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Abstract

We present a method to improve the calibration of deep ensembles in the small
training data regime in the presence of unlabeled data. Our approach is extremely
simple to implement: given an unlabeled set, for each unlabeled data point, we
simply fit a different randomly selected label with each ensemble member. We
provide a theoretical analysis based on a PAC-Bayes bound which guarantees that if
we fit such a labeling on unlabeled data, and the true labels on the training data, we
obtain low negative log-likelihood and high ensemble diversity on testing samples.
Crucially, each ensemble member can be trained independently from the rest (apart
from the final validation/test step) making a parallel or distributed implementation
extremely easy.

1 Introduction

Deep ensembles have gained widespread popularity for enhancing both the testing accuracy and
calibration of deep neural networks. Importantly, deep ensembles outperform Bayesian approaches
for the same number of posterior samples (Arbel et al., 2023). Both empirically and theoretically, the
performance of deep ensembles is intrinsically tied to their diversity (Fort et al., 2019; Masegosa,
2020). By averaging predictions from a more diverse set of models, we mitigate prediction bias and
thereby enhance overall performance.

The conventional approach to introducing diversity within deep ensembles involves employing distinct
random initializations for each ensemble member (Lakshminarayanan et al., 2017). As a result, these
ensemble members converge towards different modes of the loss landscape, each corresponding
to a unique predictive function. This baseline technique is quite difficult to surpass. Nevertheless,
numerous efforts have been made to further improve deep ensembles by explicitly encouraging
diversity in their predictions (Ramé & Cord, 2021; Yashima et al., 2022; Masegosa, 2020; Matteo
et al., 2023).

These approaches typically encounter several challenges, which can be summarized as follows: The
improvements in test metrics tend to be modest, while the associated extra costs are substantial.
Firstly, diversity-promoting algorithms often involve considerably more intricate implementation
details compared to randomized initializations. Secondly, the computational and memory demands of
existing methods exceed those of the baseline by a significant margin. Additionally, some approaches
necessitate extensive hyperparameter tuning, further compounding computational costs.

In light of these considerations, we introduce ν-ensembles, an algorithm designed to improve deep
ensemble calibration and diversity with minimal deviations from the standard deep ensemble workflow.
Moreover, our algorithm maintains the same computational and memory requirements as standard
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Figure 1: Motivating ν-ensembles. Consider a 4-class classification problem and an unlabeled
sample x with true label y. We sample K = 4 labels without replacement yr = [1, 4, 2, 3]
and fit them perfectly with ensemble members {ŵ1, ŵ2, ŵ3, ŵ4}. As we have sampled exhaus-
tively all classes for this classification problem, exactly one of the sampled labels will be the
correct one. The corresponding ensemble member ŵ4 will learn a useful feature from the in-
put label pair (x, y). Noting that p(y|x, ŵi) is with respect to the true label y, p(y|x, ŵ1) =

0, p(y|x, ŵ2) = 0, p(y|x, ŵ3) = 0, p(y|x, ŵ4) = 1 and the empirical variance will be V̂(ρ̂) =
1
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deep ensembles, resulting in linear increases in computational costs with the size of the unlabeled
dataset.

Our contributions

• Given an ensemble of size K and an unlabeled set, we propose an algorithm that generates
for each unlabeled data point K random labels without replacement and assigns from these
a single random label to each ensemble member. For each ensemble member we then simply
fit the training data (with its true labels) as well as the unlabeled data (with the generated
random labels). See Figure 1. Each ensemble member can be trained independently
facilitating a parallel or distributed implementation.

• We provide a PAC-Bayesian analysis of the test performance of the trained ensemble in
terms of negative log-likelihood and diversity. On average, the final ensemble is guaranteed
to be diverse, accurate, and well-calibrated on test data.

• We provide experiments for the in-distribution setting that demonstrate that for small to
medium-sized training sets, ν-ensembles are better calibrated than standard ensembles in
the most common calibration metrics.

• We also provide detailed experiments in the out-of-distribution setting and demonstrate that
ν-ensembles remain significantly better calibrated than standard ensembles for a range of
common distribution shifts.

2 Small to medium-sized training set setting

In the laboratory setting, deep learning models are typically trained and evaluated using large highly
curated, and labeled datasets. However, real-world settings usually differ significantly. Labeled
datasets are often small as the acquisition and labeling of new data is expensive, time-consuming, or
simply not feasible. A small labeled training set is also often accompanied by a larger unlabeled set.

The small data regime has been explored in a number of works (Ratner et al., 2017; Balestriero
et al., 2022; Zoph et al., 2020; Sorscher et al., 2022; Bornschein et al., 2020; Cubuk et al., 2020;
Fabian et al., 2021; Zhao et al., 2019; Foong et al., 2021; Perez-Ortiz et al., 2021), both theoretical
and practical. Two of the most common approaches for dealing with few training data, are using an
ensemble of predictors, and/or using data augmentation to artificially create a larger training set.
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We test our proposed ν-ensembles for a range of training set sizes, while applying data augmentation,
and have found that we get performance gains for small to medium-sized training sets (1K - 10K
samples). We emphasize that the “small data" regime is relative; more complex distributions require
more data. As such ν-ensembles can be effective beyond these thresholds.

3 Related work on improvements of deep ensembles

A number of approaches have been proposed to improve upon standard deep ensembles.

Diversity promoting objectives. Ramé & Cord (2021) propose to use a discriminator that forces
the latent representations of each ensemble member just before the final classification layer to be
diverse. They show consistent improvements for large-scale settings in terms of test accuracy and
other metrics, however, their approach requires very extensive hyperparameter tuning. Yashima
et al. (2022) encourage the latent representations just before the classification layer to be diverse by
leveraging Stein Variational Gradient Descent (SVGD). They show improvements in robustness to
non-adversarial noise. However, they do not show improvements over Ramé & Cord (2021) in other
metrics.

Masegosa (2020); Ortega et al. (2022) propose optimizing a second-order PAC-Bayes bound to
enforce diversity. In practice, this means estimating the mean likelihood of a true label across
different ensemble members and “pushing” the different members to estimate a different value for
their own likelihood. The authors show improvements for small-scale experiments, however, this
comes at the cost of two gradient evaluations per data sample at each optimization iteration. The
method closest to our approach is the very recently proposed Agree to Disagree algorithm (Matteo
et al., 2023). Agree to disagree forces ensemble members to disagree with the other members on
unlabeled data. Crucially, however, (and in contrast to our approach) the ensemble is constructed
greedily, where a single new member is added at a time and is forced to disagree with the previous
ones. The method is also evaluated only in the OOD setting.

The above methods exhibit all the shortcomings we previously described, where the cost of imple-
mentation, tuning and training cannot easily be justified: 1) the implementation differs significantly
from standard ensembles (Ramé & Cord, 2021; Yashima et al., 2022; Masegosa, 2020; Matteo et al.,
2023); 2) the computational complexity increases significantly (Ramé & Cord, 2021; Matteo et al.,
2023); 3) and the algorithm requires extensive hyperparameter tuning (Ramé & Cord, 2021).

Bayesian approaches. One can also approach ensembles as performing approximate Bayesian
inference (Wilson & Izmailov, 2020). Under this view, a number of approaches that perform
approximate Bayesian inference can also be seen as constructing a deep ensemble (Izmailov et al.,
2021; Wenzel et al., 2020a; Zhang et al., 2020; Immer et al., 2021; Daxberger et al., 2021). The
samples from the approximate posterior that form the ensemble can be sampled locally around a
single mode using the Laplace approximation (Immer et al., 2021; Daxberger et al., 2021) or from
multiple modes using MCMC (Izmailov et al., 2021; Wenzel et al., 2020a; Zhang et al., 2020).
While some approaches resort to stochastic MCMC approaches for computational efficiency (Wenzel
et al., 2020a; Zhang et al., 2020), the authors of Izmailov et al. (2021) apply full-batch Hamiltonian
Monte Carlo which is considered the gold standard in approximate Bayesian inference. D’Angelo
& Fortuin (2021) propose a repulsive approach in terms of the neural network weights. They show
that the resulting ensemble can be seen as Bayesian, however, they do not demonstrate consistent
improvements across experimental setups.

One would hope that the regularizing effect of the Bayesian inference procedure would improve
the resulting ensembles. Unfortunately, approximate Bayesian inference approaches are typically
outperformed by standard deep ensembles (Ashukha et al., 2019). In particular, to achieve the same
misclassification or negative log-likelihood error, MCMC approaches typically require many more
ensemble members than standard ensembles.

Complementary works. Some works on diverse ensembles are compatible with our approach and
can be used in conjunction with it.

Wenzel et al. (2020b) propose to induce diversity by training on different random initializations as
well as different choices of hyperparameters such as the learning rate and the dropout rates in different
layers. Ensemble members can be trained independently, and the approach results in consistent
gains over standard ensembles. As we also train each ensemble member independently we could use
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hyperparameter ensembling to improve diversity. Jain et al. (2022) propose to create different training
sets for each ensemble member using image transformations (for example edge detection filters)
to bias different ensemble members towards different features. In a similar vein, Loh et al. (2023)
encourage different ensemble members to be invariant or equivariant to different data transformations.
These approaches can also be used in conjunction with our method to further increase diversity.

Self-training. Jain et al. (2022) propose to pseudo-label unlabeled data using deep ensembles trained
on labeled data. These pseudo-labeled data are then used to retrain the ensemble. This approach
(known as self-training, see Lee et al., 2013) can improve significantly standard ensembles. We note
however that it is complicated to implement and costly. First, unlabeled data have to be labeled in
multiple rounds, a fraction at a time. Also, to be fully effective, ensembles have to be “distilled" into
a final single network. Finally, care has to be taken that ensemble members capture diverse features.
By contrast, our method requires a single random labeling of unlabeled data, followed by standard
training and introduces a single hyperparameter that is easy to tune.

4 Diversity through unlabeled data

We now introduce some notation and then make precise our notions of train and test performance, as
well as diversity.

We denote the learning sample (X,Y ) = {(xi, yi)}ni=1 ∈ (X × Y)n, that contains n input-output
pairs, and use the generic notation Z for an input-output pair (X,Y ). Observations (X,Y ) are
assumed to be sampled randomly from a distribution D. Thus, we denote (X,Y ) ∼ Dn the i.i.d
observation of n elements. We consider loss functions ℓ : F × X × Y → R, where F is a set of
predictors f : X → Y . We also denote the empirical risk L̂ℓ

X,Y (f) = (1/n)
∑

i ℓ(f,xi, yi). We
denote ℓnll(f,x, y) = − log(p(y|x, f)) the negative log-likelihood, where we assume that the outputs
of f are normalized to form a probability distribution, and p(y|x, f) the probability of label y given
x and f .

Now let us assume that f is a deep neural network architecture, and ρ̂(w) = 1
K

∑
i δ(w = ŵi)

is a set of minima that form a deep ensemble. We are typically interested in minimizing
E(y,x)∼D

[
− ln 1

K

∑
i [p(y|x, f(x; ŵi))]

]
, the loss over new samples drawn from D for the en-

semble predictor, that is: a predictor where we average the probabilities estimated per class by
each ensemble member 1

K

∑
i p(y|x, f(x; ŵi)). The standard deep ensemble algorithm then simply

minimizes ∀i,minwi L̂
ℓnll

Z (f(x; ŵi)) for some training set Z.

Let us now assume that we have access not only to a training set Z but also to an unlabeled set U of
size m. We can then present a PAC-Bayes bound* that links the loss on new test data to the loss on
the training data as well as the diversity of the ensemble predictions on the unlabeled data.
Theorem 1. With high probability over the training set Z and the unlabeled set U drawn from D, for
an ensemble ρ̂(w) = 1

K

∑
i δ(w = ŵi) on F and all γ ∈ (0, 2) simultaneously

E(y,x)∼D
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− ln
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K
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(
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)
, (1)

where

V̂(ρ̂) =
1

2m

∑
U

 1

K

∑
j

(p(y|x, f(x, ŵj))−
1

K

∑
i

p(y|x, f(x, ŵi))

)2
 (2)

is the empirical variance of the ensemble, and h : R+ → R+ is a strictly increasing function.

The term 1
K

∑
i

[
L̂ℓnll

Z (f(x; ŵi))
]

is simply the average negative log-likelihood of all the ensemble

members on the training set Z. The term V̂(ρ̂) captures our notion of diversity for the deep ensemble.
*Variants of this bound have appeared in recent works for majority vote classifiers (Thiemann et al., 2017;

Wu & Seldin, 2022; Masegosa et al., 2020; Masegosa, 2020). However, to the best of our knowledge, this
particular version is novel in the deep ensemble case.
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Specifically, given a sample (x, y) it is the empirical variance of the likelihood p(y|x, f) of the
correct class y over all the ensemble members. The terms h

(
∥ŵi∥22

)
capture a notion of complexity

of the deep ensemble. If this term is too large, then it is possible that the ensemble has memorized
the training and unlabeled sets leading to poor generalization on new data. From the above, we see
that for a deep ensemble to generalize well to new data one needs to minimize its average training
error, while maximizing its variance.

One could attempt to optimize the RHS of (1) directly by setting U = Z, through gradient descent.
However, this introduces unnecessary complexity to the optimization objective, necessitates that
all ensemble members are trained jointly, and also neglects potentially useful unlabeled data. We
thus crucially evaluate the variance on a new unlabeled set U and not the training set Z. However, a
careful reader would note that it is no longer possible to apply gradient descent directly to (1) as V̂(ρ̂)
depends on the unknown true label y. We thus show in the following proposition that it is actually not
necessary to know the true label y. For each unlabeled sample x, it simply suffices to draw K labels
randomly without replacement and assign each of them to a different member of the deep ensemble.
Then for K = c exactly one of these labels will be the correct one. If each ensemble member fits
these random labels perfectly then we can compute the variance term analytically for K ≤ c.
Proposition 1. Assume an unlabeled set U ∈ Dm, c number of classes, and a labeling distributionR
which for each sample (x, ·) ∈ U selects K ≤ c labels from [1, . . . , c] randomly without replacement
such that yr ∈ [1, . . . , c]K . Let A be an algorithm that takes yr as input and generates an ensemble
ρ̂(w) = 1

K

∑
i δ(w = ŵi) such that ∀i, f(x, ŵi) perfectly fits yr[i]

Eρ̂∼A

[
V̂(ρ̂)

]
=
K − 1

2cK
(3)

where the randomness is over yr and we suppress the index for the different unlabeled points.

Proof. The expectation of the variance term can be simply obtained by separating the cases when y
is and is not in the random labels yr as follows

Eρ̂∼A

[
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= Eρ̂∼A
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Algorithm 1 ν-ensembles
Input: Weight of the unlabeled loss β, ℓ2 regularization strength γ, training data Z, unlabeled data
U , number of ensemble members K
Output: Ensemble EK = {ŵ1, . . . , ŵK}

1: for i in {1, . . . ,K} do
2: Ui ← {}
3: for x in U do
4: Sample y randomly without replacement from [1, . . . , c]
5: Ui ← Ui ∪ (x, y)
6: end for
7: ŵi ← Random Initialization
8: minŵi

L̂ℓnll

Z (f(x; ŵi)) + βL̂ℓnll
Ui

(f(x; ŵi)) + γ∥ŵi∥22
9: end for

Thus fitting yr ∼ R guarantees in expectation through (3) a fixed level of variance, that strictly
increases with the size of the ensemble. Taking the expectation on both sides of (1) we can also derive
a high probability bound on Eρ̂∼AE(y,x)∼D

[
− ln 1

K

∑
i [p(y|x, f(x; ŵi))]

]
given multiple samples

from ρ̂ ∼ A, and subject to additional conditions on the training set and complexity terms (namely
boundedness). We defer the technical details to the Appendix.

We thus propose algorithm 1 to train ν-ensembles. The proposed algorithm is extremely simple to
implement. We simply need to construct K randomly labeled sets Ui, such that all the sets Ui contain
different labels for all samples. We can then optimize

L̂ℓnll

Z (f(x; ŵi)) + βL̂ℓnll
Ui

(f(x; ŵi)) + γ∥ŵi∥22 (5)
with the optimization algorithm of our choice. In the above, β is the weight placed on the randomly
labeled samples. Notably, doing hyperparameter optimization over β allows us to easily detect when
ν-ensembles improve upon standard ensembles using a validation set, as for β = 0 we recover
standard ensembles. The term γ∥ŵi∥22 results from (1), and coincides we standard weight decay
regularization. Crucially we rely on being able to fit random labels. We note that it is well known
that deep neural networks can fit random labels perfectly (Zhang et al., 2021).

5 In-distribution and out-of-distribution experiments

We conducted two main types of experiments, evaluating (i) whether ν-ensembles improve upon
standard ensembles for in-distribution testing data, (ii) whether the gains of ν-ensembles are robust
to various distribution shifts.

To approximate the presence of unlabeled data using common classification datasets, given a training
set Z, we reserve a validation set Zval, and a smaller training set Ztrain and use the remaining
datapoints as a pool for unlabeled data U . We keep the testing data Ztest unchanged.

5.1 In-distribution (ID) performance

To test in-distribution performance, we use the standard CIFAR-10 and CIFAR-100 datasets
(Krizhevsky & Hinton, 2009). We explore a variety of dataset sizes. Specifically, for both datasets,
we keep the original testing set such that |Ztest| = 10000, and we use 5000 samples from the training
set as unlabeled data U and 5000 samples as validation data Zval. For training, we use datasets Ztrain

of size 1000, 2000, 4000, 10000 and 40000. We use three types of neural network architectures, a
LeNet architecture LeCun et al. (1998), an MLP architecture with 2 hidden layers Goodfellow et al.
(2016), and a WideResNet22 architecture Zagoruyko & Komodakis (2016). For both datasets, we
used the standard augmentation setup of random flips + crops. We note that similar training-unlabeled
set splits for CIFAR-10 and CIFAR-100 have been explored before in Alayrac et al. (2019); Jain et al.
(2022).

We measure testing performance using accuracy as well as calibration on the testing set. Specifi-
cally, we measure calibration using the Expected Calibration Error (ECE) (Naeini et al., 2015), the
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Table 1: ID performance, 1000 training samples, 10 ensemble members. ν-ensembles retain
approximately the same accuracy as standard ensembles. At the same time, they achieve significantly
better calibration in all calibration metrics. The improvements are consistent across all tested ar-
chitectures and both datasets. We also observe that the Mutual Information (MI) of ν-ensembles is
significantly lower than standard ensembles. Thus, ν-ensembles are more diverse than standard en-
sembles, which explains their improved calibration. These empirical observations are also consistent
with our theoretical analysis. Masegosa and Agree to Disagree ensembles typically undefit and have
lower testing accuracy than both Standard and ν-ensembles.

Dataset / Aug Method Acc ↑ ECE ↓ TACE ↓ Brier Rel. ↓ NLL ↓ MI ↓
CIFAR-10 Standard 0.522 0.184 0.035 0.137 2.198 1.313
/ LeNet Agree Dis. 0.432 0.251 0.05 0.168 2.25 1.552

Masegosa 0.492 0.103 0.024 0.073 1.454 1.179
ν-ensembles 0.5141 0.131 0.028 0.117 1.650 1.245

CIFAR-10 Standard 0.398 0.238 0.05 0.162 2.197 1.615
/ MLP Agree Dis. 0.354 0.358 0.066 0.239 3.201 1.547

Masegosa 0.383 0.024 0.024 0.068 1.768 1.711
ν-ensembles 0.401 0.098 0.023 0.092 1.767 1.559

CIFAR-10 Standard 0.529 0.096 0.024 0.108 1.714 0.992
/ ResNet22 Agree Dis. 0.478 0.051 0.02 0.087 1.633 0.706

ν-ensembles 0.526 0.010 0.017 0.086 1.449 0.691

CIFAR-100 Standard 0.151 0.301 0.007 0.216 9.434 2.228
/ LeNet Agree Dis. 0.113 0.229 0.007 0.156 7.568 1.628

Masegosa 0.139 0.087 0.005 0.07 4.193 2.129
ν-ensembles 0.147 0.155 0.006 0.113 4.846 1.654

CIFAR-100 Standard 0.102 0.253 0.007 0.16 5.926 3.093
/ MLP Agree Dis. 0.093 0.359 0.008 0.243 7.247 2.881

Masegosa 0.093 0.257 0.008 0.16 6.134 3.103
ν-ensembles 0.103 0.04 0.004 0.049 4.171 2.807

CIFAR-100 Standard 0.136 0.197 0.007 0.141 7.700 1.701
Agree Dis. 0.132 0.172 0.007 0.124 6.831 1.708

/ ResNet22 ν-ensembles 0.134 0.135 0.006 0.099 4.892 1.476

Thresholded Adaptive Calibration Error (TACE) (Nixon et al., 2019), the Brier Score Reliability
(Brier Rel.) (Murphy, 1973), and the Negative Log-Likelihood (NLL). We also measure the diversity
of the ensemble on the test set using the average mutual information between ensemble member
predictions. More specifically for each ensemble we treat its output as a random variable giving
values in [1, . . . , c]. We compute the Mutual Information (MI) of this random variable between all
ensemble pairs and take the average. Lower MI then corresponds to more diverse ensembles.

For both datasets, we first create an ensemble with K = 10 ensemble members and train each
ensemble member using AdamW (Loshchilov & Hutter, 2017). For standard ensembles we simply
minimize L̂ℓnll

Z (f(x; ŵi))+γ∥ŵi∥22 for each ensemble member using different random initializations.
For ν-ensembles we optimize (5). For hyperparameter tuning we perform a random search with 50
trials, using Hydra (Yadan, 2019). The details for the hyperparameter tuning ranges can be found in
the Appendix. Table 1 presents the results for a training set of size 1000.

We see that ν-ensembles have comparable accuracy to standard ensembles but with significantly
better calibration across all calibration metrics. We also see that ν-ensembles achieve significantly
higher diversity between ensemble members. These results are consistent across all architectures for
both CIFAR-10 and CIFAR-100. For the case of CIFAR-10, we see that the testing accuracy is low,
however, this is to be expected due to the small size of the training dataset Ztrain.

We also compare with Masegosa ensembles (Masegosa, 2020) and Agree to Disagree ensembles
(Matteo et al., 2023) (we also attempted to implement DICE ensembles (Ramé & Cord, 2021) but
could not replicate a version that converged consistently, despite correspondence with the authors).
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(a) CIFAR-10

(b) CIFAR-100

Figure 2: Varying the size of the training set. For both standard and ν-ensembles, we vary the
size of the training set Ztrain to take values in {1000, 2000, 4000, 10000, 40000}. ν-ensembles
have the same test accuracy as standard ensembles for all training set sizes. We also report the
improvement in Expected Calibration Error (ECE) compared to standard ensembles. We see that, as
the training size increases, the improvements decrease. Notably, we obtained larger improvements
for the more difficult CIFAR-100 dataset than for the easier CIFAR-10 dataset. Also, we continue
to have improvements for larger training set sizes. In particular, we observe improvements for the
ResNet22 architecture at 10000 training samples while this is not the case for CIFAR-10.

We see that both Masegosa and Agree to Disagree ensembles tend to underfit the data and have
worse testing accuracy than ν-ensembles. In particular, Agree to Disagree ensembles also have in
general worse calibration. Masegosa ensembles on the other hand have somewhat better calibration
than ν-ensembles in most cases. Our algorithm compares very favorably in terms of time and space
complexity with both Masegosa and Agree to Disagree Ensembles. Standard and ν ensembles have
O(1) memory cost as the ensemble size increases, if ensemble members are trained sequentially.
On the other hand, Masegosa and Agree to Disagree ensembles in general scale like O(K) as
all the ensemble members have to be trained jointly. Analyzing the computational cost is more
complicated, however in general Masegosa ensembles require approximately ×2 the computational
time of Standard ensembles. Agree to Disagree ensembles scale roughly as O(K) as ensemble
members have to be computed one at a time. In Figure 4 we compare the computational cost of
Standard, ν and Agree to Disagree Ensembles.

We then explore the effect of increasing the dataset size. We plot the results of varying the training
set size in {1000, 2000, 4000, 10000, 40000} in Figure 2. We observe that ν-ensembles continue
achieving the same accuracy as standard ensembles for all training set sizes. At the same time, they
retain large improvements in calibration, in terms of the ECE, for small to medium size training sets.
For larger training sets the improvements gradually decrease. Notably, there are differences between
the easier CIFAR-10 and the more difficult CIFAR-100 dataset. Our calibration gains are significantly
larger for the more difficult CIFAR-100 dataset. Furthermore, we retain these gains for larger training
set sizes. In particular, we observe improvements for the ResNet22 architecture and 10000 training
samples, while this is not the case for CIFAR-10.

5.2 Out-of-distribution (OOD) generalization

We evaluated ν-ensembles and standard ensembles on difficult out-of-distribution tasks for the
CIFAR-10 dataset, for the case of 1000 training samples. Specifically, we followed the approach
introduced in Hendrycks & Dietterich (2018) which proposed to evaluate the robustness of image
classification algorithms to 15 common corruption types. We apply the corruption in 5 levels of
increasing severity and evaluate the average test accuracy and calibration in terms of ECE across all
corruption types. We plot the results in Figure 3. We observe that ν-ensembles retain the same testing
accuracy as standard ensembles. At the same time, they are significantly better calibrated in terms of
the Expected Calibration Error. This holds for all tested architectures and for all corruption levels.
We note that in the ResNet22 case, we see that ν-ensembles are particularly useful for high-intensity
corruptions (the improvement in ECE increases from 10% to 15%).
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Figure 3: CIFAR-10 robustness to common corruptions. We apply 15 common image corruptions
to the CIFAR-10 testing dataset for 5 levels of increasing intensity. For each intensity level, we then
estimate the average testing accuracy and ECE across all corruption types, for both the standard
ensemble and the ν-ensemble. We observe that the ν-ensemble retains approximately the same testing
accuracy as the standard ensemble for all corruption levels. At the same time, the ν-ensemble is
significantly better calibrated than the standard ensemble.

Figure 4: ν-ensembles and other methods. Left: Improvements in ECE plateau around 8
ensemble members for Standard ensembles, but continue improving for ν-ensembles. Other
figures: we compare the training time of Standard, ν and Agree to Disagree ensembles, for
the CIFAR-10 dataset with 1000 training samples and 5000 unlabeled samples. We plot
(total training time)/(epochs ∗ ensemble size). Not only do Agree to Disagree ensembles have to
be trained sequentially but the computational complexity for each member is significantly larger.

6 Limitations

In our experiments, ν-ensembles demonstrate enhanced calibration performance when applied to
standard ensembles, particularly in low to medium-data scenarios. However, in the context of a large
data regime, we did not observe any notable improvements. Attempting to force the ensemble to
learn random labels in such cases actually had a detrimental effect on calibration. This complex
behaviour warrants a more nuanced theoretical analysis. The ability to predict in advance the
specific training and unlabeled dataset sizes that would benefit from ν-ensembles would be a valuable
asset. Additionally, it is worth noting that despite observing significant enhancements in calibration,
counterintuitively we did not observe corresponding improvements in accuracy.

7 Conclusion

Deep ensembles have established themselves as a very strong baseline that is challenging to surpass.
Not only do they consistently yield improvements across diverse settings, but they also do so with a
very simple and efficient algorithm. Consequently, any algorithms aiming to enhance deep ensembles
should prioritize efficiency and conceptual simplicity to ensure widespread adoption. In this work, we
introduced ν-ensembles, a novel deep ensemble algorithm that achieves both goals. When presented
with an unlabeled dataset, ν-ensembles generate distinct labelings for each ensemble member and
subsequently fit both the training data and the randomly labeled data. Contrary to other diversity
promoring algorithms, ν-ensembles are trivial to parallelize or estimate in a distributed fashion, as
each ensemble member can be trained independently of the rest, apart from the final validation step.
Future directions of research include exploring the potential for ν-ensembles to outperform standard
ensembles in the context of large datasets.
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A Proofs

A.1 Proof of Theorem 1

Theorem 2. (Theorem 2, Masegosa (2020)) For any distribution ρ̂ on F

E(y,x)∼D [− lnEw∼ρ̂ [p(y|x, f(x;w))]] ≤ Ew∼ρ̂

[
Lℓnll
(y,x)∼D(f(x;w))

]
−V(ρ̂) (6)

where V(ρ̂) is a variance term defined as

V(ρ̂) = E(y,x)∼D

[
1

2maxw p(y|x;w)
Ew∼ρ̂

[
(p(y|x,w)−Ew∼ρ̂ (p(y|x,w)))2

]]
. (7)

We need to bound V(ρ̂) and Ew∼ρ̂

[
Lℓnll
(y,x)∼D(f(x;w))

]
using their empirical versions. We will

use a labeled training set Z to bound the term Ew∼ρ̂

[
Lℓnll
(y,x)∼D(f(x;w))

]
and an unlabeled set U

to bound V(ρ̂). To bound the terms we will use existing PAC-Bayes bounds. The variance term has
to be rewritten in the form Ew∼ρ̂E(y,x)∼D [L(y,x,w)] in which PAC-Bayes bounds are directly
applicable.

Let us assume as in Masegosa (2020) that the model likelihood is bounded:
Assumption 1. Masegosa (2020) There exists a constant C < ∞ such that ∀x ∈ X ,
maxy,w p(y|x;w) ≤ C.

Note that this assumption holds for the classification setting with C = 1. Then the variance can be
written as

V(ρ̂) =
1

2
E(y,x)∼D

[
Ew∼ρ̂

[
(p(y|x,w)−Ew∼ρ̂ (p(y|x,w)))2

]]
=

1

2
E(y,x)∼DEw∼ρ̂

[
p(y|x,w)2

]
− 1

2
E(y,x)∼D [Ew∼ρ̂p(y|x,w)]

2

=
1

2
E(y,x)∼DEw∼ρ̂

[
p(y|x,w)2

]
− 1

2
E(y,x)∼D [Ew∼ρ̂p(y|x,w)Ew′∼ρ̂p(y|x,w′)]

=
1

2
E(y,x)∼DEρ̂(w,w′)

[
p(y|x,w)2 − p(y|x,w)p(y|x,w′)

]
=

1

2
E(y,x)∼DEρ̂(w,w′) [L(y,x,w,w

′)]

(8)

where L(y,x,w,w′) = p(y|x,w)2 − p(y|x,w)p(y|x,w′) and ρ̂(w,w′) = ρ̂(w)ρ̂(w′).

We can then use the following PAC-Bayes theorem to lower bound V(ρ̂) through it’s empirical
estimate, noting that L(y,x,w,w′) ≤ 1 which is a requirement for this bound.
Theorem 3. (PAC-Bayes-λ, Thiemann et al. (2017)). For any probability distribution π on F that
is independent of U and any δ1 ∈ (0, 1), with probability at least 1− δ1 over a random draw of a
sample U , for all distributions ρ̂ on F and all γ ∈ (0, 2) simultaneously and a bounded loss L ≤ 1

Ew∼ρ̂E(y,x)∼D [L(y,x,w)] ≥
(
1− γ

2

)
Ew∼ρ̂

1

m

∑
(y,x)∈U

[L(y,x,w)]− KL(ρ̂||π) + ln(2
√
m/δ)

γm

(9)

We then turn to the term Ew∼ρ̂

[
Lℓnll

(y,x)∼D(f(x;w))
]

where L is unbounded due to the NLL loss.
We will use the following bound:
Theorem 4. ( Alquier et al. (2016)). For any probability distribution π on F that is independent of
Z and any δ2 ∈ (0, 1), with probability at least 1− δ2 over a random draw of a sample Z, for all
distributions ρ̂ on F and γ > 0

Ew∼ρ̂

[
Lℓnll

(y,x)∼D(f(x;w))
]
≤ Ew∼ρ̂

[
L̂ℓnll
Z (f(x;w))

]
+

KL(ρ̂||π) + ln( 1δ ) + ψπ,D(γ, n)

γn
(10)

where

ψπ,D(γ, n) = lnEπED

[
e
γn

(
Lℓnll

(y,x)∼D(f(x;w))−L̂ℓnll
Z (f(x;w))

)]
. (11)
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By setting γ1 = γ2 = γ/2 and taking a union bound we then get:
Theorem 5. For any probability distribution π on F that is independent of U and Z and any
δ ∈ (0, 1), with probability at least 1 − δ over a random draw of a sample U and Z, for all
distributions ρ̂ on F and all γ ∈ (0, 2) simultaneously

E(y,x)∼D [− lnEw∼ρ̂ [p(y|x, f(x;w))]] ≤

Ew∼ρ̂

[
L̂ℓnll

Z (f(x;w))
]
+

KL(ρ̂||π) + ln(1/δ) + ψπ,D(γ, n)

γn

−
(
1− γ

2

)
V̂(ρ̂) +

KL(ρ̂||π) + ln(2
√
m/δ)

γm
.

(12)

What remains is to define the prior π and posterior ρ̂ distributions appropriately. We first set
ρ̂(w) = 1

K

∑
i δ(w = ŵi) which denotes an ensemble. We then follow Masegosa (2020) in properly

defining the KL between ρ̂(w) and a given prior. Specifically, we restrict ourselves to a new family
of priors, denoted πF (w). For any prior πF (w) within this family, its support is contained in wF ,
which denotes the space of real number vectors of dimension M that can be represented under a
finite-precision scheme using F bits to encode each element of the vector. So we have supp(πF ) ⊆
wF ⊆ RM . This prior distribution πF can be expressed as, πF (w) =

∑
w′∈wF

ww′δ(w = w′)
where ww′ are positive scalar values parametrizing this prior distribution. They satisfy ww′ ≥ 0 and∑
ww′ = 1. In this way, we can define a finite-precision counterpart to the Gaussian distribution

where ww′ = 1
Ae

−||w′||22 and A is an appropriate normalization constant.

Puting everything back in (12) we get

E(y,x)∼D

[
− ln

1

K

∑
i

[p(y|x, f(x; ŵi))]

]

≤ 1

K

∑
i

[
L̂ℓnll
Z (f(x; ŵi))

]
−
(
1− γ

2

)
V̂(ρ̂) +

1

K

∑
i

h
(
∥ŵi∥22

)
, (13)

where

h
(
∥ŵi∥22

)
=
∥ŵi∥22 + lnA+K ln(1/δ) +Kψπ,D(γ, n)

γn
+
∥ŵi∥22 + lnA+K ln(2

√
m/δ)

γm
,

(14)

and which holds for any δ ∈ (0, 1), with probability at least 1− δ over a random draw of a sample U
and Z.

Some further technical points need to be discussed at this point. Formally, Theorem 4 holds for a
single value of γ. In order to combine both PAC-Bayes bounds we would need to form a grid over
γ in the range (0, 2) and do a union bound over this grid. The combined bound would then hold
only for values on this grid. This results analysis only results in a negligible loosening of the bound
(Dziugaite & Roy, 2017) and as such we neglect this discussion.

Since we have defined our bound in the discrete setting we cannot technically take derivatives of the
resulting objective. However, as discussed in Masegosa (2020) during optimization we simply use the
continuous version of all functions, knowing that we will arrive withing a solution of finite precision.

B Additional conditions for a high-probability bound

Given inequality 13, we can take the expectation over the proposed algorithm, ρ̂ ∼ A, to obtain

Eρ̂∼AE(y,x)∼D

[
− ln

1

K

∑
i

[p(y|x, f(x; ŵi))]

]

≤ Eρ̂∼A

[
1

K

∑
i

[
L̂ℓnll

Z (f(x; ŵi))
]]
−
(
1− γ

2

) K − 1

2cK
+Eρ̂∼A

[
1

K

∑
i

h
(
∥ŵi∥22

)]
, (15)
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which holds for any δ ∈ (0, 1), with probability at least 1− δ over a random draw of a sample U and
Z.

Then, setting L1(ρ̂) = 1
K

∑
i

[
L̂ℓnll
Z (f(x; ŵi))

]
and L2(ρ̂) = 1

K

∑
i h
(
∥ŵi∥22

)
we note

that both L1 and L2 are in general unbounded. To obtain a high-probability bound on
Eρ̂∼AE(y,x)∼D

[
− ln 1

K

∑
i [p(y|x, f(x; ŵi))]

]
we need additional conditions on A namely that it

outputs ρ̂ such that L1(ρ̂) ≤ B and L2(ρ̂) ≤ C where B,C are positive constants.

Then, for a finite sample R ∈ Ar and using Hoeffding’s inequality and applying a union bound we
can write

Eρ̂∼AE(y,x)∼D

− ln
1

K

∑
i∈ρ̂

[p(y|x, f(x; ŵi))]


≤ 1

r

∑
ρ̂∈R

 1

K

∑
i∈ρ̂

[
L̂ℓnll
Z (f(x; ŵi))

]+

√
B2 ln 1/b

2r

−
(
1− γ

2

) K − 1

2cK
+

1

r

∑
ρ̂∈R

 1

K

∑
i∈ρ̂

h
(
∥ŵi∥22

)+

√
C2 ln 1/c

2r
,

which holds with probability 1 − (δ + b + c) over the random draws of U ∈ Dm, Z ∈ Dn and
R ∈ Ar for b, c ∈ (0, 1). The bound still holds for the expectation over ρ̂ ∼ A and not with high
probability for a single draw from A. It guarantees that on average, ensembles that fit the training
data and the randomly labeled data well, while having low complexity will generalize well to unseen
data. In our experimental section, however, we have found that optimizing a single ensemble using
our ν-ensemble objective achieves all the desirable properties.

C Experimental setup

We ran all experiments using A100, and V100 NVIDIA GPUs on our cluster. In total, the experiments
consumed approximately 10000 hours of GPU time. The implementations were done in JAX Bradbury
et al. (2018). While data loading was done in Tensorflow Abadi et al. (2015). For ν-ensembles, for the
LeNet architecture we investigated epochs in the range [100, 120, 140, 160, 180, 200, 220, 240, 260],
for the MLP [100, 120, 140, 160, 180, 200, 220, 240, 260], for the ResNet
[200, 220, 250, 270, 300, 320, 350, 370, 400]. For the regularization strength, we searched in
the range [1, 0.1, 0.05, 0.01, 0] and for the optimizer learning rate in [0.0001, 0.001]. We investigated
the same epoch and learning rate ranges for Standard ensembles. Agree to Disagree ensembles
contain a single hyperparameter α. We tested values in the range [1, 0.1, 0.01, 0.001, 0.0001].
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