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Figure 1: Focusing is an efficient and effective 3D VAE, capable of generating high-fidelity 3D
models at 10243 resolution using less than 50GB of memory by using the render loss with an efficient
voxel selection.

ABSTRACT

High-fidelity 3D generation remains difficult. Although some methods have pro-
posed converting raw meshes to SDFs, it remains a lossy process. TripoSF pre-
sented a VAE training paradigm based on a rendering loss to circumvent this lossy
SDF conversion, achieving high-precision surface reconstruction. However, be-
cause the rendering loss cannot supervise all the VAE outputs in the same way as
SDF supervision, it limits detail and scalability. We present Focusing, a 3D VAE
that improves efficiency by activating only the voxels that matter for a given view.
Our key idea is a depth-driven voxel carving performed in the structured latent
space: voxels inconsistent with the rendered depth are pruned before decoding.
This concentrates learning on locally relevant geometry, reduces attention and de-
coding costs, and lowers video random access memory (VRAM) usage. To sta-
bilize training and capture fine details, we further introduce an adaptive zooming
strategy that adjusts camera intrinsics to keep the number of active voxels within
a target range. The VAE is trained with a render-based loss on depth, normals,
masks, and perceptual terms, and we add simple regularizers (e.g., sparse-voxel
TV and a short warm-up with TSDF supervision) to reduce small holes and speed
up convergence. Across standard reconstruction benchmarks, Focusing improves
geometric accuracy (CD, F-score) over strong baselines while cutting VRAM con-
sumption, which allows for training the 10243 resolution VAE on as little as SOGB
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of VRAM. These results show that local, view-consistent sparsity is an effective
route to higher-resolution, more efficient 3D VAE:s.

1 INTRODUCTION

3D Al-generated content (AIGC) is an emerging research direction with broad applications in em-
bodied Al, digital content creation, gaming, 3D modeling, and AR/XR. Compared to its 2D coun-
terpart, 3D AIGC is considerably more challenging due to the higher spatial dimensionality and the
need to model complex geometry and topology. These challenges make achieving high-fidelity 3D
generation difficult in a manner that is both accurate and efficient, and the problem remains largely
unsolved despite recent progress.

Following the success of 2D AIGC pipelines, most 3D AIGC approaches adopt a two-stage frame-
work. In the first stage, a 3D variational auto-encoder (VAE) encodes a shape representation, such
as a signed distance field (SDF), point cloud, or voxel grid, into a compact latent space. In the
second stage, a generative model, often a latent diffusion model, operates in this reduced space to
synthesize novel 3D assets. Within this pipeline, the 3D VAE plays a central role: its ability to faith-
fully compress and reconstruct complex geometry directly determines the fidelity of the final results.
Improving the efficiency and accuracy of 3D VAE:s is therefore a critical step toward high-quality,
scalable 3D AIGC.

Since there is no single unified representation for 3D data, recent works have explored different
designs for both the input/output and latent spaces of 3D VAEs. Methods such as VecSet [Zhang
et al.| (2023)) encode the input into a long tensor representation, but this introduces redundancy, since
each latent dimension is correlated with all dimensions of the input. TRELLIS Xiang et al.| (2025)
addresses this by introducing Structured Latents, where the latent space is represented explicitly as
sparse voxels. This structured design improves locality, geometric accuracy, and allows local editing
by replacing specific voxels.

Sparc3D [Li et al.| (2025) and Direct3D-S2 [Wu et al.| (2025) extend this line by using SDFs for
both input and output, thereby enforcing a unified modality. However, since most raw meshes are
not watertight, these methods require lossy preprocessing steps to obtain SDFs. To overcome this
limitation, rendering-based supervision is adopted by TripoSF |He et al.| (2025)), where the VAE is
trained to match rendered depth and normal maps instead of precomputed SDF values. This avoids
watertight conversion altogether, making the pipeline more flexible for open or complex training
data. To further reduce computation, they adopt Frustum-aware Sectional Voxel Training, which
prunes voxels outside the rendering frustum, thereby lowering training costs and enabling 10243
upsampling. While such strategies reduce redundant computation, they also raise a fundamental
question: What is the minimum amount of computation required to render an image from a given
viewpoint?

TripoSF uses a point cloud as input and produces a mesh as output. This setup resembles the classical
point cloud reconstruction pipeline, where high-quality meshes can be obtained from dense, oriented
point clouds even without neural networks. Unlike TRELLIS, which requires global consistency
to reproduce texture, a geometry-focused 3D VAE only needs local point distributions to recover
surface patches.

Motivated by this observation and the redundancy of existing approaches, we propose Focusing, a
local 3D VAE training scheme built on simple yet effective voxel carving. Following the TripoSF
framework, we supervise the VAE with depth and normal maps rendered from ground-truth views.
Crucially, before decoding, we perform voxel carving as shown in Figure 2} voxels in the structured
latent are compared with the rendered depth map, and only those consistent with the view are re-
tained. This discards most irrelevant voxels, enabling the decoder to focus on fine-grained features
while substantially reducing VRAM and unnecessary attention computations.

To further improve detail capture, we introduce an adaptive camera adjustment strategy inspired
by zooming. By dynamically adjusting the camera’s intrinsic parameters, we maintain the number
of activated voxels within a controllable range. This mechanism not only stabilizes VRAM usage
across diverse inputs but also allows us to expand the field of view (FoV) to capture surface details
more effectively. Together, these strategies enable efficient high-resolution training while preserving
geometric fidelity. See Figure|[I|for examples of high-resolution 3D models produced by our method.
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Figure 2: Conceptually illustration of sparse voxels in existing methods and in our approach. (a)
TRELLIS encodes 3D models using sparse voxels and generates a mesh on a dense voxel grid for
rendering. (b) TripoSF employs SparseFlex to reduce the number of voxels used for mesh extraction
during rendering. (c) By adjusting the camera’s far plane, TripoSF further reduces voxels that do
not contribute to the final render. (d) Our method selects active voxels in the structured latent space
based on the depth map. This strategy greatly reduces the computational overhead of both decoding
and rendering, and it does not rely on the choice of the far plane.

2 RELATED WORKS

2.1 3D REPRESENTATIONS

Meshes. Meshes are the most common and versatile representation for 3D assets, and they are di-
rectly applicable to many downstream applications, such as rendering, animation, and simulation. A
line of work explores treating meshes as sequences and generating them with sequence-to-sequence
models Nash et al.|(2020); Siddiqui et al.| (2024); [Hao et al.| (2024); Gao et al|(2025); Lionar et al.|
(2025). These methods can produce meshes with stylized or artist-like qualities, particularly quad
meshes, but they are typically constrained by sequence length, which limits resolution and geo-
metric fidelity. Other approaches attempt to directly predict mesh topology and geometry from
images [Wang et al.| (2018) or point clouds [Hanocka et al| (2020). More recently, differentiable ren-
dering pipelines have been employed to supervise mesh generation with 2D projections. For exam-
ple, TripoSF [He et al | represents meshes using SparseFlex within a differentiable rendering
pipeline, enabling efficient training and supporting higher-resolution mesh generation compared to
prior mesh-based methods.

Point clouds. Point clouds, often obtained from scanning devices, have long served as input for
3D reconstruction algorithms. Their connectivity-free nature and flexibility make them appealing as
neural network input|Charles et al.| (2017); [Qi et al. (2017). Other approaches generate point clouds
directly as output distributions [Achlioptas et al.| (2018);|Yang et al.| (2019); Liu et al.| (2021); |Luo &
(2021)), which allows flexible and high-precision modeling. However, converting point clouds
into watertight meshes is both lossy and computationally expensive [Kazhdan et al.|(2006); Kazhdan

& Hoppel (2013)); [Hou et al.| (2022), which limits their use in many downstream tasks.

Implicit functions. Implicit functions represent 3D geometry as level sets of continuous fields,
such as the zero level set of a signed distance function or the 1/2-level set of an occupancy field. This
formulation is robust and naturally compatible with neural networks, which explains its popularity in
both reconstruction and generation tasks (2019). Since implicit functions do not directly
produce meshes, an additional extraction algorithm (e.g., marching cubes|Lorensen & Cline|(1987)
or its variants) is needed to recover surfaces. However, SDF- and occupancy-based approaches
assume watertight geometry, which limits their ability to work with open models. To relax this
constraint, UDFs have been proposed [Chibane et al| (2020)), but existing UDF extraction methods
often suffer from inefficiency and instability [Zhou et al.| (2022));[Hou et al (2023); Ren et al.| (2022).
A common workaround is to preprocess training data by inflating meshes into watertight versions,
yet this conversion can introduce artifacts and reduce geometric fidelity. For example, Sparc3D
(2025) adopts a flood-filling and deformation-based repair pipeline inevitably leads to losing
fine-scale details.
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2.2 3D VAE ARCHITECTURES

Inspired by the success of 2D diffusion models Rombach et al.| (2022), most current 3D generative
models follow a two-stage framework: a 3D VAE first compresses the input representation into
a compact latent space, and a 3D diffusion model then operates in this reduced space to generate
novel shapes. This design allows high-resolution synthesis while keeping diffusion tractable. Unlike
2D AIGC, however, there is no universally accepted compact representation for 3D data. The vast
majority of available assets are stored as non-compact meshes, which are not ideal for direct neural
network training due to irregular connectivity and variable topology.

3DShape2VecSet |[Zhang et al.| (2023) adopts a VAE to learn a compact vector-set (vecset) repre-
sentation from point clouds sampled on meshes. The decoder is trained by supervising SDF values
at query points, providing implicit geometric supervision during reconstruction. Clay Zhang et al.
(2024) extends this approach to large-scale datasets and introduces an inflation-based preprocess-
ing pipeline to enforce watertight meshes. Dora [Chen et al.| (2025)) and Huanyuan2 Team| (2025)
enhance this framework with importance sampling, which improves the ability to capture sharp fea-
tures. Hi3DGen |Ye et al.| (2025) further incorporates normal-map supervision to boost the fidelity
of surface detail reconstruction. Despite these advances, vecset representations suffer from signifi-
cant information redundancy: each feature is correlated with the entire 3D model, making training
inefficient and hindering scalability.

Both XCube Ren et al. (2024) and TRELLIS |Xiang et al. (2025) replace the global vecset with
sparse voxels. In this formulation, each voxel encodes local geometric information, leading to
higher-quality reconstructions and more structured latent representations. TRELLIS Xiang et al.
(2025)) further demonstrates that selectively replacing certain voxels enables flexible local 3D edit-
ing. Direct3D-S2 Wu et al.| (2025) introduces Spatial Sparse Attention to restrict computations to
local neighborhoods, thereby reducing overhead during the diffusion stage. Sparc3D |Li et al.|(2025)
proposes a new preprocessing strategy to improve geometric fidelity. TripoSF|He et al.|(2025) shifts
away from SDF-based supervision and instead employs a rendering loss that compares predicted
depth and normal maps with ground truth. This approach avoids the accuracy degradation caused by
lossy watertight conversion and allows the VAE to handle both internal structures and open bound-
aries. However, render-based supervision provides weaker constraints than SDF supervision, since
only voxels contributing to visible surfaces are directly trained. As a result, many latent voxels
remain under-regularized, which can limit reconstruction accuracy and consistency.

3 METHOD

3.1 PRELIMINARIES

TripoSF [He et al.| (2025) introduced SparseFlex, a sparse version of FlexibleCubes [Shen et al.
(2023), to train 3D AIGC models. SparseFlex is defined by a set of voxels V. Each voxel v; € V
contains both its spatial location (x;,y;, z;) (the 3D coordinates of its center) and feature infor-
mation. Let the number of voxels be NV, and the number of corresponding corners be N.. The
feature includes the SDF values {s; | 0 < j < N.} and deformations {d; | 0 < j < N.} for the
voxel’s eight corners. In practice, the features for each corner are obtained by averaging the values
from surrounding relevant voxels. Additionally, the feature also contains the interpolation weights
{a; e RS, 3; € R1Z | 0 <i < N,} per voxel for Dual Marching Cubes (DMC) Nielson| (2004).
Formally, the SparseFlex representation, S , is defined as:

S:(V,fc,ﬁ,), fc:{Sja(sj}a -E):{aiaﬂi}7 (1)

where F. contains the SDF values and deformations at the corner grids, and JF,, contains the inter-
polation weights for each voxel.

SparseFlex significantly reduces memory consumption and cuts down on unnecessary computational
costs. Moreover, by supervising with a rendering loss instead of direct SDF values, TripoSF avoids
the lossy watertight mesh conversion process. To further reduce computational overhead, TripoSF
introduced Frustum-aware Sectional Voxel Training. This method applies SparseFlex to extract
meshes only from voxels that are within the current camera’s Normalized Device Coordinates (NDC)
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space. By adjusting the camera’s intrinsic parameters, this cropping operation also enables the
learning of a model’s internal structure.

TripoSF then trains a VAE with following losses:

L= Alﬁrender + >\2»Cocc + )\B»CKL + )\4£ﬂex (2)

Liender 18 the rendering supervision loss including the following items:

ACrender = )\dﬁd + >\n£n + )\mcm + )\ssﬁss + )\lp['lp (3)

where L4, L,,, and L, denote the L loss for depth maps, normal maps, and mask maps, respec-
tively. L5 and £y, denote SSIM loss and LPIPS loss, and are only applied to normal maps. TripoSF
culls voxels that are far from the surface during the upsampling process in the decoder. The Lo
loss is used to guide the self-pruning upsampling module employed by TripoSF to accurately re-
move these distant voxels. Although this approach can reduce the number of voxels, it also creates
more holes and makes convergence more difficult. Lk, is the KL divergence between the learned
latent distribution and a standard normal prior, which helps to regularize the latent space. L ;¢ is
the regularization term from Flexicubes that promotes smooth SDF values.

While SparseFlex avoids the accuracy loss from computing SDFs, its training still faces several
issues:

* Irrelevant voxels in the NDC space. A significant number of invisible voxels participate
in mesh extraction and require large VRAM, which has significant influence for sparse
voxel resolution scaling up. Although controlling the near and far planes can help, this
approach is often suboptimal. To address this, we propose a plug-in-and-play visibility-
based voxel carving strategy in Section [3.2]to more effectively reduce the number of active
voxels. We also show that this pruning can be performed in the latent space, which greatly
reduces the decoder’s workload on irrelevant voxels.

* Rendering blurriness. Methods based on rendering loss can suffer from blurriness due
to the resolution of the rendered image. Capturing accurate detail often requires a higher
resolution or a closer camera view, with the former significantly increasing computational
cost. In Section we introduce an adaptive camera adjustment strategy based on the
dolly zoom effect. By controlling the number of voxels to be activated within the view, we
can flexibly adjust camera parameters to better supervise the model’s fine details.

* Generating unnecessary holes. Unlike direct SDF supervision, which provides a strict
signal for maintaining watertightness, small holes are difficult to effectively supervise with
a rendering loss. In Section we introduce our VAE framework and propose a new
regularization loss to reduce these holes.

3.2 DEPTH-BASED VOXEL CARVING

Our key insight is that the local surface is determined by local points, independent of distant points.
As shown in Figure [3] selecting only a subset of voxels in the latent space and feeding them to the
decoder can still generate a locally complete mesh, except for some jagged noise at the boundary.
Since a rendering loss based VAE does not require a globally complete mesh, we can minimize the
number of voxels in the network without affecting the rendering result by aligning the input camera
with the filtered voxels.

Specifically, given a camera with extrinsic , intrinsics K, and the near (n) and far (f) clipping
planes of the viewing frustum, we compute the Model-View-Projection matrix to render the depth
map D from the ground truth mesh. For each voxel z; in the latent code Z, we also project its center
to obtain the projected point 2/’ = {u? v? d¥'} in the image space and regard d% as the depth of
each voxel z;. Using a threshold r, we then filter all voxels where d¥ > D(u?,v!) — r to obtain
the view-consistent voxels ZZ To enhance robustness at the image boundary, the 3 x 3 x 3

carve*

neighborhood of any remaining voxel is also retained.
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Figure 3: Overview of our framework. Starting from the input mesh, we first voxelize it and aggre-
gate local features from sampled point clouds to form input voxels. A sparse transformer encoder-
decoder then compresses these structured features into a latent space, followed by an upsampling
module to increase resolution. In the latent space, we perform visibility-based voxel carving to retain
only view-consistent voxels that contribute to the visible mesh in the rendered image. The refined
structured features are decoded into SparseFlex for final mesh extraction. Supervision is provided
by a rendering loss, which compares the rendered images of the input and reconstructed meshes.

3.3 ADAPTIVE ZOOMING

The significant variation in the number of visible voxels leads to significant VRAM fluctuations
during training. TRELLIS addresses this by removing voxels exceeding a fixed quota, but this can
impact the final render if essential voxels are lost. TripoSF utilizes a visibility ratio «, to control the
number of active voxels, primarily by adjusting the near and far planes. This approach relies on the
camera being preset close to the object’s surface to capture key details.

In contrast, since we’ve already removed most invisible voxels, adjusting the far plane has little in-
fluence on the number of voxels. We introduce a zooming-based voxel count adjustment method.
This approach effectively controls the number of active voxels while enabling flexible zoom-in op-
erations to capture finer model details.

We randomly select a visibility ratio & € [unin, bmax] and retain only «elN voxels to capture various
levels of geometric structure. To limit the maximum number of voxels and avoid having too few,
alN is clamped between Npi, and Nya.x. We conduct a KNN search in image space to obtain the
cropped voxel set 2L, from ZL.. We then adjust the perspective matrix P using the new image

bounding box (z],;,,, X0 0 yr . ym ) as follows:

2s 0 0  ThmartToin
x?naz_x::uin x%aw_x:nn
n n
+To,
_ 0 2s 0 _ TrmarTTmin
Pnew y:wlmaz_yglin I:Lnaz_x:lnin P (4)
0 1
0 0 0 1

where s is the scaling rate used to prevent jagged noise from appearing at the boundary of the image.

3.4 VAE STRUCTURE

Following TripoSF, we use a variational autoencoder that compresses the input oriented dense point
cloud into a sparse latent code Z without relying on computationally expensive global attentions.
A frozen PointNet (Charles et al.|(2017) adapted from TripoSF is used to aggregate local geometric
features within each voxel. A sparse transformer then utilizes the shifted window attention proposed
by TRELLIS to learn relationships between voxels. This process outputs a fused structured latent
feature Z, where each voxel possesses local geometric information. The voxel carving and adaptive
zooming is then used to filter the voxels in Z to attain 2%, ,,. The decoder takes Z%,,, as input and
uses a series of transformer layers to generate the final output. To support high-resolution output, two
self-pruning upsampling modules are then employed to obtain a 2x upsampled result from the initial
output, ultimately yielding a 4x resolution output. We only use L, to supervise the self-pruning
block and do not use the output of the self-pruning block, Opreq, to filter voxels during training, in
order to avoid unnecessary holes in the rendered images that negatively impact the rendering loss.




Under review as a conference paper at ICLR 2026

To accelerate VAE convergence and provide initial VAE weights capable of extracting meshes, we
supervise s; using the TSDF s7% calculated from raw meshes during the early stages of training:

N
Lisar = Y _lsj — 55| 5)

Jj=1

To reduce the generation of holes, we introduce the Total Variation loss on sparse voxels to suppress
the differences in SDF values between adjacent corners:

Low=Y \/Ag(v, d) + A2(V,d) + A2(V, d) (6)
de[D]

where A2(V,d) denotes the squared difference between the value of d-th channel in voxel v :=
(i;7; k) and the dth value in voxel (i + 1;j; k), which can be analogously extended to Ai(V, d)
and A%(V,d). We apply the TV term above to the SDF grid, denoted by L;,, which encourages a
continuous and compact geometry.

The overall loss function is:

L= X Lender + A2Locc + A3LKL + AaLfex + A5 Lty + A6 Lisar @)

3.5 RECTIFIED FLOW BASED IMAGE TO 3D GENERATION

Drawing inspiration from TRELLIS |Xiang et al.| (2025) and TripoSF [He et al.| (2025), we employ
a two-stage rectified-flow generation model, which consists of a sparse structure flow model and a
structured latents flow model.

Sparse structure flow model. Following the approach of TRELLIS, we first train a Sparse Structure
VAE based on voxel carving. This VAE compresses a 3D shape into a smaller resolution using 3D
convolutions. Thanks to our preliminary voxel carving process, we can train a high-resolution Sparse
Structure VAE with relative ease. Subsequently, we extract DINO features from the condition image
and use them as the condition to train a Diffusion Transformer (DiT) via cross-attention. We then
employ a rectified flow model to denoise the noised latents.

Structured latents flow model. Based on our proposed VAE, we first encode the sampled point
cloud and its corresponding sparse structure into the latent space. Similar to the sparse structure
flow model, we use the DINO features of the condition image as the condition to train the DiT via
cross-attention. We then use a rectified flow model for denoising. Finally, the denoised latents are
decoded into a 3D shape by the VAE’s decoder.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Implementation Details. Following TRELLIS Xiang et al.| (2025), we train both the VAE and its
latent flow model on 183K high-quality assets from Objaverse-XL Deitke et al.|(2023). We employ
a progressive training scheme for our VAE. The 5123 resolution VAE runs on 32 A800 GPUs (batch
size 32) with AdamW (initial LR 1 X 10~%, weight decay 0.01) for two days. A cosine annealing
learning rate schedule with 40K steps is used to adjust the learning rate. We then train the 1024°
resolution VAE with 32 A100 GPUs using the same setting.

Hyperparameter Settings. We use the same weight configuration as TRELLIS to train our VAE.
For our two newly introduced losses, we set A5 = 0.001 and A\¢ = 1. The L4y is only used for the
first 12K steps. We set the threshold r equal to 2/resolution to carve voxels. We use a resolution of
5182 to render images and use s = 1.1 to calculate the new perspective matrix. For zooming, we set
Omin = 0.1 and apax = 0.3 to train our model. We set Nyin = 8192 and Nyax = 15360 to limit the
number of voxels.
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4.2 VAE RECONSTRUCTION EVALUATION

Table 1: Comparison of Different Methods

Method Input Type Preprocess Network Backbone Texture Max Resolution
TRELLIS Visible Only No Sparse Voxel Required 256
Dora Watertight Only Yes VecSet No 256
Direct3D-S2  Watertight Only Yes Sparse Voxel No 1024
TripoSF Inside support No Sparse Voxel No 1024
Ours Inside support No Sparse Voxel No 1024

As shown in Table[T] although Dora-VAE, TRELLIS, and Direct3d-S2 all provide VAE weights, they
can only reconstruct watertight models. Therefore, it is unfair to directly compare them with our
method on raw meshes. We specifically show the comparison with these methods in Section[A]of the
appendix. In the main page, we primarily compare with TripoSF, as currently only TripoSF supports
raw mesh reconstruction. Our method demonstrates superior VAE reconstruction performance with
quantitative results detailed in Table J] Our model achieves better metrics than TripoSF at the
same resolution in terms of the L2 norm of Chamfer Distance (CD) and F-score with a threshold
0.005. Since even the Level 4 data in the Dora Benchmarks lack sufficient detail, we selected several
detail-rich models from online websites to further test our method’s ability to capture model details,
as shown in Figure [T} Our method demonstrates results comparable to TripoSF’s 1024 resolution
output. In some high-fidelity models, our 512 resolution result captures geometry details better than
TripoSF’s 1024 resolution result, as shown in Figure[T1]

Table 2: We sample 100K point cloud to measure the Chamfer Distance and F-score on the Dora
Benchmark |Chen et al.| (2025)) in different geometry details Levels. Low Chamfer Distance ensures
overall shape fidelity, while high F-score ensures local details are accurately covered within an
acceptable error radius.

Chamfer Distance (10~°)
L1 L2 L3 L4
Mean Std Mean Std Mean Std Mean Std

TripoSF512 1.382 0985 1.600 1.189 2.184 1368 3.107 2.126
Ourss1o 1.353 0995 1.513 1.008 2116 1351 2.806 1.771

TripoSF1024 1.315 0937 1456 0936 2.007 1.197 2431 1.390
Oursjo24 1.294 0.886 1.429 0.873 1901 1.011 2.264 1.055

F-score
L1 L2 L3 L4
Mean Std Mean Std Mean Std Mean Std

TripoSF512 0.951 0.078 0.939 0.089 0.892 0.115 0.831 0.146
Ourssi 0953 0.080 0.945 0.086 0.897 0.117 0.841 0.147

TripoSF1024 0.957 0.074 0951 0.078 0.907 0.106 0.873 0.121
Oursjo24 0958 0.070 0.953 0.073 0916 0.091 0.886 0.097

4.3 IMAGE-TO-3D GENERATION

We further validate our VAE’s utility as a generative foundation model. Visualizations in Figure
including image-to-3D results from in-the-wild images, highlight the generalization of our method.
The generated 3D shapes maintain sharp edges and rich details while exhibiting high fidelity to the
corresponding input images.
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Table 3: Comparison of training efficiency with 5122 resolution in A100 GPU.

w/o Carving w/o Ours Ours Ours

& Zooming Zooming  (min =0.3)  (amin =0.6)  (@min = 0.15)
Training Speed (steps/h) 2652 5337 8640 7590 9238
GPU Memory Peak (GB) 64 50 32 35 28

4.4 ABLATION STUDIES

Depth-based voxel carving and adaptive zooming. In this paper, we employ depth-based carving
and adaptive zooming to replace the Frustum-aware Sectional method used by TripoSF. This sub-
stitution allows for a more reasonable voxel cropping operation. We further find that this cropping
operation can be directly applied in the latent space, which further reduces the computational cost.
We present the impact of each component on the training speed and memory footprint in Table [3}
It demonstrates that performing voxel carving based on visibility in the latent space significantly
reduces training cost. Simultaneously, we can further adjust the computational cost by tuning opmax.
However, considering that the encoder still needs to encode global information, an excessively low
Omax does not provide a linear reduction in cost. Furthermore, because the encoder still encode
global information, our method cannot be directly scaled up to train at 15362 resolution. One ap-
proach is to increase the upsampling rate from 4 to 8, thereby reducing the computational pressure on
the encoder. Additionally, exploring the possibility of performing voxel culling within the encoder
would also be an interesting direction.

Figure 4: Since the centers of some voxels may lie behind the surface, we use r = 2 / resolution as
the depth-carving threshold to avoid missing these voxels. A smaller r can lead to geometric errors,
while a larger » has almost no effect on geometry but slightly increases the number of retained
voxels.

VAE resolution. Higher resolution always leads to better VAE reconstruction quality, as shown in
Table[2] We further tested the extraction results of the network weights trained at 10243 resolution
at different resolutions in Figure EI We found that our model has the ability to complete 1536>
reconstruction without being trained at the corresponding resolution. At the 1536 resolution, chain-
beads that were previously not captured were successfully reconstructed.

5 CONCLUSIONS & LIMITAION

We present an efficient voxel carving scheme for 3D VAE training and 3D model generation. Only
the visible voxels of the structured latent are sent to the VAE decoder for generation. This efficiently
removes redundant computation, thereby enabling high-resolution and detailed mesh generation.
Experiments demonstrate that our method outperforms SOTA works in terms of efficiency and ac-
curacy.

Currently, our pipeline uses point cloud features as input and is highly dependent on the normal
vectors of the point cloud to predict the final result. When the object to be reconstructed is very thin,
such as the hair in the last example of Figure [T} it is difficult to obtain a locally consistent normal
vector to capture these fine details. In the future, we hope to find a better input feature to overcome
this limitation.
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539 or Dora.

10



Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

All datasets and models used in this study are publicly available and have been used in accordance
with their respective licenses and terms of use.

7 REPRODUCIBILITY STATEMENT

We have clarified our experiment setting in Section [d.1} We will open-source the code and release
the trained model.
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A COMPARISION WITH MORE METHODS

We sample 100K points to measure the Chamfer Distance (CD) and F-score on the Dora Benchmark
Chen et al.| (2025)) across different geometry details Levels. Comparison is conducted within each
group as shown in Table [

Visible Only. TRELLIS uses image features as input, and thus can only achieve better reconstruction
for the visible regions. Furthermore, since it densifies the network’s sparse output using grid points
with an SDF of 1. Such operation generates a redundant layer of faces on the inner side of the
object, as shown in Figure [§] Although TRELLIS proposed a post-processing method to remove
these internal faces, it may lead to incorrect deletions, which could actually worsen the metrics.
To avoid misunderstanding and potentially unfair comparisons, we use TRELLIS’s visibility-based
point cloud sampling results to calculate the CD and F-score.

Watertight Only. Sparc3d, Dora, and Direct3d all require the input mesh to be a watertight mesh to
compute the SDF. Dora uses the e-level set of the raw mesh as the watertight representation of the
original model. Sparc3d proposed a method based on flood fill and optimization to further reduce
the loss of precision caused by this conversion, but this introduces self-intersections in the output.
Since Sparc3d has not open-sourced any code, we use Dora’s method for data processing: we set
€ = 2/resolution for each resolution to extract the surface. This processed data is then used as the
GT mesh and input to each method to obtain the reconstruction results. Since the e-level set method
results in the loss of object surface details, and this loss is particularly severe at lower resolutions
(higher ¢), our method achieves the best results only at Level 4 on the Watertight remesh results.
Furthermore, at Level 1, the low-resolution results appear better than the high-resolution results due
to the sheer lack of details that require high resolution to capture.

Raw mesh. The comparison on raw meshes best reflects a method’s ability to reconstruct geometry.
However, as mentioned earlier, methods other than ours and TripoSF’s cannot be directly applied
to raw meshes, which causes the metrics for these methods to fall significantly behind. To avoid
unnecessary misunderstanding, we mark these methods with a asterisk (x). Although we do not
consider internal viewpoints during training, we do not filter any voxels during inference, allowing
our method to still generate objects with internal structures, as shown in Figure[9]

GT TRELLISt} TRELLIS Ours

4 4
-
=]

.
J J
3 @

Figure 8: The inner redundant faces generated by TRELLIS.

B FAIL CASE

3D VAEs that rely on voxelizied point cloud features inherently struggle to capture thin structures
whose thickness is smaller than one voxel. As a result, such structures may be omitted during
reconstruction. As illustrated in Figure both our method and TripoSF fail to recover extremely
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Table 4: We sample 100K point cloud to measure the Chamfer Distance and F-score on the Dora
Benchmark|Chen et al.| (2025) in different geometry details Levels. Comparison is conducted within
each group (Visible Only, Watertight and Raw Mesh respectively).

Chamfer Distance (107°) |

L1 L2 L3 L4

Type  Method Mean Std Mean Std Mean Std Mean Std
Visible TRELLIS 1.633 1.088 2.098 2.095 5.300 68.56 4.882 11.16
only ~ TRELLIS' 1.571 0.933 1.895 1.117 2.391 1.369 3.253 4.778
Dora 1.886 0.771 2.182 0.832 2.753 1.487 3.217 1.278
Direct3d-S21924 1.128 0.946 1.402 2.181 1.640 0.893 2.308 1.123
Watertight TripoSFso 1.232 0.812 1.304 0.763 1.838 1.053 2.517 1.322
remeshing Ourssio 1.218 0.810 1.305 0.765 1.840 1.049 2.518 1.334
TripoSF1024 1.243 0.825 1.321 0.741 1.844 1.007 2.426 1.184

Oursip24 1.242 0.824 1.324 0.741 1.785 0.898 2.258 0.906
TRELLIS* 266.8 2270 23.00 92.21 35.13 213.2 90.26 867.3

Dora* 300.5 1808 225.7 1512 157.7 934.1 200.9 1447

Raw  Direct3d-S2;024* 335.3 1725 363.8 2161 415.2 3224 4254 2336
mesh  TripoSFs12 1.382 0.985 1.600 1.189 2.184 1.368 3.107 2.126
Ourss12 1.353 0.995 1.513 1.008 2.116 1.351 2.806 1.771
TripoSF1024 1.315 0.937 1.456 0.936 2.007 1.197 2.431 1.390

Ours 24 1.294 0.886 1.429 0.873 1.901 1.011 2.264 1.055

F-score 1
L1 L2 L3 L4

Type  Method Mean Std Mean Std Mean Std Mean Std
Visible = TRELLIS 0.946 0.075 0.928 0.078 0.897 0.080 0.861 0.074
only ~ TRELLIS' 0.945 0.076 0.928 0.078 0.896 0.081 0.862 0.074
Dora 0.959 0.069 0.937 0.081 0.887 0.108 0.838 0.117
Direct3d-S21924 0.974 0.048 0.969 0.055 0.941 0.074 0.887 0.106
Watertight TripoSFs2 0.964 0.061 0.963 0.061 0.920 0.094 0.862 0.121
remeshing Ourssio 0.965 0.061 0.963 0.061 0.920 0.093 0.862 0.122
TripoSF1024 0.963 0.062 0.963 0.059 0.922 0.089 0.874 0.112

Oursjp24 0.963 0.062 0.962 0.059 0.927 0.079 0.889 0.087
TRELLIS* 0.430 0.221 0.719 0.149 0.665 0.150 0.646 0.189

Dora* 0.379 0.077 0.408 0.079 0.337 0.068 0.292 0.084

Raw  Direct3d-S2;924* 0.370 0.361 0.339 0.277 0.240 0.175 0.269 0.166
mesh  TripoSFs12 0.951 0.078 0.939 0.089 0.892 0.115 0.831 0.146
Ourss12 0.953 0.080 0.945 0.086 0.897 0.117 0.841 0.147
TripoSF1024 0.957 0.074 0.951 0.078 0.907 0.106 0.873 0.121

Oursjp24 0.958 0.070 0.953 0.073 0.916 0.091 0.886 0.097

thin geometric elements. Handling these sub-voxel structures remains an open challenge for voxel-
based representations and is an important direction for future work.
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Figure 9: Our method is able to produce shapes with inner structures.

Figure 10: Fail case. Neither our method nor TripoSF can reconstruct extremely thin structures.
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Figure 11: More qualitative comparison of VAE reconstruction between ours, TripoSF and Direct3d-
S2 with 10242 resolution. Our approach demonstrate superior performance in reconstructing geom-
etry details.
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