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FOCUSING: VIEW-CONSISTENT SPARSE VOXELS FOR
EFFICIENT 3D VAE

Anonymous authors
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Figure 1: Focusing is an efficient and effective 3D VAE, capable of generating high-fidelity 3D
models at 10243 resolution using less than 50GB of memory by using the render loss with an efficient
voxel selection.

ABSTRACT

High-fidelity 3D generation remains difficult. Although some methods have pro-
posed converting raw meshes to SDFs, it remains a lossy process. TripoSF pre-
sented a VAE training paradigm based on a rendering loss to circumvent this lossy
SDF conversion, achieving high-precision surface reconstruction. However, be-
cause the rendering loss cannot supervise all the VAE outputs in the same way as
SDF supervision, it limits detail and scalability.We present Focusing, a 3D VAE
that improves efficiency by activating only the voxels that matter for a given view.
Our key idea is a depth-driven voxel carving performed in the structured latent
space: voxels inconsistent with the rendered depth are pruned before decoding.
This concentrates learning on locally relevant geometry, reduces attention and de-
coding costs, and lowers video random access memory (VRAM) usage. To sta-
bilize training and capture fine details, we further introduce an adaptive zooming
strategy that adjusts camera intrinsics to keep the number of active voxels within
a target range. The VAE is trained with a render-based loss on depth, normals,
masks, and perceptual terms, and we add simple regularizers (e.g., sparse-voxel
TV and a short warm-up with TSDF supervision) to reduce small holes and speed
up convergence. Across standard reconstruction benchmarks, Focusing improves
geometric accuracy (CD, F-score) over strong baselines while cutting VRAM con-
sumption, which allows for training the 10243 resolution VAE on as little as 50GB
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of VRAM. These results show that local, view-consistent sparsity is an effective
route to higher-resolution, more efficient 3D VAEs.

1 INTRODUCTION

3D AI-generated content (AIGC) is an emerging research direction with broad applications in em-
bodied AI, digital content creation, gaming, 3D modeling, and AR/XR. Compared to its 2D coun-
terpart, 3D AIGC is considerably more challenging due to the higher spatial dimensionality and the
need to model complex geometry and topology. These challenges make achieving high-fidelity 3D
generation difficult in a manner that is both accurate and efficient, and the problem remains largely
unsolved despite recent progress.

Following the success of 2D AIGC pipelines, most 3D AIGC approaches adopt a two-stage frame-
work. In the first stage, a 3D variational auto-encoder (VAE) encodes a shape representation, such
as a signed distance field (SDF), point cloud, or voxel grid, into a compact latent space. In the
second stage, a generative model, often a latent diffusion model, operates in this reduced space to
synthesize novel 3D assets. Within this pipeline, the 3D VAE plays a central role: its ability to faith-
fully compress and reconstruct complex geometry directly determines the fidelity of the final results.
Improving the efficiency and accuracy of 3D VAEs is therefore a critical step toward high-quality,
scalable 3D AIGC.

Since there is no single unified representation for 3D data, recent works have explored different
designs for both the input/output and latent spaces of 3D VAEs. Methods such as VecSet Zhang
et al. (2023) encode the input into a long tensor representation, but this introduces redundancy, since
each latent dimension is correlated with all dimensions of the input. TRELLIS Xiang et al. (2025)
addresses this by introducing Structured Latents, where the latent space is represented explicitly as
sparse voxels. This structured design improves locality, geometric accuracy, and allows local editing
by replacing specific voxels.

Sparc3D Li et al. (2025) and Direct3D-S2 Wu et al. (2025) extend this line by using SDFs for
both input and output, thereby enforcing a unified modality. However, since most raw meshes are
not watertight, these methods require lossy preprocessing steps to obtain SDFs. To overcome this
limitation, rendering-based supervision is adopted by TripoSF He et al. (2025), where the VAE is
trained to match rendered depth and normal maps instead of precomputed SDF values. This avoids
watertight conversion altogether, making the pipeline more flexible for open or complex training
data. To further reduce computation, they adopt Frustum-aware Sectional Voxel Training, which
prunes voxels outside the rendering frustum, thereby lowering training costs and enabling 10243

upsampling. While such strategies reduce redundant computation, they also raise a fundamental
question: What is the minimum amount of computation required to render an image from a given
viewpoint?

TripoSF uses a point cloud as input and produces a mesh as output. This setup resembles the classical
point cloud reconstruction pipeline, where high-quality meshes can be obtained from dense, oriented
point clouds even without neural networks. Unlike TRELLIS, which requires global consistency
to reproduce texture, a geometry-focused 3D VAE only needs local point distributions to recover
surface patches.

Motivated by this observation and the redundancy of existing approaches, we propose Focusing, a
local 3D VAE training scheme built on simple yet effective voxel carving. Following the TripoSF
framework, we supervise the VAE with depth and normal maps rendered from ground-truth views.
Crucially, before decoding, we perform voxel carving as shown in Figure 2: voxels in the structured
latent are compared with the rendered depth map, and only those consistent with the view are re-
tained. This discards most irrelevant voxels, enabling the decoder to focus on fine-grained features
while substantially reducing VRAM and unnecessary attention computations.

To further improve detail capture, we introduce an adaptive camera adjustment strategy inspired
by zooming. By dynamically adjusting the camera’s intrinsic parameters, we maintain the number
of activated voxels within a controllable range. This mechanism not only stabilizes VRAM usage
across diverse inputs but also allows us to expand the field of view (FoV) to capture surface details
more effectively. Together, these strategies enable efficient high-resolution training while preserving
geometric fidelity. See Figure 1 for examples of high-resolution 3D models produced by our method.
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(a) (b) (c) (d)
Active in render Active in encoder Active in VAE Active in Vae & render Camera Frustum

Figure 2: Conceptually illustration of sparse voxels in existing methods and in our approach. (a)
TRELLIS encodes 3D models using sparse voxels and generates a mesh on a dense voxel grid for
rendering. (b) TripoSF employs SparseFlex to reduce the number of voxels used for mesh extraction
during rendering. (c) By adjusting the camera’s far plane, TripoSF further reduces voxels that do
not contribute to the final render. (d) Our method selects active voxels in the structured latent space
based on the depth map. This strategy greatly reduces the computational overhead of both decoding
and rendering, and it does not rely on the choice of the far plane.

2 RELATED WORKS

2.1 3D REPRESENTATIONS

Meshes. Meshes are the most common and versatile representation for 3D assets, and they are di-
rectly applicable to many downstream applications, such as rendering, animation, and simulation. A
line of work explores treating meshes as sequences and generating them with sequence-to-sequence
models Nash et al. (2020); Siddiqui et al. (2024); Hao et al. (2024); Gao et al. (2025); Lionar et al.
(2025). These methods can produce meshes with stylized or artist-like qualities, particularly quad
meshes, but they are typically constrained by sequence length, which limits resolution and geo-
metric fidelity. Other approaches attempt to directly predict mesh topology and geometry from
images Wang et al. (2018) or point clouds Hanocka et al. (2020). More recently, differentiable ren-
dering pipelines have been employed to supervise mesh generation with 2D projections. For exam-
ple, TripoSF He et al. (2025) represents meshes using SparseFlex within a differentiable rendering
pipeline, enabling efficient training and supporting higher-resolution mesh generation compared to
prior mesh-based methods.

Point clouds. Point clouds, often obtained from scanning devices, have long served as input for
3D reconstruction algorithms. Their connectivity-free nature and flexibility make them appealing as
neural network input Charles et al. (2017a); Qi et al. (2017). Other approaches generate point clouds
directly as output distributions Achlioptas et al. (2018); Yang et al. (2019); Liu et al. (2021); Luo &
Hu (2021), which allows flexible and high-precision modeling. However, converting point clouds
into watertight meshes is both lossy and computationally expensive Kazhdan et al. (2006); Kazhdan
& Hoppe (2013); Hou et al. (2022), which limits their use in many downstream tasks.

Implicit functions. Implicit functions encode 3D geometry as level sets of continuous fields, such
as the zero level set of a signed distance function or the 1/2-level set of an occupancy field. This for-
mulation is robust and naturally compatible with neural networks, which explains its popularity in
both reconstruction and generation tasks Park et al. (2019). Since implicit functions do not directly
yield meshes, an additional extraction algorithm (e.g., marching cubes Lorensen & Cline (1987) or
its variants) is required to recover surfaces. However, SDF- and occupancy-based approaches inher-
ently assume watertight geometry, which limits their ability to handle open models. To relax this
constraint, UDFs have been proposed Chibane et al. (2020), but existing UDF extraction methods
often suffer from inefficiency and instability Zhou et al. (2022); Hou et al. (2023); Ren et al. (2022).
A common workaround is to preprocess training data by inflating meshes into watertight versions,
yet this conversion can introduce artifacts and reduce geometric fidelity. For example, Sparc3D Li
et al. (2025) adopts a flood-filling and deformation-based repair pipeline inevitably leads to losing
fine-scale details.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 3D VAE ARCHITECTURES

Inspired by the success of 2D diffusion models Rombach et al. (2022), most current 3D generative
models follow a two-stage framework: a 3D VAE first compresses the input representation into
a compact latent space, and a 3D diffusion model then operates in this reduced space to generate
novel shapes. This design allows high-resolution synthesis while keeping diffusion tractable. Unlike
2D AIGC, however, there is no universally accepted compact representation for 3D data. The vast
majority of available assets are stored as non-compact meshes, which are not ideal for direct neural
network training due to irregular connectivity and variable topology.

3DShape2VecSet Zhang et al. (2023) adopts a VAE to learn a compact vector-set (vecset) repre-
sentation from point clouds sampled on meshes. The decoder is trained by supervising SDF values
at query points, providing implicit geometric supervision during reconstruction. Clay Zhang et al.
(2024) extends this approach to large-scale datasets and introduces an inflation-based preprocess-
ing pipeline to enforce watertight meshes. Dora Chen et al. (2025) and Huanyuan2 Team (2025)
enhance this framework with importance sampling, which improves the ability to capture sharp fea-
tures. Hi3DGen Ye et al. (2025) further incorporates normal-map supervision to boost the fidelity
of surface detail reconstruction. Despite these advances, vecset representations suffer from signifi-
cant information redundancy: each feature is correlated with the entire 3D model, making training
inefficient and hindering scalability.

Both XCube Ren et al. (2024) and TRELLIS Xiang et al. (2025) replace the global vecset with
sparse voxels. In this formulation, each voxel encodes local geometric information, leading to
higher-quality reconstructions and more structured latent representations. TRELLIS Xiang et al.
(2025) further demonstrates that selectively replacing certain voxels enables flexible local 3D edit-
ing. Direct3D-S2 Wu et al. (2025) introduces Spatial Sparse Attention to restrict computations to
local neighborhoods, thereby reducing overhead during the diffusion stage. Sparc3D Li et al. (2025)
proposes a new preprocessing strategy to improve geometric fidelity. TripoSF He et al. (2025) shifts
away from SDF-based supervision and instead employs a rendering loss that compares predicted
depth and normal maps with ground truth. This approach avoids the accuracy degradation caused by
lossy watertight conversion and allows the VAE to handle both internal structures and open bound-
aries. However, render-based supervision provides weaker constraints than SDF supervision, since
only voxels contributing to visible surfaces are directly trained. As a result, many latent voxels
remain under-regularized, which can limit reconstruction accuracy and consistency.

3 METHOD

3.1 PRELIMINARIES

TripoSF He et al. (2025) introduced SparseFlex, a sparse version of FlexibleCubes Shen et al.
(2023), to train 3D AIGC models. SparseFlex is defined by a set of voxels V . Each voxel vi ∈ V
contains both its spatial location (xi, yi, zi) (the 3D coordinates of its center) and feature infor-
mation. Let the number of voxels be Nv and the number of corresponding corners be Nc. The
feature includes the SDF values {sj | 0 ≤ j < Nc} and deformations {δj | 0 ≤ j < Nc} for the
voxel’s eight corners. In practice, the features for each corner are obtained by averaging the values
from surrounding relevant voxels. Additionally, the feature also contains the interpolation weights{
αi ∈ R8

>0, βi ∈ R12
>0 | 0 ≤ i < Nv

}
per voxel for Dual Marching Cubes (DMC) Nielson (2004).

Formally, the SparseFlex representation, S , is defined as:

S = (V,Fc,Fv) , Fc = {sj , δj} , Fv = {αi, βi} , (1)

where Fc contains the SDF values and deformations at the corner grids, and Fv contains the inter-
polation weights for each voxel.

SparseFlex significantly reduces memory consumption and cuts down on unnecessary computational
costs. Moreover, by supervising with a rendering loss instead of direct SDF values, TripoSF avoids
the lossy watertight mesh conversion process. To further reduce computational overhead, TripoSF
introduced Frustum-aware Sectional Voxel Training. This method applies SparseFlex to extract
meshes only from voxels that are within the current camera’s Normalized Device Coordinates (NDC)
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space. By adjusting the camera’s intrinsic parameters, this cropping operation also enables the
learning of a model’s internal structure.

TripoSF then trains a VAE with following losses:

L = λ1Lrender + λ2Locc + λ3LKL + λ4Lflex (2)

Lrender is the rendering supervision loss including the following items:

Lrender = λdLd + λnLn + λmLm + λssLss + λlpLlp (3)

where Ld, Ln, and Lm denote the L1 loss for depth maps, normal maps, and mask maps, respec-
tively. Lss and Llp denote SSIM loss and LPIPS loss, and are only applied to normal maps. LKL is
the KL divergence between the learned latent distribution and a standard normal prior, regularizing
the latent space. Lflex is the regularization term from Flexicubes to encourage smooth SDF values.

While SparseFlex avoids the accuracy loss from computing SDFs, its training still faces several
issues:

• Irrelevant voxels in the NDC space. A significant number of invisible voxels participate
in mesh extraction and require large VRAM, which has significant influence for sparse
voxel resolution scaling up. Although controlling the near and far planes can help, this
approach is often suboptimal. To address this, we propose a plug-in-and-play visibility-
based voxel carving strategy in Section 3.2 to more effectively reduce the number of active
voxels. We also show that this pruning can be performed in the latent space, which greatly
reduces the decoder’s workload on irrelevant voxels.

• Rendering blurriness. Methods based on rendering loss can suffer from blurriness due
to the resolution of the rendered image. Capturing accurate detail often requires a higher
resolution or a closer camera view, with the former significantly increasing computational
cost. In Section 3.3, we introduce an adaptive camera adjustment strategy based on the
dolly zoom effect. By controlling the number of voxels to be activated within the view, we
can flexibly adjust camera parameters to better supervise the model’s fine details.

• Generating unnecessary holes. Unlike direct SDF supervision, which provides a strict
signal for maintaining watertightness, small holes are difficult to effectively supervise with
a rendering loss. In Section 3.4, we introduce our VAE framework and propose a new
regularization loss to reduce these holes.
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Figure 3: Overview of our framework. Starting from the input mesh, we first voxelize it and aggre-
gate local features from sampled point clouds to form input voxels. A sparse transformer encoder-
decoder then compresses these structured features into a latent space, followed by an upsampling
module to increase resolution. In the latent space, we perform visibility-based voxel carving to retain
only view-consistent voxels that contribute to the visible mesh in the rendered image. The refined
structured features are decoded into SparseFlex for final mesh extraction. Supervision is provided
by a rendering loss, which compares the rendered images of the input and reconstructed meshes.
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3.2 DEPTH-BASED VOXEL CARVING

Our key insight is that the local surface is determined by local points, independent of distant points.
As shown in Figure 3, selecting only a subset of voxels in the latent space and feeding them to the
decoder can still generate a locally complete mesh, except for some jagged noise at the boundary.
Since a rendering loss based VAE does not require a globally complete mesh, we can minimize the
number of voxels in the network without affecting the rendering result by aligning the input camera
with the filtered voxels.

Specifically, given a camera with extrinsic π, intrinsics K, and the near (n) and far (f ) clipping
planes of the viewing frustum, we compute the Model-View-Projection matrix to render the depth
map D from the ground truth mesh. For each voxel zi in the latent code Z , we also project its center
to obtain the projected point zpi = {up

i , v
p
i , d

p
i } in the image space and regard dpi as the depth of

each voxel zi. Using a threshold r, we then filter all voxels where dpi > D(up
i , v

p
i ) − r to obtain

the view-consistent voxels Zp
carve. To enhance robustness at the image boundary, the 3 × 3 × 3

neighborhood of any remaining voxel is also retained.

3.3 ADAPTIVE ZOOMING

The significant variation in the number of visible voxels leads to significant VRAM fluctuations
during training. TRELLIS addresses this by removing voxels exceeding a fixed quota, but this can
impact the final render if essential voxels are lost. TripoSF utilizes a visibility ratio α, to control the
number of active voxels, primarily by adjusting the near and far planes. This approach relies on the
camera being preset close to the object’s surface to capture key details.

In contrast, since we’ve already removed most invisible voxels, adjusting the far plane has little in-
fluence on the number of voxels. We introduce a zooming-based voxel count adjustment method.
This approach effectively controls the number of active voxels while enabling flexible zoom-in op-
erations to capture finer model details.

Specifically, we pick a random projected voxel in Zp as the center. We randomly pick a number
between Nmin and Nmax to perform the KNN search in image space to get the crop voxel set
Zp

crop from Zp
carve. We then modify the perspective matrix P with the new image bounding box

(xn
min, x

n
max, y

n
min, y

n
max) as follows:

Pnew =


2s

xn
max−xn

min
0 0 −xn

max+xn
min

xn
max−xn

min

0 2s
yn
max−yn

min
0 −xn

max+xn
min

xn
max−xn

min

0 0 1 0
0 0 0 1

P (4)

where s is the scaling rate to avoid jagged noise appearing at the boundary of the image.

3.4 VAE STRUCTURE

Following TripoSF, we use a variational autoencoder that compresses the input oriented dense point
cloud into a sparse latent code Z without relying on computationally expensive global attentions. A
frozen PointNet Charles et al. (2017b) adapted from TripoSF is used to aggregate local geometric
features within each voxel. A sparse transformer then utilizes the shifted window attention proposed
by TRELLIS to learn relationships between voxels. This process outputs a fused structured latent
feature Z , where each voxel possesses local geometric information. The voxel carving and adaptive
zooming is then used to filter the voxels in Z to attain Zp

crop. The decoder takes Zp
crop as input and

uses a series of transformer layers to generate the final output. To support high-resolution output,
two self-pruning upsampling modules are then employed to obtain a 2x upsampled result from the
initial output, ultimately yielding a 4x resolution output. We only use Locc to supervise self-pruning
block and do not use Opred to filter voxels in training, as this may create unnecessary holes, thereby
negatively impacting the rendering loss.

To accelerate VAE convergence and provide initial VAE weights capable of extracting meshes, we
supervise sj using the TSDF srawj calculated from raw meshes during the early stages of training:
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Ltsdf =

Nc∑
j=1

||sj − srawj || (5)

To reduce the generation of holes, we introduce the Total Variation loss on sparse voxels to suppress
the differences in SDF values between adjacent corners:

Ltv =
∑
d∈[D]

√
∇2

x(V, d) +∇2
y(V, d) +∇2

z(V, d) (6)

The overall loss function is:

L = λ1Lrender + λ2Locc + λ3LKL + λ4Lflex + λ5Ltv + λ6Ltsdf (7)

3.5 RECTIFIED FLOW BASED IMAGE TO 3D GENERATION

Drawing inspiration from TRELLIS Xiang et al. (2025) and TripoSF He et al. (2025), we employ
a two-stage rectified-flow generation model, which consists of a sparse structure flow model and a
structured latents flow model.

Sparse structure flow model. Following the approach of TRELLIS, we first train a Sparse Structure
VAE based on voxel carving. This VAE compresses a 3D shape into a smaller resolution using 3D
convolutions. Thanks to our preliminary voxel carving process, we can train a high-resolution Sparse
Structure VAE with relative ease. Subsequently, we extract DINO features from the condition image
and inject them into a Diffusion Transformer (DiT) via cross-attention. We then employ a rectified
flow model to denoise the noised latents.

Structured latents flow model. Based on our proposed VAE, we first encode the sampled point
cloud and its corresponding sparse structure into the latent space. Similar to the sparse structure flow
model, we inject the DINO features of the condition image into the DiT (Diffusion Transformer) via
cross-attention. We then use a rectified flow model for denoising. Finally, the denoised latents are
decoded into a 3D shape by the VAE’s decoder.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Implementation Details. Following TRELLIS Xiang et al. (2025), we train both the VAE and its
latent flow model on 183K high-quality assets from Objaverse-XL Deitke et al. (2023). We employ
a progressive training scheme for our VAE. The 5123 resolution VAE runs on 32 A800 GPUs (batch
size 32) with AdamW (initial LR 1 X 10−4, weight decay 0.01) for two days. A cosine annealing
learning rate schedule with 40K steps is used to adjust the learning rate. We then train the 10243

resolution VAE with 32 A100 GPUs using the same setting.

Hyperparameter Settings. We use the same weight configuration as TRELLIS to train our VAE.
For our two newly introduced losses, we set λ5 = 0.001 and λ6 = 1. The Ltsdf is only used for the
first 12K steps. We set the threshold r equal to 2/resolution to carve voxels. We use a resolution of
5182 to render images and use s = 1.1 to calculate the new perspective matrix.

4.2 VAE RECONSTRUCTION EVALUATION

We primarily compare with TripoSF, as currently only TripoSF supports raw mesh reconstruction.
Our method demonstrates superior VAE reconstruction performance with quantitative results de-
tailed in Table 1. Our model achieves better metrics than TripoSF at the same resolution in terms of
the L2 norm of Chamfer Distance (CD) and F-score with a threshold 0.005. Since even the Level
4 data in the Dora Benchmarks lack sufficient detail, we selected several detail-rich models from
online websites to further test our method’s ability to capture model details, as shown in Figure 5.
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Our method demonstrates results comparable to TripoSF’s 10243 resolution output even at 5123
resolution and captures geometry details better at 10243 resolution.

We further tested the extraction results of the 10243 resolution network weights at different resolu-
tions in Figure 4. We found that our model has the ability to complete 15363 reconstruction without
being trained at the corresponding resolution.

Table 1: We sample 100K point cloud to measure the Chamfer Distance and F-score on the Dora
Benchmark Chen et al. (2025) in different geometry details Levels. Low Chamfer Distance ensures
overall shape fidelity, while high F-score ensures local details are accurately covered within an
acceptable error radius.

Chamfer Distance (10−5)

L1 L2 L3 L4

Mean Std Mean Std Mean Std Mean Std

TripoSF512 1.382 0.985 1.600 1.189 2.184 1.368 3.107 2.126
Ours512 1.353 0.995 1.513 1.008 2.116 1.351 2.806 1.771

TripoSF1024 1.315 0.937 1.456 0.936 2.007 1.197 2.431 1.390
Ours1024 1.294 0.886 1.429 0.873 1.901 1.011 2.264 1.055

F-score

L1 L2 L3 L4

Mean Std Mean Std Mean Std Mean Std

TripoSF512 0.951 0.078 0.939 0.089 0.892 0.115 0.831 0.146
Ours512 0.953 0.080 0.945 0.086 0.897 0.117 0.841 0.147

TripoSF1024 0.957 0.074 0.951 0.078 0.907 0.106 0.873 0.121
Ours1024 0.958 0.070 0.953 0.073 0.916 0.091 0.886 0.097

4.3 IMAGE-TO-3D GENERATION

We further validate our VAE’s utility as a generative foundation model. Visualizations in Figure 6,
including image-to-3D results from in-the-wild images, highlight the generalization of our method.
The generated 3D shapes maintain sharp edges and rich details while exhibiting high fidelity to the
corresponding input images.

GT Ours256 Ours512 Ours1024 Ours1536

Figure 4: We used the 10243 resolution checkpoint to test the reconstruction results at different
resolutions. Our method demonstrated generalization capabilities across different resolutions.

5 CONCLUSIONS & LIMITAION

We present an efficient voxel carving scheme for 3D VAE training and 3D model generation. Only
the visible voxels of the structured latent are sent to the VAE decoder for generation. This efficiently
removes redundant computation, thereby enabling high-resolution and detailed mesh generation.
Experiments demonstrate that our method outperforms SOTA works in terms of efficiency and ac-
curacy.

Currently, our pipeline uses point cloud features as input and is highly dependent on the normal
vectors of the point cloud to predict the final result. When the object to be reconstructed is very thin,
such as the hair in the last example of Figure 5, it is difficult to obtain a locally consistent normal

8
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vector to capture these fine details. In the future, we hope to find a better input feature to overcome
this limitation.

GT TripoSF512 TripoSF1024 Ours512 Ours1024

Figure 5: Qualitative comparison of VAE reconstruction between ours and TripoSF with different
resolution. Our approach demonstrate superior performance in reconstructing geometry details.

Figure 6: Single image-to-3D generations with in-the-wild images which are collected from Geminis
or Dora.
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