LogicToP: Logic Tree-of-Program with Table Instruction-tuned LLMs for
Controlled Logical Table-to-Text Generation

Anonymous ACL submission

Abstract

Logical table-to-text generation aims to gener-
ate natural language descriptions that fluently
and precisely describe the given table with both
surface-level and logic-level fidelity. Although
large language models (LLMs) have demon-
strated strong capabilities in plain text, their
proficiency in interpreting and reasoning tab-
ular data is still limited. In this paper, we are
the first to comprehensively explore the perfor-
mance of various LLMs in the logical table-
to-text generation task. However, we find that
existing LLMs are difficult to achieve satisfac-
tory results in this task. Even worse, exist-
ing prompt strategies cannot cope with com-
plex non-chain logical reasoning scenarios on
tables. To address the challenges mentioned
above, we constructed a new table-related in-
struction dataset called LogicTablelnstruct and
instruction-tuned two open-source LLMs on
this dataset, resulting in two specialized LLMs
for table-related tasks. We also introduced a
novel reasoning framework termed Logic Tree-
of-Program (LogicToP) to improve the logical
reasoning ability of the LLMs on tables. Our
extensive experiments on various LLMs demon-
strated that LogicToP can effectively improve
the performance of LLMs on this task. Our
LogicTableLLaMA-3.1-8B model in the 5-shot
LogicToP setting achieves state-of-the-art re-
sults on the Logic2Text dataset. The code and
data will be released to boost future work on
table-related tasks.

1 Introduction

Logical table-to-text generation (LT2T) is an im-
portant branch of Natural Language Generation
(NLG). It aims to generate natural language de-
scriptions that fluently and precisely describe the
given table with both surface-level and logic-level
fidelity. Early methods (Liu et al., 2022; Deng
et al., 2023; Zhao et al., 2023b) mainly followed
the paradigm of "pre-training and fine-tuning"
to develop customized pre-training strategies for

LT2T tasks based on Pre-trained Language Mod-
els (PLMs) such as GPT-2 (Radford et al., 2019),
BART (Lewis et al., 2019), and T5 (Raffel et al.,
2020). However, it is difficult to generalize and re-
quires a significant amount of resources to pre-train
and fine-tune for every new task.

In recent years, Large Language Models (LLMs)
have showcased notable proficiency in handling
various tasks in NLP through In-Context Learn-
ing (ICL), which incorporates input-output demon-
strations into the prompt. Compared with spe-
cific table pre-training, using table-related instruc-
tion data to fine-tune general LLMs (Li et al.,
2023; Zhang et al., 2024; Zhuang et al., 2024) has
become a more efficient paradigm called "table
instruction-tuning”, which saves a lot of resources
and time for pre-training and can generalize to un-
seen tasks. To further enhance the reasoning ability
of LLMs, various prompting strategies such as CoS
(Hu et al., 2023), SymbCoT (Xu et al., 2024), and
PoT (Chen et al., a) originating from Chain-of-
Thoughts prompting (Wei et al., 2022) have been
proposed. However, existing prompt strategies can-
not cope with complex non-chain logical reasoning
scenarios on tables. In addition, there is currently
no in-depth research on the performance of table
instruction-tuned LLMs in the LT2T task.

In this paper, we first comprehensively explored
the performance of various LLMs in the LT2T task.
Unfortunately, we found that existing LLMs are
difficult to achieve satisfactory results. Thus, we
constructed a new table-related instruction dataset
called LogicTablelnstruct and instruction-tuned
two open-source general LL.Ms on the LogicTable-
Instruct, resulting in two specialized LLMs for
table-related tasks. Moreover, we introduced a
novel reasoning framework termed LogicToP for
controlled logical table-to-text generation to solve
the problem of existing prompt strategies being
unable to effectively perform logical reasoning in
intricate non-chain structure scenarios.

In summary, our main contributions are:

* We are the first to comprehensively explore
the performance of different LLMs in the con-
trolled logical table-to-text generation task.

¢ We constructed a new table-related instruc-
tion dataset called LogicTablelnstruct, which
includes 9 different table-related tasks.

* We developed two instruction-tuned LLMs
(LogicTableLLaMA-3.1-8B and Qwen2.5-
Table-7B-Instruct) specifically designed for
table-related tasks.

* We introduced a novel reasoning framework
termed LogicToP for the controlled logical
table-to-text generation task. Our extensive
experiments on various LLMs demonstrated
that LogicToP can effectively improve perfor-
mance on this task. Our LogicTableLLaMA-
3.1-8B model in the 5-shot LogicToP set-
ting achieves state-of-the-art results on the
Logic2Text dataset.

2 Related Work

2.1 Logical Table-to-Text Generation

Logical table-to-text generation (LT2T) needs both
surface-level fidelity (i.e., demanding that the gen-
erated text accurately represents the underlying
data) and logic-level fidelity (i.e., going beyond
superficial facts to ensure that the generated text is
logically entailed by the given table). In the era of
the "pre-train and fine-tune" paradigm, most logical
table-to-text generation systems adopt pre-trained
language models (PLMs, such as GPT-2 (Radford
et al., 2019), BART (Lewis et al., 2019), and T5
(Raffel et al., 2020)), either by using existing pre-
trained language models (Chen et al., 2020a, 2021;
Shi et al., 2022; Nan et al., 2022; Perlitz et al.,
2022; Zhao et al., 2023a; Alonso and Agirre, 2024;
Wu and Hou, 2024) or by developing pre-training
strategies tailored for the table-to-text generation
task (Liu et al., 2022; Deng et al., 2023; Zhao et al.,
2023b). After entering the large language models
(LLMs) era, researchers (Li et al., 2023; Zhang
et al., 2024; Zhuang et al., 2024) adopted a new
paradigm called "table instruction-tuning". This
paradigm uses table-related instruction data to fine-
tune the general LLMs and reduce the huge cost
of the pre-training process. However, there is cur-
rently no in-depth exploration of the performance

of instruction-tuned large language models in the
logical table-to-text generation task.

2.2 Chain-of-Thoughts Reasoning with LLMs

Although LLMs have demonstrated remarkable
efficacy in a variety of NLP tasks, their reason-
ing ability is frequently viewed as a disadvantage.
Even worse, this ability cannot be obtained by
merely expanding the model’s size. When given the
Chain-of-Thoughts prompting (Wei et al., 2022),
LLMs have lately been discovered capable of com-
plex reasoning over text. In addition, the Chain-
of-Symbol (CoS; Hu et al., 2023) uses condensed
symbolic chain representations to depict compli-
cated contexts during symbolic reasoning planning.
Symbolic Chain-of-Thought (SymbCoT; Xu et al.,
2024) integrates symbolic expressions and logic
rules with CoT prompting to strengthen the logical
reasoning capability of LLMs. By introducing pro-
gramming languages to describe the reasoning pro-
cess, the Program-of-Thoughts (PoT; Chen et al.,
a) and PAL (Gao et al., 2023) convert the reason-
ing problem into an executable program to derive
the answer. To solve the problem that the original
chain structure naturally limits the scope of explo-
ration, Tree-of-Thoughts (ToT; Yao et al., 2023),
a variant of CoT, allows LLMs to perform delib-
erate decision-making by considering multiple dif-
ferent reasoning paths and self-evaluating choices
to decide the next course of action. Skeleton-of-
Thought (SoT; Ning et al., 2023) is another vari-
ation of ToT that breaks down a problem into
smaller, parallel-processable problems. Different
from the above studies, we focus on using the Logic
Tree-of-Program to enhance the logical reasoning
ability of LLMs in logical table-to-text generation.

3 Methodology

3.1 Problem Definition

Given a table T" with its title C, the task of con-
trolled logical table-to-text generation (CLT2T) is
to generate a description Y = (y1,92," ", Y|y|)
that is both fluent and logically consistent, with
the logical type L as control (Perlitz et al., 2022).
T = {T%,j‘l <i< Nrowvl S] < Ncol}s where
the N,o, and N, are the numbers of rows and
columns, respectively, and 7T; ; is the table cell
value at row ¢ and column j. Unlike previous meth-
ods (Chen et al., 2020b; Zhao et al., 2023b), we
did not directly provide the standard logical form
corresponding to Y in the input, as we believe their

LogicTablelnstruct

Instruction of LogicToP Retrieved k Demonstrations

Column Type Relation T, Table_title: mark donohue Logical_type: comparative
Annotation Extraction ‘v/' vear chassis | engine | start finish entrant
- LogicTableLLaMA Qwen2.5-Table 1969 Tol: 7 4th Tth ke
Schema Highlighted ogicTableLLaMA _Q o8 CiE Ppenske
Augmentation Cells QA i 1970 lola ford sth 2nd penske
Hi hical Table E 1971 mclaren | offy 2nd 25th penske
_'F:;":Q';a Vearif?cat?g; @ Table Instruction-tuning e s a ™ —
1973 eagle offy 3rd 15th penske
Entity Linking Row Population
Logical Table-to;Text Generation Logical Table-to- :
ER Text Generation Logic Tree-of-Program: less
4z - BRLLYS e~
Logical Types . h hop)
gicaliiyp ¥: Comparative f 2y i
soi. Count R Aggregation Open-source General LLMs (’““%\"ﬁ’“’—’“)
Superlative & Unique ‘L @ @ ° @
Y, .
[Ordinal % 7 Majority v Reference text:
LLaMA-3.1 Qwen2.5 mark donohue had a higher start in 1969 than he did in 1970.

(a) LogicTablelnstruct construction

(b) Instruction-tuning on LogicTablelnstruct

(c) Logic Tree-of-Program prompting

Figure 1: Overview of our LogicToP framework.

methods were leaking the answer. Following pre-
vious works (Parikh et al., 2020; Liu et al., 2022)
towards controlled table-to-text generation, we also
incorporate highlighted cells (or columns) H in the
input as additional supervision signals. The task ob-
jective thus becomes P(Y|T',C, L, H), as shown
in the Equ(1):

Y]
P(Y|T7 C7L?H) = HpLM(yZ|T) CaLaHa y<z)

i=1
(1

where py s is a probabilistic language model.

3.2 The LogicToP Framework

We elaborate on the LogicToP framework in the
following three steps, as shown in the Figure 1.

(1) LogicTablelnstruct construction

Although general LLMs can generate fluent text,
they lack sufficient logical reasoning ability to gen-
erate logically faithful table descriptions. Using
table-related instruction data to fine-tune a general
LLM can enhance its performance in table-related
tasks. However, existing works (Li et al., 2023;
Zhang et al., 2024) have not explored the logical
table-to-text generation task, resulting in a lack of
instruction data related to this task. Therefore, we
constructed a new table-related instruction dataset
called LogicTablelnstruct based on the Tableln-
struct (Zhang et al., 2024). We retained the diver-
sity of task categories in the original TableInstruct
dataset but adjusted the ratio between the original
data and the added data related to logical tables to
1:1. Specifically, as shown in Table 1, the train-

ing data corresponding to the logical table-to-text
generation task contains a total of 36.8K samples,
while the other eight in-domain tasks each contain
4.6K randomly selected samples. This data ratio
is conducive to ensuring that the fine-tuned model
has logical reasoning ability for tables, as well as
the ability to understand, answer questions, and
verify facts about tables. As shown on the left in
the Figure 1, the instruction data for the logical
table-to-text generation task covers seven logical
types: count, superlative, ordinal, comparative, ag-
gregation, unique, and majority. Please refer to
Figure 5 for the definitions of logical types and
examples of their logic forms. The visualization of
quantity statistics for different logical types in the
LogicTablelnstruct dataset is shown in Figure 6.

(2) Instruction-tuning on LogicTablelnstruct

The instructions let LLMs quickly adapt to a spe-
cific domain by constraining the model’s outputs
to match the intended response characteristics or
domain knowledge without requiring extensive re-
training or architecture design (Zhang et al., 2023).
Considering that the 70B-level LLMs (LLaMA-
3.1-70B-Instruct and Qwen2.5-72B-Instruct) per-
form better in open-source general LLMs under
few-shot settings, we chose their same series but
smaller-scale LLMs (LLaMA-3.1-8B-Instruct and
Qwen2.5-7B-Instruct) as the backbone models for
table instruction-tuning with our LogicTableln-
struct dataset, ultimately resulting in two table
instruction-tuned LLMs: LogicTableLLaMA-3.1-
8B and Qwen2.5-Table-7B-Instruct, as shown in
the middle of the Figure 1.

Task Category Task Name Original Dataset | In-domain | # Train | # Test
Column Type Annotation YES 4.6K | 0.5K

Table Interpretation Relation Extraction TURL YES 4.6K | 0.5K
Entity Linking YES 4.6K | 0.5K

. Schema Augmentation YES 4.6K | 0.5K

Table Augmentation Row Population TURL YES | 46K | 03K
Question Answerin Hierarchical Table QA HiTab YES 46K | 0.5K
£ Highlighted Cells QA FeTaQA YES 4.6K | 0.8K

Fact Verification Fact Verification TabFact YES 4.6K | 0.5K
. . . CONTLOG YES 8.6K | 1.1K

Table-to-Text Generation | Logical Table-to-Text Generation LOET YES 732K [3.0K

Table 1: LogicTableInstruct dataset statistics grouped by task category.

(3) Logic Tree-of-Program prompting

To address the issue of CoS, SymbCoT, and PoT
being unable to perform logical reasoning in com-
plex non-chain structure scenarios, we propose a
new reasoning method called the Logic Tree-of-
Program (LogicToP) for controlled logical table-
to-text generation. As shown in Figure 1 (c), before
generating descriptive text, LogicToP requires the
model to iteratively reason logically to form a logic
tree with functions or cell contents as nodes. Please
refer to the complete list of the function definitions
and descriptions in Appendix E. In addition, in or-
der to enable the model to generate more accurate
logical forms, we dynamically retrieve multiple
demonstration examples with the same logical type
as the test sample for In-Context Learning during
inference. Under the guidance of the logic tree, the
text generated by the model unequivocally demon-
strates superior fidelity, both at the surface level
and in logical coherence.

4 Experimental Results

4.1 Experimental Settings

Here, we introduce the datasets, automatic evalua-
tion metrics, and baselines used in our experiments.

4.1.1 Datasets

There are two benchmark datasets for logical table-
to-text generation: Logic2Text (Chen et al., 2020b)
and LogicNLG (Chen et al., 2020a). The samples
in both datasets are open-domain tables scraped
from Wikipedia. Each table is accompanied by
several related sentences covering diverse types of
logical inference. SASP (Ou and Liu, 2022) was
used to construct the logic form of the examples
from the LogicNLG training set, obtaining 15,637
examples in total for LOFT (Zhao et al., 2023b)

training. Besides, Liu et al. (2022) re-organized the
Logic2Text dataset by detecting highlighted cells
based on their annotated logical forms, resulting
in a new complementary dataset (CONTLOG) to-
wards controlled logical table-to-text generation. In
this work, we conduct experiments on two datasets,
CONTLOG and LOFT, which have completed the
logical form and highlighted cells based on tables.

4.1.2 Automatic Evaluation Metrics

We evaluate the generated description text from the
following two aspects:

(1) We first assessed the informativeness of the
generated texts using BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004), which measure lexical
similarity by calculating the overlap of n-gram at
the word level between the generated texts and the
ground-truth descriptions.

(2) Following previous works (Chen et al.,
2020a), we also employ SP-Acc and NLI-Acc to
evaluate the logical fidelity of the generated texts.

4.1.3 Baselines

In these experiments, we mainly take into account
the following baseline methods based on PLMs and
LLMs, respectively:

(1) PLMs-based Methods

GPT-TabGen (Chen et al., 2020a) directly fine-
tunes GPT-2-medium (Radford et al., 2019) over
Logic2Text and LogicNLG datasets. DCVED
(Chen et al., 2021) is a de-confounded variational
encoder-decoder based on causal intervention to
mitigate spurious correlations in generations. DE-
VTC (Perlitz et al., 2022) takes a distinct strategy
by using GPT-2-medium (Radford et al., 2019) in
combination with reasoning operation types as ex-
plicit controls. LogicMoE (Wu and Hou, 2024)
is a dedicated Mixture-of-Experts (MoE) model

Method Surface-level Fidelity Logical Fidelity
BLEU-1 BLEU-2 BLEU-3 ROUGE-L | SP-Acc NLI-Acc
PLMs-based methods under fully-supervised setting
GPT-TabGen (Chen et al., 2020a) 46.5 30.9 19.9 - 42.4 66.5
DCVED (Chen et al., 2021) 46.4 31.2 20.1 - 43.7 71.9
DEVTC (Perlitz et al., 2022) 47.8 32.6 222 - 41.9 74.4
LogicMoE (Wu and Hou, 2024) 514 36.8 26.4 - 48.9 75.9
LLMs-based methods under few-shot setting
TableLlama 5-shot ICL 04.9 02.3 01.4 09.4 20.2 57.3
TableLlama 5-shot LogicToP 04.1) 01.9) 01.1) 08.5] 2117 61.07
GPT-40 mini 5-shot ICL 28.0 17.5 11.7 35.9 47.8 88.6
GPT-40 mini 5-shot LogicToP 35.17 23.01 16.07 41.57 54.87 89.37
GLM-4-9B-Chat 5-shot ICL 12.5 07.0 04.1 224 24.4 89.7
GLM-4-9B-Chat 5-shot LogicToP 22.81) 12.41 07.21 35.81 48.5) 94.67
LLaMA-3.1-8B-Instruct 5-shot ICL 19.9 12.2 08.0 31.6 48.6 80.7
LLaMA-3.1-8B-Instruct 5-shot LogicToP 30.51 20.47 14.27 41.37 445 794
LLaMA-3.1-70B-Instruct 5-shot ICL 26.6 16.2 10.6 38.6 479 85.7
LLaMA-3.1-70B-Instruct 5-shot LogicToP 42.81) 29.31 21.410 42.37 5271 87.3%1
& LogicTableLLaMA-3.1-8B 5-shot ICL 49.3 35.5 26.9 49.8 47.1 84.1
& LogicTableLLaMA-3.1-8B 5-shot LogicToP | 56.57 43.57 34.47 55.57 51.87 87.17
Qwen2.5 series LLMs-based methods under few-shot setting

Qwen2.5-7B-Instruct 5-shot ICL 21.5 12.3 07.7 31.6 394 81.4
Qwen2.5-7B-Instruct 5-shot LogicToP 31.47 20.27 14.07 37.31 53.3(r 89.57
Qwen2.5-72B-Instruct 5-shot ICL 25.9 16.3 11.1 35.8 41.8 90.4
Qwen2.5-72B-Instruct 5-shot LogicToP 31.27 19.97 13.87 41.71 54.67 94.37
Qwen2.5-Coder-7B-Instruct 5-shot ICL 29.0 17.0 11.1 38.9 52.1 83.3
Qwen2.5-Coder-7B-Instruct 5-shot LogicToP 41.61 28.01) 20.27 41.41 54.41 88.67
Qwen2.5-Math-7B-Instruct 5-shot ICL 02.6 01.4 00.8 04.5 09.1 15.5
Qwen2.5-Math-7B-Instruct 5-shot LogicToP 02.77 01.57 01.07 04.2] 11.67 22.41
& Qwen2.5-Table-7B-Instruct 5-shot ICL 30.8 16.8 10.6 33.2 46.9 69.8
& Qwen2.5-Table-7B-Instruct 5-shot LogicToP | 40.67 2547 17.27 38.97 51.37 76.37

Table 2: Performance comparisons of the automatic evaluation on the Logic2Text dataset. & denotes our table
instruction-tuned LLMs. 1 and | indicate whether LogicToP has improved or decreased compared to ICL, and 1}

indicates that LogicToP has improved by more than 10%.

tailored for the LT2T task. In addition, we have
chosen three more powerful methods than GPT-
TabGen and DCVED as baselines for the Logic-
NLG dataset: R2D2 (Nan et al., 2022) incorporates
additional replacement detection and unlikelihood
learning tasks to train the T5-base (Raffel et al.,
2020) to act as both a generator and a fidelity dis-
criminator. PLOG (Liu et al., 2022) is a pre-trained
logical form generator model based on BART-large
(Lewis et al., 2019) to achieve more faithful LT2T.
LoFT (Zhao et al., 2023b) based on BART-large
controls the creative process by using logic forms
as content planners and fact validators. We directly
use the results reported in the papers corresponding
to the above methods for comparison.

(2) Large Language Models (LLMs)

In this paper, we also add a baseline method (In-
Context Learning) that directly uses the following
LLMs to accomplish the controlled logical table-
to-text generation task in a few-shot manner.

GPT-40 mini (Achiam et al., 2023). It is the
most cost-efficient closed-source general LLM of
ChatGPT (or GPT-4). The GPT-40 mini outper-

forms other small models on reasoning tasks in-
volving text and vision. It scored 82.0% on MMLU,
which is a benchmark for textual intelligence and
reasoning.

TableLlama (Zhang et al., 2024). It is the first
open-source generalist LLM instruction-tuned on a
constructed Tablelnstruct dataset using LonglL.oRA
(Chen et al., b) based on Llama 2 (7B) (Touvron
et al., 2023) as the backbone model.

GLM-4-9B-Chat (GLM et al., 2024). It demon-
strates comparable performance to GPT-4 and
Claude 3 Opus in Chinese math and logic reasoning
capabilities, though it lags behind GPT-4 Turbo.

The family of LLaMA-3.1 models'. We choose
the following advanced models for experimenta-
tion: LLaMA-3.1-8B-Instruct and LLaMA-3.1-
70B-Instruct.

The family of Qwen2.5 (Yang et al., 2024)
models. We chose the following advanced mod-
els for extensive experimentation: Qwen2.5-7B-
Instruct, Qwen2.5-72B-Instruct, Qwen2.5-Coder-
7B-Instruct, and Qwen2.5-Math-7B-Instruct.

"https://ai.meta.com/blog/meta-llama-3-1/

Method Surface-level Fidelity Logical Fidelity
BLEU-1 BLEU-2 BLEU-3 ROUGE-L | SP-Acc NLI-Acc
PLMs-based methods under fully-supervised setting
DEVTC (Perlitz et al., 2022) 50.8 29.2 15.2 - 45.6 77.0
R2D2 (Nan et al., 2022) 51.8 324 18.7 36.8 50.8 85.6
PLOG (Liu et al., 2022) 54.9 35.0 21.0 - 50.5 88.9
LOFT (Zhao et al., 2023b) 48.1 27.7 14.9 - 57.7 86.9
LogicMoE (Wu and Hou, 2024) 54.6 33.5 194 - 49.2 82.7
LILMs-based methods under few-shot setting
TableLlama 5-shot ICL 01.1 00.4 00.3 03.6 09.2 19.6
TableLlama 5-shot LogicToP 01.47 00.67 00.47 04.07 10.67 25.67
GPT-40 mini 5-shot ICL 14.2 06.3 03.4 21.0 38.2 70.9
GPT-40 mini 5-shot LogicToP 16.07 07.47 04.37 22.81 53710 76.77
GLM-4-9B-Chat 5-shot ICL 09.0 03.8 02.0 14.6 24.4 77.8
GLM-4-9B-Chat 5-shot LogicToP 11.57 05.07 02.77 17.37 4850 84.07
LLaMA-3.1-8B-Instruct 5-shot ICL 10.3 04.5 02.6 14.0 41.8 65.1
LLaMA-3.1-8B-Instruct 5-shot LogicToP 12.27 05.67 03.37 19.41 45.21 66.37
LLaMA-3.1-70B-Instruct 5-shot ICL 14.1 06.4 03.7 18.2 40.1 63.2
LLaMA-3.1-70B-Instruct 5-shot LogicToP 19.27 09.47 05.57 25.57 48.87 68.47
& LogicTableLLaMA-3.1-8B 5-shot ICL 17.5 08.8 05.4 22.0 46.2 55.5
& LogicTableLLaMA-3.1-8B 5-shot LogicToP | 29.91) 17.97 11.87 34.81) 51.07 65.61)
Qwen2.5 series LLMs-based methods under few-shot setting

Qwen2.5-7B-Instruct 5-shot ICL 13.7 05.9 03.3 20.1 40.8 71.3
Qwen2.5-7B-Instruct 5-shot LogicToP 14.47 06.27 03.57 20.27 52770 77.57
Qwen2.5-72B-Instruct 5-shot ICL 13.7 06.2 03.4 20.8 34.7 76.5
Qwen2.5-72B-Instruct 5-shot LogicToP 15.57 07.27 04.27 2277 46.87 82.87
Qwen2.5-Coder-7B-Instruct 5-shot ICL 15.0 06.8 03.9 21.7 42.2 58.1
Qwen2.5-Coder-7B-Instruct 5-shot LogicToP 18.71 08.97 05.07 27.07 52.80 70.71
Qwen2.5-Math-7B-Instruct 5-shot ICL 06.4 01.8 01.2 08.3 03.3 61.9
Qwen2.5-Math-7B-Instruct 5-shot LogicToP 06.3] 01.8 01.2 08.2] 03.77 62.67
& Qwen2.5-Table-7B-Instruct 5-shot ICL 13.9 06.4 03.8 19.2 46.3 49.0
& Qwen2.5-Table-7B-Instruct 5-shot LogicToP | 18.77 09.07 05.37 23.87 51.17 55.27

Table 3: Performance comparisons of the automatic evaluation on the LogicNLG dataset. & denotes our table
instruction-tuned LL.Ms. 1 and | indicate whether LogicToP has improved or decreased compared to ICL, and 1

indicates that LogicToP has improved by more than 10%.

4.1.4 Implementation Details

The GPT-40 mini has a context window of 128K to-
kens, supports up to 16K output tokens per request,
and has knowledge up to October 2023. We use the
same hyperparameters for LLMs: temperature =
0.001, penalty = 1.2, max_new_tokens = 1024. For
the table instruction-tuning, we provide detailed
parameter settings in Appendix A.

4.2 Main Results and Analysis

Table 2 and Table 3 present the comparison of au-
tomatic evaluation results between LogicToP and
other baselines on the Logic2Text and LogicNLG
datasets, respectively. Compared with methods
based on PLMs that have undergone specialized
pre-training of tables, directly using a general large
language model with 5-shot In-Context Learning
(ICL) demonstrations does not perform well in
logical table-to-text generation tasks. It is disap-
pointing that the TableLlama model, which has
been fine-tuned with various table-related instruc-
tion data, performs extremely poorly on this task.
However, our proposed LogicToP method achieves

state-of-the-art performance on the Logic2Text
dataset using our table instruction-tuned LLMs
such as LogicTableLLaMA-3.1-8B. On the Logic-
NLG dataset, our method significantly improved
the logical reasoning ability of LLMs on tables.
Specifically, we further analyze the experimental
results through the following three perspectives:

(1) LogicToP vs. ICL. As shown in Table 2
and Table 3, we use | and | to indicate whether
LogicToP has improved or decreased compared to
ICL. For LLLMs with strong generalization ability,
the LogicToP method enables them to think about
obtaining the corresponding logic tree-of-program
before generating text, resulting in a significant
performance improvement. For the TableLlama
and Qwen2.5-Math-7B-Instruct models, which had
poor performance, LogicToP has little or even a
negative effect on their improvement. The reason
is that these models can not correctly understand
and follow the instructions of LogicToP.

(2) Different sizes of LLMs. When the results
of LLaMA-3.1-8B-Instruct and LLaMA-3.1-70B-
Instruct in the 5-shot LogicToP setting are com-

90°

S LLaMA-3.1-70B-Instruct
. GPT-40 mini
e Qwen2.5-72B-Instruct

180°

270°

Figure 2: The results of different numbers of demonstra-
tions (from 1-shot to 5-shot) on the Logic2Text dataset.

pared, it is clear that LLaMA-3.1-70B-Instruct al-
ways outperforms LLaMA-3.1-8B-Instruct. Due to
LLaMA-3.1-8B-Instruct’s weak ability to follow in-
structions of LogicToP, its self-generated logic tree
is prone to error, resulting in a decrease in its logi-
cal fidelity on the Logic2Text dataset. However, the
gap between Qwen2.5-7B-Instruct and Qwen2.5-
72B-Instruct is relatively small. Qwen2.5-72B-
Instruct only has stable advantages in ROUGE-L
and NLI-Acc metrics.

(3) General LLM vs. Special LLM. To explore
whether using special domain data (such as code
and math corpus) for continual pre-training (CPT)
general LLMs can improve the performance on this
logical table-to-text generation task, we chose the
Qwen2.5 series LLMs for comparison. We can see
from Table 2 and 3 that the overall performance of
Qwen?2.5-Coder-7B-Instruct is better than that of
Qwen2.5-7B-Instruct, while the opposite is true for
Qwen2.5-Math-7B-Instruct. Qwen2.5-Coder-7B-
Instruct even surpassed Qwen2.5-72B-Instruct in
BLEU-1/2/3 metrics, indicating that utilizing code
data for CPT is helpful for this task.

4.3 Ablation Study

In the ablation experiment, we use the arithmetic
mean (AVQG) of six automatic evaluation metrics
scores to represent overall performance. We further
explore the factors that affect the performance of
the LLMs through the following two aspects:

(1) Different number of demonstrations. To
investigate the impact of the number of demonstra-

[Randomize
[Same-type

299

LLaMA-3.1-8B-Instruct LogicTableLLaMA-3.1-8B Qwen2.5-Coder-7B-Instrut Qwen2.5-72B-Instrut

Figure 3: Comparison results of different selection
strategies (Randomized vs. Same-type) for demonstra-
tion examples on the LogicNLG dataset.

tion examples on the LLMs, we tested the perfor-
mance of three LLMs (GPT-40 mini, LLaMA-3.1-
70B-Instruct, and Qwen2.5-72B-Instruct) with a
context window size of 128k from 1-shot to 5-shot
LogicToP on the Logic2Text dataset. As shown in
Figure 2, all three models exhibit a stable overall
performance growth trend from 1-shot to 5-shot
LogicToP. This leads to the conclusion that the
large language model performs better on the task
with more demonstration examples in the input.
Under the same number of demonstration exam-
ples, the overall performance of LLaMA-3.1-70B-
Instruct consistently outperforms GPT-40 mini and
Qwen2.5-72B-Instruct.

(2) Randomized samples vs. Same-type samples.
To explore the impact of different demonstration
selection strategies on the LLMs, we tested the per-
formance of four LLMs (LLaMA-3.1-8B-Instruct,
LogicTableLLaMA-3.1-8B, Qwen2.5-Coder-7B-
Instrut and Qwen2.5-72B-Instruct) using two strate-
gies (Randomized samples and Same-type samples)
in the 5-shot LogicToP setting on the LogicNLG
dataset. As shown in Figure 3, the average score of
the same-type sampling strategy is always slightly
better than that of the randomized sampling strategy
on these four LLMs. It also aligns with our intu-
ition that using examples of the same logical type
can help the model generate the logical form corre-
sponding to the current test sample through similar
logical forms. Moreover, LogicTableLLaMA-3.1-
8B has improved its AVG score by about ten points
compared to its backbone model, LLaMA-3.1-8B-
Instruct, indicating that instruction-tuning with our
LogicTablelnstruct dataset can effectively enhance
the model’s logical reasoning ability on tables.

,[LLaMA-3.1-8B-Instruct 5-shot ICL }

~

Here is the natural language description: The Capital Region of Denmark and the Region of Southern Denmark have the same English names, "“Capital

Region of Denmark™" and ""Region of Southern Denmark™", respectively. However, the Capital Region of Denmark has a smaller population (1645825)
\compared to the Region of Southern Denmark (1194659), and also compared to the Region of Zealand (819427).)

LLaMA-3.1-8B-Instruct 5-shot LogicToP } \

To solve this problem, I will follow these steps:

1. **Identify the logical type**: The logical type is ""comparative™.

2. **Determine the column and rows to compare**: The highlighted cells indicate that we need to compare the values in the "*population (January 1,

2008)"" column for rows 0 and 4.

3. **Compare the values**: The value for row 0 is 1645825, and the value for row 4 is 1194659.

4. **Generate the description**: Since the value for row 0 is greater than the value for row 4, the description will be: ""The capital region of denmark
\had a larger population than the region of southern denmark in 2008."" /
{ LLaMA-3.1-70B-Instruct 5-shot LogicToP } .

logic_str: greater { row_0 ; population (january 1, 2008) ; row_4 } = true

Answer: the capital region of denmark has a larger population than the region of southern denmark .

(N J/
[LogicTablel LaMA-3.1-88 5-shot LogicToP | <
###The logical form is: greater { hop { filter_eq { all_rows ; english name ; capital region of denmark } ; population (january 1, 2008) } ; hop { filter_eq

{ all_rows ; english name ; region of southern denmark } ; population (january 1, 2008) } } = true
_##Answer: the capital region of denmark has a higher population than the region of southern denmark

Reference Description and Logical_Form

Golden_logical_form: greater { hop { filter_eq { all_rows ; english name ; capital region of denmark } ; population (january 1, 2008) } ; hop { filter_eq
{ all_rows ; english name ; region of southern denmark } ; population (january 1, 2008) } } = true
Golden_description: the capital region of denmark has a higher population than the region of southern denmark.

Figure 4: Top 4 boxes: descriptions generated by different settings (5-shot ICL and 5-shot LogicToP) with various
LLaMA-3.1 series LLMs. Bottom: reference description and logical form of T'est;ggg on the Logic2Text dataset.

4.4 Case Study

To understand the effect of our LogicToP method
more intuitively, we select one representative ex-
ample (T'est1ggg) on the Logic2Text dataset and
present its descriptions generated by different set-
tings (5-shot ICL and 5-shot LogicToP) with var-
ious LLaMA-3.1 series LLMs in Figure 4. For
the same model, LLaMA-3.1-8B-Instruct, there
are two obvious errors in the description gener-
ated by the 5-shot ICL, while the 5-shot LogicToP
generates the correct description. However, the
instruction following and schema learning ability
of the LLaMA-3.1-8B-Instruct model is weaker
than that of the LLaMA-3.1-70B-Instruct model,
which is reflected in the fact that the reasoning
strategy of the LLaMA-3.1-8B-Instruct model re-
mains at a step-by-step chain (*Identify the log-
ical type*, *Determine the column and rows to
compare*, *Compare the values*, and *Generate
the description®) without generating the logical
form in the demonstrations. In addition, although
the LLaMA-3.1-70B-Instruct model can already
generate a concise logical form (greater { row_0 ;
population (january 1, 2008) ; row_4 } = true)
and correct description, LogicTableLLaMA-3.1-
8B can generate the logical form and description
that are completely consistent with the reference
answer at a fine-grained level. It further confirms

that instruction-tuning the 8B-level LLM on our
instruction dataset can enhance its logical reason-
ing ability on tables, even surpassing the 70B-level
LLM. Overall, LogicTableLLaMA-3.1-8B with the
5-shot LogicToP is the optimal combination solu-
tion for the logical table-to-text generation task.

5 Conclusion

In this paper, we conducted the first in-depth ex-
ploration of the effectiveness of various LLMs in
the logical table-to-text generation task. To simul-
taneously improve the logical reasoning ability of
LLMs on tables and avoid the overhead caused by
specific pre-training, we constructed a new table-
related instruction dataset LogicTablelnstruct for
fine-tuning open-source LL.Ms. We introduced a
novel reasoning framework termed LogicToP for
controlled logical table-to-text generation to solve
the problem of existing methods being unable to
effectively perform logical reasoning in intricate
non-chain structure scenarios. Our extensive ex-
periments on various LLMs demonstrated that our
proposed framework can effectively improve per-
formance on this task, and our LogicTableLLaMA-
3.1-8B model outperformed the state-of-the-art
baseline on the Logic2Text dataset. We hope that
the proposed method (LogicToP) can inspire other
researchers in related fields.

Limitations

Our approach has three limitations: (1) We did not
explore the impact of data ratios between differ-
ent tasks during the table instruction-tuning phase;
(2) Although we have found that using code data
for continual pre-training can improve the model’s
performance on this task, we cannot achieve con-
tinual pre-training on LLMs at the 70B level due
to our limited computing resources. (3) On the
LogicNLG dataset, our task setting did not include
standard logical forms in the input, resulting in high
task difficulty. Although our method improved the
logical reasoning ability of almost all tested LLMs,
there was a significant gap in scores compared to
methods based on especially pre-trained models in
surface-level metrics.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Ifigo Alonso and Eneko Agirre. 2024. Automatic logi-
cal forms improve fidelity in table-to-text generation.
Expert Syst. Appl., 238(Part D):121869.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and
William Yang Wang. 2020a. Logical natural lan-
guage generation from open-domain tables. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7929—
7942.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. a. Program of thoughts prompt-
ing: Disentangling computation from reasoning for
numerical reasoning tasks. Transactions on Machine
Learning Research.

Wengqing Chen, Jidong Tian, Yitian Li, Hao He, and Yao-
hui Jin. 2021. De-confounded variational encoder-
decoder for logical table-to-text generation. In An-
nual Meeting of the Association for Computational
Linguistics.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. b. Longlora:
Efficient fine-tuning of long-context large language
models. In The Twelfth International Conference on
Learning Representations.

Zhiyu Chen, Wenhu Chen, Hanwen Zha, Xiyou Zhou,
Yunkai Zhang, Sairam Sundaresan, and William Yang
Wang. 2020b. Logic2text: High-fidelity natural lan-
guage generation from logical forms. In Findings

of the Association for Computational Linguistics:
EMNLP 2020, pages 2096-2111.

Shumin Deng, Jiacheng Yang, Hongbin Ye, Chuanqi
Tan, Mosha Chen, Songfang Huang, Fei Huang, Hua-
jun Chen, and Ningyu Zhang. 2023. LOGEN: few-
shot logical knowledge-conditioned text generation
with self-training. /IEEE ACM Trans. Audio Speech
Lang. Process., 31:2124-2133.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: program-aided language
models. In Proceedings of the 40th International
Conference on Machine Learning, pages 10764—
10799.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han-
lin Zhao, Hanyu Lai, et al. 2024. Chatglm: A family
of large language models from glm-130b to glm-4 all
tools. arXiv preprint arXiv:2406.12793.

Hanxu Hu, Hongyuan Lu, Huajian Zhang, Wai Lam,
and Yue Zhang. 2023. Chain-of-symbol prompting
elicits planning in large langauge models. CoRR,
abs/2305.10276.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdel rahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. In Annual Meeting of the Association for
Computational Linguistics.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge,
Haidong Zhang, Danielle Rifinski Fainman, Dong-
mei Zhang, and Surajit Chaudhuri. 2023. Table-gpt:
Table-tuned gpt for diverse table tasks. arXiv preprint
arXiv:2310.09263.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Ao Liu, Haoyu Dong, Naoaki Okazaki, Shi Han, and
Dongmei Zhang. 2022. Plog: Table-to-logic pretrain-
ing for logical table-to-text generation. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 5531-5546.

Linyong Nan, Lorenzo Jaime Yu Flores, Yilun Zhao,
Yixin Liu, Luke Benson, Weijin Zou, and Dragomir
Radev. 2022. R2D2: robust data-to-text with replace-
ment detection. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 6903—6917.
Association for Computational Linguistics.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang,
and Yu Wang. 2023. Skeleton-of-thought: Large
language models can do parallel decoding. CoRR,
abs/2307.15337.

Suixin Ou and Yongmei Liu. 2022. Learning to gener-
ate programs for table fact verification via structure-
aware semantic parsing. In Proceedings of the 60th

https://doi.org/10.1016/J.ESWA.2023.121869
https://doi.org/10.1016/J.ESWA.2023.121869
https://doi.org/10.1016/J.ESWA.2023.121869
https://doi.org/10.1109/TASLP.2023.3275028
https://doi.org/10.1109/TASLP.2023.3275028
https://doi.org/10.1109/TASLP.2023.3275028
https://doi.org/10.1109/TASLP.2023.3275028
https://doi.org/10.1109/TASLP.2023.3275028
https://doi.org/10.48550/ARXIV.2305.10276
https://doi.org/10.48550/ARXIV.2305.10276
https://doi.org/10.48550/ARXIV.2305.10276
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.464
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.464
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.464
https://doi.org/10.48550/ARXIV.2307.15337
https://doi.org/10.48550/ARXIV.2307.15337
https://doi.org/10.48550/ARXIV.2307.15337

Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7624—
7638.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311-318. ACL.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipan-
jan Das. 2020. ToTTo: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173—-1186, Online. As-
sociation for Computational Linguistics.

Yotam Perlitz, Liat Ein-Dor, Dafna Sheinwald, Noam
Slonim, and Michal Shmueli-Scheuer. 2022. Diver-
sity enhanced table-to-text generation via type con-
trol. ArXiv, abs/2205.10938.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Weiwei Shi, Yubo Liu, Jie Wu, and Jianming Liao. 2022.
Three-stage logical table-to-text generation based on
type control. In Proceedings of the 5th International
Conference on Algorithms, Computing and Artificial
Intelligence, ACAI 2022, Sanya, China, December
23-25, 2022, pages 13:1-13:5. ACM.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation
and fine-tuned chat models. arXiv e-prints, pages
arXiv—2307.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurlPS.

Jiehui Wu and Mengshu Hou. 2024. Enhancing diver-
sity for logical table-to-text generation with mixture
of experts. Expert Systems, 41.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-
Li Lee, and Wynne Hsu. 2024. Faithful logical rea-
soning via symbolic chain-of-thought. arXiv e-prints,
pages arXiv—2405.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

10

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. CoRR,
abs/2305.10601.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2024. Tablellama: Towards open large generalist
models for tables. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
6024-6044.

Xueliang Zhao, Tingchen Fu, Lemao Liu, Lingpeng
Kong, Shuming Shi, and Rui Yan. 2023a. Sortie:
Dependency-aware symbolic reasoning for logical
data-to-text generation. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
11247-11266.

Yilun Zhao, Zhenting Qi, Linyong Nan, Lorenzo Jaime
Flores, and Dragomir Radev. 2023b. Loft: Enhanc-
ing faithfulness and diversity for table-to-text gener-
ation via logic form control. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 554—
561.

Alex Zhuang, Ge Zhang, Tianyu Zheng, Xinrun Du,
Junjie Wang, Weiming Ren, Stephen W Huang,
Jie Fu, Xiang Yue, and Wenhu Chen. 2024.
Structlm: Towards building generalist models for
structured knowledge grounding. arXiv preprint
arXiv:2402.16671.

A Parameters of Table Instruction-tuning

We provide detailed parameter settings for the table
instruction-tuning in Table 4.

Parameter LLaMA Qwen2.5
batch size (per device) 3 3
gradient accumulation steps 2 8
learning rate 1.0e-4 1.0e-5
train epochs 3 4

Ir scheduler type cosine cosine
warmup ratio 0.1 0.1

fpl6 true true

ddp timeout 1.8e8 1.8e8

Table 4: Detailed parameter settings for the table
instruction-tuning. LLaMA: LLaMA-3.1-8B-Instruct.
Qwen2.5: Qwen2.5-7B-Instruct.

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.1145/3579654.3579667
https://doi.org/10.1145/3579654.3579667
https://doi.org/10.1145/3579654.3579667
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.48550/ARXIV.2305.10601

(ooy Count counting some rows in the table based on the values in one column, with the scope of all table rows or a subset of rows. h
An example of logic form:
L eq { count { filter_eq {all_rows ; rank ; 20} } ; 2} = true)
(" Superlative Describing the maximum or minimum value in a column, with the scope of all table rows or a subset of rows. You may also talk h
about other columns in this row with the superlative value.
An example of logic form:
_ eq { hop { argmax { all_rows ; number of viewers } ; show } ; 1966 world cup final } = true)
(" m Ordinal Describing the n-th maximum or minimum value in a column, with the scope of all table rows or a subset of rows. You may also R
talk about other columns in this row with the n-th maximum or minimum value.
An example of logic form:
L eq { hop { nth_argmax { all_rows ; year ; 2} ; album title } ; realism } = true)

P
“#: Comparative

N
Comparing two rows in the table, regarding their values in one column. You may also talk about other columns in these two rows.

An example of logic form:

less { hop { filter_eq { all_rows ; title ; face / off } ; year } ; hop { filter_eq { all_rows ; title ; antz } ; year } } = true

_ J
s — - N
Fﬁ Aggregation Describing the sum or average value over a column, with the scope of all table rows or a subset of rows.
An example of logic form:
L round_eq { sum { filter_eq { all_rows ; place ; waddon } ; platforms } ; 4 } = true)
() Unique Degcribi‘ng one unique row, regarding one column, with the scope of all table rows or a subset of rows. You may also talk about h
i other columns in this unique row.
An example of logic form:
_ and { only { filter_eq { all_rows ; host ; jack arute } } ; eq { hop { filter_eq { all_rows ; host ; jack arute } ; year } ; 2008 } } = true)
r’? Oy Majority Describing the majority values (most or all) over one column, with the scope of all table rows or a subset of rows.)
An example of logic form:
L most_greater_eq { all_rows ; crowd ; 10000 } = true)

Figure 5: Definitions and examples of seven logical types.

B Logical Type Definitions and Examples

As shown in Figure 5, we have provided the defi-
nitions of different logical types and examples of
their linearized logic forms.

C Logical Type Statistics

As shown in Figure 6, we provide a visual view of
the total number of different logical types in our
LogicTablelnstruct dataset.

11086 .
LogicNLG
10101 Logic2Text
10000
91
8000
7500
2
5
2
]
5 6000
=
E|
=] 4673
= 4250
4000
3356 3396
3104
2251
2000 1897 1805
946
326

Count Superlative Ordinal Comparative ~ Aggregation Unique Majority

Figure 6: The total number of different logical types.

D The Prompt Format of LogicToP
See Figure 7.

E The Function Definitions List
See Table 5.

11

mpt Format of L

#itH << >>
You are a scientific researcher with logical reasoning ability and comparative analysis ability.
#i# << >>

This is a logical table-to-text generation task with highlighted cells, aiming to generate accurate and fluent natural language descriptions for the
highlighted cells in the table.

Then, I will provide you with table_title, table_header, table_content, highlight_cells, and logical_type. Among them, *'table_header" is the table
header in list format; *'table_content™ consists of the table content as a list of lists.

“logical_type™:

(1) Count: Counting some rows in the table based on the values in one column, with the scope of all table rows or a subset of rows.

(2) Superlative: Describing the maximum or minimum value in a column, with the scope of all table rows or a subset of rows. You may also talk
about other columns in this row with the superlative value.

(3) Ordinal: Describing the n-th maximum or minimum value in a column, with the scope of all table rows or a subset of rows. You may also talk
about other columns in this row with the n-th maximum or minimum value.

(4) Comparative: Comparing two rows in the table, regarding their values in one column. You may also talk about other columnsin these two rows.
(5) Aggregation: Describing the sum or average value over a column, with the scope of all table rows or a subset of rows.

(6) Unique: Describing one unique row, regarding one column, with the scope of all table rows or a subset of rows. You may also talk about other
columns in this unique row.

(7) Majority: Describing the majority values (most or all) over one column, with the scope of all table rows or a subset of rows.

HHH << >>
Please generate semantically accurate natural language descriptions that match the highlighted cells based on the given table and logical type.
#H# << >>

Before generating descriptive text, you need to perform logical reasoning first. Logical reasoning requires you to generate a logical form that
matches the highlighted cells and the logical type based on the given table.

H#HiHt << >>

Here are some examples: { Conter) b

Please refer to the examples to process the following data: table_title:{table_title}, table_header:{table_header}, table_content:{table content},
highlight_cells:{highlight_cells}, and logical_type:{logical_type}.

Figure 7: Prompt used for Logic Tree-of-Program (LogicToP). Each example in contains

input, output, and the corresponding logical form of the output.

Name Ar Output Description

count view number returns the number of rows in the view

only view bool returns whether there is exactly one row in the view

hop row, header string object returns the value under the header column of the row

and bool, bool bool returns the boolean operation result of two arguments

max/min/avg/sum view, header string number returns the max/min/average/sum of the values under the header column

nth_max/nth_min view, header string number returns the n-th max/n-th min of the values under the header column

argmax/argmin view, header string oW returns the row with the max/min value in header column

nth_argmax/nth_argmin view, header string oW returns the row with the n-th max/min value in header column

eq/not_eq object, object bool returns if the two arguments are equal

round_eq object, object bool returns if the two arguments are roughly equal under certain tolerance

greater/less object, object bool returns if argument 1 is greater/less than argument 2

diff object, object object returns the difference between two arguments

filter_eg/not_eq view, header string, object view returns the subview whose values under the header column is equal/not equal to argument 3
filter_greater/less view, header string, object view returns the subview whose values under the header column is greater/less than argument 3
filter_greater_eq /less_eq view, header string, object view returns the subview whose values under the header column is greater/less or equal than argument 3
filter_all view, header string view returns the view itself for the case of describing the whole table

all_eg/not_eq view, header string, object bool returns whether all the values under the header column are equal/not equal to argument 3
all_greater/less view, header string, object bool returns whether all the values under the header column are greater/less than argument 3
all_greater_eq/less_eq view, header string, object bool returns whether all the values under the header column are greater/less or equal to argument 3
most_eq/not_eq view, header string, object bool returns whether most of the values under the header column are equal/not equal to argument 3
most_greater/less view, header string, object bool returns whether most of the values under the header column are greater/less than argument 3
most_greater_eq/less_eq view, header string, object bool returns whether most of the values under the header column are greater/less or equal to argument 3

Table 5: Function definitions.

12

	Introduction
	Related Work
	Logical Table-to-Text Generation
	Chain-of-Thoughts Reasoning with LLMs

	Methodology
	Problem Definition
	The LogicToP Framework

	Experimental Results
	Experimental Settings
	Datasets
	Automatic Evaluation Metrics
	Baselines
	Implementation Details

	Main Results and Analysis
	Ablation Study
	Case Study

	Conclusion
	Parameters of Table Instruction-tuning
	Logical Type Definitions and Examples
	Logical Type Statistics
	The Prompt Format of LogicToP
	The Function Definitions List

