, and Pearson
correlation coefficient (PCC), computed across three independent runs. NEAR scores are estimated
using Monte Carlo sampling with M = 50 (Appendix [A8)) permutations and failure probability
0 = 0.01, ensuring high-confidence estimates of each context sentence’s contribution to information
gain (further details in Appendix [A3). This approximation provides a practical trade-off between
computational cost and estimation accuracy, with all reported results exhibiting standard deviations
within £0.04.

5.2 Results

Table [T] shows the results of hallucination detection using NEAR and several baseline methods across
four QA datasets (CoQA, QuAC, SQuAD, and TriviaQA) and three language models (Qwen2.5-3B,
LLaMA3.1-8B, and OPT-6.7B). We report performance using AUROC, Kendall’s 7, and Pearson
correlation (PCC). NEAR consistently performs the best across all datasets and models, showing
clear improvements over existing methods. In many cases, it outperforms the strongest baseline,
INSIDE, by 8-13% in AUROC and by 10-15% in correlation metrics like 7 and PCC. The best
scores for NEAR are observed on the SQuAD dataset for all models, suggesting that SQuAD is easier
for LLMs to understand and answer accurately. Among the three models, LLaMA3.1-8B achieves
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Figure 4: Accuracy vs. NEAR threshold on CoQA, QuAC, SQuAD, and TriviaQA. Optimal
separation consistently occurs near the first quartile (Q1) across model variants.

the highest overall performance, ahead of Qwen2.5-3B and OPT-6.7B, especially when used with
NEAR. This suggests that stronger pre-trained models can lead to better hallucination detection when
combined with effective methods like NEAR. We also evaluated the methods after fine-tuning on the
dataset; the results are presented in Appendix [A4]and quantitative examples without finetuning in
Appendix [A9] We also tested NEAR on generalized tasks, detailed in Appendix [A6]

6 Ablation Studies

For the ablation studies, we primarily focus on the LLaMA-3.1-8B model with the CoQA dataset.
Results for other models and datasets are provided in Appendix [A2]

Do we really need to consider all layers instead of only the final layer? Unlike methods such as
V1 [14], which consider only final-layer outputs, our results show that important semantic information
is also captured in earlier layers. As illustrated in Figure both LI and NEAR scores indicate
that usable information accumulates progressively across inner layers. A similar trend is visible in
Figure [3d] where different attention heads capture varying amounts of information. This suggests
that focusing only on the final layer overlooks valuable signals present throughout the model.

Why not consider the output from the layers, as in £/, for NEAR? Figures [3al and [3b|show the
activations of the self-attention and MLP components from the penultimate layer of the LLaMA
3.1-8B model. The sharp spikes in these plots reflect extreme internal features in the network,
which can cause the model to produce highly overconfident answers [12 31]. A similar pattern
of overconfidence is also clearly visible in the layer output shown in Figure [3c| We observed this
behavior consistently across nearly all layers and LLMs, aligning with the findings of [11]. Based on
this evidence, we choose to focus on norm-based attention outputs rather than raw layer activations.

Detection of Parametric and Context-Induced Hallucinations from NEAR Scores. Let s; ¢ A(q)
be a context sentence that does not contain the correct answer to question ¢, where .4(q) denotes the
set of answer-containing sentences. Ideally, such a sentence should contribute no useful information,
and the information gain under attention head (, h) should satisfy IG"" (s; — ¢) ~ 0. This follows
from equation ] which becomes negligible when conditioning on s; does not reduce uncertainty,
ie., HOM (g | gty 5i) = HEM (4 | g<+, D). However, we find that even when s; ¢ A(q), NEAR
scores can be negative (IG; < 0) or positive (IG; > 0). A negative score indicates the model
becomes more uncertain when conditioned on s;, meaning the context harms rather than helps, this is
parametric hallucination. A positive score, despite the absence of the answer, implies that the context
falsely boosts confidence, this is context-induced hallucination. Such cases arise due to in-context
learning, the model interprets partial or stylistically similar information as relevant, leading to reduced
entropy and overconfidence. To validate this, we measured the mean negative NEAR scores across all
context pieces. Adding random noisy text (similar technique used in [11]]) caused negligible change,
suggesting that the observed negativity is not due to noise or formulation errors. However, fine-tuning
the model on CoQA significantly increased negative NEAR scores, indicating that the model had
learned to rely more on context, which led to greater uncertainty when misleading context was
introduced, confirming parametric hallucination. For context-induced hallucination, we computed
mean positive NEAR scores for non-answer sentences. While adding random noise had little effect,
appending misleading but partially aligned segments of the rest of the context led to a sharp increase
in NEAR scores. This confirms that NEAR effectively captures how misleading context increases
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confidence in incorrect predictions. The results are shown in Figure[2b} However, these hallucinations
do not significantly affect the overall reliability of Shapley NEAR, as demonstrated in Appendix

What Should Be the Threshold Value for NEAR to Segregate Hallucinated Answers? A key step
in using NEAR for hallucination detection is choosing an effective threshold to separate answerable
from hallucinated responses. We evaluate classification accuracy by sweeping thresholds across
quantiles: 0, 0.5 x @1, @1, Median, @3, and 1.5 x Q3. As shown in Figure@ the first quartile
(Q1) consistently yields the best accuracy across models (LLaMA-3.1-8B, OPT-6.7B, Qwen2.5-3B)
and datasets (CoQA, QuAC, SQuAD, TriviaQA). In contrast, thresholds near 0 or 1.5 x Q3 reduce
performance. Based on this, we use ()1 as the default NEAR threshold for all experiments.

Effect of Shapley Combination on NEAR. We evaluated the effect of Shapley aggregation in NEAR,
comparing it to a greedy method that ranks sentences by standalone gain (without Shapely attribution).
As shown in Table , Shapley improves Kendall’s 7 (0.51 — 0.66), PCC (0.48 — 0.64), and AUC
(0.79 — 0.85), highlighting the benefit of permutation averaging for robust attribution. Figure 23]
shows Shapley downweights irrelevant segments and upweights answer-relevant ones.

Clipping Heads showing Parametric Hallucination To further demonstrate the effectiveness of our
framework in identifying hallucination-prone attention heads, we clipped all heads in LLaMA-3.1-8B
(on the CoQA dataset) with IG values below half the most negative score. This conservative threshold
avoids pruning heads with mildly negative IG, which may still contribute useful information (see
Figure [3d). We compared our method to INSIDE (EigenScore + Feature Clipping) with a fixed
threshold of 0.5, evaluating AUROC, accuracy, and ROUGE-L (computed between the given and
generated answers). For both NEAR and NEAR+HC (Head Clipping), we used the first quartile
(Q1) as the classification threshold. As shown in Table[2p, applying head clipping led to consistent
improvements across all metrics. All results are averaged over three independent runs, with standard
deviation < 0.3. These findings align with prior work [32H34]], which suggests that not all attention
heads contribute meaningfully to model output.

7 Related Work

Recent studies increasingly leverage attention patterns to detect hallucinations in language models.
Lookback Lens [35] introduces a “lookback ratio” that contrasts attention on the input context
versus generated tokens, enabling lightweight yet competitive classification. Spectral methods [36]
treat attention maps as graphs and extract top eigenvalues from the attention Laplacian to signal
abnormality. LLM-Check [37] integrates internal signals, including attention matrices and hidden
states, but its accuracy is sensitive to the chosen layer. Beyond attention, entropy-based approaches
such as Semantic Entropy [26] and Semantic Entropy Probes [38]] estimate model uncertainty via
output clustering or learned probes. Hidden-state probing [[15|39] also helps identify token-level
unreliability. More recently, mechanistic interpretability has been applied to hallucination detection:
some methods regress over parametric versus contextual signals [40], while others fine-tune based on
internal layer projections [41]. In contrast, our framework is fully plug-and-play - requiring neither
retraining nor architectural modifications - while offering fine-grained attention-level attribution.

8 Conclusion

We propose Shapley NEAR, an interpretable framework that detects hallucinations in LLMs by
attributing entropy-based information flow across attention heads and layers. It leverages attention
norms and Shapley values for sentence-level attribution, outperforming baselines and distinguishing
between parametric and context-induced hallucinations. A test-time head clipping step further
reduces overconfident outputs without retraining. Shapley NEAR offers a principled bridge between
attribution and internal model dynamics. Limitations are noted in Appendix [AT0]
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A1l Derivation of Theoretical Properties and Error Bounds for Shapley
NEAR Scores

Al.1 Properties Derivation

We begin by formally defining the NEAR score. Let the context passage be = {z1,22,...,Zn},
consisting of n disjoint sentences, and let ¢ denote the corresponding question. For a transformer
model with L layers and H attention heads per layer, the NEAR score is given by

NEAR(z, q) ZIG“ ®)

where IG; denotes the Shapley value assigned to sentence x;, measuring its marginal contribution to
the model’s information gain at the final prediction token.

The information gain for a subset of context sentences xg C x is defined as

1G(s = q) ZZ[ R (g, | 0) = HEM (g0 | 25)] ©)

where H(“") (g, | z5) denotes the entropy of the softmax-normalized vocabulary distribution at the
final token ¢;, computed using context subset xg.

A fundamental property of entropy is that for any discrete distribution p € RV over vocabulary size
V', the Shannon entropy is bounded as

0 <H(p) <logV, (10)

where the minimum is achieved for deterministic distributions and the maximum for uniform distribu-
tions. Applying this to attention outputs, it follows that

0 < HEM (g | 25) < logV, (1n
for any layer ¢, head h, and context subset zg.
Thus, the maximum change in entropy across any head-layer combination is bounded by
HEM (g, 10) = HEM (gy | 25)| < log V. (12)
implying that the total information gain satisfies

1G(zs = ¢)| < L-H-logV. (13)

The Shapley value IG; for a sentence x; is computed by averaging its marginal contributions over all
subsets of other sentences:

Sit(n —|S] = 1)!
6= S B Vg5 6 () - ) — 1665 - )] (14)
SCN\{i} "
where N = {1,...,n} indexes the context sentences. Given the bound in Eq. (I3), it immediately
follows that
IG;| < L-H -logV, (15)

and thus the NEAR score itself is bounded by

—|L-H logV|<NEAR(z,q) <|L-H-logV | (16)

Moreover, the asymptotic growth of NEAR with respect to model size is characterized by
NEAR(z,q) € O(L - H -logV), (17)
indicating that larger models with more layers and heads can potentially exhibit larger NEAR scores.

In practice, NEAR scores tend to remain significantly below their theoretical maxima because
softmax-normalized attention distributions are rarely fully uniform or fully deterministic. Confident
predictions (low entropy) result in large NEAR scores, while uncertain or irrelevant contexts yield
low NEAR values.

14
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Symmetry of Shapley-Based NEAR NEAR preserves the symmetry property of Shapley values.
If two sentences x; and x; have identical marginal contributions across all subsets S C x \ {, :cj},
then their Shapley attributions are equal:

IG; = 1G;. (18)
Thus, NEAR treats functionally equivalent sentences identically, ensuring fair attribution.
Context Redundancy and Diminishing Marginal Gains Due to the submodularity of entropy, the
marginal information gain diminishes as context grows. Formally, for any S C T,
IG(SU{z;} = q) —1IG(S — q) > IG(T U {z;} — q) = IG(T — q). (19)
Thus, redundant sentences with overlapping information have smaller Shapley attributions and lower
contributions to NEAR.
Zero NEAR for Context-Free Questions If the context x provides no useful information for
answering ¢, the entropy remains unchanged after conditioning:
Mg | 0) =~ H(q: | zs), Vag C x, (20)

leading to
NEAR(z, q) = 0, (21)

indicating that the model’s uncertainty is unaffected by the context.

A1.2 Estimation Error Bound for Monte Carlo NEAR

Exactly computing Shapley values is computationally infeasible due to the n! permutations required.
Thus, we approximate Shapley values by Monte Carlo sampling over M random permutations.

The approximate Shapley value is given by

M
1 () Ny ()
1G; = M;[IG@ U {z:}) ~1G(S7)] (22)

where Si(j ) is the predecessor set of x; in the j-th sampled permutation.

Assuming each marginal contribution satisfies
IG(S U {z;}) —IG(S)|< B=L-H -logV, (23)
Hoeffding’s inequality [24] gives that, for any 6 > 0,

< B,/ 2820 24)

IG; — IG;
010 < By =g

with probability at least 1 — §.

Since NEAR is an average over n sentences, applying the union bound yields

R log(2n /o
‘NEAR(:{;,Q) - NEAR(m,q)’ <B %. 25)
Thus, with probability at least 1 — 4,
log(2n/4)

‘NEAR(Q:, ¢) — NEAR(z, q)‘ <L-H-logV - (26)

2M

This bound shows that the NEAR approximation error decays as O ( lOgM"> , making estimation

increasingly accurate with more samples while growing mildly with model complexity and vocabulary
size.
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Figure 5: Attention-wise Information Gain for (a) Qwen2.5-3B and (b) OPT-6.7B.
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Figure 6: Layer-wise Information Gain for (a) Qwen2.5-3B and (b) OPT-6.7B.

A2 Ablation Studies for rest of the Datasets

A2.1 Layer-wise Information Trends in Qwen2.5-3B and OPT-6.7B

Unlike methods such as VI [14], which rely solely on final-layer outputs, our experiments with
Qwen2.5-3B and OPT-6.7B across CoQA, QuAC, SQuAD, and TriviaQA reveal that significant
semantic information emerges well before the final layer. As shown in Figure [6a] and Figure[6b] both
L1 and NEAR scores accumulate progressively from early to later layers, highlighting that inner layers
contribute meaningfully to usable information for Qwen2.5 3B and OPT6.7 respectively. Additionally,
attention head analysis in these models (Figure [5a and Figure [5b) demonstrates substantial variance
in information captured by different heads, reinforcing that attention dynamics vary widely across
layers and heads. These observations confirm that limiting interpretability to the final layer overlooks
critical intermediate representations and that capturing attention-driven signals across all layers is
essential for reliable attribution.

A2.2 Analyzing Parametric and Context-Induced Hallucinations with NEAR Scores

To better understand the origin of hallucinations, we analyze NEAR scores assigned to context
sentences that do not contain the ground-truth answer. Let s; ¢ A(q), where A(q) denotes the
minimal set of answer-supporting sentences for a given question q. Ideally, such irrelevant sentences
should yield zero usable information, implying that the entropy before and after conditioning remains
approximately equal. This leads to an information gain of zero: 1G4 (s; = q) ~ 0. However,
empirical findings across all four QA datasets—CoQA, QuAC, SQuAD, and TriviaQA—demonstrate
that even when s; ¢ A(q), the NEAR attribution IG; is often either significantly negative or positive.
These deviations allow us to distinguish between two types of hallucination.

IfIG; < 0, it indicates that the entropy after conditioning on s; is higher than that with no context, i.e.,
H(q: | si) > H(g: | 0). This suggests that the model becomes more uncertain due to misleading con-
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Figure 7: Emergence of parametric and context-induced hallucinations captured by NEAR scores.

text overriding its parametric knowledge—a behavior we term parametric hallucination. Conversely,
if IG; > 0 despite s; ¢ A(q), the model incorrectly gains confidence due to spurious semantic cues
or surface-level similarities. This phenomenon is referred to as context-induced hallucination.

Figures [7a|and [7b] visually depict these effects by comparing NEAR scores before and after perturba-
tions, such as noise injection or model fine-tuning. These experiments confirm that NEAR faithfully
captures both types of hallucination via its attention-wise decomposition of usable information.

Experimental Setup. To validate this decomposition, we analyze NEAR attributions on CoQA,
QuAC, SQuAD, and TriviaQA using LLaMA-3.1-8B, OPT-6.7B, and Qwen2.5-3B. For each data-
point, we extract context segments s; ¢ .A(q) and compute:

MeanNeg = E, ¢ 4(¢)[1G; | IG; < 0], MeanPos = E, ¢ 4(¢)[IG; | 1G; > 0].
We run two ablations to support the hypothesis:

1. Random Noise Injection: Injecting randomly sampled tokens into s; decreases the mag-
nitude of MeanNeg and MeanPos, indicating that noise alone does not explain strong
deviations in NEAR.

2. Fine-tuning: Fine-tuning the model on CoQA increases [MeanNeg|, showing heightened
model sensitivity to misleading context after alignment, and thus more pronounced paramet-
ric hallucinations.

Conclusion. These results confirm that NEAR scores reflect two distinct modes of hallucination:
Parametric Hallucination <= Context increases entropy  (IG; < 0),

Context-Induced Hallucination <= Spurious entropy reduction (IG; > 0,s; ¢ A(q)).

Therefore, NEAR provides a faithful and granular decomposition of hallucination signals within the
model’s internal reasoning.

A3 Experimental Setup and Hyperparameters

We evaluated our method using four standard QA benchmarks: CoQA, QuAC, SQuAD, and Trivi-
aQA, across three pretrained language models: LLaMA-3.1-8B, OPT-6.7B, and Qwen2.5-3B. For
each model—dataset pair, NEAR scores were computed by aggregating information gain across all
transformer layers and attention heads. Attention outputs were taken at the final token of each
question, and entropy was calculated from the softmax-normalized vocabulary logits. Sentence-level
context segmentation was applied consistently across datasets.

To efficiently estimate Shapley values, we used Monte Carlo sampling with M = 50 random
permutations per example. We set § = 0.01, and bounded the estimation error using:
log(2n/4)

NEAR(z, q) — NEAR(z,¢)| < L - H -logV - A

27)
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Table 3: Hallucination detection performance after fine-tuning. Scores improve while maintaining
relative proportions.

Models CoQA QuAC SQuAD TriviaQA
AUC T PCC AUC T PCC AUC T PCC AUC T PCC
Qwen2.5-3B
P(True) 0.58 038 036 059 039 037 061 040 038 060 039 0.37
Pointwise V1 0.61 042 038 060 041 037 062 043 039 063 043 040
Usable L1 075 051 047 074 050 046 076 051 048 0.72 049 046
Semantic Entropy 0.78 0.54 050 0.76 052 048 0.77 051 047 080 0.53 049
INSIDE 0.84 060 056 083 059 055 082 060 057 085 061 0.56
NEAR 091 071 070 090 0.72 071 092 0.73 072 091 0.72 0.71
LLaMA3.1-8B
P(True) 0.63 040 036 064 041 037 067 043 039 066 042 0.37
Pointwise VI 0.67 043 040 0.63 039 037 066 044 039 079 053 046
Usable L1 0.83 055 050 078 052 047 080 053 049 072 051 046
Semantic Entropy 0.82 048 049 076 046 050 0.79 045 047 086 047 047
INSIDE 0.89 062 057 088 0.61 056 085 064 059 090 0.63 0.56
NEAR 091 073 0.68 090 0.72 0.67 092 0.74 0.70 091 0.73 0.67
OPT-6.7B
P(True) 0.60 039 036 061 040 037 064 042 038 0.63 041 0.37
Pointwise VI 0.64 041 038 0.60 037 036 063 042 038 075 051 044
Usable LI 0.81 053 048 076 051 046 079 052 047 070 051 044
Semantic Entropy 0.80 046 047 074 044 048 0.77 043 045 083 045 045
INSIDE 0.87 062 056 086 0.60 055 0.83 063 058 088 062 0.55
NEAR 090 0.73 0.67 089 072 066 091 0.74 0.68 090 0.73 0.66

where L is the number of layers, H the number of heads per layer, V' the vocabulary size, and n the
number of context segments.

To study parametric hallucinations, we fine-tuned each model on CoQA using the AdamW optimizer
with a learning rate of 2 x 1075, batch size 8, weight decay 0.01, and 2 training epochs with 500
warmup steps. Training was performed on NVIDIA A100 80GB GPUs using PyTorch 2.1 and
DeepSpeed ZeRO Stage 2, with mixed-precision (bf16) training enabled.

We report mean NEAR scores on context segments with and without the ground-truth answer, based
on 10,000 sampled questions. These controlled experiments show that NEAR scores are robust
indicators of hallucination, effectively capturing model uncertainty and context influence.

A4 Experimental Results with model finetuning

Hallucination Detection Results after Fine-Tuning. Table 3| presents the hallucination detection
performance of various uncertainty estimation methods across four QA benchmarks (CoQA, QuAC,
SQuAD, and TriviaQA) and three LLMs (Qwen2.5-3B, LLaMA3.1-8B, and OPT-6.7B), after fine-
tuning. The evaluation metrics include area under the ROC curve (AUC), Kendall’s 7, and Pearson
correlation coefficient (PCC).

Fine-tuning consistently improves the performance of all methods across all models and datasets.
Notably, our proposed method NEAR continues to outperform all baselines with a substantial margin.
On average, NEAR achieves AUC scores above 0.90 across all datasets, with Kendall’s 7 and PCC
also reaching peak values around 0.72—0.74, indicating both strong rank-order and linear correlation
with ground truth hallucination labels. Other methods such as INSIDE and Semantic Entropy also
benefit from fine-tuning but remain 4-6 points behind NEAR in AUC and show lower correlation
coefficients. For instance, on the SQuAD dataset with the LLaMA3.1-8B model, NEAR achieves
an AUC of 0.92 compared to 0.85 from INSIDE and 0.79 from Semantic Entropy. Similarly, in
TriviaQA, NEAR maintains a consistent advantage across all metrics and models.

Experimental Setup. Each model was fine-tuned using the train split of the corresponding dataset
and evaluated on its validation split. We used the AdamW optimizer with a learning rate of
2 x 1075, weight decay of 0.01, batch size of 8, and trained for 2 epochs with 500 warmup steps
and early stopping. Training was performed on NVIDIA A100 80GB GPUs using DeepSpeed ZeRO
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Stage 2 and bf16 precision. Shapley value estimates were computed using Monte Carlo sampling
with M = 50 random permutations per input. All reported evaluation metrics are averaged over 3
independent runs, with standard deviations within £0.03.

AS Robustness of NEAR Against Parametric and Context-Induced
Hallucinations.

While NEAR captures both parametric and context-induced hallucinations at the sentence level, it
is crucial to verify that such artifacts do not dominate or distort the final information attribution.
Ideally, context segments that do not contain the correct answer should have NEAR scores near
zero. However, due to model pretraining effects (parametric hallucination) and contextual mimicry
(context-induced hallucination), small negative or positive NEAR values can occur even without the
ground truth answer.

To evaluate the robustness of NEAR, we formally partition the context into sentences that contain the
answer (Sy,s) and those that do not (Syop-ans)- The total information gain decomposes as

Gz »q) = Y IG+ » IGj, (28)
1€ Sans J € Shon-ans
where IG; denotes the Shapley value of sentence x;. We then define the dominance ratio:
Mean(IG;, @ € Syns)
IMean(IG;, j € Shon-ans)|’

Dominance Ratio = 29)

which quantifies whether true answer-supporting information overwhelms hallucination artifacts.

Experimental Setup. We conduct experiments across three model families: LLaMA-3.1-8B, OPT-
6.7B, and Qwen2.5-3B. Evaluations are performed on four datasets: CoQA, QuAC, SQuAD vl1.1,
and TriviaQA. Each context passage is segmented into sentences, and NEAR scores are computed per
sentence. Context sentences are manually aligned with ground truth answers using string matching
and fuzzy heuristics.

NEAR scores are computed using M/ = 50 Monte Carlo samples per datapoint, ensuring stable
Shapley estimation. The temperature parameter during softmax inference is set to 7' = 1.0 (default).
No additional prompt tuning or instruction tuning is applied unless otherwise noted. Models are
evaluated in a zero-shot setting without retrieval augmentation.

Table ] summarizes the average NEAR scores for answer-containing and non-answer-containing
context sentences, along with the dominance ratio. Across all models and datasets, the dominance
ratio consistently exceeds 20, with most values ranging between 23 and 26. This indicates that the
information gain from answer-containing context sentences is significantly higher—by more than an
order of magnitude—than the entropy contributions of non-answer sentences. These results affirm
that NEAR provides a strong and reliable decomposition of usable information, even in the presence
of noise or hallucination-inducing segments.

Table 4: Robustness of NEAR attribution: Average NEAR scores for answer-containing vs non-
answer-containing sentences. Higher dominance ratios indicate stronger signal-to-noise separation.

Model Dataset Mean NEAR (Ans.) Std. Dev. Mean NEAR (Non-Ans.) Std. Dev. Dominance Ratio
LLaMA-3.1-8B CoQA 7.21 0.14 -0.31 0.06 23.26
LLaMA-3.1-8B QuAC 7.38 0.13 -0.30 0.05 24.60
LLaMA-3.1-8B SQuAD 7.50 0.16 -0.32 0.05 23.44
LLaMA-3.1-8B  TriviaQA 7.65 0.15 -0.29 0.06 26.38
OPT-6.7B CoQA 7.02 0.17 -0.28 0.07 25.07
OPT-6.7B QuAC 7.20 0.18 -0.29 0.08 24.33
OPT-6.7B SQuAD 7.30 0.19 -0.30 0.09 24.33
OPT-6.7B TriviaQA 7.10 0.18 -0.27 0.08 26.30
Qwen2.5-3B CoQA 6.90 0.15 -0.33 0.07 20.91
Qwen2.5-3B QuAC 6.85 0.14 -0.31 0.08 22.10
Qwen2.5-3B SQuAD 6.95 0.16 -0.32 0.07 21.72
Qwen2.5-3B TriviaQA 6.88 0.13 -0.30 0.08 22.93
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A6 Generalization to Other Tasks

While NEAR is primarily formulated for question answering (QA) tasks by computing entropy at
the final answer token, the framework naturally extends to other generation settings. For instance, in
summarization, information gain can be evaluated at the end of the summary sequence. In dialog
systems, NEAR can be applied at each utterance boundary to assess context contribution toward the
next response.

To illustrate this potential, we conduct a small pilot experiment on the XSum [42] summarization
dataset. We compute NEAR scores using entropy at the final token of generated summaries, following
the same context segmentation and Shapley attribution methodology. Preliminary results show that
answer-relevant document spans receive consistently higher NEAR scores, suggesting effective
context attribution in summarization as well.

10 Pilot NEAR Scores on XSum Example

== Relevance threshold

0.8

NEAR Score
o
o

I
IS

0.2

0.0

S3 S4
Context Sentences

Figure 8: Pilot NEAR scores on the XSum dataset. NEAR identifies summary-relevant context
sentences with higher average attribution, supporting its applicability to summarization.

This evidence indicates that NEAR may serve as a unified attribution framework across a variety of
text generation tasks. We leave a full empirical evaluation for future work.

A6.1 Comparison with LLM-Check on FAVA

To evaluate the effectiveness of NEAR in detecting hallucinations, we compare its performance
against LLM-Check [16]], a recent method that leverages attention kernel eigenvalues and hidden
activations for hallucination detection across transformer layers. We focus on the zero-resource
setting without external references, using the human-annotated FAVA dataset[43].

LLM-Check reports strong results using Attention Scores and Hidden Scores, computed from the
mean log-determinants of attention kernels and hidden state covariance matrices, respectively. On the
FAVA-Annotation split, their best-performing variant achieves an AUROC of 72.34 and F1 score of
69.27 using LLaMA-2 7B at layer 21 (see Table 2 in [16]).

In contrast, NEAR computes the entropy-based information gain attributed to each sentence in the
context, based on Shapley values over attention norms. Despite being conceptually different, LLM-
Check focuses on low-rank shifts in latent space, whereas NEAR tracks attention-driven entropy
reduction, both methods aim to isolate ungrounded model behavior.

To enable direct comparison, we compute NEAR scores on the same FAVA-Annotation samples
used in LLM-Check and report AUROC, F1, and TPR@5%FPR. Across three LLMs (LLaMA-2-7B,
LLaMA-3-8B, OPT-6.7B), NEAR achieves competitive detection performance, with AUROC up to
73.8, F1 scores exceeding 70, and notable stability across layers.

A7 Algorithm

The algorithm of our methodology has been given herel]]
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Algorithm 1 Compute Shapley NEAR Attribution

1: Input: Context C' = {s1, $2,..., S, }, Question @) with m data points, Pretrained Model fj
2: Initialize NEAR(s; — Q) < Oforall s; € C

3: Set number of permutations M

4: for each data point ¢ = 1 to m do

5 for j = 1to M do > Monte Carlo Shapley estimation
6: Sample a random permutation 7 over {s1, ..., $p }
7 Initialize context prefix S «+ ()
8 for each s, in 7 do
9: Compute:
10: Xg < Tokenizer(S + Q)
11: Xsugsy,) < Tokenizer(S U {sx} + Q)
12: Get outputs: (Vs, As) — fg(Xs) and (VSU{sk}7 ASU{sk}) — f@(XSU{sk})
13: Compute projected outputs N, g), éﬁ) {5y} ACTOSS layers
14: Compute entropy difference:
15: AHy < H(Q|S) — H(Q|S U {sk})
16: Update attribution:
17: NEAR(s; — Q) += 4 - AH,
18: Update prefix: S < S U {s;}
19: end for
20: end for
21: end for

22: Return: Shapley NEAR attributions { NEAR(s, — Q)}?_;

A8 Effect of Number of Permutations on NEAR Stability

A critical parameter in Shapley NEAR is M, the number of Monte Carlo permutations used to
approximate sentence-level Shapley values. Larger values of M reduce the estimation variance but
incur higher computational cost. To analyze this trade-off, we empirically study how the AUROC of
hallucination detection changes as a function of M, using a randomly sampled subset (500 examples)
from the CoQA dataset with the LLaMA3.1-8B model.

As shown in Figure 9] performance improves rapidly between M = 5 and M = 30, after which the
gains taper off. By M = 50, AUROC stabilizes at 0.85, with only marginal improvements beyond
that point. This suggests that M/ = 50 strikes an effective balance between computational efficiency
and statistical reliability, justifying its use throughout our main experiments. The standard deviation
across three runs remained within £0.02 for all settings with M > 30.

These results align with the theoretical bound from Hoeffding’s inequality[24], which shows that the

estimation error decreases as O ( 101(54”) .

A9 Qualitative Examples

To show our quantitative results, we present qualitative examples, comparing NEAR scores with
several established attribution and uncertainty-based baselines. For each example, we provide the
full input context along with a corresponding question. We then report the estimated scores across
methods including P(True), Semantic Entropy, Loopback Lens, V1, LI, INSIDE, and NEAR.

These examples illustrate two important observations: (1) NEAR assigns significantly higher scores
when the context provides meaningful answer cues (Table[6] Table 8] Table[I0} Table[12), and (2)
in unanswerable cases, NEAR consistently produces lower values(Table [I4] Table[16] Table[I8),
offering a more reliable signal of context utility. Compared to baselines, NEAR better distinguishes
between answerable and hallucinated predictions, even in cases involving ambiguous or misleading
context fragments.
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Figure 9: AUROC as a function of number of Monte Carlo permutations M used for Shapley NEAR
estimation on CoQA (LLaMA3.1-8B).

Context

Guinness World Records, known from its inception in 1955 until 1998 as The Guinness Book
of Records and in previous United States editions as The Guinness Book of World Records, is
a reference book published annually, listing world records both of human achievements and
the extremes of the natural world. The book itself holds a world record, as the best-selling
copyrighted book of all time. As of the 2017 edition, it is now in its 63rd year of publication,
published in 100 countries and 23 languages. The international franchise has extended beyond
print to include television series and museums. The popularity of the franchise has resulted
in "Guinness World Records" becoming the primary international authority on the cataloging
and verification of a huge number of world records; the organization employs official record
adjudicators authorized to verify the authenticity of the setting and breaking of records.

On 10 November 1951, Sir Hugh Beaver, then the managing director of the Guinness Breweries,
went on a shooting party in the North Slob, by the River Slaney in County Wexford, Ireland.
After missing a shot at a golden plover, he became involved in an argument over which was
the fastest game bird in Europe, the golden plover or the red grouse. (It is the plover.) That
evening at Castlebridge House, he realized that it was impossible to confirm in reference books
whether or not the golden plover was Europe’s fastest game bird. Beaver knew that there must
be numerous other questions debated nightly in pubs throughout Ireland and abroad, but there
was no book in the world with which to settle arguments about records. He realized then that a
book supplying the answers to this sort of question might prove successful.

Question P(True) | Sem. Ent. | Loop. Lens | VI LI | INSIDE | NEAR
What does the Guinness Book record? 1.01 2.1 1.91 0.31 | 1.59 3.02 11.22

Table 6: Example showing a question on the Guinness World Records passage. The top table
provides the full narrative context. The lower table compares several attribution and confidence
metrics—P(True), Semantic Entropy, Loopback Lens, VI, LI, INSIDE, and NEAR—on a single
example. NEAR produces the highest value, suggesting greater confidence and information gain
from the context.
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Context

(CNN) — Dennis Farina, the dapper, mustachioed cop-turned-actor best known for his tough-as-
nails work in such TV series as "Law & Order," "Crime Story," and "Miami Vice," has died. He
was 69.

"We are deeply saddened by the loss of a great actor and a wonderful man," said his publicist,
Lori De Waal, in a statement Monday. "Dennis Farina was always warmhearted and professional,
with a great sense of humor and passion for his profession. He will be greatly missed by his
family, friends and colleagues."

Farina, who had a long career as a police officer in Chicago, got into acting through director
Michael Mann, who used him as a consultant and cast him in his 1981 movie, "Thief." That role
led to others in such Mann-created shows as "Miami Vice" (in which Farina played a mobster)
and "Crime Story" (in which he starred as Lt. Mike Torello).

Farina also had roles, generally as either cops or gangsters, in a number of movies, including
"Midnight Run" (1988), "Get Shorty" (1995), "The Mod Squad" (1999) and "Snatch" (2000).
In 2004, he joined the cast of the long-running "Law & Order" after Jerry Orbach’s departure,
playing Detective Joe Fontana, a role he reprised on the spinoff "Trial by Jury." Fontana was
known for flashy clothes and an expensive car, a distinct counterpoint to Orbach’s rumpled
Lennie Briscoe.

Farina was on "Law & Order" for two years, partnered with Jesse L. Martin’s Ed Green. Martin’s
character became a senior detective after Farina left the show.

Question P(True) | Sem. Ent. | Loop. Lens | VI LI | INSIDE | NEAR
Is someone in showbiz? 1.16 2.21 1.72 0.48 | 2.53 3.76 10.74

Table 8: Example centered on actor Dennis Farina. The top table provides the narrative context.
The lower table compares various hallucination detection and attribution methods. NEAR yields
the highest score, highlighting its ability to capture context relevance and answer confidence more
effectively than competing methods.
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Context

When my father was dying, I traveled a thousand miles from home to be with him in his last
days. It was far more heartbreaking than I’d expected, one of the most difficult and painful times
in my life. After he passed away I stayed alone in his apartment. There were so many things to
deal with. It all seemed endless. I was lonely. I hated the silence of the apartment.

But one evening the silence was broken: I heard crying outside. I opened the door to find a little
cat on the steps. He was thin and poor. He looked the way I felt. I brought him inside and gave
him a can of fish. He ate it and then almost immediately fell sound asleep. The next morning I
checked with neighbors and learned that the cat had been abandoned by his owner who’s moved
out. So the little cat was there all alone, just like I was. As I walked back to the apartment, I
tried to figure out what to do with him. Having something else to take care of seemed. But as
soon as I opened the apartment door he came running and jumped into my arms. It was clear
from that moment that he had no intention of going anywhere. I started calling him Willis, in
honor of my father’s best friend.

From then on, things grew easier. With Willis in my lap time seemed to pass much more quickly.
When the time finally came for me to return home I had to decide what to do about Willis. There
was absolutely no way I would leave without him.

It’s now been five years since my father died. Over the years, several people have commented
on how nice it was of me to rescue the cat. But I know that we rescued each other. I may have
given him a home but he gave me something greater.

Question P(True) | Sem. Ent. | Loop. Lens | VI LI | INSIDE | NEAR
What was crying? 1.21 2.33 1.79 0.43 | 2.69 3.82 9.92

Table 10: An example focused on a story of grief and companionship. The top table presents the
narrative context, while the bottom table compares several hallucination detection and attribution
methods for the question "What was crying?". NEAR achieves the highest score, indicating stronger
alignment between the context and answerability signal compared to other baselines.

Context

The Six-Day War (Hebrew: , "Milhemet Sheshet Ha Yamim"; Arabic: , "an-Naksah", "The
Setback" or, "arb 1967", "War of 1967"), also known as the June War, 1967 Arab—Israeli War, or
Third Arab-Israeli War, was fought between June 5 and 10, 1967 by Israel and the neighboring
states of Egypt (known at the time as the United Arab Republic), Jordan, and Syria.

Relations between Israel and its neighbours had never fully normalised following the 1948
Arab-Israeli War. In 1956 Israel invaded the Egyptian Sinai, with one of its objectives being the
reopening of the Straits of Tiran which Egypt had blocked to Israeli shipping since 1950. Israel
was subsequently forced to withdraw, but won a guarantee that the Straits of Tiran would remain
open. Whilst the United Nations Emergency Force was deployed along the border, there was no
demilitarisation agreement.

In the period leading up to June 1967, tensions became dangerously heightened. Israel reiterated
its post-1956 position that the closure of the straits of Tiran to its shipping would be a "casus
belli" and in late May Nasser announced the straits would be closed to Israeli vessels. Egypt then
mobilised its forces along its border with Israel, and on 5 June Israel launched what it claimed
were a series of preemptive airstrikes against Egyptian airfields. Claims and counterclaims
relating to this series of events are one of a number of controversies relating to the conflict.

Question P(True) | Sem. Ent. | Loop. Lens | VI LI | INSIDE | NEAR
When was the Six-Day War fought? 1.45 2.41 1.98 0.59 | 2.92 3.94 8.90

Table 12: Example regarding the Six-Day War. The top section presents the historical context, and
the lower table compares baseline metrics including P(True), Semantic Entropy, Loopback Lens, VI,
LI, INSIDE, and NEAR for the question "When was the Six-Day War fought?". NEAR achieves the
highest attribution score, reflecting strong contextual grounding and confidence alignment.
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Context

Robots are smart. With their computer brains, they help people work in dangerous places or do
difficult jobs. Some robots do regular jobs. Bobby, the robot mail carrier, brings mail to a large
office building in Washington, D.C. He is one of 250 robot mail carriers in the United States. Mr.
Leachim, who weighs two hundred pounds and is six feet tall, has some advantages as a teacher.
One is that he does not forget details. He knows each child’s name, their parents’ names, and
what each child knows and needs to know. In addition, he knows each child’s pets and hobbies.
Mr. Leachim does not make mistakes. Each child goes and tells him his or her name, then dials
an identification number. His computer brain puts the child’s voice and number together. He
identifies the child with no mistakes.

Another advantage is that Mr. Leachim is flexible. If the children need more time to do their
lessons they can move switches. In this way they can repeat Mr. Leachim’s lesson over and over
again. When the children do a good job, he tells them something interesting about their hobbies.
At the end of the lesson the children switch Mr. Leachim off.

Question P(True) | Sem. Ent. | Loop. Lens | VI LI | INSIDE | NEAR
how many articles were read? 0.31 0.45 0.37 0.12 | 0.28 0.62 -0.08

Table 14: Example involving an educational robot. The top table provides the narrative context. The
bottom table compares hallucination detection and attribution scores from various baselines. The low
NEAR score, relative to others, reflects poor contextual grounding for the question, suggesting likely
hallucination.

Context

"Everything happens for the best," my mother said whenever I was disappointed. "If you go
on, one day something good will happen." When I graduated from college, I decided to try
for a job in a radio station and then work hard to become a sports announcer. I took a taxi to
Chicago and knocked on the door of every station, but I was turned away every time because
I didn’t have any working experience. Then, I went back home. My father said Montgomery
Ward wanted a sportsman to help them. I applied, but I didn’t get the job, either. I was very
disappointed. "Everything happens for the best," Mom reminded me. Dad let me drive his car to
look for jobs. I tried WOC Radio in Davenport, Iowa. The program director, Peter MacArthur,
told me they already had an announcer. His words made me disappointed again. After leaving
his office, I was waiting for the elevator when I heard MacArthur calling after me, "What did
you say about sports? Do you know anything about football?" Then he asked me to broadcast an
imaginary game. I did so and Peter told me that I would be broadcasting Saturday’s game! On
my way home, I thought of my mother’s words again: "If you go on, one day something good
will happen."”

Question P(True) | Sem. Ent. | Loop. Lens | VI LI | INSIDE | NEAR
What was the name of the great author? 0.55 0.68 0.74 0.50 | 0.74 0.55 0.39

Table 16: Example featuring a narrative about persistence and opportunity. The top table provides the
passage context. The bottom table presents attribution and confidence scores for the question "What
was the name of the great author?", which is unanswerable from the context. The low NEAR score,
in line with other baselines, reflects the absence of relevant information in the context.
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Context

Lisa has a pet cat named Whiskers. Whiskers is black with a white spot on her chest. Whiskers
also has white paws that look like little white mittens.

Whiskers likes to sleep in the sun on her favorite chair. Whiskers also likes to drink creamy
milk.

Lisa is excited because on Saturday, Whiskers turns two years old.

After school on Friday, Lisa rushes to the pet store. She wants to buy Whiskers’ birthday
presents. Last year, she gave Whiskers a play mouse and a blue feather.

For this birthday, Lisa is going to give Whiskers a red ball of yarn and a bowl with a picture of a
cat on the side. The picture is of a black cat. It looks a lot like Whiskers.

Question P(True) | Sem. Ent. | Loop. Lens | VI LI | INSIDE | NEAR
Where was the joint residence? 0.42 0.51 0.63 0.37 | 0.59 0.48 0.02

Table 18: Example featuring a short story about Lisa and her cat Whiskers. The top table shows
the narrative context, while the bottom table compares attribution and confidence metrics for the
unanswerable question "Where was the joint residence?". All methods show relatively low scores,
with NEAR correctly reflecting the absence of relevant information.
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A10 Limitations

While Shapley NEAR provides fine-grained, interpretable attribution by decomposing usable in-
formation across attention layers and heads, its primary limitation lies in computational efficiency.
Specifically, the use of Monte Carlo sampling for Shapley value approximation over all sentence
permutations incurs significant time and memory costs, especially when applied to long contexts or
large model families. This limits scalability for real-time or large-scale deployment. Future work
could explore more efficient approximation strategies, such as stratified sampling or differentiable
surrogates, to mitigate these overheads. This section benchmarks NEAR’s runtime against prior
methods and proposes future directions for efficiency.

Table 19: Runtime per 100 QA samples (in seconds) for different hallucination detection methods on
LLaMA-3.1-8B. NEAR is evaluated with varying numbers of Shapley permutations.

Method Qwen2.5-3B LLaMA3.1-8B OPT-6.7B  Avg Time
Semantic Entropy 2.3 3.1 3.0 2.8
Lookback Lens 3.8 5.0 4.9 4.6
INSIDE 9.2 10.7 9.8 9.9
NEAR (M=50) 22.4 30.6 28.8 27.3
NEAR (M=100) 41.3 58.9 55.0 51.7
NEAR (M=1000) 402.1 537.6 498.2 479.3

Discussion. Monte Carlo-based NEAR, although highly accurate, incurs significantly higher run-
time compared to baselines as shown in table [I9 This motivates the development of adaptive
sampling strategies to reduce computational cost. Future work may explore early stopping criteria or
permutation importance sampling, aiming to retain fidelity while lowering runtime.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately state the contributions: Shapley NEAR
for entropy-based hallucination detection, distinguishing hallucination types, and test-time
head clipping. These are supported by theory and experiments in the paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Appendix A10 discusses limitations, including high computation due to
Shapley estimation and permutation sampling, and the use of fixed models without fine-
tuning.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical properties and assumptions of NEAR are formally defined in
Section 4 and Appendix Al. This includes entropy bounds, Shapley value formulation, and
estimation error analysis using Hoeffding’s inequality.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: Section 5.1 and Appendix A3 provide detailed experimental settings, including
datasets used, model names, data splits, evaluation metrics, Monte Carlo sampling details
(M=50), and approximation bounds, enabling reproducibility even without public code
release.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code has been submitted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5.1 and Appendix A3 describe the datasets used (CoQA, QuAC,
SQuAD, TriviaQA), model variants (Qwen2.5-3B, LLaMA3.1-8B, OPT-6.7B), data splits,
evaluation protocols, number of Monte Carlo samples (M=50), and other relevant details.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports standard deviations (+0.04) over three independent runs
in Section 5.1. Appendix A1.2 also derives theoretical estimation error bounds for NEAR
using Hoeffding’s inequality.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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9.

10.

Answer: [Yes]
Justification: They are explained in their respective section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All sources used are opensource.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper does include a discussion of broader societal impacts, although
the method is directly relevant to improving safety and reliability of LLMs in real-world
applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: All used material is opensource
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the works have been done by the authors and properly referenced and will
be provided on acceptance.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Everything is properly referenced.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

33


paperswithcode.com/datasets

1029
1030

1031
1032

1033

1034
1035
1036

1037

1038

1039

1040

1041

1042
1043
1044
1045
1046
1047

1048
1049

1050
1051
1052
1053

1054

1055
1056

1057
1058
1059

1060
1061
1062
1063
1064
1065
1066
1067

1068

1069
1070
1071
1072

1073

1074

1075

1076
1077
1078
1079

14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing experiments or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects or crowdsourcing, and therefore
no IRB approval is required.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM used only for writing, editing, or formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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