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Abstract
Offline reinforcement learning (RL) offers a
promising direction for learning policies from
pre-collected datasets without requiring further
interactions with the environment. However, exist-
ing methods struggle to handle out-of-distribution
(OOD) extrapolation errors, especially in sparse
reward or scarce data settings. In this paper, we
propose a novel training algorithm called Con-
servative Density Estimation (CDE), which ad-
dresses this challenge by explicitly imposing con-
straints on the state-action occupancy stationary
distribution. CDE overcomes the limitations of ex-
isting approaches, such as the stationary distribu-
tion correction method, by addressing the support
mismatch issue in marginal importance sampling.
Our method achieves state-of-the-art performance
on the D4RL benchmark. Notably, CDE consis-
tently outperforms baselines in challenging tasks
with sparse rewards or insufficient data, demon-
strating the advantages of our approach in address-
ing the extrapolation error problem in offline RL.

1. Introduction
Reinforcement Learning (RL) has witnessed remarkable ad-
vancements in recent years (Akkaya et al., 2019; Kiran et al.,
2021). Nevertheless, the success of RL relies on continu-
ous online interactions, resulting in high sample complexity
and potentially restricting its practical applications in real-
world scenarios (Levine et al., 2016; Gu et al., 2022). As
a compelling solution, offline RL has been brought to the
fore, with the objective of learning effective policies from
pre-existing datasets, thereby eliminating the necessity for
further environment interactions (Fu et al., 2020; Prudencio
et al., 2023).

Despite its benefits, offline RL is not devoid of challenges,
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most notably the out-of-distribution (OOD) extrapolation er-
rors, which emerge when the agent encounters state-actions
that were absent in the dataset. These issues pose significant
hurdles when learning policies from datasets with sparse
rewards or low coverage of state-action spaces (Levine et al.,
2020). To address OOD estimation errors in value-based of-
fline RL, current efforts have primarily revolved around two
strategies: pessimism-based methods (Xie et al., 2021a; Shi
et al., 2022) and the integration of regularizations (Kostrikov
et al., 2021a). However, these approaches hinge on assump-
tions of the behavior policy. In addition, pessimism-based
techniques may be prone to over-pessimism, especially in
high-dimensional state-action spaces, while regularization
methods often struggle with the tuning of the regularization
coefficient (Nachum et al., 2019a). As such, striking the
optimal balance of conservativeness, particularly in sparse-
reward settings, remains an elusive goal (Nachum & Dai,
2020).

Recent attention has been drawn towards an alternative
method that employs importance sampling (IS) for offline
data distribution correction (Precup, 2000; Jiang & Li, 2016).
Among these, Distribution Correction-Estimation (DICE)-
based methods have garnered substantial interest. They use
a single marginal ratio to reweight rewards for each state-
action pair, thereby achieving a relatively low estimation
variance (Nachum et al., 2019b; Zhang et al., 2020; Lee
et al., 2021). DICE provides a behavior-agnostic estima-
tion of stationary distributions, presenting a more direct
approach to handling the distribution mismatch. However,
DICE-based techniques rely on an implicit assumption of
the dataset’s concentrability(Munos, 2007; Xie et al., 2021b;
Li et al., 2022), otherwise the stationary distribution support
mismatch between the dataset and policy can cause an arbi-
trarily large IS ratio, resulting in unstable training and poor
performance. This problem can be significantly severe with
insufficient data.

To address these challenges, we introduce a novel method,
the Conservative Density Estimation (CDE), that integrates
the strengths of both pessimism-based and DICE-based ap-
proaches. CDE employs the principles of conservative Q-
learning (Kumar et al., 2020) in a unique way, incorporat-
ing pessimism within the stationary distribution space to
achieve a theoretically-backed conservative occupation dis-
tribution. On the one hand, CDE does not rely on Bellman
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update-style value estimation, favoring a direct behavior-
policy-agnostic stationary distribution correction that im-
proves performance in sparse reward scenarios. On the
other hand, by constraining the density of the stationary
distribution induced by OOD state-action pairs, CDE signif-
icantly enhances performance in data-limited settings. This
stands in contrast to the significant performance degradation
observed in baseline offline RL methods with diminishing
dataset sizes, as CDE maintains high rewards even with
only 1% trajectories in challenging D4RL tasks (Fu et al.,
2020).

1. We introduce the first approach to explicitly apply pes-
simism in the stationary distribution space. Notably, CDE
outperforms value-learning-based approaches in sparse re-
ward settings and demonstrates superior performance over
DICE-based methods in handling scarce data situations.

2. We present a method that automatically bounds the con-
centrability coefficient without resorting to the common
concentrability assumption (Rashidinejad et al., 2021; Shi
et al., 2022; Ma et al., 2022; Zhan et al., 2022), underlin-
ing its robustness in managing the OOD extrapolation issue
inherent in offline RL.

3. We demonstrate the resilience of CDE in maintaining
high rewards even with significantly reduced dataset sizes,
such as 1% of trajectories, while prior methods fail. There-
fore, our method provides a viable solution for real-world
applications where data can be scarce or costly to obtain.

2. Related Work
Offline RL with regularization or constraints. To mit-
igate OOD issues, Q-value-based methods are often en-
hanced with regularization or constraint terms (Levine et al.,
2020; Prudencio et al., 2022). These techniques restrict
the learned policy’s deviation from the behavior policy in
the dataset, whether through constrained policy spaces with
explicit constraints (Fujimoto et al., 2019) or regularizers
in the objective (Wu et al., 2019; Peng et al., 2019; Nair
et al., 2020; Fujimoto & Gu, 2021). Particularly, the max-
imum mean discrepancy (MMD) constraint (Kumar et al.,
2019) facilities to mitigate the support mismatch in policy
space. Alternatively, value regularization is employed to
yield lower estimates for unseen states or actions, resulting
in conservative policies (Kostrikov et al., 2021a; Kumar
et al., 2020). However, those methods may suffer insta-
bility from approximation error when learning value with
Bellman update iteratively (Fujimoto et al., 2018; Fu et al.,
2019; Brandfonbrener et al., 2021), often failing in sparse re-
ward settings even with expert demonstrations. Meanwhile,
the reliance on heuristic regularization can lead to overly
conservative policies and degrade performance.

Offline RL with marginal importance sampling. The
Distribution Correction-Estimation (DICE) method repre-

sents a class of approaches that directly address distribution
shift using marginal importance sampling, offering reduced
estimation variance compared to naive importance weight-
ing (Precup, 2000). These methods reframe the learning
objective as maximizing expected reward, using the duality
between value-function linear programming and distribution
optimization (Nachum et al., 2019b; Nachum & Dai, 2020).
DICE calculates the importance ratio using either a forward
method that minimizes the residual error of the Bellman
equation (Zhang et al., 2020), or a backward method that
optimizes the value function via duality (Nachum et al.,
2019a). Some variations add a regularization to the ob-
jective function, yielding a closed-form solution for the
importance ratio (Nachum et al., 2019b; Lee et al., 2021).
Despite their ability to provide unbiased policy evaluation,
DICE-style methods yield arbitrarily large importance ratios
when the dataset lacks sufficient state-action space coverage,
a challenge particularly acute in scarce data settings.

3. Method
3.1. Preliminaries

We formulate reinforcement learning problem in the
context of a Markov Decision Process (MDP) M =
⟨S,A, T, r, γ, ρ0⟩, where S is the state space, A is the ac-
tion space, T : S ×A× S → [0, 1] specifies the transition
probability T (s′|s, a), r : S×A → R is the reward function,
γ is the discount factor, and ρ0 : S → [0, 1] is the initial
state distribution. The policy π : S × A → [0, 1] maps
from a state to a distribution over actions. Given a policy
π, consider the trajectory τ = {s0, a0, s1, a1, . . . } sampled
by π, i.e., s0 ∼ ρ0, at ∼ π(·|at), st+1 ∼ T (·|st, at), the
stationary state-action distribution dπ is defined as

dπ(s, a) = (1− γ)

∞∑
t=0

γt Pr(st = s, at = a). (1)

The goal of RL is to learn a return-maximization policy:
π∗ = argmaxπ Eτ∼π[

∑∞
t=0 γ

tr(st, at)]. This objective is
be equivalent as the expectation of reward (Puterman, 2014):
π∗ = argmaxπ Es,a∼dπ [r(s, a)].

In offline RL, the agent learns the policy from a pre-
collected dataset D = {(si, ai, ri, s′i)}Ni=1. For simplicity,
we denote the empirical state-action distribution of offline
dataset as dD. The DICE-style methods apply marginal
IS to estimate the expection of certain function f(·, ·):
Es,a∼dπ [f(s, a)] = Es,a∼dD [ d

π(s,a)
dD(s,a)

f(s, a)] with dπ, dD

as target and proposal distributions. The IS estimation can
thus be approximated by sampling from offline dataset.

3.2. Conservative Density Estimation

In this section, we present Conservative Density Estima-
tion (CDE), which aims to learns a policy that induces the
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distribution with conservative density in OOD state-action
region. We first consider a f -divergence regularized policy
optimization problem (Nachum et al., 2019a;b):

max
dπ≥0

Edπ [r(s, a)]− αDf (d
π∥dD), (2)

s.t.
∑
a

dπ(s, a) = (1− γ)ρ0(s) + γT∗dπ(s),∀s, (3)

where Df (d
π∥dD) = EdD [f( dπ(s,a)

dD(s,a)
)] is the f -divergence

between two distributions, α is the hyperparameter of reg-
ularization, T∗dπ(s) =

∑
s′,a′ T (s|s′, a′)dπ(s′, a′) is the

transposed transition operator. Here we adhere to state-
wise Bellman flow constraint as (Lee et al., 2021) to in-
corporate the stochasticity of action distribution on next
state a′ ∼ π(·|s′) since the state-action-wise constraint can
lead to overestimation for ‘lucky’ samples (Kostrikov et al.,
2021b) and instability during training. Particularly, we have
following assumption on f function selection:
Assumption 3.1. The f function in f-divergence is strictly
convex and continuously differentiable, and (f ′)−1(x) ≥
0,∀x ∈ R.

The previous DICE methods (Nachum et al., 2019b;
Nachum & Dai, 2020; Lee et al., 2021) transform con-
strained optimization problem to unconstrained one in
Eq.(3) by Lagrange or Fenchel-Rockafellar duality and eval-
uate the unconstrained objective by marginal IS with dD

as proposal distribution. However, one implicit assump-
tion behind DICE methods is that the support of dataset
distribution is large enough and otherwise the density of
unseen state-actions in dD can be zero or arbitrarily small.
Therefore, when the support of dπ mismatches dD, there
will be a large extrapolation error for OOD state-actions
and variance in IS estimation. Meanwhile, the f -divergence
regularization is enforced on the support of data distribution
and approximated by single or several sample points, fail-
ing to serve as an effective supervision to explicitly reduce
extrapolation errors for unseen state-actions.

To overcome the above issues, we consider a new con-
straint on the density of dπ(s, a) by µ(s, a): dπ(s, a) ≤
ϵµ(s, a),∀s, a ∈ supp(µ), where µ(s, a) is a distribution
on OOD state-action pairs, i.e., supp(µ) ∩ supp(dD) = ∅.
The new optimization problem is formulated as

max
dπ≥0

Edπ [r(s, a)]− αDf (d
π∥dD) (4)

s.t.
∑
a

dπ(s, a) = (1− γ)ρ0(s) + T∗dπ(s),∀s (5)

dπ(s, a) ≤ ϵµ(s, a),∀s, a ∈ supp(µ). (6)

The corresponding unconstrained problem is
maxdπ minλ≥0,v L(dπ, v, λ), where

L(dπ, v, λ) = Edπ [A(s, a)] + (1− γ)Eρ0 [v(s0)]

− αDf (d
π∥dD)− Eµ [λ(s, a) (d

π/µ(s, a)− ϵ)]
(7)

and A(s, a) := r(s, a) + γEs′∼T (·|s,a)v(s
′) − v(s) is re-

garded as advantage function if we interpret v(s) as the V-
value of state s. The derivation is attached in Appendix A.1.

In practice, we restrict the state marginal of µ to match
the state distribution of dataset dD(s) as previous OOD
querying methods (Kumar et al., 2020; Kostrikov et al.,
2021a; Lyu et al., 2022) and shrink the OOD region to
unseen actions with existing states. Given a state s in
dataset, suppose there exists n actions a(1), . . . , a(n) such
that (s, a(i)) ∈ D, i = 1, . . . , n, we define the set of un-
seen actions as AOOD(s) := {a

∣∣mini ∥a− a(i)∥∞ ≥ ∆a}.
We further adopt a uniform distribution πµ(a|s) over un-
seen action space AOOD(s) as the policy of µ. Therefore,
µ(s, a) = dD(s)πµ(a|s). We want to emphasize that al-
though we constrain the support of µ to unseen actions with
existing states, our method is still compatible with other
OOD sampling distribution with proper inductive bias.

3.2.1. POLICY EVALUATION AND IMPROVEMENT

Based on the unconstrained objective in Eq.(7), we first
adopt marginal IS to evaluate a policy given its stationary
distribution. To avoid the support mismatch issue, we con-
sider a new proposal distribution d̂D(s, a) := ζdD(s, a) +
(1 − ζ)µ(s, a) in importance sampling, where ζ ∈ (0, 1)
is the mixture coefficient. Therefore, the support of new
proposal distribution can cover the target distribution dπ.
We further replace the original f -divergence regularizer by
Df (d

π∥d̂D) to constrain the density of both OOD and in-
support state-actions. Besides, we substitute the importance
ratio w(s, a) = dπ(s, a)/d̂D(s, a) for dπ as d̂D is fixed.
The new objective function is

L′(w, v, λ) = ζEdD [w(s, a)A(s, a)− αf(w(s, a))]

+ (1− ζ)Eµ [w(s, a)(A(s, a)− λ(s, a))

−αf(w(s, a)) + ϵ̃λ(s, a)] + (1− γ)Eρ0
[v(s0)],

(8)

where ϵ̃ = ϵ
1−ζ . The derivation is attached in Ap-

pendix A.1. With assumption 3.1, the objective in Eq.(4)
is convex and thus is equivalent to the minimax problem
minλ≥0,v maxdπ L(dπ, v, λ) by Slater’s condition. More-
over, the inner maximization has a closed-form solu-
tion (Nachum & Dai, 2020; Nachum et al., 2019b;a) and the
outer minimization is a convex optimization problem. The
proofs are in Appendix A.3A.4.
Proposition 3.2. With assumption 3.1, the closed-form so-
lution to inner maximization problem maxw≥0 L′(w, v, λ)
is

w∗(s, a) = (f ′)−1(Ã(s, a)/α), (9)

where Ã(s, a) := A(s, a) − 1{(s, a) ∈ supp(µ)} · λ(s, a)
denotes regularized advantage function and 1{·} is the
indicator function.
Proposition 3.3. The outer minimization problem
minλ≥0,v L′(w∗, v, λ) is a convex optimization problem.
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Suppose the optimal solution is (λ∗, v∗), then λ∗ has a
closed-form solution

λ∗(s, a) = max{0, A∗(s, a)− αf ′(ϵ̃)},∀s, a ∈ supp(µ),
(10)

where A∗(s, a) = r(s, a) + γEs′∼T (·|s,a)v
∗(s′) − v∗(s).

The optimal regularized advantage is

Ã∗(s, a) =

{
A∗(s, a), (s, a) ∈ supp(dD)
min{αf ′(ϵ̃), A∗(s, a)}, (s, a) ∈ supp(µ)

(11)

Based on the closed-form relation between stationary dis-
tribution dπ and value function, we can thus improve the
policy by maximizing w.r.t. value function. Since it requires
the reward r(s, a) and transition T (·|s, a) to compute regu-
larized advantage function Ã(s, a), which is available only
for (s, a) ∈ D, we consider function approximation for both
V-value v and regularized advantage Ã by parameters φ and
ϕ. The optimization is in two steps: 1) We first optimize vφ
by minimizing the value of states in distribution:

min
φ

EdD [w∗(s, a)(r(s, a) + γEs′vφ(s
′)− vφ(s))

−αf(w∗(s, a))] + (1− γ)Es0∼ρ0
[vφ(s0)].

(12)

2) Then we regress the regularized advantage Ãϕ to the
optimal Ã∗ in Eq.(11). Specifically, we regress the OOD
advantages to αf ′(ϵ̃) if they exceed it and regress the in-
distribution advantages to the values from vφ: Av(s, a) =
r(s, a)+γEs′vφ(s

′)−vφ(s). In summary, we optimize the
regularized advantage function by following mean squared
error (MSE):

min
ϕ

ζEdD [(Ãϕ(s, a)−Aφ(s, a))
2]+

(1− ζ)Eµ

[(
max{Ãϕ(s, a)− αf ′(ϵ̃), 0}

)2]
,

(13)

and obtain the approximated optimal importance ratios for
both in-distribution and OOD state-actions:

w̃∗(s, a) = (f ′)−1(Ãϕ(s, a)/α). (14)

By definition, the optimal distribution is d∗(s, a) =

w̃∗(s, a)d̂D(s, a). In practice, we introduce another con-
straint to enforce

∑
s,a d

∗(s, a) = 1 as (Zhang et al., 2020).
See Appendix A.2 for full derivations.

3.2.2. POLICY EXTRACTION

Finally, we extract the policy from the learned importance
ratios. Note that one policy is uniquely determined given its
corresponding stationary distribution. Therefore, we extract
the policy by minimizing the KL divergence between the sta-
tionary distribution of optimal policy and parameterized pol-

icy πθ, where we approximate dπθ (s, a) ≈ dD(s)πθ(a|s):

min
θ

DKL[d
πθ∥d∗] ≈ E s∼D

a∼πθ

[
log

dD(s)πθ(a|s)
d∗(s, a)

]
(15)

= E s∼D
a∼πθ

[− log w̃∗(s, a)] + Es∼D[DKL(πθ(·|s)∥π̂D(·|s))]

(16)

where π̂D(a|s) = ζπD(a|s) + (1− ζ)πµ(a|s) is the mixed
behavior policy and πD(a|s) denotes the empirical behavior
policy. The mixed policy can be trained via weighted be-
havioral cloning from dataset and OOD sampling. We will
analyze the error induced by state marginal approximation
in Theorem 3.7. The final objective in Eq.(16) consists of
two components: the maximizing of w̃∗ and minimizing
the divergence with mixed behavior policy, indicating the
trade-off between performance improvement by maximizing
the value and conservative learning to reduce extrapolation
error.

Algorithm 1 Conservative Density Estimation

Initialize value functions vφ, Ãϕ, mixed behavior policy
π̂D, policy πθ.

1: ▷ policy evaluation and improvement
2: for training iteration i do
3: Sample batch {(si, ai, ri, s′i)} from D and n OOD

actions {a(1), . . . , a(n)} for each s;
4: Update V-value vφ by Eq.(12);
5: Update regularized advantage Ãϕ by Eq.(13);
6: Update π̂D by weighted importance sampling.
7: end for
8: ▷ policy extraction
9: for training iteration j do

10: Update policy πθ by Eq.(16).
11: end for

The key steps of complete training procedure are summa-
rized in Algo. 1. See Appendix B.2 for full algorithm and
training details. One noteworthy difference from other actor-
critic methods is that CDE updates the policy after the value
function converges, which improves the learning stability
and computation efficiency.

The advantages of CDE over previous DICE methods are
two-fold: 1) the proposal distribution (i.e., d̂D) has wider
coverage than dD, which mitigates the support mismatch
in IS and prevents the arbitrarily large importance ratio;
2) CDE produces a conservative estimation of density in
OOD region. Compared to previous conservative methods,
CDE determines the degree of conservatism precisely by
optimal λ in Proposition 3.3, mitigating overly pessimistic
estimation and loss of the generalization ability (Lyu et al.,
2022). Furthermore, CDE disentangles two optimization
steps, i.e., learning the value function by convex optimiza-
tion and extracting the policy from the optimal importance
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ratio, thereby reducing the compounded error amplified by
the interleaved optimization (Brandfonbrener et al., 2021).

3.3. Theoretical Analysis

CDE adopts a proposal distribution with broader support in
marginal IS and explicitly constrains the stationary distri-
bution density of the OOD region, resulting in a theoretical
bound for the importance ratio, also known as concentrabil-
ity coefficent (Munos, 2007; Rashidinejad et al., 2021).

Proposition 3.4 (Upper bound of concentrability ratio on
OOD state-actions). With assumption 3.1, the theoretical
optimal importance ratio is upper bounded by w∗(s, a) ≤
ϵ̃, ∀(s, a) ∈ supp(µ).

The proof of Proposition 3.4 is in Appendix A.5. It should be
noted that an unbounded importance ratio can cause unstable
training for importance-sampling-based methods (Shi et al.,
2022). We further bound the function approximation w̃∗ in
Eq.(14) with following continuity assumption:

Assumption 3.5 (Lipschitz continuity of Aϕ(s, a)). There
is a constant L > 0 such that ∀a, a′ ∈ AOOD(s),∀s ∈ D,

|Aϕ(s, a)−Aϕ(s, a
′)| ≤ L∥a− a′∥∞.

Theorem 3.6 (Upper bound of function approximated con-
centrability ratio). Suppose that 1) the action space is
d-dim, i.e., A ⊂ Rd, 2) the diameter of A is M , i.e.,
∥a1−a2∥∞ ≤M,∀a1, a2 ∈ A, and 3) there are at least N
OOD action samples from µ given any state s ∈ D. When
the continuity assumption 3.5 holds, ∀(s, a) ∈ supp(µ),
with probability at least 1− δ, δ > 0, we have

(f ′) (w̃∗(s, a)) ≤ f ′(ϵ)+
ξ

α
+
L

α

(
∆ad +

Md

N
log

1

δ

)1/d

,

(17)
where ξ is the maximum residual error of OOD regression
in Eq.(13), ∆a is the radius of in-distribution region as
previously defined.

The proof of Theorem 3.6 is in Appendix A.6. Notably, the
upper bound shrinks with high probability as the number of
OOD samples increases and it requires more samples for
the same bound when the dimension of A increases.

Proposition 3.4 and Theorem 3.6 show that CDE inher-
ently bounds the OOD concentrability coefficient. This
coefficient is frequently assumed to be bounded in the vari-
ance/performance analysis in both off-policy evaluation and
offline RL domains (Rashidinejad et al., 2021; Ma et al.,
2022; Zhan et al., 2022), as an unbounded concentrability
coefficient can introduce instability during training. As such,
the CDE framework shows promise as a potential tool for
reducing variance or establishing performance lower bounds
in future research.

Meanwhile, CDE evaluates the policy within the stationary
distribution space, enabling the computation of performance
differences between policies based on the discrepancies in
their respective stationary distributions. Consequently, we
can establish the following bound on the performance gap
between the learned and optimal policies.

Theorem 3.7 (The upper bound of performance gap). Sup-
pose the maximum reward is Rmax = maxs,a ∥r(s, a)∥, let
V π(ρ0) := Es0∼ρ0

[V π(s0)] denote the performance given
a policy π. For policy π optimized by Eq.(16) and N transi-
tion data from dD, under mild assumptions, we have

V ∗(ρ0)− V π(ρ0) ≤
4Rmax

1− γ
DTV(d

D(s)∥d∗(s)) + eN

and eN converges in probability to zero at the rate
N− 1

4+h ,∀h > 0, i.e., N
1

4+h eN
N→∞−−−−→ 0 in probability.

Here, dD(s), d∗(s) denote the state marginal of dD, d∗, and
V ∗(ρ0) denotes the performance of optimal policy.

The full assumptions and proof are in Appendix A.7. The
performance gap bound comprises two elements: 1) the
discrepancy between the state distribution of the data and the
optimal policy, and 2) the number of training samples. The
first element stems from the state-marginal approximation
in Eq.(15) during policy extraction. Importantly, this bound
explicitly highlights two crucial factors influencing the
final performance of the learned policy: the performance
of behavior policy πD and the size of the offline dataset. It
provides a quantitative illustration of how the offline RL
problem difficulty increases as the performance of behavior
policy degrades and the dataset size decreases.

4. Experiment
In this section, we aim to study if CDE can truly combine
the advantages of both pessimism-based methods and the
DICE-based approaches. We are particularly interested in
two main questions:

(1) Does CDE incorporate the strengths of the stationary-
distribution correction training framework when handling
sparse reward settings?

(2) Can CDE’s explicit density constraint effectively manage
out-of-distribution (OOD) extrapolation issues in situations
with insufficient datasets?

Tasks. To answer these questions, we adopt 3 Maze2D
datasets, 8 Adroit datasets, and 9 MuJoCo (random, medium,
medium-expert) datasets from the D4RL benchmark (Fu
et al., 2020). We use the normalized score as the evaluation
metric. Note that the Maze2D and Adroit tasks are challeng-
ing due to their sparse rewards. To assess performance
under scarce data conditions, we employ a random sam-
pling strategy on the full datasets (details are provided in
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Table 1: Normalized scores of CDE against other baselines. The scores are taken average over the evaluations of final 20% training steps
with 3 seeds, where each evaluation is tested on 20 trajectories. In MuJoCo tasks, ”-r”, ”-m”, ”-m-e” represent ”-random”, ”-medium”,
”-medium-expert”. The versions of tasks are ”-v1” for Maze2D and Adroit and ”-v2” for MuJoCo. We bold the mean values that ≥ 0.95
∗ highest value.

Task BC BCQ CQL IQL TD3+BC AlgaeDICE OptiDICE CDE

maze2d-umaze 3.8 32.8 5.7 50.0 41.5 -15.7 111.0 122.6±3.9
maze2d-medium 30.3 20.7 5.0 31.0 76.3 10.0 145.2 153.2±12.0
maze2d-large 5.0 47.8 12.5 58.0 77.8 -0.1 155.7 206.9±14.4

halfcheetah-r 2.3 2.2 18.6 13.5 11.0 -0.3 2.5 2.4±1.4
walker2d-r 1.7 6.9 2.5 8.0 8.5 0.5 1.2 2.3±3.7
hopper-r 4.8 10.6 2.5 4.4 1.6 0.9 22.3 26.9±5.8
halfcheetah-m 42.6 45.7 49.1 46.8 48.0 -2.2 46.0 43.7±2.6
walker2d-m 75.3 73.9 83.3 77.4 84.7 1.2 67.5 70.1±5.9
hopper-m 52.9 53.3 64.6 50.3 57.7 0.3 47.1 50.1±4.1
halfcheetah-m-e 55.2 76.0 75.6 80.3 84.9 -0.8 72.5 76.6±8.9
walker2d-m-e 107.5 109.8 109.5 105.3 110.3 1.1 99.0 107.5±16.1
hopper-m-e 52.5 83.0 102.0 91.5 98.0 0.4 95.5 107.3±4.0

pen-human 63.9 68.9 37.5 71.5 2.0 -3.3 11.9 72.1±15.8
hammer-human 1.2 0.5 4.4 1.4 1.4 0.3 0.3 1.9±0.7
door-human 2.0 0.0 9.9 4.3 -0.3 0.0 0.1 7.7±3.3
relocate-human 0.1 -0.1 0.2 0.1 -0.3 -0.1 -0.1 0.3±0.1
pen-expert 85.1 114.9 107.0 111.7 79.1 -3.5 83.3 105.0±12.3
hammer-expert 125.6 107.2 86.7 116.3 3.1 0.3 127.1 126.3±3.4
door-expert 34.9 99.0 101.5 103.8 -0.3 0.0 105.7 105.9±0.3
relocate-expert 101.3 41.6 95.0 102.7 -1.5 -0.1 99.8 102.6±1.9

Total Score 848 994.7 973.1 1128.3 783.5 -11.1 1293.6 1491.4

Section 4.2). For all tasks, we use the latest versions of the
datasets.

Baselines. We compare our CDE method with a collection
of state-of-the-art offline RL baselines spanning different
categories. These include: 1) behavior cloning (BC); 2)
BCQ(Fujimoto et al., 2019) as a direct policy constraint
method; 3) CQL(Kumar et al., 2020) as a value regulariza-
tion method; 4) IQL(Kostrikov et al., 2021b) as an asym-
metric Q-learning method; 5) TD3+BC(Fujimoto & Gu,
2021) as an implicit policy regularization method; 6) Al-
gaeDICE(Nachum et al., 2019b) as a policy-gradient-based
DICE method; and 7) OptiDICE(Lee et al., 2021) as an
in-sample (without OOD querying) DICE method. More
details regarding baselines are available in Appendix B.

We use tanh-squashed Gaussian policy for CDE’s policy π
following SAC(Haarnoja et al., 2018) and tanh-squashed
Gaussian mixture model for mixed empirical behavior pol-
icy π̂D to improve the expressivity for multi-modality of
offline data from composite policies (e.g., medium-expert
tasks in MuJoCo) or non-Markovian policies (e.g., Maze2D
tasks). We choose soft-chi function fsoft−χ2 (Lee et al.,
2021) in f -divergence:

fsoft−χ2 =

{
x log x− x+ 1, 0 < x < 1,

(x− 1)2/2, x ≥ 1.
(18)

and thus the (f ′)−1 is equal to ELU function (Clevert et al.,

2015), which satisfies Assumption 3.1 and also avoids the
gradient vanishing problem for small values when comput-
ing importance ratios.

For consistent evaluation and fair comparison, we use the
same set of hyper-parameters for experiments in the same
task domain. We evaluate all methods every 1000 training
steps and compute a mean value over 20 evaluated trajec-
tories. The final scores are the mean of evaluation values
in last 20% training steps. Full experimental details are
included in Appendix B.

4.1. Main results on D4RL benchmark

Table 1 presents the normalized scores of our method and
baselines. In dense-reward MuJoCo tasks, CDE obtains
competitive performances compared to the best performance
of prior methods in random and medium tasks, while achiev-
ing better performance than most baselines in medium-
expert tasks, which validates the ability of CDE that extracts
the optimal policy from mixed-level data. In the sparse-
reward Maze2D and Adroit domains, where the agents are
more vulnerable to the value function approximation error
due to the sparsity of rewards, CDE consistently outper-
forms all other baselines in almost all tasks. Specifically,
CDE achieves state-of-the-art performance in Maze2D do-
main by a large margin. The substantial improvement over
standard-RL-based methods indicates that CDE can miti-
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Figure 1: The results on sub-datasets with different dataset sizes.

gate compounded value estimation error by leveraging a
closed-form optimal value solution to replace bootstrapping
value update.

Another notable observation is that CDE exceeds both Al-
gaeDICE and OptiDICE in most tasks. AlgaeDICE falls
short because it updates the policy via high-variance policy
gradients, as opposed to extracting from optimal impor-
tance ratios. While OptiDICE exhibits comparable perfor-
mance in tasks like Maze2D, it tends to overestimate unseen
state-action pairs as it applies f -divergence regularization
exclusively to in-distribution regions, thus leading to out-of-
support issues. By introducing pessimism on the importance
ratios of OOD regions, CDE mitigates potential overesti-
mation, resulting in superior performance, especially in
more challenging tasks like Maze2D ”-large” and Adroit
”-human”.

4.2. Comparative experiments on scarce data setting

To investigate further into situations where offline data is
scarce and the state-action occupation of the empirical dis-
tribution is sparse, we examine the performance of different
methods across datasets of varying sizes. In these circum-
stances, agents are likely to confront a more severe distribu-
tion shift problem, causing simple imitation learning to fail
or experience a significant performance drop.

Given the extreme difficulty of the Adroit ”-human” tasks

due to their high-dimensional space, narrow data distribu-
tion, and data scarcity (25 trajectories), we select Maze2D
and MuJoCo tasks as our testing platforms. We randomly
sample 1%, 3%, 10%, and 30% of trajectories from standard
datasets to create our sub-datasets. Our chosen baselines
include BCQ, CQL, IQL, TD3+BC, and OptiDICE. Due to
the inferior performance of CQL, we exclude it from the
Maze2D tasks experiments. The final results represent the
average across 5 seeds, excluding the minimum and maxi-
mum values. The rest of the evaluation process aligns with
the procedures used in the full dataset experiments.

The comparison results are shown in fig. 1, we defer the
comparison of MuJoCo medium tasks to Appendix B. In
the Maze2D domain, CDE consistently achieves the high-
est scores across all dataset sizes. In the MuJoCo domain,
CDE significantly outperforms the baselines on the hopper
tasks and exhibits comparable performance to other meth-
ods when the dataset size is relatively larger. For insufficient
data settings, all methods demonstrate poorer performance
in halfcheetah, while CDE maintains high scores and ex-
periences less reduction in walker2d. Notably, OptiDICE
displays less robustness against scarce data, undergoing a
sharp performance drop despite achieving comparable per-
formance in the full dataset setting. Moreover, considering
the original Adroit ”-human” tasks already contain scarce
data, OptiDICE also falls short, as shown in Table 1. This is
because the narrow distribution of scarce data exacerbates



Submission and Formatting Instructions for ICML 2023

the support mismatch problem in OptiDICE, leading to a
significant bias in the importance-sampling-based off-policy
evaluation. Conversely, CDE employs a mixed data policy,
successfully mitigating large distribution shifts between the
stationary distribution support of the dataset and the learned
policy.

These results underscore the effectiveness of integrating con-
servatism into density estimation as implemented in CDE.
However, it prompts the question: given that conservative
value function estimation is also prevalent in standard-RL-
based offline RL methods (e.g., CQL), why do they un-
derperform in insufficient data settings? To answer this
question, we delve deeper into the relationship between the
performance of CDE and the degree of conservativeness.

(a) CDE, ϵ̃ = 0.3 (b) CDE, ϵ̃ = 0.03

(c) CDE, ϵ̃ = 0.003 (d) CQL

Figure 2: The heatmaps of agents with different levels of con-
servatism in maze2d-large environment. Yellow denotes the high
occupation probability. The average normalized scores of four
policies are 221, 150, 46 and 12. The starting point of each tra-
jectory may vary but the destination is the same, i.e., the red star
in the figures. Smaller ϵ̃ indicates more conservative policy. The
yellow accumulation points except the destination indicate that the
agent is stuck at those regions.

4.3. Ablation study on the level of conservatism

We select the maze2d-large environment as our experimen-
tal platform as the agent’s position directly represents the
stationary distribution of the learned policy. We contrast
CDE and CQL, two representative categories of pessimism
augmentation in offline learning. According to Theorem 3.6,
the theoretical OOD importance ratio is upper bounded by
αf ′(ϵ̃). Hence, we modify the degree of conservatism by

altering ϵ̃; a smaller ϵ̃ imposes stricter constraints on density,
resulting in more conservative policies.

The heatmap in fig.2, which represents the stationary dis-
tribution of position based on 100 trajectories, reveals that
the probability mass at the midway and starting points in-
creases as the level of conservatism escalates. In particular,
in fig.2c, the agent is trapped at yellow points due to the
overly strict constraint. Although stronger regularization
can reduce OOD extrapolation error, excessive conservatism
can harm generalization and lead to significant performance
degradation. Compared to CDE, CQL policy is less likely
to be trapped in single points but still struggles to reach
the destination. There are two main reasons: 1) the sparse
reward setting makes it challenging to estimate the Q value
accurately by Bellman bootstrapping; 2) CQL applies value
regularization by a distribution that evolves along the policy
update, which is less stable and harder to adjust the level of
conservatism. In contrast, the CDE employs the closed-form
relation between value and density to explicitly constrain
the stationary distribution space, allowing for more precise
control over the level of conservatism.

5. Conclusion
In this work, we propose CDE, a new offline RL approach,
derived from the perspective of stationary state-action oc-
cupation. CDE applies the pessimism mechanism on sta-
tionary distribution and enjoys the benefits from both fields.
CDE evaluates the policy in a behavior-agnostic manner,
estimating the state-action density with proper conservatism,
which makes it perform advantageously in sparse reward and
scarce data settings. We further provide the theoretical anal-
ysis for the importance-sampling ratios and performance of
CDE. Extensive experimental results demonstrated remark-
able improvements over previous baselines in challenging
tasks, highlighting its practical potential for real-world ap-
plications.

The major limitations include that CDE requires the strict
alignment of initial state distribution in offline data and
online environments, which restricts its performance in in-
consistent settings. One potentially negative impact of CDE
is that there will be a risk of algorithmic bias if the offline
data used for training is not representative, leading to unfair
outcomes. Therefore, it’s crucial that these technologies are
developed ethically and thoughtfully to mitigate potential
negative consequences.
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A. Supplementary Derivations and Proofs
A.1. Derivation of Eq.(7)(8)

For Eq.(7), the Lagrangian for equation 4-6 is

max
dπ

min
λ≥0,v

L(dπ, v, λ) := E (s,a)∼dπ

s′∼T (·|s,a)
[r(s, a)]−

∑
s,a∈supp(µ)

λ(s, a)[dπ(s, a)− ϵµ(s, a)]+ (19)

∑
s

v(s)[(1− γ)ρ0(s) + γT∗dπ(s)−
∑
a

dπ(s, a)]− αDf (d
π∥dD) (20)

=Edπ [r(s, a)]− Eµ

[
λ(s, a)

(
dπ

µ
− ϵ

)]
− αDf (d

π∥dD) (21)

+ (1− γ)Eρ0 [v(s0)] +
∑
s̄,ā

v(s)T (s|s̄, ā)dπ(s̄, ā)− Edπ [v(s)] (22)

=Edπ [r(s, a)]− Eµ

[
λ(s, a)

(
dπ

µ
− ϵ

)]
− αDf (d

π∥dD) (23)

+ (1− γ)Eρ0 [v(s0)] +
∑
s,a

v(s′)T (s′|s, a)dπ(s, a)− Edπ [v(s)] (24)

=Edπ [r(s, a)]− Eµ

[
λ(s, a)

(
dπ

µ
− ϵ

)]
− αDf (d

π∥dD) (25)

+ (1− γ)Eρ0
[v(s0)] + Es,a∼dπ,s′∼T (·|s,a)[v(s

′)]− Edπ [v(s)] (26)

=Edπ

[
r(s, a) + Es′∼T (·|s,a)[v(s

′)]− v(s)
]
− Eµ

[
λ(s, a)

(
dπ

µ
− ϵ

)]
(27)

− αDf (d
π∥dD) + (1− γ)Eρ0

[v(s0)] (28)

=Edπ [A(s, a)] + (1− γ)Eρ0
[v(s0)]− αDf (d

π∥dD)− Eµ

[
λ(s, a)

(
dπ

µ
− ϵ

)]
(29)

For Eq.(8), we have

L′(w, v, λ) = Edπ [A(s, a)] + (1− γ)Eρ0
[v(s0)]− αDf (d

π∥d̂D)− Eµ

[
λ(s, a)

(
dπ

µ
− ϵ

)]
(30)

=Ed̂D

[
dπ

d̂D
A(s, a)− αf

(
dπ

d̂D

)]
+ (1− γ)Eρ0 [v(s0)]− Eµ

[
λ(s, a)

(
dπ

µ
− ϵ

)]
(31)

=Ed̂D [w(s, a)A(s, a)− αf(w(s, a))] + (1− γ)Eρ0
[v(s0)]− Eµ

[
λ(s, a)

(
dπ

µ
− ϵ

)]
(32)

=ζEdD [w(s, a)A(s, a)− αf(w(s, a))] + (1− γ)Eρ0 [v(s0)] (33)
+ (1− ζ)Eµ [w(s, a)(A(s, a)− λ(s, a))− αf(w(s, a)) + ϵ̃λ(s, a)] , (34)

The above derivations lead to the Eq.(7)(8) in the main content.

A.2. Derivation of normalization for stationary distribution

In practice, the optimal distribution d∗ may not satisfy
∑

s,a d
∗(s, a) = 1 due to function approximation error. Therefore,

we explicitly enforce the
∑

s,a d
∗(s, a) = 1 (Zhang et al., 2020) to make d∗ a valid distribution, which is equivalent to

Ed̂Dw∗(s, a) = 1.

With new normalization constraint, the corresponding unconstrained problem becomes

min
λ≥0,v,η

max
w
L(w; v, λ, η) := ζEdD [w(s, a)A(s, a)− αf(w(s, a))] + (1− γ)Eρ0

[v(s0)] (35)

+ (1− ζ)Eµ [w(s, a)(A(s, a)− λ(s, a))− αf(w(s, a)) + ϵ̃λ(s, a)] + η(1− Ed̂Dw
∗(s, a)) (36)

= ζEdD [w(s, a)(A(s, a)− η)− αf(w(s, a))] + (1− γ)Eρ0
[v(s0)] (37)

+ (1− ζ)Eµ [w(s, a)(A(s, a)− λ(s, a)− η)− αf(w(s, a)) + ϵ̃λ(s, a)] + η, (38)
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where η is the dual variable of the normalization constraint. Therefore, we only need to replace Ã by Ã− η for optimization
w.r.t. vφ and πθ. Meanwhile, we will also update η by gradient descent. See more details in full algorithm in Appendix B.2.4.

A.3. Proof for Proposition 3.2

Let ∂L′(w,v,λ)
∂w = 0 and we have

ζEdD [A(s, a)− αf ′(w(s, a))] + (1− ζ)EdD [A(s, a)− λ(s, a)− αf ′(w(s, a))] = 0 (39)

Separate state-action space S ×A into the support of dD and µ, then we can get the solution as Eq.(9). Meanwhile, w∗ ≥ 0
always holds by assumption 3.1. Therefore, the solution is valid and is exactly the optimal solution.

The closed-form solution to optimal importance ratio can also be derived by Fenchel-Rockafellar dual form of f -
divergence (Nachum et al., 2019b; Nachum & Dai, 2020), which leads to the same results.

A.4. Proof for Proposition 3.3

Notice that the convexity of dual function, which corresponds to g(v, λ) := maxw L′(w, v, λ) in our setting, is proved by
previous literature (Proposition 1, section 8.3 in (Luenberger, 1997)).

Then we prove the closed form of optimal λ∗. Consider the partial differential of L′(w∗, v, λ) w.r.t λ:

∂L′(w∗, v, λ)

∂λ
=

∂

∂λ
(1− ζ)Eµ

[
(f ′)−1

(
A− λ

α

)
(A− λ)− αf

(
(f ′)−1

(
A− λ

α

))
+ λϵ̃

]
(40)

=(1− ζ)Eµ

[
((f ′)−1)′

(
A− λ

α

)(
− 1

α

)
(A− λ)− (f ′)−1

(
A− λ

α

)
(41)

−αf ′
(
(f ′)−1

(
A− λ

α

))
((f ′)−1)′

(
A− λ

α

)(
− 1

α

)
+ ϵ̃

]
(42)

=(1− ζ)Eµ

[
−((f ′)−1)′

(
A− λ

α

)
A− λ

α
− (f ′)−1

(
A− λ

α

)
(43)

+((f ′)−1)′
(
A− λ

α

)
A− λ

α
+ ϵ̃

]
(44)

=(1− ζ)Eµ

[
−(f ′)−1

(
A− λ

α

)
+ ϵ̃

]
(45)

We omit (s, a) for A and λ functions for brevity. By assumption 3.1, f is convex and f ′ is monotonic increasing. Therefore,
when A(s, a) ≤ αf ′(ϵ̃), the gradient of λ is always non-negative for λ ≥ 0; otherwise, the gradient equals to zero when
λ = A(s, a)− αf ′(ϵ̃).

Therefore, the optimal solution of λ is

λ∗(s, a) = max{0, A(s, a)− αf ′(ϵ̃)}. (46)

Plug-in the λ∗ to Proposition 3.2 and then we can get the optimal regularized advantage function Ã∗.

A.5. Proof for Proposition 3.4

Combine equation 9 and equation 10,

w∗(s, a) := (f ′)−1

(
A(s, a)− λ∗(s, a)

α

)
(47)

= (f ′)−1

(
A(s, a)−max{0, A(s, a)− αf ′(ϵ̃)}

α

)
(48)

= (f ′)−1

(
min

{
A(s, a)

α
, f ′(ϵ̃)

})
(49)
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By Assumption 3.1, f ′ is strictly increasing and so is (f ′)−1. As a result,

w∗(s, a) = (f ′)−1

(
min

{
A(s, a)

α
, f ′(ϵ̃)

})
= min{(f ′)−1(A(s, a)/α), ϵ̃} (50)

A.6. Proof for Theorem 3.6

We first give the following lemma.
Lemma A.1. Suppose that 1) the action space is d-dim, i.e., A ⊂ Rd, 2) the diameter of A is M , i.e., ∥a1 − a2∥∞ ≤
M,∀a1, a2 ∈ A , and 3) there are N action samples from µ given any state s ∈ D, denoted by (s, a1), . . . , (s, aN ), and µ
is a uniform distribution over OOD action space. Let δ > 0, (s, a) ∈ D, ã ∈ AOOD(s). We have

P
(

min
i=1,...,N

∥ã− ai∥∞ > δ

)
≤
(
1− δd −∆ad

Md

)N

(51)

Proof. Let B∞(x, y) = {x′ ∈ Rd : ∥x − x′∥∞ ≤ y} denote the d-dim Euclidean Ball under ∥ · ∥∞. The volume of
B∞(x, y) is then given by Vol(B∞(x, y)) = 2dyd. We have

P(∥ã− a1∥∞ > δ) = 1− P(∥ã− a1∥∞ ≤ δ) = 1− P(a1 ∈ B∞(ã, δ)) (52)

Recall that (s, a1), . . . , (s, aN ) are i.i.d. samples from uniform distribution on A\B∞(a,∆a). Thus, we can establish the
following equality

P(a1 ∈ B∞(ã, δ)) =

∫
Rd

1{x ∈ B∞(ã, δ)}µ(x)dx (53)

=

∫
Rd

1{x ∈ B∞(ã, δ)}1{x ∈ A\B∞(a,∆a)}
Vol(A\B∞(a,∆a))

dx (54)

=
1

Vol(A\B∞(a,∆a))

∫
Rd

1{x ∈ B∞(ã, δ) ∩ A\B∞(a,∆a)}dx (55)

=
Vol(B∞(ã, δ) ∩ A\B∞(a,∆a))

Vol(A\B∞(a,∆a))
(56)

Since the action space A is bounded with radius M ,

Vol(A\B∞(a,∆a)) ≤ Vol(B∞(a,M)) (57)

In addition, notice that

Vol(B∞(ã, δ) ∩ A\B∞(a,∆a)) ≥ Vol(B∞(ã, δ))− Vol(B∞(a,∆a)) (58)

Combining the above inequalities and plugging in the formula for d-dim ball under ∥ · ∥∞, we have

P(∥ã− a1∥∞ > δ) (59)
=1− P(a1 ∈ B∞(ã, δ)) (60)

≤1− Vol(B∞(ã, δ))− Vol(B∞(a,∆a))

Vol(B∞(a,M))
(61)

=1− δd −∆ad

Md
(62)

By independence between the OOD samples

P
(

min
i=1,...,N

∥ã− ai∥∞ > δ

)
(63)

=P

(
N⋂
i=1

{∥ã− ai∥∞ > δ}

)
= P(∥ã− a1∥∞ > δ)N ≤

(
1− δd −∆ad

Md

)N

(64)

This finishes the proof.
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As a remark, if we consider ∥ · ∥p instead of ∥ · ∥∞, the result would still be the same. Now we give the proof of Theorem
3.6.

Proof. Let (s, a) ∈ D and suppose that (s, a1), . . . , (s, aN ) are the i.i.d. samples from µ. Let a′ ∈ {a1, . . . , aN} be the
OOD sample that is closest to a under ∥ · ∥∞ (i.e., a′ = argminx∈{a1,...,aN} ∥x− a∥∞). Since the maximum regression
residual error is ξ, we have

Ãϕ(s, a
′) ≤ αf ′(ϵ̃) + ξ. (65)

Then, by assumption 3.5, we have

Ãϕ(s, a) ≤ Ãϕ(s, a
′) + |Ãϕ(s, a)− Ãϕ(s, a

′)| ≤ αf ′(ϵ̃) + L · ∥a− a′∥∞ + ξ (66)

Let δ̃ > 0 and δ′ = α
L (f

′(ϵ̃+ δ̃)− f ′(ϵ̃)− ξ
α ). Suppose δ′ > 0, by Lemma A.1, and using the fact that 1+x ≤ ex, ∀x ∈ R,

we have

P(∥a′ − a∥∞ ≤ δ′) ≥ 1−
(
1− δ′d −∆ad

Md

)N

≥ 1− e−N δ′d−∆ad

Md (67)

Combine equation 66 and equation 67, we have, with probability at least 1− e−N δ′d−∆ad

Md ,

Ãϕ(s, a) ≤ αf ′(ϵ̃) + Lδ′ + ξ = αf ′(ϵ̃+ δ̃) (68)

Recall that w̃∗(s, a) := (f ′)−1(Ãϕ(s, a)/α). By equation 68, we have

w̃∗(s, a) := (f ′)−1(Ãϕ(s, a)/α) ≤ (f ′)−1(f ′(ϵ̃+ δ̃)) = ϵ̃+ δ̃ (69)

with probability at least 1− e−N δ′d−∆ad

Md , where δ′ = α
L (f

′(ϵ̃+ δ̃)− f ′(ϵ̃)− ξ
α ). The inequality step in equation 69 follows

from the fact that f ′ is increasing.

Let δ ∈ (0, 1). Consider δ̃ = (f ′)−1(f ′(ϵ̃) + ξ
α + L

α (∆ad + Md

N log 1
δ )

1
d )− ϵ̃. First, we verify δ′ > 0 with this choice of δ̃.

δ′ :=
α

L

(
f ′(ϵ̃+ δ̃)− f ′(ϵ̃)− ξ

α

)
(70)

=
α

L

(
f ′(ϵ̃) +

ξ

α
+

L

α

(
∆ad +

Md

N
log

1

δ

) 1
d

− f ′(ϵ̃)− ξ

α

)
(71)

=

(
∆ad +

Md

N
log

1

δ

) 1
d

(72)

> 0 (73)

Substitute δ̃ back into equation 69. We get

w∗(s, a) ≤ ϵ̃+ (f ′)−1

(
f ′(ϵ̃) +

ξ

α
+

L

α

(
∆ad +

Md

N
log

1

δ

) 1
d

)
− ϵ̃ (74)

= (f ′)−1

(
f ′(ϵ̃) +

ξ

α
+

L

α

(
∆ad +

Md

N
log

1

δ

) 1
d

)
(75)
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with probability of at least

1− e−N δ′d−∆ad

Md (76)

=1− exp

(
−N

(αL (f
′(ϵ̃+ δ̃)− f ′(ϵ̃)− ξ

α ))
d −∆ad

Md

)
(77)

=1− exp

(
−N

(αL (f
′(ϵ̃) + ξ

α + L
α (∆ad + Md

N log 1
δ )

1
d − f ′(ϵ̃)− ξ

α ))
d −∆ad

Md

)
(78)

=1− exp

(
−N

∆ad + Md

N log 1
δ −∆ad

Md

)
(79)

=1− δ (80)

This finishes the proof of Theorem 3.6.

A.7. Proof of Theorem 3.7

In this section, we consider the performance of our policy as the sample size N grows.

Let dD denote the data distribution from which D is obtained. Thus D can be viewed as N i.i.d. samples from dD. In this
section, we use the notation with subscript DN to denote D to address the number of data and avoid ambiguity.

Recall that πθ minimizes the following objective

1

N

N∑
i=1

DKL(d
D(si)πθ(·|si)∥d∗(si, ·)) (81)

which is the empirical version of the following expectation

Es∼dD [DKL(d
D(si)πθ(·|si)∥d∗(si, ·))] (82)

We make following assumptions:

Assumption A.2. Denote the space of parameter θ in the policy extraction step by Θ. Let gθ(s) := DKL(πθ(·|s)∥π∗(·|s)),
where d∗(s) denotes the state marginal of d∗. Then, the function class F = {gθ(·) : S → R|θ ∈ Θ} is dD-Donsker. And
Vars∼dD(s)(gθ(s)) <∞ for all θ ∈ Θ.

Assumption A.2 guarantees the consistency of θ trained with dataset DN , which is a common assumption when considering
training with finite samples (Van der Vaart, 2000; Geer, 2000; Ma & Kosorok, 2005; Cheng & Huang, 2010). A sufficient
condition for Assumption A.2 is Θ being bounded, together with a Lipschitz-type condition on F (Van der Vaart, 2000).

Assumption A.3. Suppose the policy extracted from Eq.(16) is π, define the state marginal of dD, dπ, d∗ as
dD(s), dπ(s), d∗(s), then

DTV(d
π(s)∥dD(s)) ≤ DTV(d

∗(s)∥dD(s)) (83)

The Assumption A.3 holds in general because empirically, the performance of learned policy π is in between πD and π∗,
indicating that the stationary state distribution of learned policy dπ is closer to dataset distribution than the optimal state
distribution.

Then we introduce the following lemma based on Lemma 6 in (Xu et al., 2020):

Lemma A.4. Suppose the maximum reward is Rmax = maxs,a ∥r(s, a)∥, V π(ρ0) := Es0∼ρ0 [V
π(s0)] denote the perfor-

mance given a policy π, then with assumption A.3,

|V π(ρ0)− V ∗(ρ0)| ≤
4Rmax

1− γ
DTV(d

∗(s)∥dD(s)) + 2Rmax

1− γ
EdD(s)[DTV(π(·|s)∥π∗(·|s))], (84)

where dπ(s), dD(s) denote the state marginal of dπ, dD and dDπ(s, a) := dD(s)π(a|s).
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Proof.

|V π(ρ0)− V ∗(ρ0)| (85)

=
1

1− γ

∣∣E(s,a)∼dπ [r(s, a)]− E(s,a)∼d∗ [r(s, a)]
∣∣ (86)

≤ Rmax

1− γ

∑
s,a

|dπ(s, a)− d∗(s, a)| (87)

=
2Rmax

1− γ
DTV(d

π∥d∗) (88)

≤2Rmax

1− γ

(
DTV(d

π∥dDπ) +DTV(d
Dπ∥dDπ∗) +DTV(d

Dπ∗∥d∗)
)

(89)

=
2Rmax

1− γ

(
DTV(d

π(s)∥dD(s)) +DTV(d
D(s)∥d∗(s))

)
+

2Rmax

1− γ
Es∼dD(·)[DTV(π(·|s)∥π∗(·|s))] (90)

≤4Rmax

1− γ
DTV(d

∗(s)∥dD(s)) + 2Rmax

1− γ
EdD(s)[DTV(π(·|s)∥π∗(·|s))] (91)

The Eq.(89) follows the triangle inequality of TV distance.

Now we give the complete statement and proof of Theorem 3.7.
Theorem A.5. Suppose the maximum reward is Rmax = maxs,a ∥r(s, a)∥, let V π(ρ0) := Es0∼ρ0

[V π(s0)] denote the
performance given a policy π. For policy πθ optimized by Eq.(16) and N transition data from dD, if πθ is a universal
approximator, under Assumption A.2 and A.3, we have

V ∗(ρ0)− V πθ (ρ0) ≤
4Rmax

1− γ
DTV(d

D(s)∥d∗(s)) + eN

and eN converges in probability to zero at the rate N− 1
4+h ,∀h > 0, i.e., N

1
4+h eN

N→∞−−−−→ 0 in probability.

Proof. By Lemma A.4, it remains to establish the vanishing rate of eN := 2Rmax
1−γ EdD [DTV(π∥π∗)]. By Pinsker’s inequality

and Jensen’s inequality,

Es∼dD [DTV(π(·|s)∥π∗(·|s))] ≤Es∼dD [
√

2DKL(π(·|s)∥π∗(·|s))] (92)

≤
√

2Es∼dD [DKL(π(·|s)∥π∗(·|s))] (93)

Recall that the πθ minimizes an empirical expectation

min
θ

1

N

N∑
i=1

DKL(d
D(si)πθ(·|si)∥d∗(si, ·)) (94)

=min
θ

1

N

N∑
i=1

Ea∼πθ

[
log

dD(si)πθ(a|si)
d∗(si)π∗(a|si)

]
(95)

=min
θ

1

N

N∑
i=1

Ea∼πθ

[
log

πθ(a|si)
π∗(a|si)

+ log
dD(s)

d∗(si)

]
(96)

=min
θ

1

N

N∑
i=1

Ea∼πθ

[
log

πθ(a|si)
π∗(a|si)

]
(97)

=min
θ

1

N

N∑
i=1

DKL(πθ(·|si)∥π∗(·|si)). (98)

i.e., the objective is equivalent to minimizing the KL divergence over policy distribution. Since πθ is a universal approximator,
then it exactly minimizes the objective, i.e.,

1

N

N∑
i=1

DKL(πθ(·|si)∥π∗(·|si)) = 0 (99)



Submission and Formatting Instructions for ICML 2023

Use notation gθ(s) = DKL(π(·|s)∥π∗(·|s)) as defined in Assumption A.2. By Assumption A.2,
√
N(Es∼dD [gθ(s)] −

1
N

∑N
i=1 gθ(si)) converges in distribution to a normal distribution with mean 0 and variance Vars∼dD (gθ(s)) <∞. (see

e.g., (Van der Vaart, 2000))

As a result, for any h > 0,

N
1

2+h

(
Es∼dD [gθ(s)]−

1

N

N∑
i=1

gθ(si)

)
N→∞−−−−→ 0, in probability (100)

Therefore,

Es∼dD [DTV(πθ(·|s)∥π∗(·|s))] ≤
√

2Es∼dD [DKL(πθ(·|s)∥π∗(·|s))] (101)

=
√

2Es∼dD [gθ(s)] (102)

=

√√√√2

(
Es∼dD [gθ(s)]−

1

N

N∑
i=1

gθ(s)

)
(103)

Combine with equation 100, for any h > 0, we have

N
1

4+h eN =N
1

4+h
2Rmax

1− γ
Es∼dD [DTV(π(·|s)∥π∗(·|s))] (104)

≤2Rmax

1− γ

√√√√2N
1

2+h/2

(
Es∼dD [gθ(s)]−

1

N

N∑
i=1

gθ(s)

)
N→∞−−−−→ 0, in probability (105)

This finishes the proof.
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B. More Experiment Details
B.1. Tasks and baselines

As stated in the main content, we adopt ”-v1” tasks for Maze2D and Adroit domains while using ”-v2” tasks for MuJoCo
domain. Note many methods only provides the evaluation on ”-v0” tasks in their original papers. Meanwhile, the results
from ”-v0” and ”-v1” for Maze2D and Adroit tasks are comparable since there is only a minor fix to timeout flag issue,
while there are some major bug fixes from ”-v0,-v1” to ”-v2” in MuJoCo tasks.1. Therefore, we directly adopt reported
”-v0” scores for Maze2D and Adroit tasks and rerun the experiments for MuJoCo tasks if ”-v2” scores are absent. For the
scarce dataset settings, we rerun all adopted baselines.

We rerun the baselines for these tasks using their official codes or the d3rlpy library (Seno & Imai, 2022), whose hyperpa-
rameters are kept the same as the original papers for consistency and fair evaluation. We find that some results presented
in table. 1 are slightly different from the official paper, e.g., the scores of IQL and TD3+BC on MuJoCo medium tasks.
Specifically, the scores of BCQ are significantly better than the reported ones in the previous benchmark(Fu et al., 2020;
Prudencio et al., 2023) due to the implementation improvement in the d3rlpy library.

B.2. Full algorithm and details of CDE

In this section, we present the full algorithm and implementation details. Without otherwise statements, the parameterization
of policies or critics (i.e., value functions) defaults to be neural networks (NN).

B.2.1. VALUE FUNCTIONS SEPARATION

In CDE, we learn both the V-value function and the advantage function. The former can incorporate the stochasticity of
action distribution to reduce the instability, and the latter is to generalize the optimal importance ratios to OOD regions since
the reward and transition probability functions for unseen transition (s, a, r, s′) are absent in offline datasets. Meanwhile,
we take two steps to train V-value and advantage functions instead of optimizing the objective function in Eq.(8). Note that
the objective can be separated into in-distribution and OOD parts:

ζEdD [w(s, a)A(s, a)− αf(w(s, a))] + (1− γ)Eρ0
[v(s0)] (106)

+ (1− ζ)Eµ [w(s, a)(A(s, a)− λ(s, a))− αf(w(s, a)) + ϵ̃λ(s, a)] , (107)
=ζ(EdD [w(s, a)A(s, a)− αf(w(s, a))] + ((1− γ)Eρ0

[v(s0)])) (108)
+ (1− ζ)(Eµ [w(s, a)(A(s, a)− λ(s, a))− αf(w(s, a)) + ϵ̃λ(s, a)] + (1− γ)Eρ0

[v(s0)]) (109)

where the in-distribution part of the objective (i.e., Eq.(108)) corresponds to the learning objective of the V-value function in
Eq.(12), which is also the dual form of following constrained optimization:

max
dπ≥0

Edπ [r(s, a)]− αDf (d
π∥dD) (110)

s.t.
∑
a

dπ(s, a) = (1− γ)ρ0 + T∗dπ(s),∀s, a ∈ supp(dD). (111)

The main difference of it from the previous one in Eq.(3) is that it constrains the state-action in the support of offline datasets.
Therefore, the objective for V-value function learning in Eq.(12) is still a convex optimization problem.

B.2.2. MIXED BEHAVIOR POLICY TRAINING

The mixed behavior policy π̂D is the mixture of the behavior policy of the dataset and a uniform policy over OOD action
space. Since we only require access to the KL divergence between πθ and π̂D, we can either approximate π̂D or π̂ and
augment it with a uniform distribution on OOD regions. The direct learning on π̂D can be implemented by weighted BC
from state pairs {(s, ain), (s, a

(1)
out ), (s, a

(2)
out ), . . . , (s, a

(n)
out )}, where (s, ain) ∈ D and (s, a

(1)
out ), . . . , (s, a

(n)
out ) are from OOD

sampling.

In practice, we also apply trajectory reweighting for behavior policy training. We reweight each trajectory according to its
return. Specifically, given a trajectory τ , denote the normalized score of return as G(τ), we use the Boltzmann distribution

1Seed more details in the official repository: Maze2D, Adroit, MuJoCo.

https://github.com/Farama-Foundation/D4RL/pull/18
https://github.com/Farama-Foundation/D4RL/pull/63
https://github.com/Farama-Foundation/D4RL/pull/89
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over trajectories as Eq.(10) in (Hong et al.), i.e.,

w(τi) =
G(τi)/τ∑

τj∈D G(τj)/τ
(112)

where w(·) means the new weight of trajectory and temperature τ is a constant. Therefore, the behavior policy will be
trained via weighted BC with computed weights. Notably, the trajectory reweighting will not influence other training parts.

Table 2: The shared hyperparameters.

Hyperparameters values
hidden layers of policy πθ [256,256]

hidden layers of π̂D [256,256]
number of mixtures of π̂D 3

hidden layers of V-value vφ [256,256]
hidden layers of advantage Aϕ [256,256]
activation function of networks ReLU

NN optimizer Adam
NN learning rate 3e-4
discount factor γ 0.99

batch size 512
mixture coefficient ζ 0.9
max OOD IS ratio ϵ̃ 0.3

number of OOD action sampling NOOD 5

B.2.3. HYPERPARAMETERS

Before training NN, we standardize the observation and reward and scale the reward by multiplying 0.1 (Lee et al., 2021).
Note that we will extract the policy after the optimization over value functions converges. In practice, we set the warm-up
training step, and the policy πθ will not start until warm-up training ends. We set the f -divergence coefficient α = 0.01
except maze2d-umaze and maze2d-medium (α = 0.001) tasks for fair comparisons, which is significantly different from
previous DICE paper (Lee et al., 2021) that finetunes and assigns different hyperparameters for every task. The other shared
hyperparameters are summaries in table 2.

B.2.4. FULL ALGORITHM

In this section, we present the full algorithm in Algorithm. 2. In practice, we continue to train value functions and behavior
policy after warm-up steps since we find that it improves the performances in most tasks.

B.3. More experiment results

The experiment results on MuJoCo medium tasks are shown in fig. 3. We can find that most methods perform similarly
in medium tasks, and our method also obtains comparable performances. Actually, there is no significant performance
decrease when we shrink the size of the dataset. This is because the trajectories in these datasets are highly homogeneous,
and thus the policy can be learned well from only a small proportion of offline data.

The training curves of full dataset experiments are shown in fig. 4. The training steps start from a non-zero number because
of the warm-up step, i.e., we learn the policy after the value function almost converges. The warm-up step is 20,000 for the
maze2d environment and 40,000 for other environments.

We can observe that our method converges extremely fast and is very stable during training. This is because CDE employs
convex optimization to solve the value function and extracts the optimal policy in a manner of supervised learning. On the
contrary, the previous methods (e.g., Q-learning-based methods (Kumar et al., 2020; Kostrikov et al., 2021b)) are prone to
over-fitting in training due to the interleaved optimization of value and policy (Brandfonbrener et al., 2021), which may lead
to large compounded errors and performance decrease especially with long training steps.
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Figure 3: The results on sub-datasets with different dataset sizes for mujoco medium tasks.

Figure 4: The training curves of CDE. The shadow region indicates the standard deviation of mean values across different
seeds instead of the standard deviation of 20 evaluation trajectories, which is much larger than the one in the figure.
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Algorithm 2 Full Algorithm of Conservative Density Estimation

Initialize value functions vφ, Ãϕ, mixed behavior policy π̂D, policy πθ.
1: for training iteration i do
2: ▷ policy evaluation and improvement
3: Sample batch {(si, ai, ri, s′i)} from D and n OOD actions {a(1), . . . , a(n)} for each s;
4: Compute regularized advantage function Ã(s, a) via vϕ for in-distribution and Ãϕ for OOD state-actions.
5: Ã(s, a)← Ã(s, a)− η,∀s, a to normalize optimal distribution.
6: Update V-value vφ by Eq.(12);
7: Update regularized advantage Ãϕ by Eq.(13);
8: Update distribution normalizer η by gradient descent: η ← η − αη(1− E[w∗(s, a)]).
9: Update π̂D by weighted importance sampling.

10: ▷ policy extraction
11: if i ≥ warm-up steps then
12: Update policy πθ by Eq.(16) with entropy regularization.
13: end if
14: end for


