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Abstract

Learning fine-grained embeddings from coarse labels is a challenging task due to
limited label granularity supervision, i.e., lacking the detailed distinctions required
for fine-grained tasks. The task becomes even more demanding when attempting
few-shot fine-grained recognition, which holds practical significance in various
applications. To address these challenges, we propose a novel method that embeds
visual embeddings into a hyperbolic space and enhances their discriminative ability
with a hierarchical cosine margins manner. Specifically, the hyperbolic space offers
distinct advantages, including the ability to capture hierarchical relationships and
increased expressive power, which favors modeling fine-grained objects. Based on
the hyperbolic space, we further enforce relatively large/small similarity margins
between coarse/fine classes, respectively, yielding the so-called hierarchical cosine
margins manner. While enforcing similarity margins in the regular Euclidean space
has become popular for deep embedding learning, applying it to the hyperbolic
space is non-trivial and validating the benefit for coarse-to-fine generalization
is valuable. Extensive experiments conducted on five benchmark datasets show-
case the effectiveness of our proposed method, yielding state-of-the-art results
surpassing competing methods.

1 Introduction

In deep learning, rich supervised information is crucial for the generalization ability of deep models.
Fine-grained visual recognition [36] is a fundamental problem in computer vision, which requires
accurately identifying subordinate (fine-grained) categories within the same meta (coarse-grained)
category. However, in many domains, annotating fine-grained data requires the involvement of
domain experts, such as in pipeline failure detection [1], biodiversity recognition [30] and medicine
analyses [25], leading to high annotation costs or even infeasibility. In contrast, obtaining the coarse
labels, e.g., the meta category of a species in biodiversity recognition, is much easier. In such cases,
we attempt to use coarse-grained labels to train models and apply them to finer-grained recognition
tasks. Such a task is challenging as it lacks the detailed supervisory information required for fine-
grained tasks, preventing us from obtaining sufficiently detailed label information to train models
to recognize fine-grained features and distinctions. In this paper, we attempt to train models using
coarse-grained labels and apply them to challenging few-shot fine-grained recognition tasks, which
are highly demanding and have practical significance.
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To tackle these challenges, we propose a novel method termed Poincaré embedding with hierarchical
cosine margins (PE-HCM). Specifically, PE-HCM embeds samples into a Poincaré embedding (which
is also known as an embedding in the hyperbolic space [21]) and enhances their discriminative ability
with a hierarchical cosine margin manner. Our PE-HCM has two coupled features, i.e., hyperbolic
space and hierarchical cosine margins:

• Hyperbolic space. we first embed the samples into the hyperbolic space instead of the regular
Euclidean space, as the hyperbolic space provides stronger expressive power for hierarchical relation-
ships [19]. Since the tasks require an embedding space that can not only capture the coarse-grained
information provided during training but also generalize well to fine-grained categories during the
test, the embedding space should cover multiple granularities from coarse to fine. The hyperbolic
space well satisfies this prerequisite with its natural hierarchical structure.

• Hierarchical consine margins. Based on the hyperbolic space, we further incorporate hierarchical
cosine distance constraints to impose a hierarchical proximity relationship among sample pairs. We
construct finer-grained labels than the coarse-grained training labels through unsupervised approaches
such as data augmentation and clustering. Specifically, similar to SimCLR [4], we apply two sets of
data augmentations to a batch of data. For the same sample, different augmentations are assigned
with the same instance-level label, while different samples are assigned with different instance-level
labels. By clustering the samples within a coarse-grained category, we obtain multiple clusters that
represent the fine-grained categories between the coarse-grained and the instance-level categories. As
a result, we have instance-level, fine-grained, and coarse-grained labels. Correspondingly, there are
four types of pairwise relationships: same instance-level category, same fine-grained category, same
coarse-grained category, and different coarse-grained categories.

Moreover, to derive the appropriate target distances that will be used for different levels, we propose
an adaptive strategy to update the target distances during training. It utilizes the average distance
between sample pairs in each batch to update the target cosine distances with momentum. The adaptive
strategy plays a crucial role in ensuring that the target distances reflect the real data distribution.
By dynamically adjusting the target distances during training, our method can better capture the
underlying relationships and adapt to the fine-grained characteristics of the data. In a batch of training
data, we derive the target cosine distance distributions for the pairwise relationships based on their
category relationships in the hyperbolic embedding space. By enforcing the consistency between
the feature distribution and the category relationship branch, we enhance the hyperbolic embedding
space’s generalization and discriminative capability for implicit finer-grained categories.

In experiments, we perform PE-HCM on five popular benchmark datasets, i.e., CIFAR-100 [16] and
four sub-datasets {LIVING-17, NONLIVING-26, ENTITY-13, ENTITY-30} from BREEDS [23].
Our method has achieved state-of-the-art recognition accuracy on these datasets, thereby demonstrat-
ing its effectiveness and its potential for practical applications.

In summary, our major contributions are three-fold:

• We propose a novel method that addresses the challenging task of fine-grained learning from
coarse-grained labels. It bridges the gap between coarse-grained and fine-grained labels and leverages
the knowledge learned from coarse-grained categories for fine-grained recognition tasks.

• We develop a hyperbolic embedding with hierarchical cosine margins (HCM). HCM enforces
relatively large/small similarity margins between coarse/fine classes. The key point of HCM, i.e., the
target similarity margins, are dynamically updated using an adaptive strategy.

• We conduct comprehensive experiments on five popular benchmark datasets, and our proposed
method achieves superior recognition accuracy over competing solutions on these datasets.

2 Related Work

Coarse and Fine Learning Coarse and fine learning has been an important topic in computer
vision and machine learning. Numerous methods [2, 7, 8, 26, 27, 29, 35, 40, 42] and theoretical
studies [10] have been proposed to address this problem, with the goal of leveraging coarse-grained
labeled data to improve fine-grained recognition. On the one hand, several methods have been
proposed to tackle the coarse and fine learning problem. For instance, Stretcu et al. [26] proposed a
coarse-to-fine curriculum learning method that can dynamically generate training sample sequences
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based on task difficulty and data distribution, thereby accelerating model convergence and improving
generalization ability. Xiang et al. [40] proposed a coarse-to-fine incremental few-shot learning
method that can use coarse-grained labels to perform contrastive learning on the embedding space and
then used fine-grained labels to normalize and freeze the classifier weights, thereby solving the class
incremental problem. Sun et al. [27] developed a dynamic metric learning method that can adaptively
adjust the metric space according to different semantic scales, thereby improving the performance
of multi-label classification and retrieval. Cui et al. [7] designed a coarse-to-fine pseudo-labeling
guided meta-learning method that can use coarse labels to generate pseudo-labels, and updated model
parameters through meta-optimizer, thereby achieving fast adaptation in few-shot classification tasks.
Bukchin [2] proposed a fine-grained angular contrastive learning method with coarse labels that can
use coarse labels as prior knowledge to constrain the angular loss function, and constructed positive
and negative sample pairs through random sampling and data augmentation, thereby achieving robust
feature representation in fine-grained image recognition tasks. On the other hand, Fotakis et al. [10]
provided a theoretical analysis of the generalization error of learning with coarse labels, which can
recover the true distribution statistically without requiring additional information or assumption
conditions.

Overall, previous work on coarse and fine learning demonstrates the significance of this problem and
highlights the potential benefits of leveraging coarse-grained labeled data for fine-grained recognition.

Few-Shot Learning Few-shot learning [9, 20, 24, 28, 31, 33, 37–39, 41, 44–46] has become a
popular research direction in computer vision due to the difficulty of collecting and annotating large
datasets. The goal of few-shot learning is to enable models to quickly acquire knowledge from a small
number of new samples, which is particularly suitable for fine-grained recognition as fine-grained level
annotations are often costly. To address this problem, various methods have been proposed, which
can be broadly categorized into three types: metric-based methods, optimization-based methods,
and attention-based methods. In concretely, metric-based methods, e.g., prototypical networks [24],
relation networks [28], matching networks [31], and feature generating networks [39], learn a metric
space where the similarity between support and query samples is computed. These methods aim to
learn a feature representation that captures the discriminative information of categories and a distance
metric that can compare samples in this feature space. Optimization-based methods, e.g., model-
agnostic meta-learning [9] and piecewise classifier mappings [37], aim to learn a model that can
quickly adapt to new categories with only a few examples. These methods learn an initialization that
can be fine-tuned quickly on a new task with a small amount of data. Attention-based methods, e.g.,
MultiAtt [33], MattML [46] and Dual Att-Net [41], use attention mechanisms to identify the most
informative parts or regions of the input images. These methods aim to learn a feature representation
that is not only discriminative but also informative for few-shot recognition.

In summary, few-shot learning has been extensively studied in recent years, and various methods
have been proposed to tackle this problem. While the aforementioned papers have shown success in
addressing the problem, they still rely on a considerable amount of labels with the same granularity
as the testing granularity during training. In contrast, our work aims to learn fine-grained recognition
only from coarse labels during training, which is a more challenging task.

Hyperbolic Geometry In the field of deep learning, the hyperbolic space was first proposed
by Nickel and Kiela [19] to learn hierarchical representations of symbolic data such as text and
graphs by embedding them into an n-dimensional Poincaré ball, which showed that hyperbolic
embeddings can capture the hierarchical relationships in knowledge graphs more effectively than
Euclidean embeddings. Similarly, Ganea et al. [11] proposed a hyperbolic neural network for
modeling tree-structured data, which was observed to outperform Euclidean-based models. In
addition, Sala et al. [22] utilized the hyperbolic space to embed words in natural language processing
tasks. Khrulkov et al. [15] proposed a hyperbolic image embedding method to represent hierarchical
structures in images.

Compared to the Euclidean space which has a constant sectional curvature of 0, the hyperbolic
space has a constant negative curvature, which enables more efficient low-dimensional embedding
for modeling hierarchical structure property data [19]. As illustrated in the left of Fig. 1, in this
Poincaré disk, the exponential growth of distances matches the exponential growth of nodes with
the tree depth [11]. This property has been shown to be particularly powerful for representing tree-
structured data, where the hierarchy of the data can be more naturally captured in the hyperbolic space.
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Figure 1: Left: An example of modeling a regular tree using a 2D Poincaré disk, where all connected nodes
are equally spaced apart. Middle: Decision boundary in a Poincaré disk, where p1, a1 are a point and a
normal vector determining the decision boundary, and the region bounded by the arc and the disk represents a
category. C1, C2, C3 and C4 represent four coarse-grained categories, while C4.1 and C4.2 represent fine-grained
subcategories of category C4. Right: Decision boundary with the cosine distance constraint in a Poincaré disk.

In contrast, Euclidean space has a flat geometry, which limits its ability to represent hierarchical
structures efficiently.

3 Methodology

Task Formulation In the coarse-to-fine setting [2], our goal is to train the model using only
coarse-grained labels during training and achieve strong generalization performance on fine-grained
categories. To evaluate the model’s coarse-to-fine capability, we test it on the challenging few-shot
fine-grained recognition tasks, where the model needs to recognize fine-grained categories with
limited training samples. In concretely, let Ycoarse = {y1, y2, . . . , yNcoarse

} be a set of coarse-
grained classes (e.g., cat, dog, bird), and Yfine = {y′1, y′2, . . . , y′Nfine

} be a set of fine-grained
classes (e.g., husky, samoyed, burmese). Given an auxiliary training set B, it contains NB
labelled training images B = {(I1, y1), (I2, y2), . . . , (INB , yNB)}, where Ii is an example image and
yi ∈ Ycoarse is its corresponding label. Our goal is to use B to learn a model that recognizes different
fine-grained patterns when given a small number (e.g., 1 for each class, as assumed in this paper) of
novel fine-grained labeled samples N = {(I ′1, y′1), (I ′2, y′2), . . . , (I ′NN

, y′NN
)}, where I ′i is a support

image and y′i ∈ Yfine is its corresponding label. If N contains N categories, each with K support
images, then it is usually regarded as an N -way K-shot task.

Recap of the Hyperbolic Space We use the Poincaré ball [19] to perform the hyperbolic space.
Formally, an n-dimensional Poincaré ball is defined by a manifold Bn = {z ∈ Rn : c∥z∥ < 1, c >
0}, where ∥ · ∥ denotes the Euclidean norm and the hyperparameter c is used to modify the curvature.
Bn is an open ball of radius 1/

√
c, and with c → 0, Bn is close to the regular Euclidean space.

In the application of the hyperbolic space, hyperbolic neural networks [11] were first proposed to
adopt the formalism of Möbius gyrovector spaces to define the hyperbolic versions of feed-forward
networks and Multinomial Logistic Regression (MLR) [11]. In concretely, after using the traditional
neural network (e.g., CNN) with Multi-Layer Perceptron (MLP) to get an Euclidean representation
vector x ∈ Rn, we map it to hyperbolic representation using the exponential map:

z = expc(x) = x tanh(
√
c∥x∥)/(

√
c∥x∥), (1)

where expc(·) donates the exponential mapping with curvature c and tanh(·) refers to the hyperbolic
tangent function. Then, we use a hyperbolic hyperplane

Hpk,ak
= {x ∈ Rn : ⟨−pk + x,ak⟩ = 0}, (2)

determined by two learnable vectors pk,ak ∈ Rn as the decision boundary (e.g., p1 and a1 as shown
in the middel of Fig. 1) to predict the category k:

p(y = k|z) ∝ exp(sign(⟨−pk + z,ak⟩)∥ak∥d(z, Hpk,ak
)) , (3)

where the ⟨·, ·⟩ represents the inner product, ak is a normal vector to Hpk,ak
and d(z, Hpk,ak

) is the
hyperbolic space distance [11] from point z to the hyperplane Hpk,ak

.

Motivation We hereby present the motivation behind our work. In recent years, there have been
a lot of efforts to explore the hyperbolic space to make it better suitable for a variety of different
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Figure 2: Illustration of our method during training. Our method uses two views of the same input images to
obtain the representations Q = {q1, q2, . . . , qNB} and K = {k1,k2, . . . ,kNB} via an encoder and a projector.
The representations Q are classified into coarse classes by the Poincaré Multinomial Logistic Regression (MLR)
head, which is followed by the cross-entropy loss Lcls. We calculate the cosine distance between each pair of
examples (e.g., qi and kj), and use the corresponding target distance to constrain it via Lhcm according to their
class hierarchical relationship. We calculate the average hierarchical distance in each mini-batch to carry out
momentum updates to the target distance. By using coarse-grained labels for supervised learning in a hyperbolic
space and imposing hierarchical cosine distance constraints on features, we can obtain more discriminative
representations for unlabeled fine-grained classes.

applications [6, 11, 14, 15, 19, 22, 34, 43]. Some efforts strive [6, 34] to obtain large-margin decision
boundaries to enhance the expressive power of hyperbolic models. However, since these methods
directly perform complex operations in the hyperbolic space and cannot be extended to multi-grained
label tasks (e.g., an object having Labrador, dog and mammal labels at the same time), these
methods cannot make good use of the potential of the hyperbolic space to deal with multi-grained
label data.

In the regular Euclidean space, researchers have proposed many methods [17, 32] based on the cosine
distance to increase the angular boundary between different categories, which brings a considerable
improvement to the performance of the model. Therefore, we introduce the cosine distance constraint
into the hyperbolic space, and as far as we know, we are the first to do so in the hyperbolic space.
According to Eq. (1), it is known that a vector does not change its direction after being mapped
from the Euclidean space to the hyperbolic space by exponential mapping. This property, aka
Conformality [21], plays a crucial role in our context. It ensures that the angles between curves or
vectors in the Euclidean space remain consistent when projected onto the Poincaré disk. Therefore,
as the comparison between the middle and right images in Fig. 1, the introduction of large-margin
cosine distance constraint in the hyperbolic space should have similar properties as introducing the
cosine distance constraints in the Euclidean space. After that, it could make the decision boundaries
have larger / small similarity margins between coarse/fine classes, which enhances the generalization
and discriminative capabilities of the hyperbolic space for fine-grained categories.

Overall Framework The method we proposed aims at learning a mapping function fembed(·)
using only coarse-grained label training data that embeds raw inputs into a hyperbolic space with
a hierarchical distance structure for fine-grained visual recognition. Fig. 2 depicts our method at
the training time, where our method is termed as Poincaré embedding with hierarchical cosine
margins (PE-HCM). Specifically, we first introduce two separate random augmentations for mini-
batch examples to get two correlated views, and then obtain two groups of representations Q and K
by an encoder and a projector. For Q and K these two groups sample points in embedding spaces,
we respectively use Poincaré Multinomial Logistic Regression (MLR) and our proposed Hierarchical
Cosine Margin (HCM) manner to optimize the embedding space.
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Figure 3: Comparisons between traditional and hierarchical cosine margins. Different colors indicate different
categories. (a) In the latent space, we just need to make a decision boundary with a large-margin cosine distance
for each pair of classes. (b) Sample pairs with three-grained labels correspond to four-level complex hierarchical
target cosine distances. For instance, a pair of examples can belong to the same instance, the same fine-grained
class, the same coarse-grained class, or two different coarse-grained classes.

Concretely, the Poincaré MLR module first predicts the softmax probability distribution of coarse-
grained categories. Then, we use the coarse-grained labels y for supervised learning

Lcls = CrossEntropy(p(y = k|x), y), (4)

where CrossEntropy(·) is the cross-entropy loss and p(y = k|x) is the probability prediction
distribution as Eq. (3). Based on this, fembed(·) can separate different coarse-grained samples in the
embedding space.

Hierarchical Cosine Margin Manner On this basis, the HCM manner constrains the distance
distribution between sample pairs to be consistent with the hierarchical distribution of sample labels,
so that sample pairs with different grained labels have different gaps in the embedding space, thus
obtaining a more refined hierarchical embedding space that is conducive to fine-grained recognition.
Specifically, we first group features K according to coarse-grained labels and store samples with
the same coarse-grained labels in the same group in memory. We keep the latest M samples for
each coarse-grained category in memory. Then, we perform k-means clustering on each group of
features respectively, dividing each group of sample features into smaller groups of clusters. We
regard these more subdivided clusters as fine-grained categories under coarse-grained categories
and give different clusters different fine-grained pseudo-labels. From this point on, a feature in
the embedding space has three levels of granularity labels: instance-level label (each input sample
has its own instance-level label, a sample’s different augmentations have the same instance-level
label), fine-grained pseudo-labels and coarse-grained labels. Therefore, for a feature vector of an
anchor sample in Q, there are four hierarchical relationships in K: same instance-level label, same
fine-grained label, same coarse-grained label, and different coarse-grained labels.

The hierarchical cosine distance distribution is demonstrated in Fig. 3(b). From bottom to top, the
visual similarity between the samples and the anchor decreases, resulting in larger cosine distances
between the samples and the anchor in the embedding space.

This creates a hierarchical cosine distance distribution that follows the same pattern as the visual
similarity distribution between categories. Our proposed HCM manner is more refined and complex
than the traditional cosine distance constraint, as shown in Fig. 3(a). The traditional cosine distance
only needs to consider two types of relationships, i.e., similar or dissimilar, while the HCM manner
needs to consider the four hierarchical similarity relationships mentioned above in our setting.

In order to constrain the sample features by the hierarchical cosine distance, we calculate the cosine
distance distribution between each feature {qi}NB

i=1 in Q and all features {kj}NB
j=1 in K by

Wi = [dcos(qi,k1), dcos(qi,k2), . . . , dcos(qi,kNB
)], (5)

where dcos(u,v) = 1− cos(θ) = 1− uv
∥u∥∥v∥ ∈ [0, 2] is a cosine distance function, and NB is the

training batch size. As shown in Fig. 3(b), the distance between two samples in the embedded space
becomes larger as the category gap between them increases. For example, when the relationship
between sample pairs is the same physical object, different objects of the same kind, different species
of the same genus, and different genera of the same family, the sample pairs become less and less
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similar. To simplify the model, we set the distances between sample pairs with the same sample, the
same fine-grained category, the same coarse-grained category, and different coarse-grained categories
as d0, d1, d2, and d3, respectively, where d0 < d1 < d2 < d3. We obtain the target semantic distance
between each feature {qi}NB

i=1 in Q and all features {kj}NB
j=1 in K for each sample pairs by

Mi = [dt(qi,k1), dt(qi,k2), . . . , dt(qi,kNB
)], (6)

where dt(u,v) =


d0 if u, v are same instance-level labels,
d1 else if u, v are same fine-grained pseudo labels ,
d2 else if u, v are same coarse-grained labels,
d3 otherwise.

. To ensure that the

feature distance distribution of samples in the embedding space aligns with the hierarchical class
semantic similarity, we approximate the distributions of the pairwise feature cosine distances of
samples and targets using the Kullback-Leibler (KL) divergence

Lhcm =
1

NB

∑NB

i=1
KL(Mi,Wi). (7)

Finally, we combine Eq. (4) and Eq. (7) to obtain the overall loss during the training process

L = Lcls + αLhcm, (8)

where α is a trade-off hyperparameter.

During testing, we utilize the trained fembed(·) to embed the support set and query set samples into
the hyperbolic space. In the following, we classify the query samples by computing their distance to
the support samples through the k-nearest neighbors method.

Adaptive Hierarchical Cosine Distance In Eq. (6), we use [d0, d1, d2, d3] in dt(·) as the target
values of the feature cosine distance distribution, which should be determined by the intrinsic hierarchy
in different datasets, so we propose an Adaptive Hierarchical Cosine Distance (AHCD) strategy to
update the target values during the training process according to the training data. Specifically, we
set the target value d0 of samples with the same instance-level label to 0, and the target value d3 of
samples with different coarse-grained labels to 1 which correspond to angles of 90◦. We initialize d1
and d2 to 0.134 and 0.5 which correspond to angles of 30◦ and 60◦, respectively, and using d0 and
d3 as anchor values to uniformly distribute them. During training, we calculate the average feature
cosine distance between different examples with the same grained label in each batch of data

d̄l =
1

Nl

∑Nl

qi,kj∈Ωl

dcos(qi,kj), (9)

where l ∈ {1, 2} respectively represent fine-grained label hierarchy and coarse-grained hierarchy
(i.e., d̄1 and d̄2 respectively represent average distance of sample pairs with same fine-grained label
and same coarse-grained label), Ωl represents a set of the sample pairs that belong to same grained
labels, Nl is the size of Ωl. Then, we update the target semantic distance by momentum update

dl = βdl + (1− β)d̄l. (10)

We use the momentum update method to dynamically update the target semantic cosine distance of
sample pairs with the same fine-grained label and the same coarse-grained label, so that d1 and d2
can adjust values adaptively according to the distribution of data in different datasets.

4 Experiments

Table 1: Summaries of the benchmark datasets. L-17, NL-26,
E-13, E30 are the LIVING-17, NONLIVING-26, ENTITY-
13, ENTITY-30 sub-datasets from BREEDS [23].

Datasets L-17 NL-26 E-13 E-30 CIFAR-100
# Coarse classes 17 26 13 30 20
# Fine classes 68 104 260 240 100
# Train images 88K 132K 334K 307K 50K
# Test images 3.4K 5.2K 13K 12K 10K

Image resolution 224 224 224 224 32

Benchmark Datasets Table 1 summa-
rizes the benchmark datasets CIFAR-
100 [16] and BREEDS [23]. The
BREEDS dataset includes four subsets de-
rived from ImageNet, namely LIVING-
17, NONLIVING-26, ENTITY-13, and
ENTITY-30, each of which has a class hier-
archy calibrated to ensure that classes at the
same level have similar visual granularity.
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Table 2: Comparisons on BREEDS [23]. Red and blue bold numbers are the top two best results.

Methods LIVING-17 NONLIVING-26 ENTITY-13 ENTITY-30
5-way all-way 5-way all-way 5-way all-way 5-way all-way

Fine upper-bound 90.75±0.48 62.65±0.18 90.33±0.47 60.68±0.14 94.72±0.33 65.18±0.09 94.02±0.36 63.72±0.10
MoCo-v2 56.66±0.70 18.57±0.11 63.51±0.75 21.07±0.11 82.00±0.67 33.06±0.07 80.37±0.62 28.62±0.06

MoCo-v2-ImageNet 82.21±0.73 40.29±0.14 77.07±0.78 34.78±0.13 85.24±0.60 35.62±0.08 83.06±0.62 31.73±0.08
SWAV-ImageNet 79.83±0.65 38.79±0.15 76.26±0.71 33.94±0.11 81.15±0.65 33.57±0.07 79.91±0.54 31.15±0.07

ANCOR 89.23±0.55 45.14±0.12 86.23±0.54 43.10±0.11 90.58±0.54 42.29±0.08 88.12±0.54 41.79±0.08
ANCOR-fc 90.41±0.57 46.19±0.16 88.77±0.54 45.34±0.13 89.05±0.58 38.52±0.08 91.84±0.49 42.33±0.10
SCGM-G 89.72±0.54 48.74±0.15 89.87±0.51 49.25±0.13 90.15±0.51 40.00±0.08 92.90±0.46 42.17±0.08
SCGM-A 90.97±0.55 49.31±0.16 88.78±0.55 46.93±0.13 88.48±0.59 41.07±0.09 91.22±0.51 44.14±0.09

Ours 90.94±0.43 53.09±0.11 89.97±0.42 50.12±0.11 91.24±0.38 41.64±0.09 92.95±0.40 44.53±0.09

Table 3: Comparisons on CIFAR-100 [16].
Red and blue bold numbers are the top two
best results.

Methods 5-way all-way
Fine upper-bound 75.53±0.68 31.35±0.11

ANCOR 74.56±0.70 29.84±0.11
ANCOR-fc 74.73±0.73 27.32±0.10
SCGM-G 76.19±0.73 29.92±0.11
SCGM-A 77.37±0.77 25.91±0.10

Ours 81.42±0.69 36.28±0.12

Table 4: Comparisons of intra-class (all fine-grained class recogni-
tion within a random coarse class) on the BREEDS [23]. Red and
blue bold numbers are the top two best results.

Methods Living17 Nonliving26 Entity13 Entity30
Fine upper-bound 70.72±0.92 74.02±0.91 72.24±0.60 73.86±0.67

ANCOR 48.77±0.71 49.64±0.88 42.00±0.47 45.17±0.59
ANCOR-fc 51.07±0.82 53.51±1.00 41.83±0.48 47.82±0.65
SCGM-G 53.48±0.81 57.32±1.04 43.89±0.58 46.80±0.78
SCGM-A 53.88±0.90 55.12±1.00 45.09±0.58 50.02±0.71

Ours 57.11±0.93 58.63±1.01 44.85±0.54 51.24±0.65

Baselines We compare PE-HCM with the most relevant state-of-the-art models on embedding
learning: (1) MoCo-v2 [5], trained on the above datasets; (2) MoCo-v2-ImageNet [5], pre-trained on
the official full ImageNet; (3) SWAV-ImageNet, pre-trained by Caron [3]; (4) ANCOR [2], combine
supervised and self-supervised contrastive learning with their proposed Angular normalization
module; (5) SCGM [18], based on the superclass-conditional Gaussian mixture model. (6) ‘Fine
upper-bound’ [2], natualy trained on the fine-grained labels.

Implementations For fair comparisons with ANCOR [2] and SCGM [18], we use ResNet-12 [12]
and ResNet-50 [12] as the backbone network for CIFAR-100 [16] and BREEDS [23]. We use a
three-layer MLP as the projector, and the exponential mapping follows it to embed the features in the
hyperbolic space. The input, hidden, and output layer dimensions of the MLP are a → a → b, where
a is 640 and 2048 for ResNet-12 and ResNet-50, respectively, and the output layer dimension b is
128, following ANCOR and SCGM. For the hyperparameters, we set c = 0.001 in Eq. (1), α = 800
in Eq. (8), β = 0.999 in Eq. (10). We used the Adam optimizer to train the model on 4 GeForce
RTX 3090 Ti GPUs, and training a total of 200 epochs. For CIFAR-100 and BREEDS, the batch size
were 1024 and 256, the initial learning rates were 5× 10−4 and 1.25× 10−4, the learning rates were
reduced by 10 times when the epoch was 120 epoch and 160 epoch. In order to prevent the distance
distribution from getting stuck in local optima, we reinitialize d1 = 0.134 and d2 = 0.5 at the 120-th
epoch and 160-th epoch. We followed ANCOR [2] to implement random data enhancement using
random resized crop, random horizontal flipping, random color Jitter, random grayscale, and random
Gaussian smoothing during training. We evaluate the performance using 5-way and all-way 1-shot
settings during testing. The evaluation is conducted on 1000 random episodes, and we report the
mean accuracy along with the 95% confidence interval.

Main Results Table 2 and Table 3 present the average accuracy rates for fine-grained learning from
coarse labels on BREEDS and CIFAR-100. For each dataset, we report both 5-way and all-way
fine-grained recognition results during testing. As shown in these tables, our proposed model is
significantly better than other baseline methods on the above datasets. Especially on CIFAR-100,
we achieve 4.05% and 6.36% improvements over state-of-the-art methods, even surpassing the fine
upper-bound baseline significantly. Table 4 evaluates an intra-class case when all fine-grained classes
of random coarse-grained classes were sampled in each episode. The results demonstrate that our
method can better distinguish fine-grained categories in the embedding space.

Retrieval Task Results In addition to evaluating the ability of learning fine-grained embeddings
from coarse labels in few-shot learning tasks, Grafit [29] and MaskCon [8] also investigated the
effectiveness of the ‘coarse to fine’ approach by using retrieval tasks for validation. As shown in
Table 5, we conducted fair comparisons of our method with these state-of-the-art approaches, using
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Table 5: Comparisons on CIFAR-100. Red and blue bold numbers are the top two best results.

Methods 5-way All-way Recall@1 Recall@5 mAP
Grafit (Reported in paper) - - 60.57 82.32 -

MaskCon (Reported in paper) - - 65.52 83.64 -
MaskCon (Our re-implementation) 81.05 40.81 65.35 83.57 60.27

Ours 85.45 47.76 62.11 80.68 62.04

the same backbone and epoch settings as MaskCon. Our method still achieves superior results over
Grafit and MaskCon (almost 7% improvement on all-way FSFG) under FSFG, and achieves a mean
Average Precision (mAP) of 62.04%, surpassing MaskCon’s 60.27%. This also reinforces the efficacy
of our approach. Additionally, it is worth noting that our method is lower than MaskCon when we
used Recall@k as an evaluation metric (by following MaskCon). The reason might be that image
retrieval involves identifying relevant images from a gallery of diverse images, usually by utilizing
a query image as a reference. In this scenario, the task entails finding any images belonging to the
same category as the query image from the gallery, which might contain multiple images per category.
On the other hand, few-shot recognition, exemplified by the one-shot scenario, presents a more
challenging scenario. In this setting, the goal is to recognize objects/classes with very limited training
examples, often relying on only a single image per category. This constraint inherently magnifies the
difficulty of the task.

Table 6: Comparisons of our proposals on LIVING-
17 [23] and CIFAR-100 [16]. E: Coarse-grained su-
pervised learning in the Euclidean space. H: Coarse-
grained supervised learning in the hyperbolic space.
HCM: Our proposed Hierarchical Cosine Margin man-
ner. AHCD: Our proposed Adaptive Hierarchical Cosine
Distance strategy.

Methods LIVING-17 CIFAR-100
E H HCM AHCD 5-way all-way 5-way all-way
✓ 87.72 32.71 76.34 24.92

✓ 88.06 33.78 76.62 26.19
✓ ✓ 90.02 46.53 77.64 33.22
✓ ✓ ✓ 90.94 53.09 81.42 36.28

Proposals in Our Method As shown in Ta-
ble 6, we explored the improvement of each
module in our method on LIVING-17 and
CIFAR-100. The results of the first two rows
show that the hyperbolic space is more suitable
for the fine-grained embedding from coarse la-
bels with a hierarchical structure, which is con-
sistent with the conclusion shown in [11, 15].
The results of the last three rows show that the
introduction of our HCM manner and AHCD
strategy in the hyperbolic space can bring great
improvement. This indicates that all proposals
of our method can better learn the discriminative
patterns between finer-grained categories from
coarse labels.

Figure 4: Visualization by t-SNE [13] on
CIFAR-100. Left: training the model using
only coarse labels. Right: our method.

Visualization As shown in Fig. 4, it can be observed that
compared to training the model using only coarse labels,
our method leads to a more concentrated distribution of
sample points for each category, while also accentuating
the distinctions between different classes. The visualiza-
tion validates the effectiveness of our method of contribut-
ing to the discriminative power from the qualitative aspect.

Adaptive Ability We extensively explored the effective-
ness of the AHCD strategy. As shown in Fig. 5, we tracked the update processes of d1 and d2 during
training on CIFAR-100 and LIVING-17 datasets. In general, there are the same trends and different
details. In the early stages of training, as the model lacks discriminative ability, the values of d1 and
d2 gradually decrease. As the model continues to train, it gradually acquires discriminative ability,
resulting in an increase in the values of d1 and d2 followed by stabilization. From the final stable
results, we observe that the margin between coarse-grained categories (d2) is larger than the margin
between fine-grained categories (d1), and the margin between fine-grained categories on CIFAR-100
is larger than the margin between fine-grained categories on LIVING-17, which aligns with the true
category relationships in the data distribution. This demonstrates that our proposed adaptive strategy
can adjust d1 and d2 during training according to the actual data distribution.

Hyperparameters As shown in Fig. 6, we changed the trade-off hyperparameter α of the hierarchi-
cal cosine loss in Eq. (8) on the CIFAR-100 and LIVING-17 datasets to observe its impact for the
final result. It can be seen that, as α increases exponentially, the performance of the model increases
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Figure 5: The update processes of d1 (left) and d2 (right) in adaptive hierarchi-
cal cosine distance strategy on CIFAR-100 and LIVING-17. d1 and d2 are the
target distance for the same fine-grained and coarse-grained sample pairs.
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Figure 6: Comparisons with dif-
ferent value of α on CIFAR-
100 and LIVING-17.

first and then decreases. The value of α is also sensitive, with a smaller value of α limiting the
discriminative hierarchical embedding ability of the HCM manner, and a larger value of α suppressing
the generalization ability to fine-grained categories.
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Figure 7: Comparison results in 1-shot learn-
ing with different numbers of clusters on
CIFAR-100 and LIVING-17.

As shown in Fig. 7, we change the number of k-means
clusters for each coarse-grained class in the HCM manner
on CIFAR-100 and LIVING-17, and report the recognition
results for all fine-grained categories (all-class) and intra-
coarse class fine-grained categories (intra-class). From the
experimental results, it can be observed that the number of
clusters has a significant impact on the fine-grained recog-
nition performance. When the number of clusters is small,
the model performs poorly in fine-grained recognition
tasks. Having a larger number of clusters than the actual
number of fine-grained categories leads to better results.
Additionally, in our experiments across five datasets, we
found a recurring pattern that offers a guideline. Typically,
when clustering coarse-grained categories, the number of
clusters that yields optimal results is roughly twice the
actual number of fine-grained subclasses within that coarse category. While this heuristic emerged
consistently across our tested datasets, we acknowledge that it may not be universally optimal.
However, it does provide a good starting point for users. In practice, fine-tuning based on validation
performance is always recommended to ascertain the best hyperparameter for a specific task.

5 Conclusions

We proposed a novel method (PE-HCM) for fine-grained learning from coarse labels. We used the
hyperbolic space to embed the samples and enhanced the discriminative ability with a hierarchical
cosine margins manner. On the one hand, we performed supervised learning using coarse-grained
labels to distinguish coarse-grained category samples initially. On the other hand, we constructed
instance-level labels and fine-grained pseudo-labels using data enhancement and clustering methods,
for the hierarchical cosine margins manner constraining the distance between sample pairs of four
relationships, which resulted in a more refined hierarchical division of distances for fine-grained
learning. By optimizing the hierarchical cosine distance using the hierarchical cosine margins manner,
the learned embedding could be well generalized to fine-grained visual recognition tasks. Experiments
on five benchmark datasets demonstrated the effectiveness of the proposed method.

Throughout our experiments, we have occasionally observed a particular scenario where our method
yields comparatively lower results. This typically occurs when classes within the same hierarchy level
exhibit substantial variations in their scopes. For instance, when some classes possess a significantly
broader scope while others have a notably narrower scope. We believe this phenomenon arises from
the fact that our method employs a uniform margin across all levels. In the future, more refined
category-specific semantic hierarchical distance constraints are worth further study, that is, further
constraining the distances between sample pairs of different categories within the same grain of
granularity to make them more consistent with the real data distribution.
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