
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FOCUSING: VIEW-CONSISTENT SPARSE VOXELS FOR
EFFICIENT 3D VAE

Anonymous authors
Paper under double-blind review

Figure 1: Focusing is an efficient and effective 3D VAE, capable of generating high-fidelity 3D
models at 10243 resolution using less than 50GB of memory by using the render loss with an efficient
voxel selection.

ABSTRACT

High-fidelity 3D generation remains difficult. Although some methods have pro-
posed converting raw meshes to SDFs, it remains a lossy process. TripoSF pre-
sented a VAE training paradigm based on a rendering loss to circumvent this lossy
SDF conversion, achieving high-precision surface reconstruction. However, be-
cause the rendering loss cannot supervise all the VAE outputs in the same way as
SDF supervision, it limits detail and scalability. We present Focusing, a 3D VAE
that improves efficiency by activating only the voxels that matter for a given view.
Our key idea is a depth-driven voxel carving performed in the structured latent
space: voxels inconsistent with the rendered depth are pruned before decoding.
This concentrates learning on locally relevant geometry, reduces attention and de-
coding costs, and lowers video random access memory (VRAM) usage. To sta-
bilize training and capture fine details, we further introduce an adaptive zooming
strategy that adjusts camera intrinsics to keep the number of active voxels within
a target range. The VAE is trained with a render-based loss on depth, normals,
masks, and perceptual terms, and we add simple regularizers (e.g., sparse-voxel
TV and a short warm-up with TSDF supervision) to reduce small holes and speed
up convergence. Across standard reconstruction benchmarks, Focusing improves
geometric accuracy (CD, F-score) over strong baselines while cutting VRAM con-
sumption, which allows for training the 10243 resolution VAE on as little as 50GB

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of VRAM. These results show that local, view-consistent sparsity is an effective
route to higher-resolution, more efficient 3D VAEs.

1 INTRODUCTION

3D AI-generated content (AIGC) is an emerging research direction with broad applications in em-
bodied AI, digital content creation, gaming, 3D modeling, and AR/XR. Compared to its 2D coun-
terpart, 3D AIGC is considerably more challenging due to the higher spatial dimensionality and the
need to model complex geometry and topology. These challenges make achieving high-fidelity 3D
generation difficult in a manner that is both accurate and efficient, and the problem remains largely
unsolved despite recent progress.

Following the success of 2D AIGC pipelines, most 3D AIGC approaches adopt a two-stage frame-
work. In the first stage, a 3D variational auto-encoder (VAE) encodes a shape representation, such
as a signed distance field (SDF), point cloud, or voxel grid, into a compact latent space. In the
second stage, a generative model, often a latent diffusion model, operates in this reduced space to
synthesize novel 3D assets. Within this pipeline, the 3D VAE plays a central role: its ability to faith-
fully compress and reconstruct complex geometry directly determines the fidelity of the final results.
Improving the efficiency and accuracy of 3D VAEs is therefore a critical step toward high-quality,
scalable 3D AIGC.

Since there is no single unified representation for 3D data, recent works have explored different
designs for both the input/output and latent spaces of 3D VAEs. Methods such as VecSet Zhang
et al. (2023) encode the input into a long tensor representation, but this introduces redundancy, since
each latent dimension is correlated with all dimensions of the input. TRELLIS Xiang et al. (2025)
addresses this by introducing Structured Latents, where the latent space is represented explicitly as
sparse voxels. This structured design improves locality, geometric accuracy, and allows local editing
by replacing specific voxels.

Sparc3D Li et al. (2025) and Direct3D-S2 Wu et al. (2025) extend this line by using SDFs for
both input and output, thereby enforcing a unified modality. However, since most raw meshes are
not watertight, these methods require lossy preprocessing steps to obtain SDFs. To overcome this
limitation, rendering-based supervision is adopted by TripoSF He et al. (2025), where the VAE is
trained to match rendered depth and normal maps instead of precomputed SDF values. This avoids
watertight conversion altogether, making the pipeline more flexible for open or complex training
data. To further reduce computation, they adopt Frustum-aware Sectional Voxel Training, which
prunes voxels outside the rendering frustum, thereby lowering training costs and enabling 10243

upsampling. While such strategies reduce redundant computation, they also raise a fundamental
question: What is the minimum amount of computation required to render an image from a given
viewpoint?

TripoSF uses a point cloud as input and produces a mesh as output. This setup resembles the classical
point cloud reconstruction pipeline, where high-quality meshes can be obtained from dense, oriented
point clouds even without neural networks. Unlike TRELLIS, which requires global consistency
to reproduce texture, a geometry-focused 3D VAE only needs local point distributions to recover
surface patches.

Motivated by this observation and the redundancy of existing approaches, we propose Focusing, a
local 3D VAE training scheme built on simple yet effective voxel carving. Following the TripoSF
framework, we supervise the VAE with depth and normal maps rendered from ground-truth views.
Crucially, before decoding, we perform voxel carving as shown in Figure 2: voxels in the structured
latent are compared with the rendered depth map, and only those consistent with the view are re-
tained. This discards most irrelevant voxels, enabling the decoder to focus on fine-grained features
while substantially reducing VRAM and unnecessary attention computations.

To further improve detail capture, we introduce an adaptive camera adjustment strategy inspired
by zooming. By dynamically adjusting the camera’s intrinsic parameters, we maintain the number
of activated voxels within a controllable range. This mechanism not only stabilizes VRAM usage
across diverse inputs but also allows us to expand the field of view (FoV) to capture surface details
more effectively. Together, these strategies enable efficient high-resolution training while preserving
geometric fidelity. See Figure 1 for examples of high-resolution 3D models produced by our method.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) (b) (c) (d)
Active in render Active in encoder Active in VAE Active in Vae & render Camera Frustum

Figure 2: Conceptually illustration of sparse voxels in existing methods and in our approach. (a)
TRELLIS encodes 3D models using sparse voxels and generates a mesh on a dense voxel grid for
rendering. (b) TripoSF employs SparseFlex to reduce the number of voxels used for mesh extraction
during rendering. (c) By adjusting the camera’s far plane, TripoSF further reduces voxels that do
not contribute to the final render. (d) Our method selects active voxels in the structured latent space
based on the depth map. This strategy greatly reduces the computational overhead of both decoding
and rendering, and it does not rely on the choice of the far plane.

2 RELATED WORKS

2.1 3D REPRESENTATIONS

Meshes. Meshes are the most common and versatile representation for 3D assets, and they are di-
rectly applicable to many downstream applications, such as rendering, animation, and simulation. A
line of work explores treating meshes as sequences and generating them with sequence-to-sequence
models Nash et al. (2020); Siddiqui et al. (2024); Hao et al. (2024); Gao et al. (2025); Lionar et al.
(2025). These methods can produce meshes with stylized or artist-like qualities, particularly quad
meshes, but they are typically constrained by sequence length, which limits resolution and geo-
metric fidelity. Other approaches attempt to directly predict mesh topology and geometry from
images Wang et al. (2018) or point clouds Hanocka et al. (2020). More recently, differentiable ren-
dering pipelines have been employed to supervise mesh generation with 2D projections. For exam-
ple, TripoSF He et al. (2025) represents meshes using SparseFlex within a differentiable rendering
pipeline, enabling efficient training and supporting higher-resolution mesh generation compared to
prior mesh-based methods.

Point clouds. Point clouds, often obtained from scanning devices, have long served as input for
3D reconstruction algorithms. Their connectivity-free nature and flexibility make them appealing as
neural network input Charles et al. (2017); Qi et al. (2017). Other approaches generate point clouds
directly as output distributions Achlioptas et al. (2018); Yang et al. (2019); Liu et al. (2021); Luo &
Hu (2021), which allows flexible and high-precision modeling. However, converting point clouds
into watertight meshes is both lossy and computationally expensive Kazhdan et al. (2006); Kazhdan
& Hoppe (2013); Hou et al. (2022), which limits their use in many downstream tasks.

Implicit functions. Implicit functions represent 3D geometry as level sets of continuous fields,
such as the zero level set of a signed distance function or the 1/2-level set of an occupancy field. This
formulation is robust and naturally compatible with neural networks, which explains its popularity in
both reconstruction and generation tasks Park et al. (2019). Since implicit functions do not directly
produce meshes, an additional extraction algorithm (e.g., marching cubes Lorensen & Cline (1987)
or its variants) is needed to recover surfaces. However, SDF- and occupancy-based approaches
assume watertight geometry, which limits their ability to work with open models. To relax this
constraint, UDFs have been proposed Chibane et al. (2020), but existing UDF extraction methods
often suffer from inefficiency and instability Zhou et al. (2022); Hou et al. (2023); Ren et al. (2022).
A common workaround is to preprocess training data by inflating meshes into watertight versions,
yet this conversion can introduce artifacts and reduce geometric fidelity. For example, Sparc3D Li
et al. (2025) adopts a flood-filling and deformation-based repair pipeline inevitably leads to losing
fine-scale details.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 3D VAE ARCHITECTURES

Inspired by the success of 2D diffusion models Rombach et al. (2022), most current 3D generative
models follow a two-stage framework: a 3D VAE first compresses the input representation into
a compact latent space, and a 3D diffusion model then operates in this reduced space to generate
novel shapes. This design allows high-resolution synthesis while keeping diffusion tractable. Unlike
2D AIGC, however, there is no universally accepted compact representation for 3D data. The vast
majority of available assets are stored as non-compact meshes, which are not ideal for direct neural
network training due to irregular connectivity and variable topology.

3DShape2VecSet Zhang et al. (2023) adopts a VAE to learn a compact vector-set (vecset) repre-
sentation from point clouds sampled on meshes. The decoder is trained by supervising SDF values
at query points, providing implicit geometric supervision during reconstruction. Clay Zhang et al.
(2024) extends this approach to large-scale datasets and introduces an inflation-based preprocess-
ing pipeline to enforce watertight meshes. Dora Chen et al. (2025) and Huanyuan2 Team (2025)
enhance this framework with importance sampling, which improves the ability to capture sharp fea-
tures. Hi3DGen Ye et al. (2025) further incorporates normal-map supervision to boost the fidelity
of surface detail reconstruction. Despite these advances, vecset representations suffer from signifi-
cant information redundancy: each feature is correlated with the entire 3D model, making training
inefficient and hindering scalability.

Both XCube Ren et al. (2024) and TRELLIS Xiang et al. (2025) replace the global vecset with
sparse voxels. In this formulation, each voxel encodes local geometric information, leading to
higher-quality reconstructions and more structured latent representations. TRELLIS Xiang et al.
(2025) further demonstrates that selectively replacing certain voxels enables flexible local 3D edit-
ing. Direct3D-S2 Wu et al. (2025) introduces Spatial Sparse Attention to restrict computations to
local neighborhoods, thereby reducing overhead during the diffusion stage. Sparc3D Li et al. (2025)
proposes a new preprocessing strategy to improve geometric fidelity. TripoSF He et al. (2025) shifts
away from SDF-based supervision and instead employs a rendering loss that compares predicted
depth and normal maps with ground truth. This approach avoids the accuracy degradation caused by
lossy watertight conversion and allows the VAE to handle both internal structures and open bound-
aries. However, render-based supervision provides weaker constraints than SDF supervision, since
only voxels contributing to visible surfaces are directly trained. As a result, many latent voxels
remain under-regularized, which can limit reconstruction accuracy and consistency.

3 METHOD

3.1 PRELIMINARIES

TripoSF He et al. (2025) introduced SparseFlex, a sparse version of FlexibleCubes Shen et al.
(2023), to train 3D AIGC models. SparseFlex is defined by a set of voxels V . Each voxel vi ∈ V
contains both its spatial location (xi, yi, zi) (the 3D coordinates of its center) and feature infor-
mation. Let the number of voxels be Nv and the number of corresponding corners be Nc. The
feature includes the SDF values {sj | 0 ≤ j < Nc} and deformations {δj | 0 ≤ j < Nc} for the
voxel’s eight corners. In practice, the features for each corner are obtained by averaging the values
from surrounding relevant voxels. Additionally, the feature also contains the interpolation weights{
αi ∈ R8

>0, βi ∈ R12
>0 | 0 ≤ i < Nv

}
per voxel for Dual Marching Cubes (DMC) Nielson (2004).

Formally, the SparseFlex representation, S , is defined as:

S = (V,Fc,Fv) , Fc = {sj , δj} , Fv = {αi, βi} , (1)

where Fc contains the SDF values and deformations at the corner grids, and Fv contains the inter-
polation weights for each voxel.

SparseFlex significantly reduces memory consumption and cuts down on unnecessary computational
costs. Moreover, by supervising with a rendering loss instead of direct SDF values, TripoSF avoids
the lossy watertight mesh conversion process. To further reduce computational overhead, TripoSF
introduced Frustum-aware Sectional Voxel Training. This method applies SparseFlex to extract
meshes only from voxels that are within the current camera’s Normalized Device Coordinates (NDC)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

space. By adjusting the camera’s intrinsic parameters, this cropping operation also enables the
learning of a model’s internal structure.

TripoSF then trains a VAE with following losses:

L = λ1Lrender + λ2Locc + λ3LKL + λ4Lflex (2)

Lrender is the rendering supervision loss including the following items:

Lrender = λdLd + λnLn + λmLm + λssLss + λlpLlp (3)

where Ld, Ln, and Lm denote the L1 loss for depth maps, normal maps, and mask maps, respec-
tively. Lss and Llp denote SSIM loss and LPIPS loss, and are only applied to normal maps. TripoSF
culls voxels that are far from the surface during the upsampling process in the decoder. The Locc
loss is used to guide the self-pruning upsampling module employed by TripoSF to accurately re-
move these distant voxels. Although this approach can reduce the number of voxels, it also creates
more holes and makes convergence more difficult. LKL is the KL divergence between the learned
latent distribution and a standard normal prior, which helps to regularize the latent space. Lflex is
the regularization term from Flexicubes that promotes smooth SDF values.

While SparseFlex avoids the accuracy loss from computing SDFs, its training still faces several
issues:

• Irrelevant voxels in the NDC space. A significant number of invisible voxels participate
in mesh extraction and require large VRAM, which has significant influence for sparse
voxel resolution scaling up. Although controlling the near and far planes can help, this
approach is often suboptimal. To address this, we propose a plug-in-and-play visibility-
based voxel carving strategy in Section 3.2 to more effectively reduce the number of active
voxels. We also show that this pruning can be performed in the latent space, which greatly
reduces the decoder’s workload on irrelevant voxels.

• Rendering blurriness. Methods based on rendering loss can suffer from blurriness due
to the resolution of the rendered image. Capturing accurate detail often requires a higher
resolution or a closer camera view, with the former significantly increasing computational
cost. In Section 3.3, we introduce an adaptive camera adjustment strategy based on the
dolly zoom effect. By controlling the number of voxels to be activated within the view, we
can flexibly adjust camera parameters to better supervise the model’s fine details.

• Generating unnecessary holes. Unlike direct SDF supervision, which provides a strict
signal for maintaining watertightness, small holes are difficult to effectively supervise with
a rendering loss. In Section 3.4, we introduce our VAE framework and propose a new
regularization loss to reduce these holes.

3.2 DEPTH-BASED VOXEL CARVING

Our key insight is that the local surface is determined by local points, independent of distant points.
As shown in Figure 3, selecting only a subset of voxels in the latent space and feeding them to the
decoder can still generate a locally complete mesh, except for some jagged noise at the boundary.
Since a rendering loss based VAE does not require a globally complete mesh, we can minimize the
number of voxels in the network without affecting the rendering result by aligning the input camera
with the filtered voxels.

Specifically, given a camera with extrinsic π, intrinsics K, and the near (n) and far (f) clipping
planes of the viewing frustum, we compute the Model-View-Projection matrix to render the depth
map D from the ground truth mesh. For each voxel zi in the latent code Z , we also project its center
to obtain the projected point zpi = {up

i , v
p
i , d

p
i } in the image space and regard dpi as the depth of

each voxel zi. Using a threshold r, we then filter all voxels where dpi > D(up
i , v

p
i) − r to obtain

the view-consistent voxels Zp
carve. To enhance robustness at the image boundary, the 3 × 3 × 3

neighborhood of any remaining voxel is also retained.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Vo
xe

l c
ar

vi
ng

En
co

de
r

D
ec

od
er

Vo
xe

l U
ps

am
pl

in
g

Point cloud based

Voxelization

Sp
ar

se
 F

le
xi

cu
be

Rendering Loss

Figure 3: Overview of our framework. Starting from the input mesh, we first voxelize it and aggre-
gate local features from sampled point clouds to form input voxels. A sparse transformer encoder-
decoder then compresses these structured features into a latent space, followed by an upsampling
module to increase resolution. In the latent space, we perform visibility-based voxel carving to retain
only view-consistent voxels that contribute to the visible mesh in the rendered image. The refined
structured features are decoded into SparseFlex for final mesh extraction. Supervision is provided
by a rendering loss, which compares the rendered images of the input and reconstructed meshes.

3.3 ADAPTIVE ZOOMING

The significant variation in the number of visible voxels leads to significant VRAM fluctuations
during training. TRELLIS addresses this by removing voxels exceeding a fixed quota, but this can
impact the final render if essential voxels are lost. TripoSF utilizes a visibility ratio α, to control the
number of active voxels, primarily by adjusting the near and far planes. This approach relies on the
camera being preset close to the object’s surface to capture key details.

In contrast, since we’ve already removed most invisible voxels, adjusting the far plane has little in-
fluence on the number of voxels. We introduce a zooming-based voxel count adjustment method.
This approach effectively controls the number of active voxels while enabling flexible zoom-in op-
erations to capture finer model details.

We randomly select a visibility ratio α ∈ [αmin, αmax] and retain only αN voxels to capture various
levels of geometric structure. To limit the maximum number of voxels and avoid having too few,
αN is clamped between Nmin and Nmax. We conduct a KNN search in image space to obtain the
cropped voxel set Zp

crop from Zp
carve. We then adjust the perspective matrix P using the new image

bounding box (xn
min, x

n
max, y

n
min, y

n
max) as follows:

Pnew =


2s

xn
max−xn

min
0 0 −xn

max+xn
min

xn
max−xn

min

0 2s
yn
max−yn

min
0 −xn

max+xn
min

xn
max−xn

min

0 0 1 0
0 0 0 1

P (4)

where s is the scaling rate used to prevent jagged noise from appearing at the boundary of the image.

3.4 VAE STRUCTURE

Following TripoSF, we use a variational autoencoder that compresses the input oriented dense point
cloud into a sparse latent code Z without relying on computationally expensive global attentions.
A frozen PointNet Charles et al. (2017) adapted from TripoSF is used to aggregate local geometric
features within each voxel. A sparse transformer then utilizes the shifted window attention proposed
by TRELLIS to learn relationships between voxels. This process outputs a fused structured latent
feature Z , where each voxel possesses local geometric information. The voxel carving and adaptive
zooming is then used to filter the voxels in Z to attain Zp

crop. The decoder takes Zp
crop as input and

uses a series of transformer layers to generate the final output. To support high-resolution output, two
self-pruning upsampling modules are then employed to obtain a 2x upsampled result from the initial
output, ultimately yielding a 4x resolution output. We only use Locc to supervise the self-pruning
block and do not use the output of the self-pruning block, Opred, to filter voxels during training, in
order to avoid unnecessary holes in the rendered images that negatively impact the rendering loss.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To accelerate VAE convergence and provide initial VAE weights capable of extracting meshes, we
supervise sj using the TSDF srawj calculated from raw meshes during the early stages of training:

Ltsdf =

Nc∑
j=1

||sj − srawj || (5)

To reduce the generation of holes, we introduce the Total Variation loss on sparse voxels to suppress
the differences in SDF values between adjacent corners:

Ltv =
∑
d∈[D]

√
∆2

x(V, d) + ∆2
y(V, d) + ∆2

z(V, d) (6)

where ∆2
x(V, d) denotes the squared difference between the value of d-th channel in voxel v :=

(i; j; k) and the dth value in voxel (i + 1; j; k), which can be analogously extended to ∆2
y(V, d)

and ∆2
z(V, d). We apply the TV term above to the SDF grid, denoted by Ltv , which encourages a

continuous and compact geometry.

The overall loss function is:

L = λ1Lrender + λ2Locc + λ3LKL + λ4Lflex + λ5Ltv + λ6Ltsdf (7)

3.5 RECTIFIED FLOW BASED IMAGE TO 3D GENERATION

Drawing inspiration from TRELLIS Xiang et al. (2025) and TripoSF He et al. (2025), we employ
a two-stage rectified-flow generation model, which consists of a sparse structure flow model and a
structured latents flow model.

Sparse structure flow model. Following the approach of TRELLIS, we first train a Sparse Structure
VAE based on voxel carving. This VAE compresses a 3D shape into a smaller resolution using 3D
convolutions. Thanks to our preliminary voxel carving process, we can train a high-resolution Sparse
Structure VAE with relative ease. Subsequently, we extract DINO features from the condition image
and use them as the condition to train a Diffusion Transformer (DiT) via cross-attention. We then
employ a rectified flow model to denoise the noised latents.

Structured latents flow model. Based on our proposed VAE, we first encode the sampled point
cloud and its corresponding sparse structure into the latent space. Similar to the sparse structure
flow model, we use the DINO features of the condition image as the condition to train the DiT via
cross-attention. We then use a rectified flow model for denoising. Finally, the denoised latents are
decoded into a 3D shape by the VAE’s decoder.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Implementation Details. Following TRELLIS Xiang et al. (2025), we train both the VAE and its
latent flow model on 183K high-quality assets from Objaverse-XL Deitke et al. (2023). We employ
a progressive training scheme for our VAE. The 5123 resolution VAE runs on 32 A800 GPUs (batch
size 32) with AdamW (initial LR 1 X 10−4, weight decay 0.01) for two days. A cosine annealing
learning rate schedule with 40K steps is used to adjust the learning rate. We then train the 10243

resolution VAE with 32 A100 GPUs using the same setting.

Hyperparameter Settings. We use the same weight configuration as TRELLIS to train our VAE.
For our two newly introduced losses, we set λ5 = 0.001 and λ6 = 1. The Ltsdf is only used for the
first 12K steps. We set the threshold r equal to 2/resolution to carve voxels. We use a resolution of
5182 to render images and use s = 1.1 to calculate the new perspective matrix. For zooming, we set
αmin = 0.1 and αmax = 0.3 to train our model. We set Nmin = 8192 and Nmax = 15360 to limit the
number of voxels.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 VAE RECONSTRUCTION EVALUATION

Table 1: Comparison of Different Methods

Method Input Type Preprocess Network Backbone Texture Max Resolution
TRELLIS Visible Only No Sparse Voxel Required 256

Dora Watertight Only Yes VecSet No 256
Direct3D-S2 Watertight Only Yes Sparse Voxel No 1024

TripoSF Inside support No Sparse Voxel No 1024
Ours Inside support No Sparse Voxel No 1024

As shown in Table 1, although Dora-VAE, TRELLIS, and Direct3d-S2 all provide VAE weights, they
can only reconstruct watertight models. Therefore, it is unfair to directly compare them with our
method on raw meshes. We specifically show the comparison with these methods in Section A of the
appendix. In the main page, we primarily compare with TripoSF, as currently only TripoSF supports
raw mesh reconstruction. Our method demonstrates superior VAE reconstruction performance with
quantitative results detailed in Table 2. Our model achieves better metrics than TripoSF at the
same resolution in terms of the L2 norm of Chamfer Distance (CD) and F-score with a threshold
0.005. Since even the Level 4 data in the Dora Benchmarks lack sufficient detail, we selected several
detail-rich models from online websites to further test our method’s ability to capture model details,
as shown in Figure 11. Our method demonstrates results comparable to TripoSF’s 1024 resolution
output. In some high-fidelity models, our 512 resolution result captures geometry details better than
TripoSF’s 1024 resolution result, as shown in Figure 11.

Table 2: We sample 100K point cloud to measure the Chamfer Distance and F-score on the Dora
Benchmark Chen et al. (2025) in different geometry details Levels. Low Chamfer Distance ensures
overall shape fidelity, while high F-score ensures local details are accurately covered within an
acceptable error radius.

Chamfer Distance (10−5)

L1 L2 L3 L4

Mean Std Mean Std Mean Std Mean Std

TripoSF512 1.382 0.985 1.600 1.189 2.184 1.368 3.107 2.126
Ours512 1.353 0.995 1.513 1.008 2.116 1.351 2.806 1.771

TripoSF1024 1.315 0.937 1.456 0.936 2.007 1.197 2.431 1.390
Ours1024 1.294 0.886 1.429 0.873 1.901 1.011 2.264 1.055

F-score

L1 L2 L3 L4

Mean Std Mean Std Mean Std Mean Std

TripoSF512 0.951 0.078 0.939 0.089 0.892 0.115 0.831 0.146
Ours512 0.953 0.080 0.945 0.086 0.897 0.117 0.841 0.147

TripoSF1024 0.957 0.074 0.951 0.078 0.907 0.106 0.873 0.121
Ours1024 0.958 0.070 0.953 0.073 0.916 0.091 0.886 0.097

4.3 IMAGE-TO-3D GENERATION

We further validate our VAE’s utility as a generative foundation model. Visualizations in Figure 7,
including image-to-3D results from in-the-wild images, highlight the generalization of our method.
The generated 3D shapes maintain sharp edges and rich details while exhibiting high fidelity to the
corresponding input images.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of training efficiency with 5123 resolution in A100 GPU.

w/o Carving
& Zooming

w/o
Zooming

Ours
(αmin = 0.3)

Ours
(αmin = 0.6)

Ours
(αmin = 0.15)

Training Speed (steps/h) 2652 5337 8640 7590 9238
GPU Memory Peak (GB) 64 50 32 35 28

4.4 ABLATION STUDIES

Depth-based voxel carving and adaptive zooming. In this paper, we employ depth-based carving
and adaptive zooming to replace the Frustum-aware Sectional method used by TripoSF. This sub-
stitution allows for a more reasonable voxel cropping operation. We further find that this cropping
operation can be directly applied in the latent space, which further reduces the computational cost.
We present the impact of each component on the training speed and memory footprint in Table 3.
It demonstrates that performing voxel carving based on visibility in the latent space significantly
reduces training cost. Simultaneously, we can further adjust the computational cost by tuning αmax.
However, considering that the encoder still needs to encode global information, an excessively low
αmax does not provide a linear reduction in cost. Furthermore, because the encoder still encode
global information, our method cannot be directly scaled up to train at 15363 resolution. One ap-
proach is to increase the upsampling rate from 4 to 8, thereby reducing the computational pressure on
the encoder. Additionally, exploring the possibility of performing voxel culling within the encoder
would also be an interesting direction.

r = −2 / Res r = 0 / Res r = 2 / Res r = 4 / Res

Figure 4: Since the centers of some voxels may lie behind the surface, we use r = 2 / resolution as
the depth-carving threshold to avoid missing these voxels. A smaller r can lead to geometric errors,
while a larger r has almost no effect on geometry but slightly increases the number of retained
voxels.

VAE resolution. Higher resolution always leads to better VAE reconstruction quality, as shown in
Table 2. We further tested the extraction results of the network weights trained at 10243 resolution
at different resolutions in Figure 5. We found that our model has the ability to complete 15363

reconstruction without being trained at the corresponding resolution. At the 1536 resolution, chain-
beads that were previously not captured were successfully reconstructed.

5 CONCLUSIONS & LIMITAION

We present an efficient voxel carving scheme for 3D VAE training and 3D model generation. Only
the visible voxels of the structured latent are sent to the VAE decoder for generation. This efficiently
removes redundant computation, thereby enabling high-resolution and detailed mesh generation.
Experiments demonstrate that our method outperforms SOTA works in terms of efficiency and ac-
curacy.

Currently, our pipeline uses point cloud features as input and is highly dependent on the normal
vectors of the point cloud to predict the final result. When the object to be reconstructed is very thin,
such as the hair in the last example of Figure 11, it is difficult to obtain a locally consistent normal
vector to capture these fine details. In the future, we hope to find a better input feature to overcome
this limitation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

GT Ours256 Ours512 Ours1024 Ours1536

Figure 5: We used the 10243 resolution checkpoint to test the reconstruction results at different
resolutions. Our method demonstrated generalization capabilities across different resolutions.

GT TripoSF512 TripoSF1024 Ours512 Ours1024

Figure 6: Qualitative comparison of VAE reconstruction between ours and TripoSF with different
resolution. Our approach demonstrate superior performance in reconstructing geometry details.

Figure 7: Single image-to-3D generations with in-the-wild images which are collected from Geminis
or Dora.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

All datasets and models used in this study are publicly available and have been used in accordance
with their respective licenses and terms of use.

7 REPRODUCIBILITY STATEMENT

We have clarified our experiment setting in Section 4.1. We will open-source the code and release
the trained model.

REFERENCES

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J. Guibas. Learning repre-
sentations and generative models for 3d point clouds. In Jennifer G. Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pp. 40–49. PMLR, 2018.

R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 77–85, 2017.

Rui Chen, Jianfeng Zhang, Yixun Liang, Guan Luo, Weiyu Li, Jiarui Liu, Xiu Li, Xiaoxiao Long,
Jiashi Feng, and Ping Tan. Dora: Sampling and benchmarking for 3d shape variational auto-
encoders. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR),
pp. 16251–16261, June 2025.

Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural unsigned distance fields for implicit
function learning. In Advances in Neural Information Processing Systems (NeurIPS), December
2020.

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati,
Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha
Kembhavi, Carl Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi.
Objaverse-xl: A universe of 10m+ 3d objects. arXiv preprint arXiv:2307.05663, 2023.

Daoyi Gao, Yawar Siddiqui, Lei Li, and Angela Dai. Meshart: Generating articulated meshes with
structure-guided transformers. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 618–627, 2025.

Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. Point2mesh: A self-prior for de-
formable meshes. arXiv preprint arXiv:2005.11084, 2020.

Zekun Hao, David W Romero, Tsung-Yi Lin, and Ming-Yu Liu. Meshtron: High-fidelity, artist-like
3d mesh generation at scale. arXiv preprint arXiv:2412.09548, 2024.

Xianglong He, Zi-Xin Zou, Chia-Hao Chen, Yuan-Chen Guo, Ding Liang, Chun Yuan, Wanli
Ouyang, Yan-Pei Cao, and Yangguang Li. Sparseflex: High-resolution and arbitrary-topology
3d shape modeling. In IEEE/CVF International Conference on Computer Vision (ICCV), 2025.

Fei Hou, Chiyu Wang, Wencheng Wang, Hong Qin, Chen Qian, and Ying He. Iterative poisson
surface reconstruction (ipsr) for unoriented points. ACM Trans. Graph., 41(4), 2022.

Fei Hou, Xuhui Chen, Wencheng Wang, Hong Qin, and Ying He. Robust zero level-set extraction
from unsigned distance fields based on double covering. ACM Trans. Graph., 42(6), 2023.

Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM Trans. Graph.,
32(3), 2013.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In Pro-
ceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP ’06, pp. 61–70,
2006.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhihao Li, Yufei Wang, Heliang Zheng, Yihao Luo, and Bihan Wen. Sparc3d: Sparse representation
and construction for high-resolution 3d shapes modeling. arXiv preprint arXiv:2505.14521, 2025.

Stefan Lionar, Jiabin Liang, and Gim Hee Lee. Treemeshgpt: Artistic mesh generation with au-
toregressive tree sequencing. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 26608–26617, 2025.

Yanchao Liu, Jianwei Guo, Bedrich Benes, Oliver Deussen, Xiaopeng Zhang, and Hui Huang.
Treepartnet: neural decomposition of point clouds for 3d tree reconstruction. ACM Trans. Graph.,
40(6), December 2021.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface construc-
tion algorithm. Proceedings of the 14th annual conference on Computer graphics and interactive
techniques, 1987.

Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2837–2845, 2021.

Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter W. Battaglia. Polygen: an autoregressive
generative model of 3d meshes. In Proceedings of the 37th International Conference on Machine
Learning, ICML’20, 2020.

Gregory M Nielson. Dual marching cubes. In IEEE visualization 2004, pp. 489–496. IEEE, 2004.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5099–5108, 2017.

Siyu Ren, Junhui Hou, Xiaodong Chen, Ying He, and Wenping Wang. Geoudf: Surface recon-
struction from 3d point clouds via geometry-guided distance representation. 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 14168–14178, 2022.

Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams.
Xcube: Large-scale 3d generative modeling using sparse voxel hierarchies. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wenzheng Chen, Zan
Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. Flexible isosurface extraction for gradient-
based mesh optimization. ACM Trans. Graph., 42(4), jul 2023. ISSN 0730-0301.

Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti, Vladislav
Rosov, Angela Dai, and Matthias Nießner. Meshgpt: Generating triangle meshes with decoder-
only transformers. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 19615–19625, 2024.

Tencent Hunyuan3D Team. Hunyuan3d 2.0: Scaling diffusion models for high resolution textured
3d assets generation, 2025.

Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. In Proceedings of the European Conference
on Computer Vision (ECCV), 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Yikang Yang, Yajie Bao, Jiachen Qian, Siyu
Zhu, Philip Torr, Xun Cao, and Yao Yao. Direct3d-s2: Gigascale 3d generation made easy with
spatial sparse attention. arXiv preprint arXiv:2505.17412, 2025.

Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen,
Xin Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21469–21480,
2025.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge J. Belongie, and Bharath Hariharan.
Pointflow: 3d point cloud generation with continuous normalizing flows. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019, pp. 4540–4549, 2019.

Chongjie Ye, Yushuang Wu, Ziteng Lu, Jiahao Chang, Xiaoyang Guo, Jiaqing Zhou, Hao Zhao,
and Xiaoguang Han. Hi3dgen: High-fidelity 3d geometry generation from images via normal
bridging. arXiv preprint arXiv:2503.22236, 2025.

Biao Zhang, Jiapeng Tang, Matthias Nießner, and Peter Wonka. 3dshape2vecset: A 3d shape repre-
sentation for neural fields and generative diffusion models. ACM Trans. Graph., 42(4), jul 2023.
ISSN 0730-0301.

Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan
Xu, and Jingyi Yu. Clay: A controllable large-scale generative model for creating high-quality 3d
assets. ACM Transactions on Graphics (TOG), 43(4):1–20, 2024.

Junsheng Zhou, Baorui Ma, Yu-Shen Liu, Yi Fang, and Zhizhong Han. Learning consistency-
aware unsigned distance functions progressively from raw point clouds. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A COMPARISION WITH MORE METHODS

We sample 100K points to measure the Chamfer Distance (CD) and F-score on the Dora Benchmark
Chen et al. (2025) across different geometry details Levels. Comparison is conducted within each
group as shown in Table 4.

Visible Only. TRELLIS uses image features as input, and thus can only achieve better reconstruction
for the visible regions. Furthermore, since it densifies the network’s sparse output using grid points
with an SDF of 1. Such operation generates a redundant layer of faces on the inner side of the
object, as shown in Figure 8. Although TRELLIS proposed a post-processing method to remove
these internal faces, it may lead to incorrect deletions, which could actually worsen the metrics.
To avoid misunderstanding and potentially unfair comparisons, we use TRELLIS’s visibility-based
point cloud sampling results to calculate the CD and F-score.

Watertight Only. Sparc3d, Dora, and Direct3d all require the input mesh to be a watertight mesh to
compute the SDF. Dora uses the ϵ-level set of the raw mesh as the watertight representation of the
original model. Sparc3d proposed a method based on flood fill and optimization to further reduce
the loss of precision caused by this conversion, but this introduces self-intersections in the output.
Since Sparc3d has not open-sourced any code, we use Dora’s method for data processing: we set
ϵ = 2/resolution for each resolution to extract the surface. This processed data is then used as the
GT mesh and input to each method to obtain the reconstruction results. Since the ϵ-level set method
results in the loss of object surface details, and this loss is particularly severe at lower resolutions
(higher ϵ), our method achieves the best results only at Level 4 on the Watertight remesh results.
Furthermore, at Level 1, the low-resolution results appear better than the high-resolution results due
to the sheer lack of details that require high resolution to capture.

Raw mesh. The comparison on raw meshes best reflects a method’s ability to reconstruct geometry.
However, as mentioned earlier, methods other than ours and TripoSF’s cannot be directly applied
to raw meshes, which causes the metrics for these methods to fall significantly behind. To avoid
unnecessary misunderstanding, we mark these methods with a asterisk (∗). Although we do not
consider internal viewpoints during training, we do not filter any voxels during inference, allowing
our method to still generate objects with internal structures, as shown in Figure 9.

GT TRELLIS† TRELLIS Ours

Figure 8: The inner redundant faces generated by TRELLIS.

B FAIL CASE

3D VAEs that rely on voxelizied point cloud features inherently struggle to capture thin structures
whose thickness is smaller than one voxel. As a result, such structures may be omitted during
reconstruction. As illustrated in Figure 10, both our method and TripoSF fail to recover extremely

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: We sample 100K point cloud to measure the Chamfer Distance and F-score on the Dora
Benchmark Chen et al. (2025) in different geometry details Levels. Comparison is conducted within
each group (Visible Only, Watertight and Raw Mesh respectively).

Chamfer Distance (10−5) ↓
L1 L2 L3 L4

Type Method Mean Std Mean Std Mean Std Mean Std

Visible
only

TRELLIS 1.633 1.088 2.098 2.095 5.300 68.56 4.882 11.16
TRELLIS† 1.571 0.933 1.895 1.117 2.391 1.369 3.253 4.778

Watertight
remeshing

Dora 1.886 0.771 2.182 0.832 2.753 1.487 3.217 1.278
Direct3d-S21024 1.128 0.946 1.402 2.181 1.640 0.893 2.308 1.123
TripoSF512 1.232 0.812 1.304 0.763 1.838 1.053 2.517 1.322
Ours512 1.218 0.810 1.305 0.765 1.840 1.049 2.518 1.334
TripoSF1024 1.243 0.825 1.321 0.741 1.844 1.007 2.426 1.184
Ours1024 1.242 0.824 1.324 0.741 1.785 0.898 2.258 0.906

Raw
mesh

TRELLIS* 266.8 2270 23.00 92.21 35.13 213.2 90.26 867.3
Dora* 300.5 1808 225.7 1512 157.7 934.1 200.9 1447
Direct3d-S21024* 335.3 1725 363.8 2161 415.2 3224 425.4 2336
TripoSF512 1.382 0.985 1.600 1.189 2.184 1.368 3.107 2.126
Ours512 1.353 0.995 1.513 1.008 2.116 1.351 2.806 1.771
TripoSF1024 1.315 0.937 1.456 0.936 2.007 1.197 2.431 1.390
Ours1024 1.294 0.886 1.429 0.873 1.901 1.011 2.264 1.055

F-score ↑
L1 L2 L3 L4

Type Method Mean Std Mean Std Mean Std Mean Std

Visible
only

TRELLIS 0.946 0.075 0.928 0.078 0.897 0.080 0.861 0.074
TRELLIS† 0.945 0.076 0.928 0.078 0.896 0.081 0.862 0.074

Watertight
remeshing

Dora 0.959 0.069 0.937 0.081 0.887 0.108 0.838 0.117
Direct3d-S21024 0.974 0.048 0.969 0.055 0.941 0.074 0.887 0.106
TripoSF512 0.964 0.061 0.963 0.061 0.920 0.094 0.862 0.121
Ours512 0.965 0.061 0.963 0.061 0.920 0.093 0.862 0.122
TripoSF1024 0.963 0.062 0.963 0.059 0.922 0.089 0.874 0.112
Ours1024 0.963 0.062 0.962 0.059 0.927 0.079 0.889 0.087

Raw
mesh

TRELLIS* 0.430 0.221 0.719 0.149 0.665 0.150 0.646 0.189
Dora* 0.379 0.077 0.408 0.079 0.337 0.068 0.292 0.084
Direct3d-S21024* 0.370 0.361 0.339 0.277 0.240 0.175 0.269 0.166
TripoSF512 0.951 0.078 0.939 0.089 0.892 0.115 0.831 0.146
Ours512 0.953 0.080 0.945 0.086 0.897 0.117 0.841 0.147
TripoSF1024 0.957 0.074 0.951 0.078 0.907 0.106 0.873 0.121
Ours1024 0.958 0.070 0.953 0.073 0.916 0.091 0.886 0.097

thin geometric elements. Handling these sub-voxel structures remains an open challenge for voxel-
based representations and is an important direction for future work.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Exterior Cut view

Figure 9: Our method is able to produce shapes with inner structures.

GT Sparc3D† Ours

Figure 10: Fail case. Neither our method nor TripoSF can reconstruct extremely thin structures.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

GT Direct3d-S21024 TripoSF1024 Ours1024

Figure 11: More qualitative comparison of VAE reconstruction between ours, TripoSF and Direct3d-
S2 with 10243 resolution. Our approach demonstrate superior performance in reconstructing geom-
etry details.

17

	Introduction
	Related works
	3D Representations
	3D VAE architectures

	Method
	Preliminaries
	Depth-based Voxel Carving
	Adaptive Zooming
	VAE structure
	Rectified Flow based Image to 3D Generation

	Experiments
	Experiment Settings
	VAE Reconstruction Evaluation
	Image-to-3D Generation
	Ablation Studies

	Conclusions & Limitaion
	Ethics Statement
	Reproducibility Statement
	Comparision with more methods
	Fail Case

