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Abstract001

Logical table-to-text generation aims to gener-002
ate natural language descriptions that fluently003
and precisely describe the given table with both004
surface-level and logic-level fidelity. Although005
large language models (LLMs) have demon-006
strated strong capabilities in plain text, their007
proficiency in interpreting and reasoning tab-008
ular data is still limited. In this paper, we are009
the first to comprehensively explore the perfor-010
mance of various LLMs in the logical table-011
to-text generation task. However, we find that012
existing LLMs are difficult to achieve satisfac-013
tory results in this task. Even worse, exist-014
ing prompt strategies cannot cope with com-015
plex non-chain logical reasoning scenarios on016
tables. To address the challenges mentioned017
above, we constructed a new table-related in-018
struction dataset called LogicTableInstruct and019
instruction-tuned two open-source LLMs on020
this dataset, resulting in two specialized LLMs021
for table-related tasks. We also introduced a022
novel reasoning framework termed Logic Tree-023
of-Program (LogicToP) to improve the logical024
reasoning ability of the LLMs on tables. Our025
extensive experiments on various LLMs demon-026
strated that LogicToP can effectively improve027
the performance of LLMs on this task. Our028
LogicTableLLaMA-3.1-8B model in the 5-shot029
LogicToP setting achieves state-of-the-art re-030
sults on the Logic2Text dataset. The code and031
data will be released to boost future work on032
table-related tasks.033

1 Introduction034

Logical table-to-text generation (LT2T) is an im-035

portant branch of Natural Language Generation036

(NLG). It aims to generate natural language de-037

scriptions that fluently and precisely describe the038

given table with both surface-level and logic-level039

fidelity. Early methods (Liu et al., 2022; Deng040

et al., 2023; Zhao et al., 2023b) mainly followed041

the paradigm of "pre-training and fine-tuning"042

to develop customized pre-training strategies for043

LT2T tasks based on Pre-trained Language Mod- 044

els (PLMs) such as GPT-2 (Radford et al., 2019), 045

BART (Lewis et al., 2019), and T5 (Raffel et al., 046

2020). However, it is difficult to generalize and re- 047

quires a significant amount of resources to pre-train 048

and fine-tune for every new task. 049

In recent years, Large Language Models (LLMs) 050

have showcased notable proficiency in handling 051

various tasks in NLP through In-Context Learn- 052

ing (ICL), which incorporates input-output demon- 053

strations into the prompt. Compared with spe- 054

cific table pre-training, using table-related instruc- 055

tion data to fine-tune general LLMs (Li et al., 056

2023; Zhang et al., 2024; Zhuang et al., 2024) has 057

become a more efficient paradigm called "table 058

instruction-tuning", which saves a lot of resources 059

and time for pre-training and can generalize to un- 060

seen tasks. To further enhance the reasoning ability 061

of LLMs, various prompting strategies such as CoS 062

(Hu et al., 2023), SymbCoT (Xu et al., 2024), and 063

PoT (Chen et al., a) originating from Chain-of- 064

Thoughts prompting (Wei et al., 2022) have been 065

proposed. However, existing prompt strategies can- 066

not cope with complex non-chain logical reasoning 067

scenarios on tables. In addition, there is currently 068

no in-depth research on the performance of table 069

instruction-tuned LLMs in the LT2T task. 070

In this paper, we first comprehensively explored 071

the performance of various LLMs in the LT2T task. 072

Unfortunately, we found that existing LLMs are 073

difficult to achieve satisfactory results. Thus, we 074

constructed a new table-related instruction dataset 075

called LogicTableInstruct and instruction-tuned 076

two open-source general LLMs on the LogicTable- 077

Instruct, resulting in two specialized LLMs for 078

table-related tasks. Moreover, we introduced a 079

novel reasoning framework termed LogicToP for 080

controlled logical table-to-text generation to solve 081

the problem of existing prompt strategies being 082

unable to effectively perform logical reasoning in 083

intricate non-chain structure scenarios. 084
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In summary, our main contributions are:085

• We are the first to comprehensively explore086

the performance of different LLMs in the con-087

trolled logical table-to-text generation task.088

• We constructed a new table-related instruc-089

tion dataset called LogicTableInstruct, which090

includes 9 different table-related tasks.091

• We developed two instruction-tuned LLMs092

(LogicTableLLaMA-3.1-8B and Qwen2.5-093

Table-7B-Instruct) specifically designed for094

table-related tasks.095

• We introduced a novel reasoning framework096

termed LogicToP for the controlled logical097

table-to-text generation task. Our extensive098

experiments on various LLMs demonstrated099

that LogicToP can effectively improve perfor-100

mance on this task. Our LogicTableLLaMA-101

3.1-8B model in the 5-shot LogicToP set-102

ting achieves state-of-the-art results on the103

Logic2Text dataset.104

2 Related Work105

2.1 Logical Table-to-Text Generation106

Logical table-to-text generation (LT2T) needs both107

surface-level fidelity (i.e., demanding that the gen-108

erated text accurately represents the underlying109

data) and logic-level fidelity (i.e., going beyond110

superficial facts to ensure that the generated text is111

logically entailed by the given table). In the era of112

the "pre-train and fine-tune" paradigm, most logical113

table-to-text generation systems adopt pre-trained114

language models (PLMs, such as GPT-2 (Radford115

et al., 2019), BART (Lewis et al., 2019), and T5116

(Raffel et al., 2020)), either by using existing pre-117

trained language models (Chen et al., 2020a, 2021;118

Shi et al., 2022; Nan et al., 2022; Perlitz et al.,119

2022; Zhao et al., 2023a; Alonso and Agirre, 2024;120

Wu and Hou, 2024) or by developing pre-training121

strategies tailored for the table-to-text generation122

task (Liu et al., 2022; Deng et al., 2023; Zhao et al.,123

2023b). After entering the large language models124

(LLMs) era, researchers (Li et al., 2023; Zhang125

et al., 2024; Zhuang et al., 2024) adopted a new126

paradigm called "table instruction-tuning". This127

paradigm uses table-related instruction data to fine-128

tune the general LLMs and reduce the huge cost129

of the pre-training process. However, there is cur-130

rently no in-depth exploration of the performance131

of instruction-tuned large language models in the 132

logical table-to-text generation task. 133

2.2 Chain-of-Thoughts Reasoning with LLMs 134

Although LLMs have demonstrated remarkable 135

efficacy in a variety of NLP tasks, their reason- 136

ing ability is frequently viewed as a disadvantage. 137

Even worse, this ability cannot be obtained by 138

merely expanding the model’s size. When given the 139

Chain-of-Thoughts prompting (Wei et al., 2022), 140

LLMs have lately been discovered capable of com- 141

plex reasoning over text. In addition, the Chain- 142

of-Symbol (CoS; Hu et al., 2023) uses condensed 143

symbolic chain representations to depict compli- 144

cated contexts during symbolic reasoning planning. 145

Symbolic Chain-of-Thought (SymbCoT; Xu et al., 146

2024) integrates symbolic expressions and logic 147

rules with CoT prompting to strengthen the logical 148

reasoning capability of LLMs. By introducing pro- 149

gramming languages to describe the reasoning pro- 150

cess, the Program-of-Thoughts (PoT; Chen et al., 151

a) and PAL (Gao et al., 2023) convert the reason- 152

ing problem into an executable program to derive 153

the answer. To solve the problem that the original 154

chain structure naturally limits the scope of explo- 155

ration, Tree-of-Thoughts (ToT; Yao et al., 2023), 156

a variant of CoT, allows LLMs to perform delib- 157

erate decision-making by considering multiple dif- 158

ferent reasoning paths and self-evaluating choices 159

to decide the next course of action. Skeleton-of- 160

Thought (SoT; Ning et al., 2023) is another vari- 161

ation of ToT that breaks down a problem into 162

smaller, parallel-processable problems. Different 163

from the above studies, we focus on using the Logic 164

Tree-of-Program to enhance the logical reasoning 165

ability of LLMs in logical table-to-text generation. 166

3 Methodology 167

3.1 Problem Definition 168

Given a table T with its title C, the task of con- 169

trolled logical table-to-text generation (CLT2T) is 170

to generate a description Y = (y1, y2, · · · , y|Y |) 171

that is both fluent and logically consistent, with 172

the logical type L as control (Perlitz et al., 2022). 173

T = {Ti,j |1 ≤ i ≤ Nrow, 1 ≤ j ≤ Ncol}, where 174

the Nrow and Ncol are the numbers of rows and 175

columns, respectively, and Ti,j is the table cell 176

value at row i and column j. Unlike previous meth- 177

ods (Chen et al., 2020b; Zhao et al., 2023b), we 178

did not directly provide the standard logical form 179

corresponding to Y in the input, as we believe their 180
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Figure 1: Overview of our LogicToP framework.

methods were leaking the answer. Following pre-181

vious works (Parikh et al., 2020; Liu et al., 2022)182

towards controlled table-to-text generation, we also183

incorporate highlighted cells (or columns) H in the184

input as additional supervision signals. The task ob-185

jective thus becomes P (Y |T,C, L,H), as shown186

in the Equ(1):187

P (Y |T,C, L,H) =

|Y |∏
i=1

pLM (yi|T,C, L,H, y<i)

(1)188

where pLM is a probabilistic language model.189

3.2 The LogicToP Framework190

We elaborate on the LogicToP framework in the191

following three steps, as shown in the Figure 1.192

(1) LogicTableInstruct construction193

Although general LLMs can generate fluent text,194

they lack sufficient logical reasoning ability to gen-195

erate logically faithful table descriptions. Using196

table-related instruction data to fine-tune a general197

LLM can enhance its performance in table-related198

tasks. However, existing works (Li et al., 2023;199

Zhang et al., 2024) have not explored the logical200

table-to-text generation task, resulting in a lack of201

instruction data related to this task. Therefore, we202

constructed a new table-related instruction dataset203

called LogicTableInstruct based on the TableIn-204

struct (Zhang et al., 2024). We retained the diver-205

sity of task categories in the original TableInstruct206

dataset but adjusted the ratio between the original207

data and the added data related to logical tables to208

1:1. Specifically, as shown in Table 1, the train-209

ing data corresponding to the logical table-to-text 210

generation task contains a total of 36.8K samples, 211

while the other eight in-domain tasks each contain 212

4.6K randomly selected samples. This data ratio 213

is conducive to ensuring that the fine-tuned model 214

has logical reasoning ability for tables, as well as 215

the ability to understand, answer questions, and 216

verify facts about tables. As shown on the left in 217

the Figure 1, the instruction data for the logical 218

table-to-text generation task covers seven logical 219

types: count, superlative, ordinal, comparative, ag- 220

gregation, unique, and majority. Please refer to 221

Figure 5 for the definitions of logical types and 222

examples of their logic forms. The visualization of 223

quantity statistics for different logical types in the 224

LogicTableInstruct dataset is shown in Figure 6. 225

(2) Instruction-tuning on LogicTableInstruct 226

The instructions let LLMs quickly adapt to a spe- 227

cific domain by constraining the model’s outputs 228

to match the intended response characteristics or 229

domain knowledge without requiring extensive re- 230

training or architecture design (Zhang et al., 2023). 231

Considering that the 70B-level LLMs (LLaMA- 232

3.1-70B-Instruct and Qwen2.5-72B-Instruct) per- 233

form better in open-source general LLMs under 234

few-shot settings, we chose their same series but 235

smaller-scale LLMs (LLaMA-3.1-8B-Instruct and 236

Qwen2.5-7B-Instruct) as the backbone models for 237

table instruction-tuning with our LogicTableIn- 238

struct dataset, ultimately resulting in two table 239

instruction-tuned LLMs: LogicTableLLaMA-3.1- 240

8B and Qwen2.5-Table-7B-Instruct, as shown in 241

the middle of the Figure 1. 242
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Task Category Task Name Original Dataset In-domain # Train # Test

Table Interpretation
Column Type Annotation

TURL
YES 4.6K 0.5K

Relation Extraction YES 4.6K 0.5K
Entity Linking YES 4.6K 0.5K

Table Augmentation
Schema Augmentation

TURL
YES 4.6K 0.5K

Row Population YES 4.6K 0.3K

Question Answering
Hierarchical Table QA HiTab YES 4.6K 0.5K
Highlighted Cells QA FeTaQA YES 4.6K 0.8K

Fact Verification Fact Verification TabFact YES 4.6K 0.5K

Table-to-Text Generation Logical Table-to-Text Generation
CONTLOG YES 8.6K 1.1K

LOFT YES 28.2K 3.0K

Table 1: LogicTableInstruct dataset statistics grouped by task category.

(3) Logic Tree-of-Program prompting243

To address the issue of CoS, SymbCoT, and PoT244

being unable to perform logical reasoning in com-245

plex non-chain structure scenarios, we propose a246

new reasoning method called the Logic Tree-of-247

Program (LogicToP) for controlled logical table-248

to-text generation. As shown in Figure 1 (c), before249

generating descriptive text, LogicToP requires the250

model to iteratively reason logically to form a logic251

tree with functions or cell contents as nodes. Please252

refer to the complete list of the function definitions253

and descriptions in Appendix E. In addition, in or-254

der to enable the model to generate more accurate255

logical forms, we dynamically retrieve multiple256

demonstration examples with the same logical type257

as the test sample for In-Context Learning during258

inference. Under the guidance of the logic tree, the259

text generated by the model unequivocally demon-260

strates superior fidelity, both at the surface level261

and in logical coherence.262

4 Experimental Results263

4.1 Experimental Settings264

Here, we introduce the datasets, automatic evalua-265

tion metrics, and baselines used in our experiments.266

4.1.1 Datasets267

There are two benchmark datasets for logical table-268

to-text generation: Logic2Text (Chen et al., 2020b)269

and LogicNLG (Chen et al., 2020a). The samples270

in both datasets are open-domain tables scraped271

from Wikipedia. Each table is accompanied by272

several related sentences covering diverse types of273

logical inference. SASP (Ou and Liu, 2022) was274

used to construct the logic form of the examples275

from the LogicNLG training set, obtaining 15,637276

examples in total for LOFT (Zhao et al., 2023b)277

training. Besides, Liu et al. (2022) re-organized the 278

Logic2Text dataset by detecting highlighted cells 279

based on their annotated logical forms, resulting 280

in a new complementary dataset (CONTLOG) to- 281

wards controlled logical table-to-text generation. In 282

this work, we conduct experiments on two datasets, 283

CONTLOG and LOFT, which have completed the 284

logical form and highlighted cells based on tables. 285

4.1.2 Automatic Evaluation Metrics 286

We evaluate the generated description text from the 287

following two aspects: 288

(1) We first assessed the informativeness of the 289

generated texts using BLEU (Papineni et al., 2002) 290

and ROUGE (Lin, 2004), which measure lexical 291

similarity by calculating the overlap of n-gram at 292

the word level between the generated texts and the 293

ground-truth descriptions. 294

(2) Following previous works (Chen et al., 295

2020a), we also employ SP-Acc and NLI-Acc to 296

evaluate the logical fidelity of the generated texts. 297

4.1.3 Baselines 298

In these experiments, we mainly take into account 299

the following baseline methods based on PLMs and 300

LLMs, respectively: 301

(1) PLMs-based Methods 302

GPT-TabGen (Chen et al., 2020a) directly fine- 303

tunes GPT-2-medium (Radford et al., 2019) over 304

Logic2Text and LogicNLG datasets. DCVED 305

(Chen et al., 2021) is a de-confounded variational 306

encoder-decoder based on causal intervention to 307

mitigate spurious correlations in generations. DE- 308

VTC (Perlitz et al., 2022) takes a distinct strategy 309

by using GPT-2-medium (Radford et al., 2019) in 310

combination with reasoning operation types as ex- 311

plicit controls. LogicMoE (Wu and Hou, 2024) 312

is a dedicated Mixture-of-Experts (MoE) model 313
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Method Surface-level Fidelity Logical Fidelity
BLEU-1 BLEU-2 BLEU-3 ROUGE-L SP-Acc NLI-Acc

PLMs-based methods under fully-supervised setting
GPT-TabGen (Chen et al., 2020a) 46.5 30.9 19.9 - 42.4 66.5
DCVED (Chen et al., 2021) 46.4 31.2 20.1 - 43.7 71.9
DEVTC (Perlitz et al., 2022) 47.8 32.6 22.2 - 41.9 74.4
LogicMoE (Wu and Hou, 2024) 51.4 36.8 26.4 - 48.9 75.9

LLMs-based methods under few-shot setting
TableLlama 5-shot ICL 04.9 02.3 01.4 09.4 20.2 57.3
TableLlama 5-shot LogicToP 04.1↓ 01.9↓ 01.1↓ 08.5↓ 21.1↑ 61.0↑
GPT-4o mini 5-shot ICL 28.0 17.5 11.7 35.9 47.8 88.6
GPT-4o mini 5-shot LogicToP 35.1↑ 23.0↑ 16.0↑ 41.5↑ 54.8↑ 89.3↑
GLM-4-9B-Chat 5-shot ICL 12.5 07.0 04.1 22.4 24.4 89.7
GLM-4-9B-Chat 5-shot LogicToP 22.8⇑ 12.4↑ 07.2↑ 35.8⇑ 48.5⇑ 94.6↑
LLaMA-3.1-8B-Instruct 5-shot ICL 19.9 12.2 08.0 31.6 48.6 80.7
LLaMA-3.1-8B-Instruct 5-shot LogicToP 30.5⇑ 20.4↑ 14.2↑ 41.3↑ 44.5↓ 79.4↓
LLaMA-3.1-70B-Instruct 5-shot ICL 26.6 16.2 10.6 38.6 47.9 85.7
LLaMA-3.1-70B-Instruct 5-shot LogicToP 42.8⇑ 29.3⇑ 21.4⇑ 42.3↑ 52.7↑ 87.3↑
♣ LogicTableLLaMA-3.1-8B 5-shot ICL 49.3 35.5 26.9 49.8 47.1 84.1
♣ LogicTableLLaMA-3.1-8B 5-shot LogicToP 56.5↑ 43.5↑ 34.4↑ 55.5↑ 51.8↑ 87.1↑

Qwen2.5 series LLMs-based methods under few-shot setting
Qwen2.5-7B-Instruct 5-shot ICL 21.5 12.3 07.7 31.6 39.4 81.4
Qwen2.5-7B-Instruct 5-shot LogicToP 31.4↑ 20.2↑ 14.0↑ 37.3↑ 53.3⇑ 89.5↑
Qwen2.5-72B-Instruct 5-shot ICL 25.9 16.3 11.1 35.8 41.8 90.4
Qwen2.5-72B-Instruct 5-shot LogicToP 31.2↑ 19.9↑ 13.8↑ 41.7↑ 54.6⇑ 94.3↑
Qwen2.5-Coder-7B-Instruct 5-shot ICL 29.0 17.0 11.1 38.9 52.1 83.3
Qwen2.5-Coder-7B-Instruct 5-shot LogicToP 41.6⇑ 28.0⇑ 20.2↑ 41.4↑ 54.4↑ 88.6↑
Qwen2.5-Math-7B-Instruct 5-shot ICL 02.6 01.4 00.8 04.5 09.1 15.5
Qwen2.5-Math-7B-Instruct 5-shot LogicToP 02.7↑ 01.5↑ 01.0↑ 04.2↓ 11.6↑ 22.4↑
♣ Qwen2.5-Table-7B-Instruct 5-shot ICL 30.8 16.8 10.6 33.2 46.9 69.8
♣ Qwen2.5-Table-7B-Instruct 5-shot LogicToP 40.6↑ 25.4↑ 17.2↑ 38.9↑ 51.3↑ 76.3↑

Table 2: Performance comparisons of the automatic evaluation on the Logic2Text dataset. ♣ denotes our table
instruction-tuned LLMs. ↑ and ↓ indicate whether LogicToP has improved or decreased compared to ICL, and ⇑
indicates that LogicToP has improved by more than 10%.

tailored for the LT2T task. In addition, we have314

chosen three more powerful methods than GPT-315

TabGen and DCVED as baselines for the Logic-316

NLG dataset: R2D2 (Nan et al., 2022) incorporates317

additional replacement detection and unlikelihood318

learning tasks to train the T5-base (Raffel et al.,319

2020) to act as both a generator and a fidelity dis-320

criminator. PLOG (Liu et al., 2022) is a pre-trained321

logical form generator model based on BART-large322

(Lewis et al., 2019) to achieve more faithful LT2T.323

LoFT (Zhao et al., 2023b) based on BART-large324

controls the creative process by using logic forms325

as content planners and fact validators. We directly326

use the results reported in the papers corresponding327

to the above methods for comparison.328

(2) Large Language Models (LLMs)329

In this paper, we also add a baseline method (In-330

Context Learning) that directly uses the following331

LLMs to accomplish the controlled logical table-332

to-text generation task in a few-shot manner.333

GPT-4o mini (Achiam et al., 2023). It is the334

most cost-efficient closed-source general LLM of335

ChatGPT (or GPT-4). The GPT-4o mini outper-336

forms other small models on reasoning tasks in- 337

volving text and vision. It scored 82.0% on MMLU, 338

which is a benchmark for textual intelligence and 339

reasoning. 340

TableLlama (Zhang et al., 2024). It is the first 341

open-source generalist LLM instruction-tuned on a 342

constructed TableInstruct dataset using LongLoRA 343

(Chen et al., b) based on Llama 2 (7B) (Touvron 344

et al., 2023) as the backbone model. 345

GLM-4-9B-Chat (GLM et al., 2024). It demon- 346

strates comparable performance to GPT-4 and 347

Claude 3 Opus in Chinese math and logic reasoning 348

capabilities, though it lags behind GPT-4 Turbo. 349

The family of LLaMA-3.1 models1. We choose 350

the following advanced models for experimenta- 351

tion: LLaMA-3.1-8B-Instruct and LLaMA-3.1- 352

70B-Instruct. 353

The family of Qwen2.5 (Yang et al., 2024) 354

models. We chose the following advanced mod- 355

els for extensive experimentation: Qwen2.5-7B- 356

Instruct, Qwen2.5-72B-Instruct, Qwen2.5-Coder- 357

7B-Instruct, and Qwen2.5-Math-7B-Instruct. 358

1https://ai.meta.com/blog/meta-llama-3-1/
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Method Surface-level Fidelity Logical Fidelity
BLEU-1 BLEU-2 BLEU-3 ROUGE-L SP-Acc NLI-Acc

PLMs-based methods under fully-supervised setting
DEVTC (Perlitz et al., 2022) 50.8 29.2 15.2 - 45.6 77.0
R2D2 (Nan et al., 2022) 51.8 32.4 18.7 36.8 50.8 85.6
PLOG (Liu et al., 2022) 54.9 35.0 21.0 - 50.5 88.9
LOFT (Zhao et al., 2023b) 48.1 27.7 14.9 - 57.7 86.9
LogicMoE (Wu and Hou, 2024) 54.6 33.5 19.4 - 49.2 82.7

LLMs-based methods under few-shot setting
TableLlama 5-shot ICL 01.1 00.4 00.3 03.6 09.2 19.6
TableLlama 5-shot LogicToP 01.4↑ 00.6↑ 00.4↑ 04.0↑ 10.6↑ 25.6↑
GPT-4o mini 5-shot ICL 14.2 06.3 03.4 21.0 38.2 70.9
GPT-4o mini 5-shot LogicToP 16.0↑ 07.4↑ 04.3↑ 22.8↑ 53.7⇑ 76.7↑
GLM-4-9B-Chat 5-shot ICL 09.0 03.8 02.0 14.6 24.4 77.8
GLM-4-9B-Chat 5-shot LogicToP 11.5↑ 05.0↑ 02.7↑ 17.3↑ 48.5⇑ 84.0↑
LLaMA-3.1-8B-Instruct 5-shot ICL 10.3 04.5 02.6 14.0 41.8 65.1
LLaMA-3.1-8B-Instruct 5-shot LogicToP 12.2↑ 05.6↑ 03.3↑ 19.4↑ 45.2↑ 66.3↑
LLaMA-3.1-70B-Instruct 5-shot ICL 14.1 06.4 03.7 18.2 40.1 63.2
LLaMA-3.1-70B-Instruct 5-shot LogicToP 19.2↑ 09.4↑ 05.5↑ 25.5↑ 48.8↑ 68.4↑
♣ LogicTableLLaMA-3.1-8B 5-shot ICL 17.5 08.8 05.4 22.0 46.2 55.5
♣ LogicTableLLaMA-3.1-8B 5-shot LogicToP 29.9⇑ 17.9↑ 11.8↑ 34.8⇑ 51.0↑ 65.6⇑

Qwen2.5 series LLMs-based methods under few-shot setting
Qwen2.5-7B-Instruct 5-shot ICL 13.7 05.9 03.3 20.1 40.8 71.3
Qwen2.5-7B-Instruct 5-shot LogicToP 14.4↑ 06.2↑ 03.5↑ 20.2↑ 52.7⇑ 77.5↑
Qwen2.5-72B-Instruct 5-shot ICL 13.7 06.2 03.4 20.8 34.7 76.5
Qwen2.5-72B-Instruct 5-shot LogicToP 15.5↑ 07.2↑ 04.2↑ 22.7↑ 46.8⇑ 82.8↑
Qwen2.5-Coder-7B-Instruct 5-shot ICL 15.0 06.8 03.9 21.7 42.2 58.1
Qwen2.5-Coder-7B-Instruct 5-shot LogicToP 18.7↑ 08.9↑ 05.0↑ 27.0↑ 52.8⇑ 70.7⇑
Qwen2.5-Math-7B-Instruct 5-shot ICL 06.4 01.8 01.2 08.3 03.3 61.9
Qwen2.5-Math-7B-Instruct 5-shot LogicToP 06.3↓ 01.8 01.2 08.2↓ 03.7↑ 62.6↑
♣ Qwen2.5-Table-7B-Instruct 5-shot ICL 13.9 06.4 03.8 19.2 46.3 49.0
♣ Qwen2.5-Table-7B-Instruct 5-shot LogicToP 18.7↑ 09.0↑ 05.3↑ 23.8↑ 51.1↑ 55.2↑

Table 3: Performance comparisons of the automatic evaluation on the LogicNLG dataset. ♣ denotes our table
instruction-tuned LLMs. ↑ and ↓ indicate whether LogicToP has improved or decreased compared to ICL, and ⇑
indicates that LogicToP has improved by more than 10%.

4.1.4 Implementation Details359

The GPT-4o mini has a context window of 128K to-360

kens, supports up to 16K output tokens per request,361

and has knowledge up to October 2023. We use the362

same hyperparameters for LLMs: temperature =363

0.001, penalty = 1.2, max_new_tokens = 1024. For364

the table instruction-tuning, we provide detailed365

parameter settings in Appendix A.366

4.2 Main Results and Analysis367

Table 2 and Table 3 present the comparison of au-368

tomatic evaluation results between LogicToP and369

other baselines on the Logic2Text and LogicNLG370

datasets, respectively. Compared with methods371

based on PLMs that have undergone specialized372

pre-training of tables, directly using a general large373

language model with 5-shot In-Context Learning374

(ICL) demonstrations does not perform well in375

logical table-to-text generation tasks. It is disap-376

pointing that the TableLlama model, which has377

been fine-tuned with various table-related instruc-378

tion data, performs extremely poorly on this task.379

However, our proposed LogicToP method achieves380

state-of-the-art performance on the Logic2Text 381

dataset using our table instruction-tuned LLMs 382

such as LogicTableLLaMA-3.1-8B. On the Logic- 383

NLG dataset, our method significantly improved 384

the logical reasoning ability of LLMs on tables. 385

Specifically, we further analyze the experimental 386

results through the following three perspectives: 387

(1) LogicToP vs. ICL. As shown in Table 2 388

and Table 3, we use ↑ and ↓ to indicate whether 389

LogicToP has improved or decreased compared to 390

ICL. For LLMs with strong generalization ability, 391

the LogicToP method enables them to think about 392

obtaining the corresponding logic tree-of-program 393

before generating text, resulting in a significant 394

performance improvement. For the TableLlama 395

and Qwen2.5-Math-7B-Instruct models, which had 396

poor performance, LogicToP has little or even a 397

negative effect on their improvement. The reason 398

is that these models can not correctly understand 399

and follow the instructions of LogicToP. 400

(2) Different sizes of LLMs. When the results 401

of LLaMA-3.1-8B-Instruct and LLaMA-3.1-70B- 402

Instruct in the 5-shot LogicToP setting are com- 403
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Figure 2: The results of different numbers of demonstra-
tions (from 1-shot to 5-shot) on the Logic2Text dataset.

pared, it is clear that LLaMA-3.1-70B-Instruct al-404

ways outperforms LLaMA-3.1-8B-Instruct. Due to405

LLaMA-3.1-8B-Instruct’s weak ability to follow in-406

structions of LogicToP, its self-generated logic tree407

is prone to error, resulting in a decrease in its logi-408

cal fidelity on the Logic2Text dataset. However, the409

gap between Qwen2.5-7B-Instruct and Qwen2.5-410

72B-Instruct is relatively small. Qwen2.5-72B-411

Instruct only has stable advantages in ROUGE-L412

and NLI-Acc metrics.413

(3) General LLM vs. Special LLM. To explore414

whether using special domain data (such as code415

and math corpus) for continual pre-training (CPT)416

general LLMs can improve the performance on this417

logical table-to-text generation task, we chose the418

Qwen2.5 series LLMs for comparison. We can see419

from Table 2 and 3 that the overall performance of420

Qwen2.5-Coder-7B-Instruct is better than that of421

Qwen2.5-7B-Instruct, while the opposite is true for422

Qwen2.5-Math-7B-Instruct. Qwen2.5-Coder-7B-423

Instruct even surpassed Qwen2.5-72B-Instruct in424

BLEU-1/2/3 metrics, indicating that utilizing code425

data for CPT is helpful for this task.426

4.3 Ablation Study427

In the ablation experiment, we use the arithmetic428

mean (AVG) of six automatic evaluation metrics429

scores to represent overall performance. We further430

explore the factors that affect the performance of431

the LLMs through the following two aspects:432

(1) Different number of demonstrations. To433

investigate the impact of the number of demonstra-434

Figure 3: Comparison results of different selection
strategies (Randomized vs. Same-type) for demonstra-
tion examples on the LogicNLG dataset.

tion examples on the LLMs, we tested the perfor- 435

mance of three LLMs (GPT-4o mini, LLaMA-3.1- 436

70B-Instruct, and Qwen2.5-72B-Instruct) with a 437

context window size of 128k from 1-shot to 5-shot 438

LogicToP on the Logic2Text dataset. As shown in 439

Figure 2, all three models exhibit a stable overall 440

performance growth trend from 1-shot to 5-shot 441

LogicToP. This leads to the conclusion that the 442

large language model performs better on the task 443

with more demonstration examples in the input. 444

Under the same number of demonstration exam- 445

ples, the overall performance of LLaMA-3.1-70B- 446

Instruct consistently outperforms GPT-4o mini and 447

Qwen2.5-72B-Instruct. 448

(2) Randomized samples vs. Same-type samples. 449

To explore the impact of different demonstration 450

selection strategies on the LLMs, we tested the per- 451

formance of four LLMs (LLaMA-3.1-8B-Instruct, 452

LogicTableLLaMA-3.1-8B, Qwen2.5-Coder-7B- 453

Instrut and Qwen2.5-72B-Instruct) using two strate- 454

gies (Randomized samples and Same-type samples) 455

in the 5-shot LogicToP setting on the LogicNLG 456

dataset. As shown in Figure 3, the average score of 457

the same-type sampling strategy is always slightly 458

better than that of the randomized sampling strategy 459

on these four LLMs. It also aligns with our intu- 460

ition that using examples of the same logical type 461

can help the model generate the logical form corre- 462

sponding to the current test sample through similar 463

logical forms. Moreover, LogicTableLLaMA-3.1- 464

8B has improved its AVG score by about ten points 465

compared to its backbone model, LLaMA-3.1-8B- 466

Instruct, indicating that instruction-tuning with our 467

LogicTableInstruct dataset can effectively enhance 468

the model’s logical reasoning ability on tables. 469
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LLaMA-3.1-70B-Instruct 5-shot LogicToP

LogicTableLLaMA-3.1-8B 5-shot LogicToP

LLaMA-3.1-8B-Instruct 5-shot LogicToP

LLaMA-3.1-8B-Instruct 5-shot ICL

Reference Description and Logical_Form

Golden_logical_form: greater { hop { filter_eq { all_rows ; english name ; capital region of denmark } ; population ( january 1 , 2008 ) } ; hop { filter_eq 

{ all_rows ; english name ; region of southern denmark } ; population ( january 1 , 2008 ) } } = true

Golden_description: the capital region of denmark has a higher population than the region of southern denmark.

###The logical form is: greater { hop { filter_eq { all_rows ; english name ; capital region of denmark } ; population ( january 1 , 2008 ) } ; hop { filter_eq 

{ all_rows ; english name ; region of southern denmark } ; population ( january 1 , 2008 ) } } = true

###Answer: the capital region of denmark has a higher population than the region of southern denmark

logic_str: greater { row_0 ; population ( january 1 , 2008 ) ; row_4 } = true

Answer: the capital region of denmark has a larger population than the region of southern denmark .

To solve this problem, I will follow these steps: 

1.  **Identify the logical type**: The logical type is ""comparative"". 

2.  **Determine the column and rows to compare**: The highlighted cells indicate that we need to compare the values in the ""population (January 1, 

2008)"" column for rows 0 and 4. 

3.  **Compare the values**: The value for row 0 is 1645825, and the value for row 4 is 1194659. 

4.  **Generate the description**: Since the value for row 0 is greater than the value for row 4, the description will be: ""The capital region of denmark 

had a larger population than the region of southern denmark in 2008.""

Here is the natural language description: The Capital Region of Denmark and the Region of Southern Denmark have the same English names, ""Capital 

Region of Denmark"" and ""Region of Southern Denmark"", respectively. However, the Capital Region of Denmark has a smaller population (1645825) 

compared to the Region of Southern Denmark (1194659), and also compared to the Region of Zealand (819427).

Figure 4: Top 4 boxes: descriptions generated by different settings (5-shot ICL and 5-shot LogicToP) with various
LLaMA-3.1 series LLMs. Bottom: reference description and logical form of Test1089 on the Logic2Text dataset.

4.4 Case Study470

To understand the effect of our LogicToP method471

more intuitively, we select one representative ex-472

ample (Test1089) on the Logic2Text dataset and473

present its descriptions generated by different set-474

tings (5-shot ICL and 5-shot LogicToP) with var-475

ious LLaMA-3.1 series LLMs in Figure 4. For476

the same model, LLaMA-3.1-8B-Instruct, there477

are two obvious errors in the description gener-478

ated by the 5-shot ICL, while the 5-shot LogicToP479

generates the correct description. However, the480

instruction following and schema learning ability481

of the LLaMA-3.1-8B-Instruct model is weaker482

than that of the LLaMA-3.1-70B-Instruct model,483

which is reflected in the fact that the reasoning484

strategy of the LLaMA-3.1-8B-Instruct model re-485

mains at a step-by-step chain (*Identify the log-486

ical type*, *Determine the column and rows to487

compare*, *Compare the values*, and *Generate488

the description*) without generating the logical489

form in the demonstrations. In addition, although490

the LLaMA-3.1-70B-Instruct model can already491

generate a concise logical form (greater { row_0 ;492

population ( january 1 , 2008 ) ; row_4 } = true)493

and correct description, LogicTableLLaMA-3.1-494

8B can generate the logical form and description495

that are completely consistent with the reference496

answer at a fine-grained level. It further confirms497

that instruction-tuning the 8B-level LLM on our 498

instruction dataset can enhance its logical reason- 499

ing ability on tables, even surpassing the 70B-level 500

LLM. Overall, LogicTableLLaMA-3.1-8B with the 501

5-shot LogicToP is the optimal combination solu- 502

tion for the logical table-to-text generation task. 503

5 Conclusion 504

In this paper, we conducted the first in-depth ex- 505

ploration of the effectiveness of various LLMs in 506

the logical table-to-text generation task. To simul- 507

taneously improve the logical reasoning ability of 508

LLMs on tables and avoid the overhead caused by 509

specific pre-training, we constructed a new table- 510

related instruction dataset LogicTableInstruct for 511

fine-tuning open-source LLMs. We introduced a 512

novel reasoning framework termed LogicToP for 513

controlled logical table-to-text generation to solve 514

the problem of existing methods being unable to 515

effectively perform logical reasoning in intricate 516

non-chain structure scenarios. Our extensive ex- 517

periments on various LLMs demonstrated that our 518

proposed framework can effectively improve per- 519

formance on this task, and our LogicTableLLaMA- 520

3.1-8B model outperformed the state-of-the-art 521

baseline on the Logic2Text dataset. We hope that 522

the proposed method (LogicToP) can inspire other 523

researchers in related fields. 524
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Limitations525

Our approach has three limitations: (1) We did not526

explore the impact of data ratios between differ-527

ent tasks during the table instruction-tuning phase;528

(2) Although we have found that using code data529

for continual pre-training can improve the model’s530

performance on this task, we cannot achieve con-531

tinual pre-training on LLMs at the 70B level due532

to our limited computing resources. (3) On the533

LogicNLG dataset, our task setting did not include534

standard logical forms in the input, resulting in high535

task difficulty. Although our method improved the536

logical reasoning ability of almost all tested LLMs,537

there was a significant gap in scores compared to538

methods based on especially pre-trained models in539

surface-level metrics.540
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A Parameters of Table Instruction-tuning 725

We provide detailed parameter settings for the table 726

instruction-tuning in Table 4. 727

Parameter LLaMA Qwen2.5
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gradient accumulation steps 2 8
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train epochs 3 4
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fp16 true true
ddp timeout 1.8e8 1.8e8

Table 4: Detailed parameter settings for the table
instruction-tuning. LLaMA: LLaMA-3.1-8B-Instruct.
Qwen2.5: Qwen2.5-7B-Instruct.
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Count

Superlative

Ordinal

Comparative

Aggregation

Unique

Majority

Definition: counting some rows in the table based on the values in one column, with the scope of all table rows or a subset of rows.

An example of logic form: 

eq { count { filter_eq { all_rows ; rank ; 20 } } ; 2 } = true 

Definition: Describing the maximum or minimum value in a column, with the scope of all table rows or a subset of rows. You may also talk 

about other columns in this row with the superlative value. 

An example of logic form: 

eq { hop { argmax { all_rows ; number of viewers } ; show } ; 1966 world cup final } = true

Definition: Describing the n-th maximum or minimum value in a column, with the scope of all table rows or a subset of rows. You may also 

talk about other columns in this row with the n-th maximum or minimum value.

An example of logic form: 

eq { hop { nth_argmax { all_rows ; year ; 2 } ; album title } ; realism } = true

Definition: Comparing two rows in the table, regarding their values in one column. You may also talk about other columns in these two rows.

An example of logic form: 

less { hop { filter_eq { all_rows ; title ; face / off } ; year } ; hop { filter_eq { all_rows ; title ; antz } ; year } } = true

Definition: Describing the sum or average value over a column, with the scope of all table rows or a subset of rows. 

An example of logic form:

round_eq { sum { filter_eq { all_rows ; place ; waddon } ; platforms } ; 4 } = true

Definition: Describing one unique row, regarding one column, with the scope of all table rows or a subset of rows. You may also talk about 

other columns in this unique row. 

An example of logic form: 

and { only { filter_eq { all_rows ; host ; jack arute } } ; eq { hop { filter_eq { all_rows ; host ; jack arute } ; year } ; 2008 } } = true

Definition: Describing the majority values (most or all) over one column, with the scope of all table rows or a subset of rows. 

An example of logic form: 

most_greater_eq { all_rows ; crowd ; 10000 } = true

Figure 5: Definitions and examples of seven logical types.

B Logical Type Definitions and Examples728

As shown in Figure 5, we have provided the defi-729

nitions of different logical types and examples of730

their linearized logic forms.731

C Logical Type Statistics732

As shown in Figure 6, we provide a visual view of733

the total number of different logical types in our734

LogicTableInstruct dataset.

Figure 6: The total number of different logical types.

735

D The Prompt Format of LogicToP736

See Figure 7.737

E The Function Definitions List738

See Table 5.739
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Prompt Format of LogicToP

### <<System Role Setting>>

You are a scientific researcher with logical reasoning ability and comparative analysis ability.

### <<Task Objectives and Key Definitions of Logical Types>>

This is a logical table-to-text generation task with highlighted cells, aiming to generate accurate and fluent natural language descriptions for the 

highlighted cells in the table. 

Then, I will provide you with table_title, table_header, table_content, highlight_cells, and logical_type. Among them, "table_header" is the table 

header in list format; "table_content" consists of the table content as a list of lists.

"logical_type": 

(1) Count: Counting some rows in the table based on the values in one column, with the scope of all table rows or a subset of rows. 

(2) Superlative: Describing the maximum or minimum value in a column, with the scope of all table rows or a subset of rows. You may also talk 

about other columns in this row with the superlative value. 

(3) Ordinal: Describing the n-th maximum or minimum value in a column, with the scope of all table rows or a subset of rows. You may also talk 

about other columns in this row with the n-th maximum or minimum value. 

(4) Comparative: Comparing two rows in the table, regarding their values in one column. You may also talk about other columns in these two rows. 

(5) Aggregation: Describing the sum or average value over a column, with the scope of all table rows or a subset of rows. 

(6) Unique: Describing one unique row, regarding one column, with the scope of all table rows or a subset of rows. You may also talk about other 

columns in this unique row. 

(7) Majority: Describing the majority values (most or all) over one column, with the scope of all table rows or a subset of rows. 

### <<Instruction for Generating natural language descriptions>>

Please generate semantically accurate natural language descriptions that match the highlighted cells based on the given table and logical type.

### <<Instruction for Generating Logic Tree-of-Program>>

Before generating descriptive text, you need to perform logical reasoning first. Logical reasoning requires you to generate a logical form that 

matches the highlighted cells and the logical type based on the given table.

### <<Instruction for In-Context Learning>>

Here are some examples: {ICL_Content_LogicToP}. 

Please refer to the examples to process the following data: table_title:{table_title}, table_header:{table_header} , table_content:{table_content}, 

highlight_cells:{highlight_cells}, and logical_type:{logical_type}. 

Figure 7: Prompt used for Logic Tree-of-Program (LogicToP). Each example in ICL_Content_LogicToP contains
input, output, and the corresponding logical form of the output.

Name Arguments Output Description
count view number returns the number of rows in the view
only view bool returns whether there is exactly one row in the view
hop row, header string object returns the value under the header column of the row
and bool, bool bool returns the boolean operation result of two arguments
max/min/avg/sum view, header string number returns the max/min/average/sum of the values under the header column
nth_max/nth_min view, header string number returns the n-th max/n-th min of the values under the header column
argmax/argmin view, header string row returns the row with the max/min value in header column
nth_argmax/nth_argmin view, header string row returns the row with the n-th max/min value in header column
eq/not_eq object, object bool returns if the two arguments are equal
round_eq object, object bool returns if the two arguments are roughly equal under certain tolerance
greater/less object, object bool returns if argument 1 is greater/less than argument 2
diff object, object object returns the difference between two arguments
filter_eq/not_eq view, header string, object view returns the subview whose values under the header column is equal/not equal to argument 3
filter_greater/less view, header string, object view returns the subview whose values under the header column is greater/less than argument 3
filter_greater_eq /less_eq view, header string, object view returns the subview whose values under the header column is greater/less or equal than argument 3
filter_all view, header string view returns the view itself for the case of describing the whole table
all_eq/not_eq view, header string, object bool returns whether all the values under the header column are equal/not equal to argument 3
all_greater/less view, header string, object bool returns whether all the values under the header column are greater/less than argument 3
all_greater_eq/less_eq view, header string, object bool returns whether all the values under the header column are greater/less or equal to argument 3
most_eq/not_eq view, header string, object bool returns whether most of the values under the header column are equal/not equal to argument 3
most_greater/less view, header string, object bool returns whether most of the values under the header column are greater/less than argument 3
most_greater_eq/less_eq view, header string, object bool returns whether most of the values under the header column are greater/less or equal to argument 3

Table 5: Function definitions.
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