
Mixture-of-Experts Meets In-Context
Reinforcement Learning

Wenhao Wu1 Fuhong Liu1 Haoru Li1 Zican Hu1

Daoyi Dong2 Chunlin Chen1 Zhi Wang1∗

1Nanjing University 2University of Technology Sydney
{wenhaowu, chika, haoruli, zicanhu}@smail.nju.edu.cn
daoyi.dong@uts.edu.au {clchen, zhiwang}@nju.edu.cn

Abstract

In-context reinforcement learning (ICRL) has emerged as a promising paradigm
for adapting RL agents to downstream tasks through prompt conditioning. How-
ever, two notable challenges remain in fully harnessing in-context learning within
RL domains: the intrinsic multi-modality of the state-action-reward data and the
diverse, heterogeneous nature of decision tasks. To tackle these challenges, we
propose T2MIR (Token- and Task-wise MoE for In-context RL), an innovative
framework that introduces architectural advances of mixture-of-experts (MoE) into
transformer-based decision models. T2MIR substitutes the feedforward layer with
two parallel layers: a token-wise MoE that captures distinct semantics of input
tokens across multiple modalities, and a task-wise MoE that routes diverse tasks to
specialized experts for managing a broad task distribution with alleviated gradient
conflicts. To enhance task-wise routing, we introduce a contrastive learning method
that maximizes the mutual information between the task and its router representa-
tion, enabling more precise capture of task-relevant information. The outputs of
two MoE components are concatenated and fed into the next layer. Comprehensive
experiments show that T2MIR significantly facilitates in-context learning capacity
and outperforms various types of baselines. We bring the potential and promise of
MoE to ICRL, offering a simple and scalable architectural enhancement to advance
ICRL one step closer toward achievements in language and vision communities.
Our code is available at https://github.com/NJU-RL/T2MIR.

1 Introduction

Reinforcement learning (RL) is emerging as a powerful mechanism for training autonomous agents
to solve complex tasks in interactive environments [1, 2], unleashing its potential across frontier
challenges including preference optimization [3], training diffusion models [4], and reasoning [5, 6, 7]
such as OpenAI-o1 [8] and DeepSeek-R1 [9]. Recent studies have been actively exploring how to
harness the in-context learning capabilities of the transformer architecture to achieve substantial
improvements in RL’s adaptability to downstream tasks through prompt conditioning without any
model updates, i.e., in-context RL (ICRL) [10]. Current research in offline settings encompasses two
primary branches, algorithm distillation (AD) [11] and decision-pretrained transformer (DPT) [12],
owing to their simplicity and generality. They share a common structure that uses across-episodic
transitions as few-shot prompts to a transformer policy, and following-up studies continue to increase
the in-context learning capacity by hierarchical decomposition [13], noise distillation [14], model-
based planning [15], dynamic programming updates [16, 17], etc. [18, 19, 20].

∗Correspondence to Zhi Wang <zhiwang@nju.edu.cn>.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/NJU-RL/T2MIR

Despite these efforts, two notable challenges remain in fully harnessing in-context learning within
decision domains, as RL is notably more dynamic and complex than supervised learning. The first is
the intrinsic multi-modality of datasets. In language or vision communities, the inputs to transformers
are atomic words or pixels with consistent semantics in the representation space [21]. In ICRL,
the prompt inputs are typically transition samples containing three modalities of state, action, and
reward with large semantic discrepancies. States like physical quantities are usually continuous in
nature in RL, actions like joint torques tend to be more high-frequency and less smooth, and rewards
are simple scalars that can be sparse over long sequences [22]. The second is task diversity and
heterogeneity. Compared to supervised learning, RL models are more prone to overfit the training set
and struggle with generalization across diverse tasks [23]. The learning efficiency can be hindered
by intrinsic gradient conflicts in challenging scenarios where tasks vary significantly [24]. 2 The
above limitations raise a key question: Can we design a scalable ICRL framework to tackle the
multi-modality and diversified task distribution within a single transformer, advancing RL’s in-context
learning capacities one step closer to achievements in language and vision communities?

In the era of large language models (LLMs), the mixture-of-experts (MoE) architecture [25] has
shown remarkable scaling properties and high transferability while managing computational costs,
such as in Gemini [26], Llama-MoE [27], and DeepSeekMoE [28]. The architectural advancement
also extends to various domains such as computer vision [29], image generation [30], and RL [31, 32],
highlighting the significant potential and promise of MoE models. Intuitively, MoE architectures can
serve as an encouraging remedy to tackle the two aforementioned bottlenecks in ICRL. First, MoE
enables different experts to process tokens with distinct semantics more effectively [33]. This is a
natural match for processing the multiple modalities within the state-action-reward sequence. Second,
MoE can alleviate gradient conflicts by dynamically allocating gradients to specialized experts for
each input through the sparse routing mechanism [34]. This property is promising for handling a
broad task distribution with significant diversity and heterogeneous complexity.

velocity0 3

Figure 1: t-SNE visualization of expert assign-
ments on Cheetah-Vel where tasks differ in target
velocities. Left: token-wise MoE enables differ-
ent experts to process tokens with distinct seman-
tics. Right: task-wise MoE effectively manages
a broad task distribution, where the difference
between expert assignments is positively related
to the difference between tasks.

Inspired by this, we propose an innovative frame-
work T2MIR (Token- and Task-wise MoE for
In-context RL), which for the first time harnesses
architectural advances of MoE to develop more
scalable and competent ICRL algorithms. We sub-
stitute the feedforward layer in transformer blocks
with two parallel ones: a token-wise MoE and a
task-wise MoE. First, the token-wise MoE layer
is responsible for automatically capturing distinct
semantic features of input tokens within the multi-
modal state-action-reward sequence. We include
a load-balancing loss and an importance loss to
avoid tokens from all modalities collapsing onto
minority experts. Second, the task-wise MoE layer
is designed to assign diverse tasks to specialized
experts with sparse routing, effectively managing
a broad task distribution while alleviating gradient
conflicts. To facilitate task-wise routing, we intro-
duce a contrastive learning method to maximize
the mutual information between the task and its
router representation in the MoE layer, enabling more precise capture of task-relevant information.
Finally, the outputs of the two parallel MoE components are concatenated and fed into the next layer.

In summary, our main contributions are threefold:

• We unleash RL’s in-context learning capacities with a simple and scalable architectural enhance-
ment. To our knowledge, we are the first to bring the potential and promise of MoE to ICRL.

• We design a token-wise MoE to facilitate processing the distinct semantics within multi-modal
inputs, and a task-wise MoE to tackle a diversified task distribution with reduced gradient conflicts.

• We build our method upon AD and DPT, and conduct extensive experiments on various benchmarks
to show superiority over competitive baselines and visualize deep insights into performance gains.
2For example, given two navigation tasks where the goals are in adverse directions, the single RL model

ought to execute completely opposite decisions under the same states for the two tasks.

2

2 Related Work

In-Context RL. Tackling task generalization is a long-standing challenge in RL. Early meth-
ods address this via the lens of meta-RL, including the memory-based (e.g., RL2 [35] and
LLIRL [36, 37]), the optimization-based (e.g., MAML [38] and MACAW [39]), and the context-
based (e.g., VariBAD [40], Meta-DT [41], etc. [42, 43]). With the emergence of transformers that
show remarkable in-context learning abilities [44], the community has been exploring its potential to
enhance RL’s generalization via prompt conditioning without model updates [10].

Many ICRL methods have emerged, each differing in how to train and organize the context. In online
settings, AMAGO [45, 46] trains long-sequence transformers over entire rollouts with actor-critic
learning, and [47] leverages the S4 (structured state space sequence) model to handle long-range
sequences for ICRL tasks. Classical studies in offline settings include AD [11] and DPT [12]. AD
trains a causal transformer to predict actions given preceding histories as context, and DPT predicts the
optimal action given a query state and a prompt of interactions. Follow-up studies enhance in-context
learning from various algorithmic aspects [14, 18, 19, 20, 16, 17], such as IDT with hierarchical
structure [13] and DICP with model-based planning [15]. Complementary to these algorithmic
studies, we introduce MoE to advance ICRL’s development from an architectural perspective.

Mixture-of-Experts. The concept of MoE is first proposed in [48], which employs different expert
networks plus a gating network that decides which experts should be used for each training case [49].
Then, it is applied to tasks of language modeling and machine translation [25], gradually showing
prominent performance in scaling up transformer model size while managing computational costs [50,
51]. Up to now, MoE architectures have become a standard component for advanced LLMs, such
as Gemini [26], Llama-MoE [27], and DeepSeekMoE [28]. Recent efforts have explored extending
MoE advancements to RL domains. [31] incorporates soft MoE modules into value-based RL agents,
and performance improvements scale with the number of experts used. [32] uses an MoE backbone
with a CNN encoder to process visual inputs and improves the policy learning ability to handle
complex robotic environments. [34] strengthens decision transformers with MoE to reduce task load
on parameter subsets, with a three-stage training mechanism to stabilize MoE training. Accompanied
by these encouraging efforts, we aim to harness the potential of MoE for ICRL.

3 Preliminaries

3.1 In-Context Reinforcement Learning

We consider a multi-task offline RL setting, where tasks follow a distribution Mn=⟨S,A,Tn,Rn, γ⟩
∼ P (M). Tasks share the same state space S and action space A, while differing in the reward
functionR or transition dynamics T . An offline dataset Dn={(snj , anj , rnj , s

′n
j)}Jj=1 is collected by

arbitrary behavior policies for each task out of a total of N training tasks. The agent can only access
the offline datasets {Dn}Nn=1 to train an in-context policy as π

(
an|sn; τnpro

)
, where τnpro is a trajectory

prompt that encodes task-relevant information. At test time, the trained policy is evaluated on unseen
tasks sampled from P (M) by directly interacting with the environment. The prompt is initially empty
and gradually constructed from history interactions. The objective is to learn an in-context policy to
maximize the expected episodic return over test tasks as J(π) = EM∼P (M)[JM (π)].

3.2 Mixture-of-Experts

A standard sparse MoE layer consists of K experts {E1, ..., EK} and a router G. The router predicts
an assignment distribution over the experts given the input x. Following the common practice [25, 32],
we only activate the top-k experts to process the inputs. In general, the number of activated experts
is fixed and much smaller than the total number of experts, thus scaling up model parameters and
significantly reducing computational cost. Formally, the output of the MoE layer can be written as

w(i;x) = softmax (topk(G(x))) [i], y =
∑K

i=1
w(i;x)Ei(x), (1)

where topk(·) selects top k experts based on the router output G(x). softmax(·) normalizes top-k
values into a weight distribution w(·). Probabilities of non-selected experts are set to 0.

3

Embedding

Layer Norm

Layer Norm

Multi-Head Attention

Token-MoE

Action Head

Task-MoE

Concatenation

Higher gate weights

Lower gate weights (a) Overall pipeline

(b) Token-wise MoE

(c) Task-wise MoE

Residual connection

T2MIR FrameWork

Figure 2: The overview of T2MIR. (a) Overall pipeline: we substitute the feedforward layer in
causal transformer blocks with two parallel MoE layers and concatenate their outputs to feed into
the next layer. (b) Token-wise MoE: it automatically captures distinct semantic features within the
multi-modal (s, a, r) inputs, and uses Lbalance as regularization loss to avoid tokens from all modalities
collapsing onto minority experts. (c) Task-wise MoE: it assigns diverse tasks to specialized experts,
and includes a contrastive learning loss Lcontrastive to enhance task-wise routing via more precise
capture of task-relevant information, where τi is the query and τi∗/τi′ are positive/negative keys.

4 Method

In this section, we present T2MIR (Token- and Task-wise MoE for In-context RL), an innovative
framework that harnesses architectural advancements of MoE to tackle ICRL challenges of the
multi-modality and diversified task distribution. Figure 2 illustrates the method overview, followed
by detailed implementations. Algorithm pseudocodes are presented in Appendix A.

4.1 Token-wise MoE

By interacting with the outer environment, we gather the data represented as a sequence of state-
action-reward transitions in the form of τ = (s0, a0, r0, ..., sT , aT , rT), which often serves as the
prompt input to ICRL models. The state is usually continuous in nature, which can contain physical
quantities of the agent (e.g., position, velocity, and acceleration) or an image in visual RL [32].
The action tends to be more high-frequency and less smooth, such as joint torques or discrete
commands. The reward is a simple scalar that is often sparse over long horizons. In language or
vision communities, the inputs to transformers are atomic words or pixels with consistent semantics
in the representation space [21]. In contrast, ICRL encounters a new challenge of processing the
prompt data that encompasses three modalities with significant semantic discrepancies.

Inspired by the surprising discoveries that the MoE structures can effectively capture distinct semantic
features of input tokens [50, 33], we introduce a token-wise MoE layer to tackle the multiple
modalities within the state-action-reward sequence. As shown in Figure 2-(b), each element in the
multi-modal sequence corresponds to a token. The MoE consists of K1 experts Etok and a router Gtok,
and the router learns to assign each token to specific experts with noisy top-k gating. Let h denote
the hidden state of a given token after self-attention calculation. The token router Gtok computes
a distribution of logits {Gtok(i|h)}K1

i=1 for expert selection. The top-k experts will be selected to
process this token, and their outputs will be weighted to produce the final output ytok as

wtok(i;h) = softmax (topk(Gtok(i|h))) [i], ytok =
∑K1

i=1
wtok(i;h) · Etok(i|h). (2)

The router tends to converge on producing large weights for the same few experts, as the favored
experts are trained more rapidly and thus are selected even more by the router. In order to avoid

4

tokens from all modalities collapsing onto minority experts, we incorporate a regularization term to
balance expert utilization that consists of an importance loss and a load-balancing loss [25] as

Lbalance = wimp · CV (Imp(h))2 + wload · CV (Load(h))2, (3)

where CV (·) denotes the coefficient of variation, and wimp and wload are hand-tuned scaling factors.
The first item encourages all experts to have equal importance as defined by Imp(h) =

∑
h Gtok(·|h).

The second item encourages experts to receive roughly equal numbers of training examples, where
Load(·) is a smooth estimator of the number of examples assigned to each expert for a batch of inputs.
A more detailed description of the balance loss can be found in Appendix B.

4.2 Task-wise MoE

In typical ICRL settings, a single policy model is trained across multiple tasks. The learning efficiency
can be impeded by intrinsic gradient conflicts in challenging scenarios with significant task variation.
For instance, given two navigation tasks where the goals are in adverse directions, the policy ought to
make contrary decisions under the same states. Given the same state-action trajectories, the two tasks
can produce exactly opposite policy gradients, leading to a sum of zero gradient during training.

The MoE structure was originally proposed to use different parts of a model, called experts, to
specialize in different tasks or different aspects of a task [48, 49]. Drawing from this natural
inspiration, we introduce a task-wise MoE layer to handle a broad task distribution with significant
diversity and heterogeneous complexity, leveraging modular expert learning to alleviate gradient
conflicts. As shown in Figure 2-(c), the MoE consists of K2 experts Etask and a router Gtask, and the
router learns to assign a sequence of tokens to specialized experts at the task level. Given a trajectory
τ=(s0, a0, r0, ..., sT , aT , rT) from some task M , we use h̄ to denote the average hidden state of all
three-modality tokens after self-attention calculation. The task router Gtask computes a distribution of
logits {Gtask(i|h̄)}K2

i=1 for expert selection. The top-k experts will be selected to process these tokens,
and their outputs will be weighted to produce the final output ytask as

wtask(i; h̄) = softmax
(
topk(Gtask(i|h̄))

)
[i], ytask =

∑K2

i=1
wtask(i; h̄) · Etask(i|h̄). (4)

Task-wise Routing via Contrastive Learning. The task-wise router can be viewed as an encoder
for extracting task representations from input tokens, based on the intuition that similar tasks are
preferred to the same expert and tasks with notable differences are allocated to disparate experts.
An ideally discriminative task representation should accurately capture task-relevant information
from offline datasets, while remaining invariant to behavior policies or other unrelated factors. To
achieve this goal, we propose to maximize the mutual information between the task and its router
representation, enhancing task-wise routing that minimally preserves task-irrelevant information.

Formally, the mutual information I(·) aims to quantify the uncertainty reduction of one random vari-
able when the other is observed, measuring their mutual dependency. Mathematically, we formalize
the router Gtask as a probabilistic encoder z∼Gtask(·|h̄), where z denotes the task representation. The
h̄ distribution is determined by its task M , where M∼P (M). The objective for the router is:

max I(z;M) = Ez,M

[
log

p(M |z)
p(M)

]
. (5)

Drawing inspiration from noise contrastive estimation (InfoNCE) [52] in the contrastive learning
literature [53, 54], we derive a lower bound of Eq. (5) using the following theorem.
Theorem 1. Let M denote a set of tasks following the task distribution P (M), and |M| = N .
M ∈M is a given task. Let h̄= f(τ), z∼Gtask(·|h̄), and e(h̄, z)= p(z|h̄)

p(z) , where τ is a trajectory
from task M and h̄ is average hidden state of all tokens after the self-attention calculation function
f(·). Let h̄′ denote the average hidden state generated by any task M ′∈M, then we have

I(z;M) ≥ logN + EM,z,h̄

[
log

e(h̄, z)∑
M ′∈M e(h̄′, z)

]
. (6)

Appendix C presents the complete proof. Since direct evaluation of p(z) or p(z|h̄) is intractable,
we employ NCE and importance sampling techniques that compare the target value with randomly

5

sampled negative ones. Consequently, we approximate e using the exponential of a score function,
a similarity metric between the latent codes of two examples. Given a batch of m trajectories
(τ1, ..., τm), we denote router representation zi from τi as the query q, and representations of other
trajectories as the keys K={z1, ..., zm}\zi. Points from the same task with the query, i∈Mj , are set
as positive key {k+} and those from different tasks are set as negative {k−}=K\{k+}. We adopt
bilinear products [53] as the score function, with similarities between the query and keys computed
as q⊤Wk, where W is a learnable parameter matrix. Then, we formulate a sampling-based version
of the tractable lower bound as the InfoNCE loss for the contrastive router as

Lcontrastive=− log
exp(q⊤Wk+)

exp(q⊤Wk+)+exp(q⊤Wk−)
=− log

∑
i∗∈Mj

exp(z⊤i Wzi∗)∑
i∗∈Mj

exp(z⊤i Wzi∗)+
∑

i′ /∈Mj

exp(z⊤i Wzi′)
(7)

It optimizes an N -way classification loss to classify the positive pair among all pairs, equivalent to
maximizing a lower bound on mutual information in Eq. (6), with this bound tightening as N gets
larger. Following MoCo [55], we maintain a query router Gq

task and a key router Gk
task, and use a

momentum update with coefficient β∈ [0, 1) to ensure the consistency of the key representations as

Gk
task ← βGk

task + (1− β)Gq
task, (8)

where only query parameters Gq
task are updated through backpropagation.

4.3 Scalable Implementations

We develop scalable implementations of T2MIR using two mainstream ICRL backbones that offer
promising simplicity and generality: AD [11] and DPT [12], yielding two T2MIR variants as follows.

T2MIR-AD. It trains an MoE-augmented causal transformer policy πθ to autoregressively predict
actions given preceding learning histories hist as the prompt:

hist := (s0, a0, r0, ..., st−1, at−1, rt−1, st, at, rt) = (s≤t, a≤t, r≤t). (9)

During training, we minimize a negative log-likelihood loss over N individual tasks as

L(θ) = −
∑N

n=1

∑T−1

t=0
log πθ

(
a = ant | snt ; τnpro

)
, where τnpro := hisnt−1, (10)

which can be derived as a cross-entropy loss for discrete actions, and a mean-square error (MSE) loss
when the action space is continuous. Akin to AMAGO [45], we adopt Flash Attention [56] to enable
long context lengths on a single GPU. For the context, we use the same position embedding for st,
at, and rt to maintain semantics of temporal consistency.

T2MIR-DPT. It trains a transformer policy to predict an optimal action given a query state and a
prompt of interaction transitions. In practice, we randomly sample a trajectory τpro from the dataset
D as the task prompt for each query-label pair (st, a∗t), and train the policy to minimize the loss as

L(θ) = −
∑N

n=1

∑T

t=0
log πθ

(
a = an∗t | snt ; τnpro

)
, where τnpro ∼ Dn, (11)

Different from AD in Eq. (10), DPT requires labeling optimal actions for query states to construct the
offline dataset

∑
n

∑
t(s

n
t , a

n∗
t), inheriting principles from pure imitation learning.

5 Experiments

We comprehensively evaluate our methods on popular benchmarking domains using various qualities
of offline datasets. In general, we aim to answer the following research questions:

• Can T2MIR demonstrate consistent superiority on in-context learning capacity when tested in
unseen tasks, compared to various strong baselines? (Sec. 5.1)

• How do the token-wise and the task-wise MoE layers affect T2MIR’s performance, respectively
(Sec. 5.2)? We also gain deep insights into each component via visualizations in Sec. 5.4.

• How robust is T2MIR across diverse settings? We construct offline datasets with varying qualities
to extensively evaluate T2MIR and baselines. Also, we investigate T2MIR’s sensitivity to various
hyperparameters, such as the expert configuration and the loss ratio. (Sec. 5.3 and Appendix G)

6

Environments. We evaluate T2MIR on four benchmarks that are widely used in multi-task settings:
i) the discrete environment DarkRoom, which is a grid-world environment with multiple goals; ii)
the 2D navigation environment Point-Robot, which aims to navigate to a target position in a 2D
plane; iii) the multi-task MuJoCo locomotion control environment, containing Cheetah-Vel and
Walker-Param; iv) the Meta-World manipulation platform, including Reach and Push. We construct
three datasets with different qualities: Mixed, Medium-Expert, and Medium. Appendix D presents
more details about environments and dataset construction.

Baselines. We compare T2MIR to five competitive baselines, including four ICRL methods AD [11],
DPT [12], IDT [13], DICP [15], and a context-based offline meta-RL approach UNICORN [42]. More
details about baselines are given in Appendix E. As DICP has three implementations, we use the best
results among them in our experiments.

For all experiments, we conduct evaluations across five random seeds. The mean of the obtained
return is plotted as the bold line, with 95% bootstrapped confidence intervals of the mean results
indicated by the lighter shaded regions. Appendix F gives implementation details of T2MIR-AD
and T2MIR-DPT. Appendix G presents comprehensive hyperparameter analysis, including expert
selection in token-wise and task-wise MoE, InfoNCE loss ratio, and the positioning of MoE layers.

5.1 Main Results

We compare our method against various baselines under an aligned evaluation setting, where prompts
or contexts are generated from online environment interactions to infer task beliefs during testing.
Figure 3 and Table 1 present test return curves and numerical results of the best performance of
T2MIR and baselines using Mixed datasets. In these diverse environments with varying reward
functions or transition dynamics, both T2MIR-AD and T2MIR-DPT achieve significantly superior
performance regarding the in-context learning speed and final asymptotic results compared to the
strong baselines. In most cases, our two implementations take the top two rankings for the best and
second-best performance, showcasing comparably strong generalization abilities to unseen tasks. It
highlights the effectiveness of introducing MoE architectures to the two mainstream ICRL backbones.
Notably, DICP exhibits a faster learning speed and comparable asymptotic performance compared
to our T2MIR in DarkRoom. In this environment with a small state-action space, DICP naturally
enables more efficient policy search via look-ahead model-based planning. Then, DICP struggles
when facing more complicated environments like Reach and Push, as it is more difficult to find
high-return trajectories when planning in a large space. In contrast, the superiority of T2MIR is more
pronounced in harder problems, underscoring its potential to tackle challenging ICRL tasks.

Figure 3: Test return curves of two T2MIR implementations against baselines using Mixed datasets.

7

Table 1: Test return of T2MIR against baselines using Mixed datasets, i.e., numerical results of the
best performance from Figure 3. Best result in bold and second best underline.

Environments T2MIR-AD T2MIR-DPT AD DPT DICP IDT UNICORN

DarkRoom 90.9±0.0 78.3±1.4 57.5±5.6 72.5±13.1 90.9±0.0 49.2±2.8 —
Point-Robot −5.2±0.3 -5.0±0.5 −5.6±0.4 −5.8±0.3 −5.3±0.2 −5.5±0.5 −6.6±0.6

Cheetah-Vel −68.9±2.1 -43.2±0.8 −119.2±30.4 −56.1±1.0 −74.9±3.2 −82.8±3.0 −80.6±22.8

Walker-Param 435.7±7.2 492.8±29.3 395.2±7.1 425.9±9.7 403.7±15.4 429.4±5.8 372.8±24.6

Reach 823.9±7.1 764.6±9.3 790.4±20.2 754.9±15.0 775.3±1.1 808.5±3.6 748.8±0.1

Push 665.8±13.9 633.2±8.6 604.7±6.3 615.4±6.0 560.0±64.2 620.6±4.6 547.4±67.2

5.2 Ablation Study

We compare T2MIR to three ablations: 1) w/o Task-MoE, it only retains the token-wise MoE layer
and regularizes the router with balance loss in Eq. (3); 2) w/o Token-MoE, it only retains the task-
wise MoE layer and enhances the router with contrastive loss in Eq. (7); and 3) w/o all, it degrades
to vanilla AD and DPT. We keep the same amount of activated parameters in our T2MIR and three
ablations for a fair comparison. Figure 4 and Table 2 present test return curves and numerical results
of ablation study on T2MIR-AD and T2MIR-DPT.

First, both T2MIR architectures show decreased performance when any MoE is removed, with the
worst occurring when both MoE layers are excluded. It demonstrates that the two kinds of MoE
designs are essential for T2MIR’s capability and they complement each other. Second, with the
AD backbone, ablating the token MoE incurs a more significant performance drop than ablating the
task MoE, indicating that the token MoE plays a more vital role for T2MIR-AD. AD takes long
training histories as context, which can contain redundant trajectories for identifying the underlying
task, akin to the memory-based meta-RL approach RL2 [35]. Hence, using the token MoE to handle
multi-modality within the long-horizon context may yield greater benefits. Third, the situation is
reversed with the DPT backbone, as the task MoE is more essential for T2MIR-DPT. DPT takes a
small number of transitions as the task prompt, placing greater emphasis on accurately identifying
task-relevant information from limited data.

(a) T2MIR-AD

(b) T2MIR-DPT

Figure 4: Ablation results of both T2MIR-AD and T2MIR-DPT architectures using Mixed datasets.

8

Table 2: Numerical results of ablation study on both T2MIR-AD and T2MIR-DPT using Mixed
datasets, i.e., the best performance from Figure 4. Best result in bold.

T2MIR-AD T2MIR w/o Task-MoE w/o Token-MoE AD

Cheetah-Vel -68.9±2.1 −76.1±3.7 −101.1±29.7 −119.2±30.4

Walker-Param 435.7±7.2 418.6±3.9 410.8±5.1 395.2±7.1

Push 665.8±13.9 656.8±17.8 634.0±4.0 604.7±6.3

T2MIR-DPT T2MIR w/o Task-MoE w/o Token-MoE DPT

Cheetah-Vel -43.2±0.8 −49.5±3.4 −47.5±1.6 −56.1±1.0

Walker-Param 492.8±29.3 446.1±6.5 475.3±32.5 425.9±9.7

Push 633.2±8.6 627.2±4.0 628.0±7.2 615.4±6.0

(a) Medium-Expert (b) Medium

Figure 5: Test return curves of T2MIR against baselines using Medium-Expert and Medium datasets.

Table 3: Numerical results of T2MIR against baselines using Medium-Expert (top) and Medium
(bottom) datasets, i.e., numerical results of best performance from Figure 5. Best result in bold and
second best underline.

Medium-Expert T2MIR-AD T2MIR-DPT AD DPT DICP IDT UNICORN

Cheetah-Vel −77.8±1.5 -56.0±6.8 −130.3±24.2 −67.3±0.6 −73.4±1.6 −83.1±14.4 −80.6±22.8

Push 654.4±24.3 586.3±9.5 595.4±3.5 573.6±8.5 485.5±29.2 632.9±7.1 513.7±51.1

Medium T2MIR-AD T2MIR-DPT AD DPT DICP IDT UNICORN

Cheetah-Vel −76.6±11.4 -63.3±4.0 −135.8±19.2 −67.9±3.2 −75.6±2.5 −105.3±4.1 −105.9±3.7

Push 600.5±6.8 530.0±6.7 577.7±16.8 514.2±12.7 416.9±20.9 554.3±9.8 402.4±162.9

5.3 Robustness Study

Robustness to Dataset Qualities. We evaluate T2MIR on Medium-Expert and Medium datasets.
As shown in Figure 5 and Table 3, both T2MIR-AD and T2MIR-DPT exhibit superior performance
over baselines, validating their robustness when learning from varying qualities of datasets. Notably,
most baselines suffer a significant performance drop when trained on Medium datasets, while T2MIR
maintains satisfactory performance despite the lower data quality. It highlights T2MIR’s appealing
applicability in real-world scenarios where agents often learn from suboptimal data.

Robustness to Expert Configurations. We vary expert configurations in both MoE layers. For
token-wise MoE that manages tokens of different modalities, we always activate one-third of the
experts as there are three modalities and vary the total number of experts. Results in Figure 6-(a) and
Figure 7-(a) show that a moderate configuration (2/6) yields the best performance. For task-wise
MoE that manages task assignments, we always activate two experts while varying the total number
of experts, following the common configuration in popular works. When testing the impact of expert
configuration on one MoE structure, we keep the expert configuration of the other one unchanged.
Results in Figure 6-(b) and Figure 7-(b) show that the performance slightly increases with more
experts in total, and tends to saturate soon.

5.4 Visualization Insights into MoE Structure

9

(a) Token-wise MoE (b) Task-wise MoE

Figure 6: Analysis results of the number of selected experts against the total in token- and task-wise
MoE on T2MIR-AD. For example, 2/6 denotes selecting the top 2 from 6 experts.

(a) Token-wise MoE (b) Task-wise MoE

Figure 7: Analysis results of the number of selected experts against total experts in token- and
task-wise MoE on T2MIR-DPT. For example, 2/6 denotes selecting the top 2 from 6 experts.

I

I

II

II

III

III

IV

IV

Figure 8: Cosine similarity
of gradients between Point-
Robot tasks in four quadrants
(I-IV), comparing T2MIR-AD
(MoE) with AD (MLP).

Modality Clustering in Token-wise MoE. In Figure 1 (left), the
spatial proximity indicates similarity in expert assignments. It ex-
hibits a clear clustering pattern that tokens from different modalities
are routed to distinct experts, highlighting the successful utilization
of the MoE structure to process tokens with distinct semantics.

Task Clustering in Task-wise MoE. In Figure 1 (right), points of
similar color come from similar tasks. It forms a clear pattern in the
router representation space, where similar tasks cluster closely and
distinct tasks are widely separated. This confirms the effective use of
the MoE structure to manage a broad task distribution. Appendix J
gives more visualization on the two MoE layers.

Gradient Conflict Mitigation. In Figure 8, AD (lower triangle)
shows significant gradient conflict between opposing tasks (e.g., I
vs. III, deep blue with a large negative cosine value) and fails to
discriminate tasks (e.g., III vs. IV, deep red with a large positive cosine value). In contrast, T2MIR-AD
(upper triangle) maintains nearly orthogonal gradients across diverse tasks, especially for opposing
ones (e.g., I vs. III or II vs. IV, cosine value near 0). This comparison verifies T2MIR’s advantage in
both gradient conflict mitigation and task discrimination.

6 Conclusions, Limitations, and Future Work
In the paper, we introduce architectural advances of MoE to address input multi-modality and task
diversity for ICRL. We propose a scalable framework, where a token-wise MoE processes distinct
semantic inputs and a task-wise MoE handles a broad task distribution with contrastive routing.
Improvements in generalization capacities highlight the potential impact of our method, and deep
insights via visualization validate that our MoE design effectively addresses the associated challenges.

Though, our method is evaluated on widely adopted benchmarks in ICRL, with relatively lightweight
datasets compared to popular large models. An urgent improvement is to evaluate on more complex
environments such as XLand-MiniGrid [57, 10] with huge datasets, unlocking the scaling properties
of MoE in ICRL domains. Another step is to deploy our method to vision-language-action (VLA)
tasks [58, 59] that naturally involve more complex input multi-modality and task diversity.

10

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 62376122
and 72394363), and in part by the AI & AI for Science Project of Nanjing University.

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, et al. Human-

level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[2] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes,
et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature,
610(7930):47–53, 2022.

[3] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In Advances in Neural Information Processing Systems, volume 36, pages 53728–53741, 2023.

[4] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. In Proceedings of International Conference on Learning
Representations, 2024.

[5] Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li,
Yuchen Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning
for reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

[6] Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. In Advances in Neural Information Processing
Systems, 2025.

[7] Zican Hu, Wei Liu, Xiaoye Qu, Xiangyu Yue, Chunlin Chen, Zhi Wang, and Yu Cheng. Divide
and conquer: Grounding LLMs as efficient decision-making agents via offline hierarchical
reinforcement learning. In Proceedings of International Conference on Machine Learning,
2025.

[8] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, et al. OpenAI o1
system card. arXiv preprint arXiv:2412.16720, 2024.

[9] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, et al. DeepSeek-
R1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025.

[10] Alexander Nikulin, Ilya Zisman, Alexey Zemtsov, Viacheslav Sinii, Vladislav Kurenkov, and
Sergey Kolesnikov. XLand-100B: A large-scale multi-task dataset for in-context reinforcement
learning. In Proceedings of International Conference on Learning Representations, 2025.

[11] Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steiger-
wald, DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, et al. In-context
reinforcement learning with algorithm distillation. In Proceedings of International Conference
on Learning Representations, 2023.

[12] Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and
Emma Brunskill. Supervised pretraining can learn in-context reinforcement learning. In
Advances in Neural Information Processing Systems, volume 36, pages 43057–43083, 2023.

[13] Sili Huang, Jifeng Hu, Hechang Chen, Lichao Sun, and Bo Yang. In-context decision trans-
former: Reinforcement learning via hierarchical chain-of-thought. In Proceedings of Interna-
tional Conference on Machine Learning, 2024.

[14] Ilya Zisman, Vladislav Kurenkov, Alexander Nikulin, Viacheslav Sinii, and Sergey Kolesnikov.
Emergence of in-context reinforcement learning from noise distillation. In Proceedings of
International Conference on Machine Learning, pages 62832–62846, 2024.

11

[15] Jaehyeon Son, Soochan Lee, and Gunhee Kim. Distilling reinforcement learning algorithms
for in-context model-based planning. In Proceedings of International Conference on Learning
Representations, 2025.

[16] Denis Tarasov, Alexander Nikulin, Ilya Zisman, Albina Klepach, Andrei Polubarov, Lyubaykin
Nikita, Alexander Derevyagin, Igor Kiselev, and Vladislav Kurenkov. Yes, Q-learning helps
offline in-context RL. In ICLR 2025 Workshop on Scalable Optimization for Efficient and
Adaptive Foundation Models, 2025.

[17] Jinmei Liu, Fuhong Liu, Jianye Hao, Bo Wang, Huaxiong Li, Chunlin Chen, and Zhi Wang.
Scalable in-context Q-learning. arXiv preprint arXiv:2506.01299, 2025.

[18] Viacheslav Sinii, Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, and Sergey Kolesnikov.
In-context reinforcement learning for variable action spaces. In Proceedings of International
Conference on Machine Learning, pages 45773–45793, 2024.

[19] Juncheng Dong, Moyang Guo, Ethan X Fang, Zhuoran Yang, and Vahid Tarokh. In-context
reinforcement learning without optimal action labels. In ICML 2024 Workshop on In-Context
Learning, 2024.

[20] Zhenwen Dai, Federico Tomasi, and Sina Ghiassian. In-context exploration-exploitation for re-
inforcement learning. In Proceedings of International Conference on Learning Representations,
2024.

[21] Ioannis Kakogeorgiou, Spyros Gidaris, Bill Psomas, Yannis Avrithis, Andrei Bursuc, Konstanti-
nos Karantzalos, and Nikos Komodakis. What to hide from your students: Attention-guided
masked image modeling. In Proceedings of European Conference on Computer Vision, pages
300–318, 2022.

[22] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision-making? In Proceedings of
International Conference on Learning Representations, 2023.

[23] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot
generalisation in deep reinforcement learning. Journal of Artificial Intelligence Research,
76:201–264, 2023.

[24] Siao Liu, Zhaoyu Chen, Yang Liu, Yuzheng Wang, Dingkang Yang, et al. Improving generaliza-
tion in visual reinforcement learning via conflict-aware gradient agreement augmentation. In
Proceedings of IEEE/CVF International Conference on Computer Vision, pages 23436–23446,
2023.

[25] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. In Proceedings of International Conference on Learning Representations, 2017.

[26] Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

[27] Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
LLaMA-MoE: Building mixture-of-experts from llama with continual pre-training. In Proceed-
ings of Conference on Empirical Methods in Natural Language Processing, pages 15913–15923,
2024.

[28] Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, et al. DeepSeekMoE:
Towards ultimate expert specialization in mixture-of-experts language models. arXiv preprint
arXiv:2401.06066, 2024.

[29] Zhiwen Fan, Rishov Sarkar, Ziyu Jiang, Tianlong Chen, Kai Zou, et al. M3ViT: Mixture-of-
experts vision transformer for efficient multi-task learning with model-accelerator co-design. In
Advances in Neural Information Processing Systems, volume 35, pages 28441–28457, 2022.

12

[30] Zeyue Xue, Guanglu Song, Qiushan Guo, Boxiao Liu, Zhuofan Zong, Yu Liu, and Ping Luo.
RAPHAEL: Text-to-image generation via large mixture of diffusion paths. In Advances in
Neural Information Processing Systems, volume 36, pages 41693–41706, 2023.

[31] Johan Samir Obando Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother,
Jakob Nicolaus Foerster, Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro.
Mixtures of experts unlock parameter scaling for deep RL. In Proceedings of International
Conference on Machine Learning, pages 38520–38540, 2024.

[32] Suning Huang, Zheyu Zhang, Tianhai Liang, Yihan Xu, Zhehao Kou, Chenhao Lu, Guowei Xu,
Zhengrong Xue, and Huazhe Xu. MENTOR: Mixture-of-experts network with task-oriented
perturbation for visual reinforcement learning. arXiv preprint arXiv:2410.14972, 2024.

[33] Jihai Zhang, Xiaoye Qu, Tong Zhu, and Yu Cheng. CLIP-MoE: Towards building mixture of
experts for clip with diversified multiplet upcycling. arXiv preprint arXiv:2409.19291, 2024.

[34] Yilun Kong, Guozheng Ma, Qi Zhao, Haoyu Wang, Li Shen, Xueqian Wang, and Dacheng
Tao. Mastering massive multi-task reinforcement learning via mixture-of-expert decision
transformer. In ICLR Workshop on Modularity for Collaborative, Decentralized, and Continual
Deep Learning, 2025.

[35] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[36] Zhi Wang, Chunlin Chen, and Daoyi Dong. Lifelong incremental reinforcement learning with
online Bayesian inference. IEEE Transactions on Neural Networks and Learning Systems,
33(8):4003–4016, 2022.

[37] Zhi Wang, Chunlin Chen, and Daoyi Dong. A Dirichlet process mixture of robust task models for
scalable lifelong reinforcement learning. IEEE Transactions on Cybernetics, 53(12):7509–7520,
2023.

[38] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In Proceedings of International Conference on Machine Learning, pages
1126–1135, 2017.

[39] Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In Proceedings of International Conference
on Machine Learning, pages 7780–7791, 2021.

[40] Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin
Gal, Katja Hofmann, and Shimon Whiteson. VariBAD: Variational Bayes-adaptive deep RL via
meta-learning. The Journal of Machine Learning Research, 22(1):13198–13236, 2021.

[41] Zhi Wang, Li Zhang, Wenhao Wu, Yuanheng Zhu, Dongbin Zhao, and Chunlin Chen. Meta-
DT: Offline meta-rl as conditional sequence modeling with world model disentanglement. In
Advances in Neural Information Processing Systems, volume 37, pages 44845–44870, 2024.

[42] Lanqing Li, Hai Zhang, Xinyu Zhang, Shatong Zhu, Yang YU, Junqiao Zhao, and Pheng-Ann
Heng. Towards an information theoretic framework of context-based offline meta-reinforcement
learning. In Advances in Neural Information Processing Systems, volume 37, pages 75642–
75667, 2024.

[43] Shilin Zhang, Zican Hu, Wenhao Wu, Xinyi Xie, Jianxiang Tang, Chunlin Chen, Daoyi Dong,
Yu Cheng, Zhenhong Sun, and Zhi Wang. Text-to-decision agent: Offline meta-reinforcement
learning from natural language supervision. In Advances in Neural Information Processing
Systems, 2025.

[44] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, et al. Language
models are few-shot learners. In Advances in Neural Information Processing Systems, volume 33,
pages 1877–1901, 2020.

13

[45] Jake Grigsby, Linxi Fan, and Yuke Zhu. AMAGO: Scalable in-context reinforcement learning
for adaptive agents. In Proceedings of International Conference on Learning Representations,
2024.

[46] Jake Grigsby, Justin Sasek, Samyak Parajuli, Daniel Adebi, Amy Zhang, and Yuke Zhu.
AMAGO-2: Breaking the multi-task barrier in meta-reinforcement learning with transformers.
In Advances in Neural Information Processing Systems, volume 37, pages 87473–87508, 2024.

[47] Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh,
and Feryal Behbahani. Structured state space models for in-context reinforcement learning. In
Advances in Neural Information Processing Systems, volume 36, pages 47016–47031, 2023.

[48] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991.

[49] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Computation, 6(2):181–214, 1994.

[50] Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and Furu Wei.
StableMoE: Stable routing strategy for mixture of experts. In Proceedings of Annual Meeting of
the Association for Computational Linguistics, pages 7085–7095, 2022.

[51] Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From sparse to soft
mixtures of experts. In Proceedings of International Conference on Learning Representations,
2024.

[52] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[53] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsupervised repre-
sentations for reinforcement learning. In Proceedings of International Conference on Machine
Learning, pages 5639–5650, 2020.

[54] Zican Hu, Zongzhang Zhang, Huaxiong Li, Chunlin Chen, Hongyu Ding, and Zhi Wang.
Attention-guided contrastive role representations for multi-agent reinforcement learning. In
Proceedings of International Conference on Learning Representations, 2024.

[55] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast
for unsupervised visual representation learning. In Proceedings of IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[56] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. In Advances in Neural Information
Processing Systems, volume 35, pages 16344–16359, 2022.

[57] Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Artem Agarkov, Viacheslav Sinii, and
Sergey Kolesnikov. XLand-MiniGrid: Scalable meta-reinforcement learning environments in
JAX. In Advances in Neural Information Processing Systems, volume 37, pages 43809–43835,
2024.

[58] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, et al.
OpenVLA: An open-source vision-language-action model. In Proceedings of Conference on
Robot Learning, 2024.

[59] Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, et al. π0.5: a
vision-language-action model with open-world generalization. arXiv preprint arXiv:2504.16054,
2025.

[60] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5026–5033, 2012.

[61] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-World: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Proceedings of Conference on Robot Learning, pages 1094–1100, 2020.

14

[62] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of
International Conference on Machine Learning, pages 1861–1870, 2018.

[63] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[64] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021.

[65] Hao Liu and Pieter Abbeel. Emergent agentic transformer from chain of hindsight experience.
In Proceedings of International Conference on Machine Learning, volume 202, pages 21362–
21374, 2023.

[66] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUS). arXiv preprint
arXiv:1606.08415, 2016.

[67] Zhendong Chu, Renqin Cai, and Hongning Wang. Meta-reinforcement learning via exploratory
task clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 11633–
11641, 2024.

15

Appendix

A Algorithm Pseudocodes 17

B Regularization Loss for Balancing Expert Utilization 19

C Contrastive Learning for Task-wise MoE Router 20

D The Details of Environments and Dataset Construction 21

D.1 The Details of Environments . 21

D.2 The Details of Datasets . 22

E Baseline Methods 23

F Network Architecture and Hyperparameters of T2MIR 23

G Analysis of Hyperparameters and T2MIR Architecture 24

G.1 Hyperparameter Analysis . 24

G.2 Architecture Analysis . 24

H Robustness to OOD Setups 26

H.1 Robustness to OOD test tasks . 26

H.2 Robustness to OOD Offline Prompt Data . 26

I More Experiments on Ant-Dir and Meta-World 26

J More Visualization Insights 27

K Empirical Evidence of Gradient Conflicts 27

L Limitations 28

16

A Algorithm Pseudocodes

Based on the implementations in Sec. 4, this section gives the brief procedures of T2MIR. Algorithm 1
and Algorithm 3 show the pipline of training T2MIR-AD and T2MIR-DPT, respectively. We train
all components including token-wise MoE, task-wise MoE and their routers together with the main
causal transformer network end to end. Then, Algorithm 2 and Algorithm 4 show the evaluation
phase, where the agent can improve its performance on test tasks by interacting with the environments
without any parameter updates.

Algorithm 1: Model Training of T2MIR-AD
Input: Training tasks Ttrain and corresponding offline datasets Dtrain

Causal transformer πθ; Trajectory number L; Prompt length T
Batch size B; Contrastive loss weight wcon

1 for each iteration do
2 Initialize query batch B = {}, key batch B′ = {}
3 for b = 1, 2, ..., B do
4 Sample a task Mi ∼ Ttrain and obtain the corresponding dataset Di from Dtrain
5 Sample L trajectories from Di

6 Sort L trajectories by return and concatenate to τi = {s0, a0, r0, . . . , sT , aT , rT }
7 Sample another L trajectories from Di to obtain τ ′i as a positive key
8 Add τi and τ ′i to B and B′ respectively
9 end

10 Get a query batch B = {τ}Bb=1 and key batch B′ = {τ ′}Bb=1
11 Autoregressively predict the actions with πθ and compute loss in Eq. (10) using B
12 Compute balance loss Lbalance in Eq. (3)
13 Compute contrastive loss Lcontrastive with key batch B′ in Eq. (7)
14 Update πθ by minimize loss L = L(θ) + Lbalance + wcon · Lcontrastive
15 Update momentum router in task-wise MoE in Eq. (8)
16 end

Algorithm 2: Model Evaluation of T2MIR-AD
Input: Test tasks Ttest; Causal transformer πθ; Evaluation episodes N

History bufferR; History episode length K
1 for each task Mi ∈ Ttest do
2 Initialize history bufferR = {}
3 for n = 1, · · · , N do
4 Reset env. and get feedback s0
5 for each timestep t do
6 Predict action at = πθ(st,R)
7 Step env. and get feedback st+1 and rt
8 Add st, at, rt to bufferR
9 end

10 SortR by episode return
11 if n > K then
12 Drop the first episode inR
13 end
14 end
15 end

17

Algorithm 3: Model Training of T2MIR-DPT
Input: Training tasks Ttrain and corresponding offline datasets Dtrain

Causal transformer πθ; Prompt length T ; Expert policy π∗

Batch size B; Contrastive loss weight wcon
1 for each task Mi ∈ Ttrain do
2 Obtain dataset Di from Dtrain
3 Get optimal action for states in Di using expert policy π∗

i

4 Obtain query dataset Dq
i

5 end
6 Obtain query datasets Dq

train
7 for each iteration do
8 Initialize query batch B = {}, key batch B′ = {}
9 for b = 1, 2, ..., B do

10 Sample a task Mi ∼ Ttrain

11 Obtain the corresponding dataset Di from Dtrain and query dataset Dq
i from Dq

train
12 Sample state-action pairs (s, a∗) and (s′, a∗′) from Dq

i
13 Sample a trajectory from Di and obtain τi = {s0, a0, r0, . . . , sT , aT , rT }
14 Sample another trajectory from Di to obtain τ ′i as a positive key
15 Add

(
(s, a∗), τi

)
and

(
(s′, a∗′), τ ′i

)
to B and B′ respectively

16 end
17 Get a query batch B =

{(
(s, a∗), τ

)}B

b=1
and key batch B′ =

{(
(s′, a∗′), τ ′

)}B

b=1
18 Autoregressively predict the optimal action with πθ and compute loss in Eq. (11) using B
19 Compute balance loss Lbalance in Eq. (3)
20 Compute contrastive loss Lcontrastive with key batch B′ in Eq. (7)
21 Update πθ by minimize loss L = L(θ) + Lbalance + wcon · Lcontrastive
22 Update momentum router in task-wise MoE in Eq. (8)
23 end

Algorithm 4: Model Evaluation of T2MIR-DPT
Input: Test tasks Ttest; Causal transformer πθ; Evaluation episodes N

History bufferR; Episode history buffer τ
1 for each task Mi ∈ Ttest do
2 Initialize episode history buffer τ = {}
3 for n = 1, · · · , N do
4 Initialize history bufferR = {}
5 Reset env. and get feedback s0
6 for each timestep t do
7 Predict action at = πθ(st, τ)
8 Step env. and get feedback st+1 and rt
9 Add st, at, rt to bufferR

10 end
11 τ ← R
12 end
13 end

18

B Regularization Loss for Balancing Expert Utilization

In this section, we provide detailed information about the regularization loss mentioned in Sec. 4.1.
To prevent the gating network from converging to a state where it consistently assigns large weights to
the same few experts, we adopt both importance loss and load-balancing loss as proposed by Shazeer
et al. [25].

The importance loss aims to encourage all experts to have equal significance within the model, and
the importance of an expert relative to a batch of training examples is defined as the sum of the gate
values assigned to that expert:

Imp(h) =
∑
x∈X

Gtok(x|h), (12)

where Gtok(x|h) represents the gate value for expert h given input x. An additional loss term
Limportance is then added to the overall loss function, which is calculated as the square of the coefficient
of variation of the set of importance values multiplied by a hand-tuned scaling factor wimp:

Limportance = wimp · CV (Imp(h))2. (13)

Despite ensuring equal importance among experts, discrepancies may still arise in the number of input
tokens each expert receives due to the top-k activation mechanism. One expert might be assigned
large weights for only a few tokens while another expert could receive small weights across many
tokens but fail to activate. To address this issue, a load-balancing loss is introduced to ensure that
each expert handles approximately the same number of input tokens.

To achieve this, a smooth estimator Load(h) of the number of examples assigned to each expert. This
estimator allows gradients to propagate through backpropagation, by utilizing the noise term in the
gating function, which we omit in Eq. (2). Given a trainable weight of noise matrix Wnoise, Eq. (2)
is rewrite as

wtok(i;h) = softmax(H(i|h))[i],
H(i|h) = topk

(
Gtok(i|h) + StandardNormal() · Softplus(h ·Wnoise)i

)
.

(14)

Let P (i;h) denote the probability that wtok(i;h) is non-zero, given a new random noise choice for
element i, while keeping the already sampled noises for other elements constant. Note that, wtok(i;h)
is non-zero if and only if H(i|h) is greater than the kth-greatest element of H(·|h) excluding itself.
Thus, we have

P (i;h) = Pr
(
Gtok(i|h)+StandardNormal()·Softplus(h·Wnoise)i > kth_excluding(H(·|h), k, i)

)
,

(15)
where kth_excluding(H(·|h), k, i) means the kth-greatest element of H(·|h), excluding i-th element.
Based on this, we can compute:

P (i;h) = Φ

(
Gtok(i|h)− kth_excluding(H(i|h), k, i)

Softplus((h ·Wnoise)i)

)
, (16)

where Φ is the cumulative distribution function (CDF) of the standard normal distribution. Then, the
estimated load for expert i is given by:

Load(i;h) =
∑

P (i;h). (17)

Finally, the load-balancing loss is defined as the square of the coefficient of variation of the load
vector, scaled by a hand-tuned parameter wload:

Lload = wload · CV (Load(h))2. (18)

Combining both losses yields the final regularization loss showed in Eq. (3) used in our model which
helps maintain balanced utilization of experts during training, preventing any single expert from
dominating the computation.

19

C Contrastive Learning for Task-wise MoE Router

In this section, we give the proof of Theorem 1 based on a lemma as follows.

Lemma 1. Give a task from the task distribution M ∼ P (M), let h̄ = f(τ) as the average of hidden
state after self-attention calculation of task M , z ∼ Gtask(z|h̄). Then, we have

p(M |z)
p(M)

= Eh̄

[
p(z|h̄)
p(z)

]
. (19)

Proof.
p(M |z)
p(M)

=
p(z|M)

p(z)

=

∫
h̄

p(z|h̄)p(h̄|M)

p(z)
dh̄

= Eh̄

[
p(z|h̄)
p(z)

]
.

(20)

The proof is completed.

Theorem 1. Let M denote a set of tasks following the task distribution P (M), and |M| = N .
M ∈M is a given task. Let h̄= f(τ), z∼Gtask(·|h̄), and e(h̄, z)= p(z|h̄)

p(z) , where τ is a trajectory
from task M and h̄ is average hidden state of all tokens after the self-attention calculation function
f(·). Let h̄′ denote the average hidden state generated by any task M ′∈M, then we have

I(z;M) ≥ logN + EM,z,h̄

[
log

e(h̄, z)∑
M ′∈M e(h̄′, z)

]
. (21)

Proof. Using Lemma 1 and Jensen’s inequality, we have

EM,z,h̄

[
log

e(h̄, z)∑
M ′∈M e(h̄′, z)

]
= EM,z,h̄

log p(z|h̄)
p(z)

p(z|h̄)
p(z) +

∑
M ′∈M\M

p(z|h̄′)
p(z)


= EM,z,h̄

− log

1 +
p(z)

p(z|h̄)
∑

M ′∈M\M

p(z|h̄′)

p(z)


≈ EM,z,h̄

[
− log

(
1 +

p(z)

p(z|h̄)
(N − 1)EM ′∈M\M

[
p(z|h̄′)

p(z)

])]
= EM,z,h̄

[
− log

(
1 +

p(z)

p(z|h̄)
(N − 1)

)]

= EM,z,h̄

log
 1

1 + p(z)

p(z|h̄) (N − 1)


≤ EM,z,h̄

log
 1

p(z)

p(z|h̄)N


≤ EM,z

[
logEh̄

[
p(z|h̄)
p(z)

]]
− logN

= EM,z

[
log

p(M |z)
p(M)

]
− logN

= I(z;M)− logN.
(22)

Thus, we complete the proof.

20

D The Details of Environments and Dataset Construction

In this section, we show details of the evaluation environments over a variety of benchmarks, as well
as the collection of offline datasets on these environments.

D.1 The Details of Environments

We evaluate T2MIR and all the baselines on classical benchmarks including discrete environment
commonly used in ICRL [12], the 2D navigation, the multi-task MuJoCo control [60] and the
Meta-World [61]. More specifically, we evaluate all tested methods on the following environments as

• DarkRoom: a discrete environment where the agent navigates in a 10× 10 grid to find the goal.
The observation is the 2D coordinate of the agent, and the actions are left, right, up, down, and
stay. The agent is started from [0, 0] to find the goal which is uniformly sampled from the grid.
The reward is sparse and only r = 1 when the agent is at the goal, and r = 0 otherwise. It
provides 100 tasks, from which we randomly sample 80 tasks as training tasks and hold out the
remaining 20 for evaluation. The maximal episode step is set to 100.

• Point-Robot: a problem of a point agent navigating to a given goal position in the 2D space.
The observation is the 2D coordinate of the robot. The action space is [−0.1, 0.1]2 with each
dimension corresponding to the moving distance in the horizontal and vertical directions. The
reward function is defined as the negative distance between the point agent and the goal location.
Tasks differ in goal positions that are uniformly distributed in a unit square, resulting in the
variation of the reward functions. We randomly sample 45 goals as training tasks, and another 5
goals for evaluation. The start position is sampled uniformly from [−0.1, 0.1]2 for each learning
episode and the maximal episode step is set to 20.

• Cheetah-Vel: a multi-task MuJoCo continuous control environment in which the reward function
differs across tasks. It requires a planar cheetah robot to run at a particular velocity in the positive
x-direction. The observation space is R20, which comprises the position and velocity of the
cheetah, the angle and angular velocity of each joint. The action space is [−1, 1]6 with each
dimension corresponding to the torque of each joint. The reward function is negatively correlated
with the absolute value between the current velocity of the agent and the goal, plus the control
cost. The goal velocities are uniformly sampled from the distribution U [0.075, 3.0]. We randomly
sample 45 goals as training tasks, and another 5 goals for evaluation. The maximal episode step
is set to 200.

• Ant-Dir: a multi-task MuJoCo continuous control environment in which the reward function
differs across tasks. It requires a quadruped ant robot to run in a target direction. The observation
space is R27, which comprises the position and velocity of the ant robot, together with the angle
and angular velocity of 8 joints. The action space is [−1, 1]8 with each dimension corresponding
to the torque of each joint. The reward function is positively correlated with the velocity of the
ant robot in the target direction, plus the control cost. The target directions are uniformly sampled
from U [0, 2π]. We randomly sample 45 target directions as training tasks, and another 5 for
evaluation. The maximal episode step is set to 200.

• Walker-Param: a multi-task MuJoCo benchmark where tasks differ in state transition dynamics.
It need to control a two-legged walker robot to run as fast as possible with varying environment
dynamics. The observation space is R17 and the action space is [−1, 1]6. The reward function
is proportional to the running velocity in the positive x-direction, which remains consistent
for different tasks. The physical parameters of body mass, inertia, damping, and friction are
randomized across tasks. We randomly sample 45 physical parameters as training tasks, and
another 5 for evaluation. The maximal episode step is set to 200.

• Reach, Push: two typical environments from the robotic manipulation benchmark Meta-World.
Reach and Push control a robotic arm to reach a goal location in 3D space and to push the puck
to a goal, respectively. The observation space is R39, which contains current state, previous state,
and the goal. We only use the current state vector, thus the observation space is modified to R18

without goal information. The action space is [−1, 1]4. Tasks differ in goal positions which are
uniformly sampled, resulting in the variation of reward functions. The initial position of object is
fixed across all tasks. We randomly sample 45 goals as training tasks, and another 5 goals for
evaluation. The maximal episode step is set to 100.

• ML10: contains 10 different robotics manipulation tasks for training and another 5 different tasks
for evaluation. Specifically, we randomly sample 5 goals for each training task and 1 goal for

21

Table 4: Hyperparameters of SAC used to collect multi-task datasets.

Environments
Training Warmup Save Learning Soft Discount Entropy

steps steps frequency rate update factor ratio

Point-Robot 2000 100 20 3e-4 0.005 0.99 0.2
Cheetah-Vel 250000 2000 10000 3e-4 0.005 0.99 0.2
Cheetah-Vel-

400000 2000 10000 3e-4 0.005 0.99 0.2
3_Cluster

Walker-Param 1000000 2000 10000 3e-4 0.005 0.99 0.2

Table 5: Hyperparameters of PPO used to collect multi-task datasets.

Environments total_timesteps n_steps learning_rate batch_size n_epochs γ

Reach 400000 2048 3e-4 64 10 0.99
Push 1000000 2048 3e-4 64 10 0.99

each evaluation task, resulting in 50 goals for training and 5 goals for evaluation. We use the
same setting for each robotic manipulation task as in Reach and Push. The maximal episode step
is set to 100.

Furthermore, we give the details of the heterogeneous version Cheetah-Vel we used in Appendix J.

• Cheetah-Vel-3_Cluster: a heterogeneous version of Cheetah-Vel, where the goal velocities
are different. We sample the goal velocities from three Gaussian distributions: N (0.5, 0.152),
N (1.5, 0.152), N (2.5, 0.152). From each Gaussian distribution, we sample 14 tasks for training
and 2 tasks for evaluation, resulting in 42 training tasks and 6 test tasks.

Note that we construct different tasks by setting different parameters for the environment, we cannot
access these parameters (e.g., goal velocities in Cheetah-Vel) during training following common
in-context RL settings.

D.2 The Details of Datasets

For discrete environment DarkRoom, we use the expert policy to collect datasets by progressively
reducing the noise, as in [14]. For Point-Robot and MuJoCo environments, we employ the soft
actor-critic (SAC)[62] algorithm to train a policy independently for each task, and the detailed
hyperparameters are shown in Table 4. For Meta-World environments, we use the Proximal Policy
Optimization (PPO)[63] algorithm implementation provided by Stable Baselines 3[64], and the
detailed hyperparameters are shown in Table 5. During training, we periodically save the policy
checkpoints and use them to generate various qualities of offline datasets as

• Mixed: using all policy checkpoints to generate datasets. We use each checkpoint to generate
same number of episodes, e.g., using one checkpoint to generate one episode.

• Medium-Expert: using the policy checkpoints whose performance is below 80% of the final
achieved level to generate datasets. The max performance in Medium-Expert datasets is about
80% of that in Mixed datasets.

• Medium: using the policy checkpoints whose performance is below 50% of the final achieved
level to generate datasets. The max performance in Medium datasets is about 50% of that in
Mixed datasets.

For query state-action pairs used in DPT and T2MIR-DPT, we use the expert policies that achieve
100%, 80% and 50% performance to provide actions for states in Mixed, Medium-Expert and Medium
datasets, respectively. As we find the actions provided by expert policies contain too many values
outside the boundary of the action space in Meta-World environments, we just use the state-action
pairs in offline datasets as query datasets for Reach and Push.

22

E Baseline Methods

This section gives the details of the five representative baselines, including four ICRL approaches
and one context-based offline meta-RL method. These baselines are thoughtfully selected as they are
representative in distinctive categories. Furthermore, since our proposed T2MIR method belongs to
the ICRL category, we incorporate more methods from this class as baselines for a comprehensive
comparison. The detailed descriptions of these baselines are as follows:

• AD [11], is the first method to achieve ICRL through sequential modeling of offline historical data
using an imitation loss. By employing a causal transformer with sufficiently large across-episodic
contexts to imitate gradient-based RL algorithms, AD learns improved policies for new tasks
entirely in context without requiring external parameters updating.

• DPT [12], is an ICRL method that models contextual trajectories via supervised learning to
predict optimal actions. After pretraining on offline datasets, DPT provides contextual learning
capabilities for new tasks, enabling online exploration and offline decision-making given query
states and contextual prompts.

• IDT [13], is an ICRL method that simulates high-level trial-and-error processes. It introduces
an innovative architecture comprising three modules: Making Decisions, Decisions to Go, and
Reviewing Decisions. These modules generate high-level decisions in an autoregressive manner
to guide low-level action selection. Built upon transformer models, IDT can address complex
decision-making in long-horizon tasks while reducing computational costs.

• DICP [15], combines model-based reinforcement learning with previous ICRL algorithms like
AD and IDT. By jointly learning environment dynamics and policy improvements in context,
DICP employs a transformer architecture to perform model-based planning and decision-making
without updating model parameters Furthermore, DICP generates actions by simulating potential
future states and predicting long-term returns.

• UNICORN [42], is a context-based offline meta-RL algorithm grounded in information theory.
It proposes a unified information-theoretic framework, which focuses on optimizing different
approximation bounds of the mutual information objective between task variables and their
latent representations. Leveraging the information bottleneck principle, it derives a novel gen-
eral and unified task representation learning objective, enabling the acquisition of robust task
representations.

To ensure a fair comparison, all baselines are adjusted to an aligned setting, where test datasets are
not available for policy evaluation. We also standardize the size and quality of the offline datasets for
all baselines.

In our experimental setup, AD faces difficulties in distilling effective policy improvement operators
due to the scarcity of available offline historical data. Thus, we use an enhanced version of AD that
incorporates a trajectory-ranking mechanism based on cumulative rewards, inspired by AT [65].

F Network Architecture and Hyperparameters of T2MIR

This section gives details of the architecture and hyperparameters of T2MIR implementations as
follows.

Router Network. We implement the router network using a multi-layer perceptron (MLP) archi-
tecture without bias. Specifically, the router contains two linear layers with Tanh as the activation
function between them. The first linear maps hidden state h to a n_experts-dim vector along with
the Tanh activation, and the second linear maps the n_experts-dim vector to another n_experts-dim
vector as the output of router.

Architecture of T2MIR. We implement the T2MIR-AD based on causal transformer akin to AM-
AGO [45] with Flash Attention [56]. For T2MIR-DPT, we build our T2MIR framework upon the
transformer architecture in DPT [12], flatten the trajectories into state-action-reward sequence as
input. Specifically, we employ separate embeddings for states, action, and rewards, adding a learnable
positional embedding based on timesteps. Each block employs a multi-head self-attention module
followed by a feedforward network or a MoE layer with GELU activation [66]. For action prediction,
we employ a linear to map the output of transformer blocks to an action vector with a Tanh activation.

23

Table 6: Hyperparameters in training process of T2MIR-AD using Mixed datasets.

Hyperparameters DarkRoom Point-Robot Cheetah-Vel Walker-Param Reach Push

training steps 300000 100000 100000 100000 100000 100000
learning rate 3e-4 3e-4 3e-4 3e-4 5e-5 3e-4

Prompt length 400 80 800 800 400 400
token experts K1 6 6 6 6 6 6
task experts K2 12 8 8 8 8 8
InfoNCE weight 0.01 0.01 0.01 0.01 0.01 0.01

MoE layer position top top top top top top
Momentum ratio β 0.995 0.995 0.995 0.995 0.995 0.995

Table 7: Hyperparameters in training process of T2MIR-DPT using Mixed datasets.

Hyperparameters DarkRoom Point-Robot Cheetah-Vel Walker-Param Reach Push

training steps 300000 100000 100000 100000 100000 100000
learning rate 3e-4 3e-4 3e-4 3e-4 5e-5 3e-4

Prompt length 100 20 200 200 100 100
token experts K1 6 6 6 6 6 6
task experts K2 8 8 8 8 8 8
InfoNCE weight 0.001 0.001 0.01 0.01 0.01 0.001

MoE layer position top top top top top top
Momentum ratio β 0.995 0.995 0.995 0.995 0.995 0.995

Table 6 and Table 7 show the detailed hyperparameters used for T2MIR-AD and T2MIR-DPT using
Mixed datasets, respectively.

Compute. We train our models on one Nvidia RTX4080 GPU with the Intel Core i9-10900X CPU
and 256G RAM. The training process takes about 0.5-3 hours, depending on the complexity of the
environments. Compared with T2MIR-free backbones, T2MIR takes a lightly higher computational
cost during the training process, but it requires less computational resources during task inference.

G Analysis of Hyperparameters and T2MIR Architecture

G.1 Hyperparameter Analysis

Analysis of Expert Configurations on T2MIR-DPT. We also investigate different expert configura-
tions on T2MIR-DPT, as shown in Figure 7. Table 8 and Table 9 give the numerical results of T2MIR
with different expert configurations in token- and task-wise MoE, respectively. For token-wise MoE,
as same as T2MIR-AD, the results show that moderate configuration (2/6) outperforms both smaller
(1/3) and larger (4/12) settings. For task-wise MoE, the performance improves with the increase
number of total experts, and tends to be stable.

Weight of InfoNCE Loss. We investigate the influence of the loss weight of InfoNCE loss in
task-wise MoE, the results are shown in Figure 9 and Table 10. The performance of T2MIR is not
sensitive to small weights. But when the InfoNCE loss weight is set to 0.1, it gains an obvious
decrease. We suppose this is because the final loss of Lcontrastive in Eq. (7) has same magnitude with
imitation loss L(θ) in Eq. (10) and Eq. (11), and it disturbs the overall learning process.

G.2 Architecture Analysis

Position of MoE Layer. Further more, we explore how the placement of the MoE layer affects
performance. We substitute the feedforward network in one transformer block with MoE layer and

24

Table 8: Numerical results of T2MIR with varying expert numbers in token-wise MoE. Best in bold.

T2MIR-AD 1/3 2/6 4/12 T2MIR-DPT 1/3 2/6 4/12

Point-Robot −6.6±0.7 -5.2±0.3 −6.1±0.5 Point-Robot −5.6±0.2 -5.0±0.5 −5.3±0.3

Cheetah-Vel −86.1±2.2 -68.9±2.1 −80.1±0.5 Cheetah-Vel −53.3±1.3 -43.2±0.8 −50.7±1.9

Table 9: Numerical results of T2MIR with varying expert numbers in task-wise MoE. Best in bold.

T2MIR-AD 2/4 2/6 2/8 T2MIR-DPT 2/4 2/6 2/8

Point-Robot −5.3±0.3 −5.2±0.3 -5.2±0.3 Point-Robot −5.2±0.4 −5.2±0.2 -5.0±0.5

Cheetah-Vel −91.7±27.9 −76.3±1.7 -68.9±2.1 Cheetah-Vel −51.5±7.4 −45.9±2.1 -43.2±0.8

(a) T2MIR-AD (b) T2MIR-DPT

Figure 9: Test return curves of T2MIR with different contrastive loss weights.

Table 10: Numerical results of T2MIR with different loss weights of InfoNCE loss, i.e., numerical
results of best performance from Figure 9. Best result in bold.

T2MIR-AD 0.1 0.01 0.001 T2MIR-DPT 0.1 0.01 0.001

Point-Robot −6.9±1.6 -5.2±0.1 −5.2±0.3 Point-Robot −6.1±0.4 −5.4±0.1 -5.0±0.5

Cheetah-Vel −148.4±5.0 -68.9±2.1 −74.1±1.0 Cheetah-Vel −49.4±1.6 -43.2±0.8 −54.9±1.3

study three settings of different positions: bottom, middle and top, where the MoE layer is used in
the first, L

2 -th and last transformer block, respectively. Figure 10 and Table 11 present the results,
where substituting the feedforward network in the last transformer block with MoE layer (top) gets
more stable performance.

Importance of Balance and InfoNCE Loss. We conduct further ablation studies to investigate
the respective impacts of additional losses used to balance the experts. We compare T2MIR-AD to
three ablations: 1) w/o balance_loss, omitting balance loss (Eq. (3)) in token-wise MoE, while
retaining InfoNCE loss in task-wise MoE; 2) w/o infonce_loss, omitting InfoNCE loss (Eq. (7))
in task-wise MoE, while retaining balance loss in token-wise MoE; and 3) w/o aux_loss, omitting
both balance loss and InfoNCE loss. For the ablation studies, we just omit the additional losses while
keeping the token- and task-wise MoE architectures. The numerical results in Table 12 show that
both balance loss and InfoNCE loss play significant roles in T2MIR’s superior performance. Ablating
the balance loss will cause a bit more performance degradation than ablating the InfoNCE loss.

Architecture of Token-wise MoE. To quantify the challenge incurred by the semantic discrepancy
among states, actions, and rewards, we completely isolate the multi-modality issue and manually
design a MoE structure where state-action-reward tokens are routed to three experts by a heuristic
gating scheme, i.e., one expert for one modality. The results in Table 13 show that the heuristic gating
mechanism contributes to performance improvement, while T2MIR achieves a more pronounced
enhancement by automatically routing state-action-reward tokens. The enhancement achieved by
transitioning from heuristic routing to automatic routing may stem from a more flexible approach
to processing the integrated information generated after the attention mechanism. The results again
demonstrate the significant challenge induced by the semantic discrepancy across multi-modal tokens
in the state-action-reward sequence, and the significant superiority of token-wise MoE architecture.

25

(a) T2MIR-AD (b) T2MIR-DPT

Figure 10: Test return curves of T2MIR with different positions of MoE layer.

Table 11: Numerical results of T2MIR with different positions of MoE layer, i.e., numerical results
of best performance from Figure 10. Best result in bold.

T2MIR-AD bottom middle top T2MIR-DPT bottom middle top

Point-Robot −6.0±0.8 −5.8±0.3 -5.2±0.3 Point-Robot −5.5±0.3 −5.7±0.4 -5.0±0.5

Cheetah-Vel -57.9±1.6 −70.2±5.4 −68.9±2.1 Cheetah-Vel −52.9±4.0 −43.8±2.2 -43.2±0.8

Table 12: Numerical results of ablation study on the importance of balance and InfoNCE loss on
T2MIR-AD using Mixed datasets. Best result in bold.

Environments T2MIR-AD w/o infonce_loss w/o balance_loss w/o aux_loss

Cheetah-Vel -68.9±2.1 −76.7±3.5 −92.8±1.6 −112.4±30.4

Walker-Param 435.7±7.2 417.0±2.6 416.0±5.3 393.2±6.7

Table 13: Numerical results of different architectures of token-wise MoE on T2MIR-AD using Mixed
datasets. Best result in bold.

Environments T2MIR-AD heuristic routing AD

Cheetah-Vel -68.9±2.1 −91.1±30.4 −119.2±30.4

Walker-Param 435.7±7.2 407.1±10.5 395.2±7.1

H Robustness to OOD Setups

H.1 Robustness to OOD test tasks

We conduct new experiments to evaluate T2MIR’s capability to handle OOD test tasks on Cheetah-Vel
against baselines. The goal velocities of training tasks are uniformly sampled from U [0.075, 3], but
during testing we sample OOD tasks from U [3.1, 3.3]. The results in Table 14 demonstrate T2MIR’s
consistent superiority even when dealing with OOD test tasks.

H.2 Robustness to OOD Offline Prompt Data

In our main experiments in Sec. 5.1, we evaluate T2MIR and baselines via direct online interaction
with the test environment, without access to any offline data. That is, the prompts or contexts are
generated from online environment interactions to infer task beliefs during testing. In this section, we
have conducted new experiments to evaluate T2MIR-DPT’s robustness to OOD offline data as the
test prompt. Specifically, we employ a random behavior policy to interact with the environment and
collect one trajectory as the offline prompt. The results in Table 15 demonstrate T2MIR’s consistent
superiority even when prompted with OOD offline data.

I More Experiments on Ant-Dir and Meta-World

In addition, we have conducted new evaluations on the challenging Ant-Dir in MuJoCo and ML10 in
Meta-World to demonstrate T2MIR’s ability to these harder suites. Details about the two environments

26

Table 14: Numerical results of T2MIR against baselines on OOD test tasks using Mixed datasets.
Best result in bold and second best underline.

Environment T2MIR-AD T2MIR-DPT AD DPT DICP IDT UNICORN

Cheetah-Vel −117.3±4.4 -71.0±0.7 −158.8±47.1 −78.5±2.6 −109.1±2.1 −114.3±2.3 −88.6±2.1

Table 15: Numerical results of T2MIR-DPT against DPT with OOD offline prompt data using Mixed
datasets.

Environments T2MIR-DPT DPT

Point-Robot −5.0±0.2 −5.9±0.1

Cheetah-Vel −35.0±2.9 63.2±4.4

Walker-Param 424.1±17.3 419.0±11.5

Table 16: Numerical results of T2MIR on Ant-Dir in MuJoCo and ML10 in Meta-World. Best result
in bold and second best underline.

Environments T2MIR-AD T2MIR-DPT AD DPT DICP IDT UNICORN

Ant-Dir 681.5±30.4 708.6±24.5 432.2±42.5 634.1±46.7 690.3±20.4 643.7±34.5 450.9±10.2

ML10 318.1±11.3 291.3±21.9 277.0±39.0 230.6±25.1 215.9±11.2 223.3±13.3 193.6±10.7

can be found in Appendix D. The numerical results in Table 16 show the promising scalability and
the consistent superiority of T2MIR over various baselines.

J More Visualization Insights

Figure 11: Test return curves of
T2MIR against baselines on Cheetah-
Vel-3_Clustering using Mixed datasets.

t-SNE Visualization on Push. We also visualize the multi-
modal property and task clustering in T2MIR-AD on Push,
as shown in Figure 12. The visualization results consis-
tently exhibit the ability of token-wise MoE to process
token from different modalities with different experts, and
task-wise MoE to distribute trajectories from different
tasks to different experts.

Heterogeneous Setting. For a further study of the task
clustering ability of T2MIR, we construct a heteroge-
neous version Cheetah-Vel inspired by MILET [67]. We
split the velocities of tasks into three intervals, construct-
ing Cheetah-Vel-3_Cluster environment. Figure 11
presents the test return curves of T2MIR and baselines
using Mixed datasets. We demonstrate the probability of
task assignments to some experts, as shown in Figure 13,
the velocities from three different distributions are divided by dashed lines. The expert-1 dominates
at lower speeds, the expert-2 dominates at higher speeds, and it exhibits a mixture of different experts
for medium speeds, with expert-1 being dominant. Moreover, there are switched among different
experts at the boundaries between different velocity distributions. The results indicate that distinct
experts dominate different tasks sampled from the three distributions, which further validates our
motivation to employ token-wise MoE.

K Empirical Evidence of Gradient Conflicts

In addition to the results in Figure 8, we also provide quantification of the gradient conflict issue. The
results in Table 17 present the proportion of task pairs with negative correlations (cosine similarity
< −0.05) among all pairs of tasks, which demonstrate T2MIR’s significant superiority in mitigating
gradient conflicts.

27

Figure 12: t-SNE visualization of expert assignments on Push. Left: token-wise MoE enables
different experts to process three-modality tokens. Right: task-wise MoE effectively manages a task
distribution, where trajectories from same task are prone to be distributed to same experts.

Figure 13: Probability of task assignments to some experts. The goal velocities are sampled from
three distributions and divided by dashed lines.

Table 17: Quantification of the gradient conflict.

Methods Point-Robot Cheetah-Vel Walker-Param Reach Push

AD 31.1% 33.9% 23.3% 20.2% 12.8%
T2MIR-AD 7.4% 1.2% 1.1% 15.6% 1.8%

L Limitations

We discuss the limitations and computational efficiency of our method in this section. Constrained
by limited computing resources, our method is trained on lightweight datasets, e.g., the Mixed
datasets of Push contain 500 episodes per task and 45 training tasks, which have totally 2.25 million
transitions. Although the size of datasets are small, we find it’s enough to gain a high performance.
But the size of datasets limits the capacity of MoE in extending the size of model parameters. Future
work may evaluate their study on more complex environments and larger datasets such as XLand-
MiniGrid [57, 10]. The efficiency of contrastive loss in task-wise MoE when facing massive number
of tasks is not thoroughly explored in this work. It is interesting to explore whether the contrastive loss
is effective for managing task assignments in scenarios involving a large number of tasks. Integrating
the T2MIR framework incurs a slightly higher computational cost during the training process, but it
requires less computational resources during task inference.

28

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please refer to the Abstract and Section 1: Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 6: Conclusions, Limitations, and Future Work, and
Appendix L.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

29

Justification: Please refer to Appendix C for the proof of Theorem 1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Appendix A for algorithm pseudocodes. Appendix D for
the details of environments and dataset construction, and Appendix F for the implementa-
tion details and hyperparameters of our method. We also provide our source code in the
supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

30

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Please refer to Appendix A, Appendix D and Appendix F for details of our
method and dataset construction. We also provide our source code in the supplementary
materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Section 5: Experiments, Appendix D, Appendix F. And
Appendix G provides analysis of hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to Section 5: Experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Please refer to Appendix A, Appendix D and Appendix F for details of
our implementation and dataset construction. We also provide our source code in the
supplementary materials.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to Section 6: Conclusions, Limitations, and Future Work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

32

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We construct the datasets used in this work ourselves, and not use existing
assets, please refer to Appendix D for details.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

33

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

34

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in our work does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

35

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	In-Context Reinforcement Learning
	Mixture-of-Experts

	Method
	Token-wise MoE
	Task-wise MoE
	Scalable Implementations

	Experiments
	Main Results
	Ablation Study
	Robustness Study
	Visualization Insights into MoE Structure

	Conclusions, Limitations, and Future Work
	Appendix
	Algorithm Pseudocodes
	Regularization Loss for Balancing Expert Utilization
	Contrastive Learning for Task-wise MoE Router
	The Details of Environments and Dataset Construction
	The Details of Environments
	The Details of Datasets

	Baseline Methods
	Network Architecture and Hyperparameters of T2MIR
	Analysis of Hyperparameters and T2MIR Architecture
	Hyperparameter Analysis
	Architecture Analysis

	Robustness to OOD Setups
	Robustness to OOD test tasks
	Robustness to OOD Offline Prompt Data

	More Experiments on Ant-Dir and Meta-World
	More Visualization Insights
	Empirical Evidence of Gradient Conflicts
	Limitations

