
Learning Better Representations From Less Data For
Propositional Satisfiability

Mohamed Ghanem∗ Frederik Schmitt∗ Julian Siber∗ Bernd Finkbeiner∗
∗CISPA Helmholtz Center for Information Security

{mohamed.ghanem,frederik.schmitt,julian.siber,finkbeiner}@cispa.de

Abstract

Training neural networks on NP-complete problems typically demands very large
amounts of training data and often needs to be coupled with computationally
expensive symbolic verifiers to ensure output correctness. In this paper, we
present NeuRes, a neuro-symbolic approach to address both challenges for proposi-
tional satisfiability, being the quintessential NP-complete problem. By combining
certificate-driven training and expert iteration, our model learns better representa-
tions than models trained for classification only, with a much higher data efficiency
– requiring orders of magnitude less training data. NeuRes employs propositional
resolution as a proof system to generate proofs of unsatisfiability and to accelerate
the process of finding satisfying truth assignments, exploring both possibilities in
parallel. To realize this, we propose an attention-based architecture that autoregres-
sively selects pairs of clauses from a dynamic formula embedding to derive new
clauses. Furthermore, we employ expert iteration whereby model-generated proofs
progressively replace longer teacher proofs as the new ground truth. This enables
our model to reduce a dataset of proofs generated by an advanced solver by ∼32%
after training on it with no extra guidance. This shows that NeuRes is not limited
by the optimality of the teacher algorithm owing to its self-improving workflow.
We show that our model achieves far better performance than NeuroSAT in terms
of both correctly classified and proven instances.

1 Introduction

Boolean satisfiability (SAT) is a fundamental problem in computer science. For theory, this stems
from SAT being the first problem proven NP-complete [13]. For practice, this is due to many highly-
optimized SAT solvers being used as flexible reasoning engines in a variety of tasks such as model
checking [12, 47], software verification [17], planning [27], and mathematical proof search [24].
Recently, SAT has also served as a litmus test for assessing the symbolic reasoning capabilities of
neural models and a promising domain for neuro-symbolic systems [43, 42, 1, 10, 36]. So far, neural
models only provide limited, if any, justification for unsatisfiability predictions. NeuroCore [42],
for example, predicts an unsatisfiable core, the verification of which can be as hard as solving the
original problem. No certificates at all or certificates that are hard to check limit neural methods
in a domain where correctness is critical and prevents close integrations with symbolic methods.
Therefore, we propose a neuro-symbolic model that utilizes resolution to solve SAT problems by
generating easy-to-check certificates.

A resolution proof is a sequence of case distinctions, each involving two clauses, that ends in the
empty clause (falsum). This technique can also be used to prove satisfiability by exhaustively
applying it until no further new resolution steps are possible and the empty clause has not been
derived. Generating such a proof is an interesting problem from a neuro-symbolic perspective because
unlike other discrete combinatorial problems that have been considered before [46, 7, 28, 30, 11], it

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

requires selecting compatible pairs of clauses from the dynamically growing pool, as newly derived
clauses are naturally considered for derivation in subsequent steps. In this work, we devise three
attention-based mechanisms to perform this pair-selection needed for generating resolution proofs.
In addition, we augment the architecture to efficiently handle sat (satisfiable) formulas with an
assignment decoding mechanism that assigns a truth value to each literal. We hypothesize that,
despite their final goals being in complete opposition, resolution and sat assignment finding can form
a mutually beneficial collaboration. On the one hand, clauses derived by resolution incrementally
inject additional information into the network, e.g., deriving a single-literal clause by resolution
directly implies that literal should be true in any possible sat assignment. On the other hand, finding
a sat assignment absolves the resolution network from having to prove satisfiability by exhaustion.
On that basis, given an input formula, NeuRes proceeds in two parallel tracks: (1) finding a sat
assignment, and (2) deriving a resolution proof of unsatisfiability. Both tracks operate on a shared
representation of the problem state. Depending on which track succeeds, NeuRes produces the
corresponding SAT verdict which is guaranteed to be sound by virtue of its certificate-based design.
Since both of our certificate types are efficient to check, we can afford to perform these symbolic
checks at each step. When comparing NeuRes with NeuroSAT [43], which has been trained to predict
satisfiability with millions of samples, we demonstrate that NeuRes achieves a higher accuracy while
providing a proof and requires only thousands of training samples.

As for most problems in theorem proving we are not only interest in finding any proof but a short
proof. Resolution proofs can vary largely in their size depending on the resolution steps taken. Being
able to efficiently check the proof, also allows us to adapt the proof target while training the model.
In particular, we explore an expert iteration mechanism [2, 39] that pre-rolls the resolution proof of
the model and replaces the target proof whenever the pre-rolled proof is shorter. We demonstrate
that this bootstrapping mechanism iteratively shortens the proofs of our training dataset while further
improving the overall performance of the model.

We make the following contributions:

1. We introduce novel architectures which combine graph neural networks with attention
mechanisms for generating resolution proofs and assignments for CNF formulas (Section 4).

2. We show that for propositional logic, learning to prove rather than predict satisfiability
results in better representations and requires far less training samples (Section 6 and 7).

3. We devise a bootstrapped training procedure where our model progressively produces shorter
resolution proofs than its teacher (Section 6.2) boosting the model’s overall performance.

The implementation of our framework can be found at https://github.com/Oschart/NeuRes.

2 Related Work

SAT Solving and Certificates. We refer to the annual SAT competitions [5] for a comprehensive
overview on the ever-evolving landscape of SAT solvers, benchmarks, and proof checkers. SAT
solvers are complex systems with a documented history of bugs [9, 26], hence proof certificates
have been partially required in this competition since 2013 [3]. Unlike satisfiable formulas, there are
several ways to certify unsatisfiable formulas [23]. Resolution proofs [52, 20] are easy to verify [15],
but non-trivial to generate from modern solvers based on the paradigm of conflict-driven clause
learning [34]. Clausal proofs, e.g., in DRAT format [50], are easier to generate and space-efficient,
but hard to validate. Verifying the proofs can take longer than their discovery [22] and requires highly
optimized algorithms [31].

Deep Learning for SAT Solving. NeuroSAT [43] was the first study of the Boolean satisfiability
problem as an end-to-end learning task. Building upon the NeuroSAT architecture, a simplified
version has been trained to predict unsatisfiable cores and successfully integrated as a branching
heuristic in a state-of-the-art SAT solver [42]. Recent work has employed a related architecture
as a phase selection heuristic [49]. It has been shown that both the NeuroSAT architecture and a
newly introduced deep exchangeable architecture can outperform SAT solvers on instances of 3-SAT
problems [10]. The NeuroSAT architecture has also been applied on special classes of crypto-analysis
problems [44]. In addition to supervised learning, unsupervised methods have been proposed for
solving SAT problems. For Circuit-SAT a deep-gated DAG recursive neural architecture has been

2

https://github.com/Oschart/NeuRes

Figure 1: Overall NeuRes architecture

presented together with a differentiable training objective to optimize towards solving the Circuit-SAT
problem and finding a satisfying assignment [1]. For Boolean satisfiability, a differentiable training
objective has been proposed together with a query mechanism that allows for recurrent solution
trials [36].

Deep Learning for Formal Proof Generation. In formal mathematics, deep learning has been
integrated with theorem proving for clause selection [33, 18], premise selection [25, 48, 6, 35],
tactic prediction [51, 37] and whole proof searches [40, 19]. For SMT formulas specifically, deep
reinforcement learning has been applied to tactic prediction [4]. In the domain of quantified boolean
formulas, heuristics have been learned to guide search algorithms in proving the satisfiability and
unsatisfiability of formulas [32]. For temporal logics, deep learning has been applied to prove the
satisfiability of linear-time temporal logic formulas and the realizability of specifications [21, 41, 14].

3 Proofs of (Un-)Satisfiability

We start with a brief review of certifying the (un-)satisfiability of propositional formulas in conjunctive
normal form. For a set of Boolean variables V , we identify with each variable x ∈ V the positive
literal x and the negative literal ¬x denoted by x̄. A clause corresponds to a disjunction of literals and
is abbreviated by a set of literals, e.g., {1̄, 3} represents (¬x1 ∨x3). A formula in conjunctive normal
form (CNF) is a conjunction of clauses and is abbreviated by a set of clauses, e.g., {{1̄, 3}, {1, 2, 4̄}}
represents (¬x1∨x3)∧ (x1∨x2∨¬x4). Any Boolean formula can be converted to an equisatisfiable
CNF formula in polynomial time, for example with Tseitin transformation [45].

A CNF formula is satisfiable if there exists an assignment A : V → {⊤,⊥} such that all clauses
are satisfied, i.e., each clause contains a positive literal x such that A(x) = ⊤ or a negative literal
x̄ such that A(x) = ⊥. If no such assignment exists we call the formula unsatisfiable. To prove
unsatisfiability we rely on resolution, a fundamental inference rule in satisfiability testing [16]. The
resolution rule (Res) picks clauses with two opposite literals and performs the following inference:

C1 ∪ {x} C2 ∪ {x̄}
Res

C1 ∪ C2

Resolution effectively performs a case distinction on the value of variable x: Either it is assigned
to false, then C1 has to evaluate to true, or it is assigned to true, then C2 has to evaluate to true.
Hence, we may infer the clause C1 ∪ C2. A resolution proof for a CNF formula is a sequence of
applications of the Res rule ending in the empty clause.

4 Models

4.1 General Architecture

NeuRes is a neural network that takes a CNF formula as a set of clauses and outputs either a satisfying
truth assignment or a resolution proof of unsatisfiability. As such, our model comprises a formula

3

embedder connected to two downstream heads: (1) an attention network responsible for selecting
clause pairs, and (2) a truth assignment decoder. See Figure 1 for an overview of the NeuRes
architecture. After obtaining the initial clause and literal embeddings (representing the input formula),
we continue with the iterative certificate generation phase. At each step, the model selects a clause
pair which gets resolved into a new clause to append to the current formula graph while decoding a
candidate truth assignment in parallel. The model keeps deriving new clauses until the empty clause
is found (marking resolution proof completion), a satisfying assignment is found (marking a certified
sat verdict), or the limit on episode length is reached (marking timeout).

4.2 Message-Passing Embedder

Similar to NeuroSAT, we use a message-passing GNN to obtain clause and literal embeddings by
performing a predetermined number of rounds. Our formula graph is also constructed in a similar
fashion to NeuroSAT graphs where clause nodes are connected to their constituent literal nodes and
literals are connect to their complements (cf. Appendix A). For a formula inm variables and n clauses,
the outputs of this GNN are two matrices: EL ∈ Rm×d for literal embeddings and EC ∈ Rn×d for
clause embedding, where d ∈ N+ is the embedding dimension. Here we have two key differences
from NeuroSAT. Firstly, NeuroSAT uses these embeddings as voters to predict satisfiability through a
classification MLP. In our case, we use these embeddings as clause tokens for clause pair selection
and literal tokens for truth value assignment. Secondly, since our model derives new clauses with
every resolution step, we need to embed these new clauses, as well as update existing embeddings to
reflect their relation to the newly inferred clauses. Consequently, we need to introduce a new phase to
the message-passing protocol, for which we explore two approaches: static embeddings and dynamic
embeddings.

In a static approach, we do not change the embeddings of initial clauses upon inferring a new clause.
Instead, we exchange local messages between the node corresponding to the new clause and its literal
nodes, in both directions. The main advantage of this approach is its low cost. A major drawback is
that initial clauses never learn information about their relation to newly inferred clauses.

In a dynamic approach, we do not only generate a new clause and its embedding, we also update the
embeddings of all other clauses. This accounts for the fact that the utility of an existing clause may
change with the introduction of a new clause. We perform one message-passing round on the mature
graph for every newly derived clause, which produces the new clause embedding and updates other
clause embeddings. Since message-passing rounds are parallel across clauses, a single update to the
whole embedding matrix is reasonably efficient.

4.3 Selector Networks

After producing clause and literal embeddings, NeuRes enters the derivation stage. At each step, our
model needs to select two clauses to resolve, produce the resultant clause, and add it to the current
formula. To realize our clause-pair selection mechanism, we employ three attention-based designs.

4.3.1 Cascaded Attention (Casc-Attn)

Figure 2: Cascaded attention

In this design, pairs are selected by making two consecutive attention queries on the clause pool. We
condition the second attention query on the outcome (i.e., the clause) of the first query. Figure 2
shows this scheme where we perform the first query using the mean of the literal embeddings EL

concatenated with a zero vector while performing the second query using the mean of the literal

4

embeddings concatenated with the embedding vector EC
c1 of the clause selected in the first query.

Formally, Casc-Attn selects a clause index pair (c1, c2) as follows:

ci = argmax
j

[
uT tanh(W1qi +W2E

C
j)

]
with qi =

{
EL ∥ 0 if i = 1

EL ∥ EC
c1 if i = 2

(1)

where W1 ∈ R2d×d,W2 ∈ Rd×d, u ∈ Rd are trainable network parameters.

The advantage of this design is that it is not limited to pair selection and can be used to select a
tuple of arbitrary length. The main downside, however, is that this design chooses c1 independently
from c2, which is undesirable because the utility of a resolution step is determined by both clauses
simultaneously (not sequentially).

4.3.2 Full Self-Attention (Full-Attn)

To address the downside of independent clause selection, this variant performs self-attention between
all clauses to obtain a matrix S ∈ Rn×n where Si,j represents the attention score of the clause pair
(ci, cj) as shown in Figure 3. The model selects clause pairs by choosing the cell with the maximal
score. In this attention scheme, the clause embeddings are used as both queries and keys.

Figure 3: Full self-attention

Formally, Full-Attn selects a clause index pair (c1, c2) as follows:

(c1, c2) = argmax
(i,j)

Si,j with Q = ECWQ; K = ECWK ; S =
QKT

√
d

(2)

where WQ ∈ Rd×d,WK ∈ Rd×d are trainable network parameters. Since S contains many cells that
correspond to invalid resolution steps (i.e., clause pairs that cannot be resolved), we mask out the
invalid cells from the attention grid in ensure the network selection is valid at every step.

4.3.3 Anchored Self-Attention (Anch-Attn)

In Full-Attn, the attention grid grows quadratically with the number of clauses. In this variant, we
relax this cost by exploiting a property of binary resolution where each step targets a single variable
in the two resolvent clauses. This allows us to narrow down candidate clause pairs by first selecting a
variable as an anchor on which our clauses should be resolved. As such, we do not need to consider
the full clause set at once, only the clauses containing the chosen variable v. We further compress the
attention grid by lining clauses containing the literal v on rows while lining clauses containing the
literal ¬v on columns. This reduces the redundancy of the attention grid since clauses containing
the variable v with the same parity cannot be resolved on v, so there is no point in matching them.
In this scheme, we have two attention modules: one attention network to choose an anchor variable
followed by a self-attention network to produce the anchored score grid.

In light of Figure 4, this approach combines structural elements from Casc-Attn and Full-Attn;
however, both elements are used differently in Anch-Attn. Firstly, the attention mechanism in Casc-
Attn is used to select clauses whereas Anch-Attn uses it to select variables. Secondly, self-attention in
Full-Attn matches any pair of clauses (ci, cj) in both directions as the row and column dimensions in
the attention score grid reflect the same clauses (all clauses). By contrast, Anch-Attn computes self-
attention scores for clause pairs in only one order (positive instance to negative instance). Formally,

5

Figure 4: Anchored self-attention

Anch-Attn selects an anchor variable v as follows:

v = argmax
i

[
uT tanh(W1EC +W2(E

L+

i + EL−

i))
]

(3)

where W1 ∈ Rd×d,W2 ∈ Rd×d, u ∈ Rd are trainable network parameters. The clause index pair
(c1, c2) is then selected according to the same equations of Full-Attn (Eq. 2) using the v-anchored set
of clause embeddings.

4.4 Assignment Decoder

To extract satisfying assignments, we use a sigmoid-activated MLP ψ on top of the literal embeddings
EL to assign a truth value Â(li) to a literal li as shown in Eq. 4.

Â(li) = σ(ψ(EL
i)) (4)

Note that since for each variable, we have a positive and a negative literal embeddings, we can
construct two different truth assignments at a time using this method. However, supervising both
assignments did not improve the performance compared to only supervising the positive assignment
(on positive literal embeddings). Thus, to simplify our loss function, we only derive truth assignments
from the positive literal embeddings at train time while extracting both at test time. Interestingly,
at test time, we found using negative literals (in addition to the positive ones) sometimes produces
satisfying assignments before the positive branch despite receiving no direct supervision during
training. Our intuition regarding this observation attributes it to the fact that the formula graph has no
explicit notion of positive and negative literals, it only represents connections to clauses (positive and
negative literals are connected by an undirected edge that does not distinguish their parity). As such,
both literal nodes have a different local view into the rest of formula, which could result in one of
them leading to a satisfying assignment faster than the other.

5 Training and Hyperparameters

5.1 Dataset

For our training and testing data, we adopt the same formula generation method as NeuroSAT [43],
namely SR(n) where n is the number of variables in the formula. This method was designed to
generate a generalized formula distribution that is not limited to a particular domain of SAT problems.
To control our data distributions, we vary the range on the number of Boolean variables involved in
each formula. For our training data, we use formulas in SR(U(10, 40)) where U(10, 40) denotes the
uniform distribution on integers between 10 and 40 (inclusive). To generate our teacher certificates
comprising resolution proofs and truth assignments, we use the BooleForce solver [8] on the formulas
generated on the SR distribution.

5.2 Loss Function

We train our model in a supervised fashion using teacher-forcing on solver certificates. During unsat
episodes, teacher actions (clause pairs) are imposed over the whole run. The length of the teacher
proof dictates the length of the respective episode, denoted as T . Model parameters θ maximize the
likelihood of teacher choices yt thereby minimizing the resolution loss LRes shown in Eq 5.

LRes = − 1

T

∑
t

log(p(yt; θ)) · γ(T−t)
(5)

6

During sat episodes, we minimize Lsat computed as the binary cross-entropy loss between the
sigmoid-activated outputs of assignment decoder Â : V → [0, 1] and the teacher assignment
A : V → {0, 1} as shown in Eq. 6.

Lsat =
1

T

∑
t

[
γ(T−t)

|V |

V∑
v

BCE(Â(v),A(v))

]
(6)

In both types of episodes, step-wise losses are weighted by a time-horizon discounting factor γ < 1.0
over the whole episode. The main rationale behind this is that later losses should have higher weights
as the formula tends to get easier to solve with each new clause inferred by resolution.

5.3 Hyperparameters

NeuRes has several hyperparameters that influence network size, depth, and loss weighting. In the
experiments we fix the embedding dimension to 128. We train our models with a batch size of 1
and the Adam optimizer [29] for 50 epochs which took about six days on a single NVIDIA A100
GPU. We linearly anneal the learning rate from 5 × 10−5 to zero over the training episodes. This
empirically yields better results than using a constant learning rate. We use a time discounting factor
γ = 0.99 for the episodic loss. We apply global-norm gradient clipping with a ratio of 0.5 [38].

6 Generating Resolution Proofs

NeuRes uses resolution as the core reasoning technique for certificate generation, both in the unsat
and sat cases. Hence, we start with an in-depth comparative evaluation of several internal variants for
resolution only. In particular, we evaluate the success rate (i.e., problems solved before timeout) and
proof length relative to the teacher, denoted by p-Len = |PNeuRes|

|Pteacher| . We use a limit of 4 on this ratio
as a timeout to avoid simply brute-forcing a resolution proof. Note that we measure p-Len only for
solved formulas to avoid diluting the average with resolution trails that timed out. For experiments in
this section, we train on 8K unsat formulas in SR(U(10, 40)) and test our models on 10K unseen
formulas belonging to the same distribution. We use more formulas than the model was trained on to
more reliably demonstrate its learning capacity.

Table 1: Performance of all attention variants on unsat SR(U(10, 40)) test problems.

VARIANT
STATIC-EMBED DYNAMIC-EMBED

PROVEN (%) P-LEN PROVEN (%) P-LEN

CASC-ATTN 14.72 1.87 37.33 1.79

FULL-ATTN 25.38 1.61 95.2 1.67

ANCH-ATTN 28.72 2.12 60.5 2.28

6.1 Attention Variants

To assess the basic resolution performance of NeuRes, we evaluate each attention variant using both
static and dynamic embeddings. For this experiment, we perform 32 rounds of message-passing
for each input formula. As shown in Table 1, dynamic embedding is decisively better for all three
attention variants, thereby confirming its conceptual merit. While anchored attention leads over other
variants under static embeddings, full attention performs significantly better for dynamic embeddings,
albeit at the cost of longer proofs on average. We believe that Anch-Attn’s better performance
in the static setting can be explained through the full connectivity of its attention grid (proven in
Appendix B). Since dynamic-embedding Full-Attn is the best-performing configuration over in-
distribution test settings, we will demonstrate the remaining evaluation experiments exclusively on
this variant.

7

Table 2: Bootstrapped training data reduction statistics. Reduction statistics are computed on the
SR(U(10, 40)) training set while p-Len and success rate are computed on a test set of the same
distribution.

REDUCTION DEPTH MAX: 23, AVG: 6.6

PROOF REDUCTION (%) MAX: 86.11, AVG: 33.51

PROOFS REDUCED (%) 90.08

TOTAL REDUCTION (%) 31.85

P-LEN 1.15

SUCCESS RATE (%) 100.0

6.2 Shortening Teacher Proofs with Bootstrapping

During our initial experiments, we discovered proofs produced by NeuRes that were shorter than
the corresponding teacher proofs in the training data. Although teacher proofs were generated by
a traditional SAT solver, they are not guaranteed to be size-optimal. The size of resolution proofs
is their only real drawback, hence any method that can reduce this size would be immensely useful.
Upon closer inspection we find that, on average, our previous best performer trained with regular
teacher-forcing manages to shorten ∼18% of teacher proofs by a notable factor (cf. Appendix C).
This inspired us to devise a bootstrapped training procedure to capitalize on this feature: We pre-roll
each input problem using model actions only, and whenever the model proof is shorter than the
teacher’s, it replaces the teacher’s proof in the dataset. In other words, we maximize the likelihood
of the shorter proof. In doing so iteratively, the model progressively becomes its own teacher by
exploiting redundancies in the teacher algorithm.

The outcome of this bootstrapped training process is summarized in Table 6. We find that bootstrap-
ping results in notable gains in terms of both success rate and optimality. The sharp decline in proof
length (relatively quantified by p-Len) at test time shows that the models transfers the bootstrapped
knowledge to unseen test formulas, as opposed to merely overfitting on training formulas. In addition
to success rate and p-Len, we inspect the reduction statistics of our bootstrapped variant (first three
rows of Table 6). Since the bootstrapped model performs multiple reduction scans over the training
dataset, we add a metric for reduction depth computed as the number of progressive reductions made
to a proof. To further quantify this effect, we report the maximum and average reduction ratios of
reduced proofs relative to teacher proofs. Finally, we report the total reduction made to the dataset
size in terms of total number of proof steps.

In Appendix C, we have compiled additional statistics (cf. Table 5) on proof shortening during the
training process, as well as an example proof reduced by the bootstrapped NeuRes (Figure 7). We
only include a small reduction example (from 20 steps to 10 steps) for space constraints, but we
observed many more examples of much larger reductions (e.g., over 400 steps).

7 Resolution-Aided SAT Solving

In this section, we evaluate the performance of our fully integrated model trained on a hybrid dataset
comprising 8K unsatisfiable formulas (and their resolution proofs) and 8K satisfiable formulas (and
their satisfying assignments). For the unsatisfiable formulas, timeout (4× |Pteacher|) and optimality
(p-Len) are measured similarly to previous experiments. For satisfiable formulas, we set the timeout
(maximum #trials) to 2× |V |. Ultimately, this section aims to investigate the effect of incorporating a
certificate-driven downstream head on the quality of the learnt representations through its impact on
the performance of the complementary task, i.e., proving/predicting satisfiability. We use NeuroSAT
as our baseline as it employs the same formula embedding architecture. Since NeuroSAT proves sat
but only predicts unsat, we train a classification MLP on top of our trained NeuRes model to further
showcase the benefit of our representations on prediction accuracy.

Table 3 confirms this main hypothesis. In essence, this result points to the fact that learning signals
obtained from training on unsat certificates largely enhance the ability of the neural network to extract
useful information from the input formula. This is doubly promising considering NeuroSAT was

8

Table 3: Performance of full solver mode tested on SR(40) problems and trained on SR(U(10, 40))
problems where PREDICTED refers to the satisfiability prediction without certificate.

MODEL
PROVEN (%) PREDICTED (%)

SAT UNSAT TOTAL SAT UNSAT TOTAL

NEURES 96.8 99.6 98.2 84.28 99.2 91.65
NEUROSAT [43] 70 - - 73 96 85

trained on millions of formulas while NeuRes was trained on only 16K formulas. Lastly, we find
that augmenting sat formulas by resolution derivations results in relative improvements (∼ 2.3%) in
success rate even though these derivations are attempting to prove unsatisfiability.

8 Utilizing Model Fan-Out

In our Full-Attention module, we compute n2 scores and only perform the top-score resolution
step. This greedy approach arguably underutilizes the attention grid computations as it ignores other
high-scoring steps that might lead to a shorter proof thereby improving the success rate in addition to
reducing the number of queries to the model. The latter leads to an overall runtime reduction since
performing an extra symbolic resolution step is much faster than a forward model pass. As such, we
experiment with performing the top k steps of the attention grid after each forward pass. It should be
noted, however, that this yields diminishing returns as it leads to a faster growth of the clause base
which in turn inflates the attention grid. For k > 1, after deriving the empty clause, only clauses that
connect to it in the resolution graph are kept in the final proof. This post-processing step is linear in
the proof length and eliminates redundant resolution steps resulting from the higher fan-out. Table 4
shows that taking the top 3 steps already yields a massive reduction in proof lengths along with a
significant boost to the success rate.

Table 4: Performance of different model fan-outs on SR(40) test data. Proof length (p-Len) and
#Model Calls are both normalized by the length of the teacher proof.

FULL-ATTN FAN-OUT P-LEN #MODEL CALLS TOTAL PROVEN (%)

TOP-1 1.15 1.15 98.2

TOP-3 0.57 0.49 99.9

TOP-5 0.52 0.43 100.0

One way to offset the attention grid inflation with higher fan-out would be to keep a saliency map
for all clauses then discarding k clauses with the least saliency scores after each forward pass. One
simple way to compute this saliency score for a clause would be the sum/mean/max of its respective
row in the attention scores grid. Another proxy for saliency could be the recency score reflecting how
many steps have elapsed since the last time a given clause was used.

9 Generalizing to Larger Problems

In order to test our model’s out-of-distribution performance, we evaluate our NeuRes model on five
datasets comprising formulas with up to 5 times more variables than encountered during training.
We use the same distributions reported by NeuroSAT and we run our model for the same maximum
number of iterations (1000).

Figure 5 shows the scalability of NeuRes to larger problems by letting it run for more iterations.
Compared to NeuroSAT [43], NeuRes scores a much higher first-try success rate on all 5 problem
distributions, and a higher final success rate on all of them except for SR(40) on which both models
nearly score 100%. Particularly, NeuRes shows higher first-try success on the 3 largest problem sizes
where NeuroSAT solves zero or near-zero problems on the first try.

9

Figure 5: SAT success rate over iterations.

10 Conclusion

In this paper, we introduced a deep learning approach for proving and predicting propositional
satisfiability. We proposed an architecture that combines graph neural networks with attention
mechanisms to generate resolution proofs of unsatisfiability. Unlike methods that merely predict
unsatisfiability, our models provide easily verifiable certificates for their verdicts. We demonstrated
that our certificate-based training and resolution-aided mode of operation surpass previous approaches
in terms of performance and data efficiency, which we attribute to learning better representations.

Despite its promising benchmark performance, our model cannot solely outperform highly engineered
industrial solvers, as is currently the case for all neural methods as standalone tools. The gap between
neural networks and symbolic algorithms is still rather large, and our hope is to bring deep learning
methods one concrete step closer to filling this gap. For NeuRes, this step is recognizing the immense
value of carefully integrating certificates into the model design and training as opposed to using
shallow supervision labels. Last but not least, it is worth noting that even at their present state, neural
networks stand great potential to advance traditional solvers by combining them into hybrid solvers
that utilize the deep long-range dependencies captured by neural networks along with the exploration
speed of symbolic algorithms. Moreover, we demonstrated a unique potential to advance SAT solving
through proof reduction, as proof size is a major challenge in certifying the results of traditional
solvers. This proof reduction is facilitated by a bootstrapped training procedure that uses teacher
proofs as a guide as opposed to a golden standard.

Acknowledgments and Disclosure of Funding

This work was supported by the European Research Council (ERC) Grant HYPER (No. 101055412).

References
[1] S. Amizadeh, S. Matusevych, and M. Weimer. Learning to solve circuit-sat: An unsupervised

differentiable approach. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[2] T. Anthony, Z. Tian, and D. Barber. Thinking fast and slow with deep learning and tree search.
In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 5360–5370, 2017.

[3] A. Balint, A. Belov, M. Heule, and M. Järvisalo, editors. Proceedings of SAT Competition 2013:
Solver and Benchmark Descriptions, volume B-2013-1 of Department of Computer Science
Series of Publications B. University of Helsinki, Finland, 2013.

10

[4] M. Balunovic, P. Bielik, and M. T. Vechev. Learning to solve SMT formulas. In S. Bengio,
H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
10338–10349, 2018.

[5] T. Balyo, M. Heule, M. Iser, M. Järvisalo, and M. Suda, editors. Proceedings of SAT Competition
2023: Solver, Benchmark and Proof Checker Descriptions. Department of Computer Science
Series of Publications B. Department of Computer Science, University of Helsinki, Finland,
2023.

[6] K. Bansal, S. M. Loos, M. N. Rabe, C. Szegedy, and S. Wilcox. Holist: An environment for
machine learning of higher order logic theorem proving. In K. Chaudhuri and R. Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pages 454–463. PMLR, 2019.

[7] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization with
reinforcement learning. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net, 2017.

[8] A. Biere. Booleforce sat solver. https://fmv.jku.at/booleforce/, 2010.

[9] R. Brummayer, F. Lonsing, and A. Biere. Automated testing and debugging of SAT and QBF
solvers. In O. Strichman and S. Szeider, editors, Theory and Applications of Satisfiability
Testing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings, volume 6175 of Lecture Notes in Computer Science, pages 44–57. Springer, 2010.

[10] C. Cameron, R. Chen, J. S. Hartford, and K. Leyton-Brown. Predicting propositional satisfiabil-
ity via end-to-end learning. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, New York, NY, USA, February 7-12, 2020, pages 3324–3331. AAAI Press, 2020.

[11] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Velickovic. Combinatorial
optimization and reasoning with graph neural networks. J. Mach. Learn. Res., 24:130:1–130:61,
2023.

[12] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods Syst. Des., 19(1):7–34, 2001.

[13] S. A. Cook. The complexity of theorem-proving procedures. In M. A. Harrison, R. B. Banerji,
and J. D. Ullman, editors, Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, pages 151–158. ACM, 1971.

[14] M. Cosler, F. Schmitt, C. Hahn, and B. Finkbeiner. Iterative circuit repair against formal
specifications. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[15] A. Darbari, B. Fischer, and J. Marques-Silva. Industrial-strength certified SAT solving through
verified SAT proof checking. In A. Cavalcanti, D. Déharbe, M. Gaudel, and J. Woodcock,
editors, Theoretical Aspects of Computing - ICTAC 2010, 7th International Colloquium, Natal,
Rio Grande do Norte, Brazil, September 1-3, 2010. Proceedings, volume 6255 of Lecture Notes
in Computer Science, pages 260–274. Springer, 2010.

[16] M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM, 7(3):201–
215, 1960.

[17] L. M. de Moura and N. S. Bjørner. Satisfiability modulo theories: introduction and applications.
Commun. ACM, 54(9):69–77, 2011.

[18] V. Firoiu, E. Aygün, A. Anand, Z. Ahmed, X. Glorot, L. Orseau, L. M. Zhang, D. Precup, and
S. Mourad. Training a first-order theorem prover from synthetic data. CoRR, abs/2103.03798,
2021.

11

https://fmv.jku.at/booleforce/

[19] E. First, M. N. Rabe, T. Ringer, and Y. Brun. Baldur: Whole-proof generation and repair with
large language models. CoRR, abs/2303.04910, 2023.

[20] E. I. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF formulas. In
2003 Design, Automation and Test in Europe Conference and Exposition (DATE 2003), 3-7
March 2003, Munich, Germany, pages 10886–10891. IEEE Computer Society, 2003.

[21] C. Hahn, F. Schmitt, J. U. Kreber, M. N. Rabe, and B. Finkbeiner. Teaching temporal logics
to neural networks. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[22] M. Heule, W. A. H. Jr., and N. Wetzler. Bridging the gap between easy generation and efficient
verification of unsatisfiability proofs. Softw. Test. Verification Reliab., 24(8):593–607, 2014.

[23] M. J. H. Heule. Proofs of unsatisfiability. In A. Biere, M. Heule, H. van Maaren, and T. Walsh,
editors, Handbook of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial
Intelligence and Applications, pages 635–668. IOS Press, 2021.

[24] M. J. H. Heule and O. Kullmann. The science of brute force. Commun. ACM, 60(8):70–79,
2017.

[25] G. Irving, C. Szegedy, A. A. Alemi, N. Eén, F. Chollet, and J. Urban. Deepmath - deep sequence
models for premise selection. In D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 2235–2243, 2016.

[26] M. Järvisalo, M. Heule, and A. Biere. Inprocessing rules. In B. Gramlich, D. Miller, and
U. Sattler, editors, Automated Reasoning - 6th International Joint Conference, IJCAR 2012,
Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes in Computer
Science, pages 355–370. Springer, 2012.

[27] H. A. Kautz and B. Selman. Planning as satisfiability. In B. Neumann, editor, 10th European
Conference on Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7, 1992. Proceedings,
pages 359–363. John Wiley and Sons, 1992.

[28] E. B. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
algorithms over graphs. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pages 6348–6358, 2017.

[29] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[30] W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems! In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

[31] P. Lammich. Efficient verified (UN)SAT certificate checking. J. Autom. Reason., 64(3):513–532,
2020.

[32] G. Lederman, M. N. Rabe, S. Seshia, and E. A. Lee. Learning heuristics for quantified
boolean formulas through reinforcement learning. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[33] S. M. Loos, G. Irving, C. Szegedy, and C. Kaliszyk. Deep network guided proof search. In
T. Eiter and D. Sands, editors, LPAR-21, 21st International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, Maun, Botswana, May 7-12, 2017, volume 46 of
EPiC Series in Computing, pages 85–105. EasyChair, 2017.

[34] J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT solvers. In
A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability - Second
Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages 133–182.
IOS Press, 2021.

12

[35] M. Mikula, S. Antoniak, S. Tworkowski, A. Q. Jiang, J. P. Zhou, C. Szegedy, L. Kucinski,
P. Milos, and Y. Wu. Magnushammer: A transformer-based approach to premise selection.
CoRR, abs/2303.04488, 2023.

[36] E. Ozolins, K. Freivalds, A. Draguns, E. Gaile, R. Zakovskis, and S. Kozlovics. Goal-aware
neural SAT solver. In International Joint Conference on Neural Networks, IJCNN 2022, Padua,
Italy, July 18-23, 2022, pages 1–8. IEEE, 2022.

[37] A. Paliwal, S. M. Loos, M. N. Rabe, K. Bansal, and C. Szegedy. Graph representations for
higher-order logic and theorem proving. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, New York, NY, USA, February 7-12, 2020, pages 2967–2974. AAAI
Press, 2020.

[38] R. Pascanu, T. Mikolov, and Y. Bengio. Understanding the exploding gradient problem. CoRR,
abs/1211.5063, 2(417):1, 2012.

[39] S. Polu, J. M. Han, K. Zheng, M. Baksys, I. Babuschkin, and I. Sutskever. Formal mathe-
matics statement curriculum learning. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[40] S. Polu and I. Sutskever. Generative language modeling for automated theorem proving. CoRR,
abs/2009.03393, 2020.

[41] F. Schmitt, C. Hahn, M. N. Rabe, and B. Finkbeiner. Neural circuit synthesis from specification
patterns. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
15408–15420, 2021.

[42] D. Selsam and N. S. Bjørner. Guiding high-performance SAT solvers with unsat-core predictions.
In M. Janota and I. Lynce, editors, Theory and Applications of Satisfiability Testing - SAT 2019
- 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings,
volume 11628 of Lecture Notes in Computer Science, pages 336–353. Springer, 2019.

[43] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill. Learning a SAT solver
from single-bit supervision. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[44] L. Sun, D. Gérault, A. Benamira, and T. Peyrin. Neurogift: Using a machine learning based sat
solver for cryptanalysis. In S. Dolev, V. Kolesnikov, S. Lodha, and G. Weiss, editors, Cyber
Security Cryptography and Machine Learning - Fourth International Symposium, CSCML 2020,
Be’er Sheva, Israel, July 2-3, 2020, Proceedings, volume 12161 of Lecture Notes in Computer
Science, pages 62–84. Springer, 2020.

[45] G. S. Tseitin. On the complexity of derivation in propositional calculus. Automation of
reasoning: 2: Classical papers on computational logic 1967–1970, pages 466–483, 1983.

[46] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

[47] Y. Vizel, G. Weissenbacher, and S. Malik. Boolean satisfiability solvers and their applications
in model checking. Proc. IEEE, 103(11):2021–2035, 2015.

[48] M. Wang, Y. Tang, J. Wang, and J. Deng. Premise selection for theorem proving by deep
graph embedding. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 2786–2796, 2017.

[49] W. Wang, Y. Hu, M. Tiwari, S. Khurshid, K. L. McMillan, and R. Miikkulainen. Neuroback:
Improving CDCL SAT solving using graph neural networks. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net, 2024.

13

[50] N. Wetzler, M. Heule, and W. A. H. Jr. Drat-trim: Efficient checking and trimming using expres-
sive clausal proofs. In C. Sinz and U. Egly, editors, Theory and Applications of Satisfiability
Testing - SAT 2014 - 17th International Conference, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in
Computer Science, pages 422–429. Springer, 2014.

[51] K. Yang and J. Deng. Learning to prove theorems via interacting with proof assistants. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 6984–6994. PMLR, 2019.

[52] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications. In 2003 Design, Automation and Test in
Europe Conference and Exposition (DATE 2003), 3-7 March 2003, Munich, Germany, pages
10880–10885. IEEE Computer Society, 2003.

14

Appendix

A NeuroSAT Formula Graph Construction

(a) Literal-to-Clause Phase (b) Clause-to-Literal Phase

Figure 6: Two-phase message-passing round on NeuroSAT formula graph.

NeuroSAT-style formula graphs have two designated node types: clause nodes connected to the
literal nodes corresponding to their constituent literals [43]. For example, in Figure 6, the clause
contents are as follows: c1 = (a ∨ b), c2 = (a ∨ b̄), c3 = (ā ∨ b̄). Each message-passing
round involves two exchange phases: (1) Literal-to-Clause, and (2) Clause-to-Literal (and implicitly
Literal-to-Complement). This construction is particularly efficient as it allows the message-passing
protocol to cover the entire graph connectivity in at most |V | + 1 rounds where V is the set of
variables in the formula.

B Clause Connectivity Under Static Embeddings

In Section 4.2, we stated that under static embeddings for a derived clause, as the embedder creates
its embedding, it only updates the representations of the variables involved in it – leaving other clause
embeddings intact. This might present a problem for Full-Attn where the attention grid contains
all clauses including disconnected1 pairs. An example of such a pair would be two derived clauses
that do not share a variable. This could potentially lower the efficacy of the Full-Attn mechanism
as it tries to match clauses that are unaware of each other. Interestingly, despite being a relaxation
on Full-Attn, Anch-Attn has a distinct edge over Full-Attn under static embeddings in form of the
following property:
Lemma B.1. Clauses in the variable-anchored attention grid of Anch-Attn are guaranteed to be
connected under both static and dynamic embeddings.

Proof. Let v be a variable in the input formula, and the set of clauses of a v-anchored attention grid
be A. We show that we always have at least one clause Ai ∈ A that reaches all other clauses in A on
the formula graph. We make two case distinctions:

Case 1: All clauses in A are input clauses (in the original formula). Here, the lemma follows trivially
since all these clause were connected during the input-phase message-passing protocol as they share
at least one variable v.

Case 2: A contains derived clauses. Let Ai be the most recently derived clause in A. Since Ai

shares variable v with all other clauses in A, then Ai would be connected to them all during the
derivation-phase message-passing protocol immediately after Ai was derived. This is because Ai

receives a message from V (under both static and dynamic embeddings) containing information about
all other clauses containing v, which is precisely A \ {Ai}. Therefore, the lemma holds.

1We use the terms connected and disconnected here to refer to the fact of whether two nodes have exchanged
messages (in either direction) or not, respectively.

15

C Teacher Proof Reduction

One rather interesting observation on Table 5 is that the model appears to be marginally better at
producing shorter proofs for unseen (test) formulas than for training formulas. While we would
normally expect the opposite, a fair speculation would be that the trained model was teacher-forced
to match teacher proofs during training over multiple epochs while the same does not hold for unseen
formulas where the bias towards teacher behavior is significantly lower. Definitively confirming this
would require a more in-depth investigation.

Table 5: Teacher proof reduction statistics of non-bootstrapped model trained on unreduced
SR(U(10, 40)) dataset. Note that all rows, except for Total Reduction, are computed over the
reduced portion of the dataset, i.e., the proofs that were successfully shortened by NeuRes.

(%) TRAIN TEST

PROOFS REDUCED 17.82 18.29
MAX. REDUCTION 86.11 76.4
AVG. REDUCTION 23.55 23.65

TOTAL REDUCTION 3.07 3.15

D Runtime Comparison with Traditional Solver

In the following table, we compare the average runtimes of our top-1 Full-Attn, top-3 Full-Attn, and
the traditional solver we used as a teacher (BooleForce) on our main SR(40) test dataset. For both
Full-Attn models, we use our Python prototype implementation; for BooleForce, we use an official C
implementation.

Table 6: Average time (ms) to solve an instance by neural model vs. teacher solver.

SOLVER SAT (MS) UNSAT (MS) TOTAL (MS)

FULL-ATTN TOP-1 2.3 88 45.15

FULL-ATTN TOP-3 3 54.4 28.7

BOOLEFORCE 4 5 4.5

E Model Size Comparison with NeuroSAT

In terms of the model architecture, both NeuRes and NeuroSAT models can be broken down to:

• Embedding/Representation Network: for both models, this network is an LSTM-based
GNN that embeds the formula graph by message-passing. We use the exact same architecture
and model size to ensure that our improved representations are a result of our fully certificate-
based learning objective as opposed to a tweak in the model architecture. This GNN has
429, 824 parameters in total.

• Downstream Networks: NeuroSAT: uses a 3-layer MLP applied on the literal embeddings
(width = 128) to extract the literal votes to predict if the formula is satisfiable or not. This
MLP has 128 × 128 × 3 = 49, 152 parameters. NeuRes (Full-Attn): uses an attention
module to select clause pairs. This attention network is composed of two 1-layer MLPs
for the query and key transformations on the clauses embeddings (width = 128). The
whole attention module has 128× 128× 2 = 32, 768 parameters. To decode the variable
assignments, NeuRes uses a 2-layer scalar MLP with 128×128+128 = 16, 512 parameters

Total NeuroSAT size = 429, 824 + 49, 152 = 478, 976 parameters

Total NeuRes size = 429, 824 + 49, 280 = 479, 104 parameters

All in all, NeuRes only learns 128 more parameters.

16

(a) Teacher Proof

(b) NeuRes Proof

Figure 7: Teacher Proof Reduction Example

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We included a contributions section in the introduction which refers to the
corresponding sections in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have highlighted the limitations with respect to industrial-grade SAT
solving in the conclusion of the paper (Section 10).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18

Answer: [NA]
Justification: The paper does not include any formal theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We reference the data generation method in Section 5.1. A detailed math-
ematical description of the architectures is given in Section 4. Optimization details and
hyperparameters are disclosed in Section 5.2 and Section 5.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

19

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data and code are publicly available through the link provided in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training and test splits are specified at the beginning of Section 6 and Section 7.
Optimization and hyperparameters are detailed in Section 5.2 and Section 5.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the computational budget, errors bars are not reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources are reported in Section 5.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No harms were caused by the research process nor are harmful consequences
expected from the propositional logic problems considered in this work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As discussed in the conclusion, a potential application of this work is to
build hybrid SAT solvers. Such solvers are used in a variety of applications to improve the
reliability of software and hardware, and hence this work may have positive societal impact
in this area. Since the proposed models back their verdicts by easily verifiable certificates,
there is little risk of harm since incorrect results can be detected easily, unlike in, e.g., mere
satisfiability prediction.

Guidelines:

21

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: We do not recognize any risk of misuse of the datasets and models presented
in this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No existing assets were used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

22

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We will make new assets publically available after the double-blind review
ended.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

23

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction
	Related Work
	Proofs of (Un-)Satisfiability
	Models
	General Architecture
	Message-Passing Embedder
	Selector Networks
	Cascaded Attention (Casc-Attn)
	Full Self-Attention (Full-Attn)
	Anchored Self-Attention (Anch-Attn)

	Assignment Decoder

	Training and Hyperparameters
	Dataset
	Loss Function
	Hyperparameters

	Generating Resolution Proofs
	Attention Variants
	Shortening Teacher Proofs with Bootstrapping

	Resolution-Aided SAT Solving
	Utilizing Model Fan-Out
	Generalizing to Larger Problems
	Conclusion
	NeuroSAT Formula Graph Construction
	Clause Connectivity Under Static Embeddings
	Teacher Proof Reduction
	Runtime Comparison with Traditional Solver
	Model Size Comparison with NeuroSAT

