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Abstract

Three challenges limit the progress of robot learning research: robots are expensive
(few labs can participate), everyone uses different robots (findings do not generalize
across labs), and we lack internet-scale robotics data. We take on these challenges
via a new benchmark: Train Offline, Test Online (TOTO). TOTO provides remote
users with access to shared robots for evaluating methods on common tasks and an
open-source dataset of these tasks for offline training. Its manipulation task suite
requires challenging generalization to unseen objects, positions, and lighting. We
present initial results on TOTO comparing five pretrained visual representations
and four offline policy learning baselines, remotely contributed by five institutions.
The real promise of TOTO, however, lies in the future: we release the benchmark
for additional submissions from any user, enabling easy, direct comparison to
several methods without the need to obtain hardware or collect data.

1 Introduction

Figure 1: Train Offline, Test Online: Our bench-
mark lets remote users test offline learning methods
on shared robots.

One of the biggest drivers of success in machine
learning research is arguably the availability of
benchmarks. From GLUE [1] in natural lan-
guage processing to ImageNet [2] in computer
vision, benchmarks have helped identify funda-
mental advances in many areas. On the other
hand, robotics as a field struggles to establish
common benchmarks due to the physical nature
of evaluation. The experimental conditions, ob-
jects of interest, and even hardware vary across
labs, often making algorithms sensitive to im-
plementation details. Finally, the difficulties of
purchasing, building, and installing hardware
and software infrastructure make it challenging
for newcomers to contribute to the field.
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For robotics research to advance, we clearly need a common way to evaluate and benchmark different
algorithms. A good benchmark will not only be fair to all algorithms but also have low participation
barrier: setup to evaluation time should be as low as possible. Efforts like YCB [3] and RB2 [4] aim
to standardize objects and tasks, but the onus of setting up infrastructure still lies with each lab. A
simple way to overcome this is the use of a common physical evaluation site, as the Amazon Picking
Challenge [5] and DARPA Robotics Challenges [6–8] have. However, the barrier is still high since
participants must set up their own training infrastructure. Both of the above frameworks leave the
method development phase unspecified and struggle to provide apples-to-apples comparisons.

Many robot learning algorithms do online training, where a policy is learned concurrently with data
collection. One way to standardize online training is with simulation [9–12]. While simulation
mitigates issues with variation across labs, the findings from simulated benchmarks may not transfer
to the real world. On the other hand, if we conduct online training in the real world, comparison
across labs becomes difficult due to physical differences. In recent years, larger datasets have surfaced
in robotics [13–15], and with them the rise of offline training algorithms. From imitation learning to
offline RL, these algorithms can be trained on the same data and tested on common hardware.

Inspired by this observation, we propose a new robotics benchmark: TOTO (Train Offline, Test
Online). TOTO has two key components: (a) a large-scale offline manipulation dataset to train
imitation learning and offline RL algorithms; (b) a shared hardware setup where users can evaluate
their methods now and going forward. Because all participants train using the same publicly-released
dataset and evaluate on shared hardware, the benchmark provides a fair apples-apples comparison.

TOTO paves a path forward for robot learning by lowering the entry barrier: when designing a new
method, a researcher can train their policy on our dataset, evaluate it on our hardware, and directly
compare it to the existing baselines for our benchmark. TOTO means no more time devoted to setting
up hardware, collecting data, or tuning baselines for one individual’s environment. In this paper, we
lay out the TOTO design and present initial methods contributed by benchmark beta testers across
the country. Our results show that our benchmark is challenging yet possible, providing room for
growth as TOTO users iterate.

2 The TOTO Benchmark

Our benchmark focuses on manipulation due to lack of benchmarking in this area. The robots
(Appendix Section 5.2) are set in environments that enable a set of benchmark manipulation tasks
described in Section 2.1. We collect an initial dataset on these tasks, detailed in Section 2.2. Finally,
in Section 2.3, we present the evaluation protocol for all policies contributed to our benchmark.

2.1 Tasks

We use two manipulation tasks that humans encounter on a daily basis: pouring and scooping, similar
to those introduced in prior work [4, 16]. The tasks are pouring and scooping, excluding the easiest
and hardest RB2 tasks (zipping and insertion). Example observations are shown in Fig. 4 of Appendix
Section 5.3. To see the original task designs, please refer to RB2: https://rb2.info. Our tasks
differ from those in RB2 in a few ways. We randomize the robot’s pose at the start of each episode,
apply more noise to target object locations, and use a variety of objects for each task based on
availability. Lastly, we do not normalize the reward: the reward is the weight in grams of the material
successfully scooped or poured.

Scooping The training set includes all combinations of three target bowls, three materials, and six
target bowl locations (front left, front center, front right, back left, back center, and back right).

Pouring The training set includes all combinations of four target cups, two materials, and six target
cup locations (same locations as scooping). The cup in the robot gripper is the same in all experiments
(clear plastic, enabling better perception of the material remaining in the cup).

2.2 Dataset

A key pillar of our benchmark is the release of a manipulation dataset. Dataset statistics (number
of trajectories, average trajectory length, success rate, and data collection breakdown) are shown
in Table 1. The initial release includes 1895 scooping trajectories and 1003 pouring trajectories,
collected with a mix of teleoperation, behavior cloning rollouts, and replay with noise.
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Table 1: Dataset overview

Task Trials Length Success Teleop BC Replay
Scooping 1895 495 0.690 41% 33% 26%
Pouring 1003 324 0.977 99% 0% 1%

Pouring data collection using replay and behavior cloning proved challenging to reset (unsuccessful
trials require more cleanup), so it was nearly all collected with teloperation.Each recorded trajectory
includes RGB-D video, robot actions (joint angle targets), joint states (joint angles), and task metrics
(rewards). Details of the dataset can be found in Appendix Section 5.3.

Teleoperation We collected the majority of trajectories with teleoperation using Puppet [17].
The human controls the robot in an intuitive end effector space using an HTC Vive virtual reality
headset and controller. While this teleoperation is theoretically possible to use remotely, we collect
the data with the human and robot in the same room, giving the human direct perception of the
scene. Our multiple teleoperators have different dominant hands, leading to more diverse data. Most
teleoperation trials are successful.

Behavior cloning rollouts After teleoperation trajectories are collected, we train simple, state-
based behavior cloning (BC) policies on each target location, so no visual perception is required. We
roll out these trajectories with some noise added to actions at each timestep. The amount of noise
varies across trajectories for additional diversity.

Trajectory replay Finally, we replay individual teleoperated trajectories with added noise. While
these might seem overly similar to the original teleoperated trajectories, keep in mind that conditions
like lighting also vary with time of day, so this replay still expands the dataset in other ways.

2.3 Evaluation Protocol

We evaluate each task in a variety of test settings. We have two unseen objects (bowls and cups) and
one unseen material (mixed nuts for scooping and Starburst candies for pouring). We evaluate three
object locations seen during training (front left, front center, and front right) and three unseen test
locations. We evaluate three training seeds of each method. The robot is initialized to a random pose
depending on the random seed at the start of each trajectory. The robot’s initial poses are kept the
same across seeds to ensure minimal variance. Combining 2 objects, 1 material, 3 locations, and 3
seeds means that each method is evaluated across 18 trials each for train and test locations. We report
mean and variance of these 18 trials.

3 Baselines
We highlight the importance of establishing a benchmark by running two sets of experiments: (a)
what is a good visual representation for manipulation? and (b) what is a good offline algorithm for
policy learning? To test the benchmark infrastructure, we have solicited baseline implementations for
both experiments from several labs.

3.1 Visual Representation Baselines

A core unanswered question, due to the lack of benchmarking, is what is a good visual representation
for manipulation? Is ResNet trained on ImageNet great or do self-supervised approaches outperform
supervised models? We evaluate five visual representations provided by TOTO users from multiple
labs. Two are trained on our data (in-domain) and three are generically pretrained.

Resnet50 refers to the model trained with supervised learning on ImageNet [18].

MoCo (Generic) refers to Momentum Contrast (MoCo) trained on ImageNet [19], while MoCo
(In-Domain) is trained on our data with crop-only augmentations [20].

R3M (Reusable Representations for Robot Manipulation) [21] is trained on Ego4D [22] with time-
contrastive learning and video-language alignment. R3M, MoCo, and Resnet50 use the 2048-
dimensional embedding vector following the fifth convolutional layer.

BYOL (Bootstrap Your Own Latent) [23] is a self-supervised representation learning method trained
on our dataset. The BYOL representation embedding size is 512.
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These representations performed the best among a larger set of vision models on which we ran an
initial brief analysis (including offline visualizations and BC rollouts). Additional representations
that performed less well included CLIP [24] and a third-layer MoCo model (instead of fifth-layer).

3.2 Policy Learning Baselines

Remote users have contributed the policy learning baselines detailed below. These methods span
the spectrum from nearest neighbor querying to BC to offline reinforcement learning (RL). They
were selected according to each TOTO contributor’s expertise with approach coverage in mind. All
methods pass RGB image observations through frozen vision representations before passing them to
a policy. BC, IQL, and DT use the MoCo (In-Domain) model, while VINN uses BYOL.

BC (Behavior Cloning) learns to mirror actions in the training data. Closed-loop BC predicts a
new action every timestep, while open-loop BC predicts a sequence of actions to execute without
re-planning. Our BC baseline is quasi open-loop: training trajectories are split into 50-step action
sequences, and the policy is trained to predict such a sequence. During evaluation, these 50 actions
are executed between each prediction step. We find that this performs better than closed-loop
or open-loop alone: closed-loop struggles without history, and open-loop is challenging with our
variable-length tasks. We filter out zero-reward trajectories from the training data [25].

IQL (Implicit Q-learning) [26] uses the open-source implementation from d3rlpy [27]. We concate-
nate the frozen image embeddings with the robot’s joint angles as the input state to the model.

VINN (Visual Imitation through Nearest Neighbors) [28] is a nearest neighbor policy using an image
encoder trained with BYOL [23]. While using nearest neighbors as a policy has been previously
explored [29], this approach alone does not scale well to high-dimensional observations like images.
BYOL maps the high-dimensional observation space to a low dimension to obtain a robust policy.
VINN was originally closed-loop, but in this work we mirror the 50-step quasi open-loop approach
used in the BC baseline (described above).

DT (Decision Transformers) [25] recasts offline RL as a (conditional) sequence modeling task. It is
trained to predict the action in the dataset, but also conditions on the trajectory history and a target
return (desired level of performance). We use the Hugging Face DT implementation. DT uses a
sub-sampling period of 8 and a history window of 10 frames. For evaluation, the target return prompt
is chosen as the mean return from the top 10% of trajectories in the dataset for each task.

4 Experimental Results

Visual Representation Results. Our first experiments compare the vision representations detailed
in Section 3.1 combined with BC policies and evaluated according to Section 2.3. The success rates
for all representations and tasks are visualized in Fig. 2, and the numerical rewards are presented
in Appendix Table 2. Finetuning the MoCo model on our data outperforms the generic version,
as expected. MoCo (In-Domain) achieves the highest success rate and average reward on both
scooping and pouring, followed by BYOL, the other in-domain model. The relative performance
between models is mostly consistent across scooping and pouring. Resnet50 and MoCo (Generic)
perform slightly better on pouring than on scooping.

Fig. 2 also visualizes performance differences due to object locations. Locations seen during training
perform better, as expected, but performance does not degrade significantly, suggesting that the
representations have a generalizable notion of where the target object is. Surprisingly, the two
representations trained on our data (MoCo (In-Domain) and BYOL) perform equally good or even
slightly better on unseen locations for scooping.

Policy Learning Results. Fig. 3 visualizes the policy learning comparison (described in 3.2)
evaluated on TOTO, and the numerical rewards are in Appendix Table 3. Due to compute constraints,
we have 1 and 2 seeds for DT and IQL respectively. We compensate by duplicating the evaluation of
these seeds to keep the number of trials consistent. We find that VINN performs best in train locations.
We also note that offline-RL approaches (especially IQL) achieve some success unlike in RB2[4].
Our dataset is larger and more diverse than RB2, likely contributing to better offline RL performance.

4



Figure 2: Vision representation comparison with BC. Models trained on our data (left of dashed
line) perform better than generic ones (right), and object train locations work better than unseen ones.

We found that scooping proves challenging due to a non-markovian aspect: the spoon is above the
bowl both before and after scooping. Thus we would expect open-loop methods (BC, VINN) and those
with history (DT) to perform better than others. While BC and VINN achieve competitive performance
on scooping, DT only achieves moderate success on scooping and does not see any positive rewards
on pouring. Meanwhile, IQL provides decent performance without history on a non-markovian task.

Comparing the train and test location results for policy learning proves interesting. VINN performs
the best on train locations but struggles on unseen locations, since it selects actions using the nearest
neighbor from the training data. All other methods also experience some level of degradation when
moving to unseen locations, leaving one clear direction for method improvement using TOTO.

Figure 3: Evaluating offline policy learning results. VINN has the best performance on train
locations but degrades on unseen locations, as does the performance of other methods.

4.1 Discussion

The main goal of this work is to introduce TOTO, our robotics benchmark. We presented a broad
initial set of vision representations and policy learning baselines, which can be built off of by future
users. Notably, these baselines were contributed in the same way that TOTO will be used in the future:
by collaborators who locally train policies and submit them for remote evaluation on shared hardware.
This shows the feasibility of our user workflow. The initial baseline results show the challenging
nature of our tasks, especially with respect to generalization. By using TOTO as a community, we
can more quickly iterate on ideas and make progress on the real-world bottlenecks to robot learning.

4.2 Limitations and Future Work

The evaluation protocol currently has manual steps: we measure the material transferred during
pouring and scooping to compute rewards and reset by returning the material to the original object.
We do see future potential to automate reward measurements and resets, such as by adding a scale
beneath the target object and using an additional robot to reset the transferred materials. Spills of the
transferred material, however, might still require manual intervention.

We plan to expand the evaluation setup to include additional robots. This would help us meet the
increasing demand in evaluations as more users adopt the benchmark. One challenge will be visual
differences across robots, but we plan to collect additional demonstrations on new robots, and this
would be an opportunity to expand the set of tasks as well (we could designate one robot per task).

As user demand further grows, we will implement an evaluation job queue that prioritizes evaluation
requests from different users and schedules the jobs based on the number of robots currently available.
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5 Appendix

5.1 Related Work

For a thorough description of work related to remote robotics benchmarking, we refer to the Robotics
Cloud concept paper [30]. Here we describe related work specific to our instantiation of a robotics
cloud (TOTO).

Shared Tasks and Environments A necessary step in comparing method performance is evaluation
on a common task. Common tasks might mean a standard object set such as YCB [3], which can
be distributed to remote labs, allowing for shared metrics like grasp success on these objects. The
Ranking-Based Robotics Benchmark (RB2) [4] provides four common manipulation tasks (similar
to those we use, described in Section 2.1) as well as a framework for comparing and ranking
methods across results from multiple labs. Another route is sharing the environment itself, as the
Amazon Picking Challenge [5] and DARPA Robotics Challenges [6–8] have done. Sharing tasks or
environments gives metrics by which we can compare approaches. However, users must still develop
the approach on their own hardware in their own lab, and recreating identical environment setups is
quite challenging.

Shared, Remote Robots Going one step further, remotely-accessible robots can be shared across
the community, enabling method development and evaluation without users acquiring their own
hardware. Georgia Tech’s Robotarium [31] allows for remote experimentation of multi-agent methods
on a physical robotic swarm, which has been extensively used not just in research but also in education.
OffWorld Gym [32] provides remote access to navigation tasks using a mobile robot, with closely
mirrored simulated and physical instances of the same environment. A recent survey paper [33]
provides an overview of robotic grasping and manipulation competitions, including some that involve
remotely-accessible, shared robots like [34]. Finally, most closely related to our work, the Real Robot
Challenge [35] runs a tri-finger manipulation competition on cube reorientation tasks. The success
of the Real Robot Challenge framework inspires our work, which also allows for the evaluation of
manipulation tasks on shared robots. Our work, however, is designed to evaluate robot learning
through challenging variations (lighting, unseen test objects, etc.) and an image-based dataset (as
opposed to assuming ground-truth state access).

Open-Source Robotics Datasets Collecting real-world robotics data is challenging and expensive
due to physical constraints like environment resets and hardware failures. Thus open-source datasets
serve an important role in the field by enabling larger-scale offline robot learning. Some work
has improved the way we collect robotics data, such as self-supervised grasping [36] and further
parallelization of robots [37]. RoboTurk [14] provides a system for simple teleoperated data collection
which can be executed remotely. Much work in robot learning has introduced datasets more generally,
such as MIME [38] (8260 demonstrations over 20 tasks), RoboNet [13] (162,000 trajectories collected
across 7 robots), and Bridge Data (7,200 demonstrations across 10 environments). However, it is
hard to understand the value of these datasets without a common evaluation platform, something
that Collins et al. [15] addresses by using simulation to replicate a real-world dataset. In contrast,
we address this issue with real-world evaluation that matches the domain of the data collection. Our
initial dataset is 2,898 trajectories, but this will grow over time as we add evaluation trajectories
collected from users’ policies.

Offline Robot Learning Our benchmark focuses on offline robot learning, including imitation
learning and offline RL. Our initial baselines are described and contextualized in Section 3.2.

5.2 Hardware

Our hardware includes a Franka Emika Panda robot arm and workstation for real-time inference. We
use a simple and common joint position control stack that runs at 30 Hz. Actions are specified as
joint targets, which are translated into motor control signals using an underlying high-frequency PD
controller. We use joint position control because end effector control using X,Y, Z positions alone is
not feasible to solve our tasks: for example, the orientation of the gripper must change as the robot
pours. We use an Intel D435 RealSense camera for recording RGB-D image observations.
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We allow users to opt for a lower control frequency if desired. The training data can be subsampled
by taking one of N frames since the actions are in absolute joint angles. We decrease the test time
control frequency accordingly.

5.3 Task Details

Exmaple image observations for each task, pouring and scooping, are shown in Fig. 4. We also list
relevant statistics of our dataset in Table. 1.

5.4 Benchmark Use

Here we introduce the framework for our benchmark. TOTO is designed to make the user workflow
(Section 5.4.1) easy for newcomers with well-documented software infrastructure (Section 5.4.2)
including examples and tests.

5.4.1 User Workflow

We provide a real-world dataset (Section 2.2) collected using our hardware setup (Section 5.2).
Participants optionally use our software starter kit (Section 5.4.2) and locally train policies of their
choosing using this data.

Users submit policies through Google Drive for evaluation on our real-world setup. They do not
receive the low-level data from these evaluation trials; they simply receive a reward and high-level
video to guide algorithm development, but not enough data to be used effectively for online training.

We run the real-world evaluations while an engineer is present to supervise; thus the evaluation
turnaround time is currently around 12 hours (depending on the time of day submitted). Our goal is
to place the emphasis on offline learning and prevent overfitting, thus removing the need for real-time
results or large quantities of evaluation.

As new users evaluate methods after the paper release, we will post (anonymous) evaluation scores
for each attempt on a website leaderboard. We will also periodically add data collected by the users’
policies to the original dataset.

5.4.2 Software Infrastructure

Our software starter kit includes documented code and instructions for policy formatting and dataset
usage. We have open-sourced baseline code, trajectory data, and pretrained models (see our website).
These components ensure that TOTO is easily accessible to a broad portion of the robotics, ML, and
even computer vision communities.

We adapt the agent format from Ke et al. [39], which requires a predict function taking in
the observation and returning the action. We also use a standard config format and require an
init_agent_from_config function to create the agent.

We provide users with code for training an example image-based BC agent and a docker environment
which wraps the minimum required dependencies to run this code. Users can optionally extend the
docker containers with additional dependencies. We also provide a stub environment which users can
use to locally evaluate whether the agent’s predictions are compatible with our robot environment.
This setup allows resolution of all agent format and library dependency issues before users submit
their agents for evaluation.

5.5 Experimental Results

We present the numerical rewards achieved by each method for visual policy comparison (Table. 2)
and policy learning (Table. 3).
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Figure 4: TOTO Task Suite. Our pouring and scooping tasks involve challenging variations in
objects, position, lighting, and more.

Table 2: Performance of vision representations with BC across train and test locations.

Model Scooping Pouring
Reward Success % Reward Success %

In Domain BYOL 4.39 72.2% 20.22 66.6%
MoCo 7.42 83.3% 22.86 72.2%

Out of
Domain

MoCo 2.11 33.3% 14.89 55.5%
ResNet50 2.83 47.2% 18.86 50.0%
R3M 2.97 44.4% 6.94 33.3%

Table 3: TOTO policy learning results across train and test locations.

Model Scooping Pouring
Reward Success % Reward Success %

BC + MoCo 7.42 83.3% 22.86 72.2%
VINN 7.89 63.9% 21.75 47.2%
IQL 6.08 47.2% 9.86 38.9%
DT 2.83 27.8% 0.00 0.0%
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